K. ENOMOTO KODAI MATH. J. 1](1978), 258-263

TOTAL ABSOLUTE CURVATURE OF IMMERSED SUBMANIFOLDS OF SPHERES

By Kazuyuki Enomoto

Let M be an m-dimensional compact differentiable manifold and f be an immersion of M into S^{m+k} . Let $p \in S^{m+k}$ and π_p be the stereographic projection from p onto the tangent plane of S^{m+k} at -p. If $p \notin f(M)$, $\pi_p \cdot f$ is an immersion of M into the (m+k)-dimensional euclidean space. Let i be the inclusion of S^{m+k} into E^{m+k+1} . In general, $\tau(\pi_p \cdot f)$, the total absolute curvature of $\pi_p \cdot f$, is not necessarily equal to $\tau(i \cdot f)$, the total absolute curvature of $i \cdot f$. If m=1, however, T. Banchoff showed in [1] that the average value of $\tau(\pi_p \cdot f)$ over all possible base points is equal to $\tau(i \cdot f)$. In this paper we generalize this theorem to immersional compact differentiable manifolds into S^{m+k} .

The author wishes to express his hearty thanks to Professor T. Otsuki for his constant encouragement and valuable suggestions.

1. Preliminaries.

Let M be an *m*-dimensional compact differentiable manifold and F be an immersion of M into E^{m+k} . Let ν_F^1 be the unit normal vector bundle of F with the total space N_F^1 and the projection $\pi: N_F^1 \to M$. For any $e \in N_F^1$, we denote by S(e) the second fundamental tensor of F with respect to e. S(e) is an endomorphism of $T_{\pi(e)}M$. Let $G(e)=\det S(e)$ and we call G(e) the Lipschitz-Killing curvature of F with respect to e. N_F^1 is an (m+k-1)-dimensional orientable Riemannian manifold with the metric naturally induced from E^{m+k} . Let $d\mu$ be the volume element of N_F^1 .

Set

$$\tau(F) = (c_{m+k-1})^{-1} \int_{N_F^1} |G(e)| d\mu(e)$$

where c_{m+k-1} is the volume of S^{m+k-1} .

We call $\tau(F)$ the total absolute curvature of F.

Let $N_F^1(x)$ be the fibre of N_F^1 at $x \in M$. $N_F^1(x)$ has the natural metric of the sphere S^{k-1} and we denote its volume element by $d\sigma_x^{k-1}$.

Received April 25, 1977.

Set

$$\tau(F, x) = (c_{m+k-1})^{-1} \int_{N_F^1(x)} |G(e)| d\sigma_x^{k-1}(e)$$

We call $\tau(F, x)$ the absolute curvature of F at x.

We now assume that M is orientable and let dV be the volume element of M with respect to the metric induced from E^{m+k} by F. Then there is a differential form ω of degree k-1 on N_F^1 such that its restriction to $N_F^1(x)$ is equal to $d\sigma_x^{k-1}$ and $d\mu = \omega \wedge dV$. Thus it holds that

$$\tau(F) = \int_{\mathcal{M}} \tau(F, x) \, dV(x)$$

When M is non-orientable, there is a double covering of $M, \bar{\pi} : \bar{M} \to M$ such that M is orientable. Then we have $\tau(F \cdot \bar{\pi}) = 2\tau(F)$.

We now consider a stereographic projection on S^n . Let $p \in S^n$ and π_p : $S^n - \{p\} \to T_{-p} S^n$ be the stereographic projection from p. Then for any q in $S^n - \{p\}$, $\pi_p(q) = p + k(q-p)$ where $k = \frac{2}{1 - \langle q, p \rangle}$. Let $(\pi_p)_* : T_q S^n \to E^n$ be the differential of π_p at q. Then we have the following:

LEMMA 1. Let $q \in S^n - \{p\}$ and $X \in T_q S^n$. Then we have

$$(\pi_p)_*(X) = kX + \frac{k^2}{2} \langle X, p \rangle (q-p)$$

and

$$\|(\pi_p)_*(X)\| = k \|X\|$$

that is, π_p is a conformal mapping with the scale function k.

Proof. Let $\sigma(t)$ be a C^1 -curve in S^n with $\sigma(0)=q$ and $\sigma'(0)=X$. Let k(t): = $k(\sigma(t))=\frac{2}{1-\langle \sigma(t), p \rangle}$. Since $(\pi_p)_*(X)=(\pi_p \cdot \sigma)'(0)$,

$$(\pi_p)_*(X) = \frac{d}{dt}(p+k(t)(\sigma(t)-p))|_{t=0}$$
$$= k\sigma'(0) + k'(0)(q-p)$$
$$= kX + \frac{k^2}{2} \langle X, p \rangle (q-p)$$

Since $\langle q-p, q-p \rangle = 2(1-\langle q, p \rangle) = \frac{4}{k}$ and $\langle q, X \rangle = 0$,

$$\langle (\pi_p)_*(X), (\pi_p)_*(X) \rangle = k^2 \langle X, X \rangle - k^3 \langle X, p \rangle^2 + \frac{1}{4} k^4 \langle X, p \rangle^2 \langle q - p, q - p \rangle$$

= $k^2 \langle X, X \rangle.$ q. e. d

KAZUYUKI ENOMOTO

2. Main theorem.

We now state the main theorem of this paper.

THEOREM. Let M be an m-dimensional compact differentiable manifold and f be an immersion of M into S^{m+k} . Let i be the inclusion of S^{m+k} into E^{m+k+1} . Then

$$\tau(\imath \cdot f) = (c_{m+k})^{-1} \int_{S^{m+k}} \tau(\pi_p \cdot f) \, d\sigma^{m+k}(p)$$

where $d\sigma^{m+k}$ is the standard volume element of S^{m+k} .

Note: The function $p \mapsto \tau(\pi_p \cdot f)$ is defined almost everywhere in S^{m+k} (in fact it is defined in $S^{m+k} - f(M)$) and continuous there.

We first consider the absolute curvature of $i \cdot f$. Let $N_J^i(x)$ be the unit normal vector space of f at $x \in M$. Let $e \in N_J^i(x)$ and $a_i(e)$ $(1 \le i \le m)$ be a system of principal curvatures of f with respect to e. Let $X_i(e)$ be (unit) principal vectors of f with respect to e with the principal curvatures $a_i(e)$ respectively. For convenience, we use the same notation x for the image of x by f, f(x). If \bar{e} is a unit normal vector of $i \cdot f$ at x, $\bar{e} = x \sin \rho + e \cos \rho$ for some $e \in N_J^i(x)$ and $\rho \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

LEMMA 2. $X_i(e)$ are the principal vectors of $i \cdot f$ with respect to \overline{e} with the principal curvatures $\sin \rho + a_i(e) \cos \rho$ respectively.

Proof. Let S_e be the second fundamental tensor of f with respect to e and $\overline{S}_{\overline{e}}$ the one of $i \cdot f$ with respect to \overline{e} . Since $\overline{S}_e(X_i(e)) = S_e(X_i(e)) = a_i(e) X_i(e)$,

$$\begin{split} \bar{S}_{\overline{e}}(X_{i}(e)) &= \sin \rho \, \bar{S}_{x}(X_{i}(e)) + \cos \rho \, \bar{S}_{e}(X_{i}(e)) \\ &= & (\sin \rho + a_{i}(e) \cos \rho) \, X_{i}(e) \\ q. \, e. \, d. \end{split}$$

Let $\overline{G}(\overline{e})$ be the Lipschitz-Killing curvature of $i \cdot f$ with respect to \overline{e} . Then we have $\overline{G}(\overline{e}) = \prod_{i=1}^{m} (\sin \rho + a_i(e) \cos \rho)$. Hence, denoting by $d\sigma^i$ the standard volume element of S^i ,

$$\tau(\iota \cdot f, x) = (c_{m+k})^{-1} \int_{N_{\iota \cdot f}^{1}(x)} |G(e)| d\sigma^{k}(\bar{e})$$

= $(c_{m+k})^{-1} \int_{-\pi/2}^{\pi/2} \int_{N_{f}^{1}(x)} \prod_{i=1}^{m} |\sin \rho + a_{\iota}(e) \cos \rho| \cos^{k-1} \rho \, d\rho \wedge d\sigma^{k-1}(e)$
.....(1)

260

Now we consider the absolute curvature of $\pi_p \cdot f$. For $p \in S^{m+k} - f(M)$, define a mapping $\lambda_p : N_f^1(x) \to N_{\pi_p \cdot f}^1(x)$ by $\lambda_p(e) := 1/k(\pi_p)_*(e)$ $(e \in N_f^1(x))$. Let $\tilde{e} := \lambda_p(e)$ and let $\tilde{S}_p(\tilde{e})$ be the second fundamental tensor of $\pi_p \cdot f$ with respect to \tilde{e} . Then we have the following lemma:

LEMMA 3. $1/k(X_i(e))$ are the principal vectors of $\pi_p \cdot f$ with respect to $\tilde{e} = \lambda_p(e)$ with the principal curvatures $1/k(a_i(e)+k/2\langle e, p \rangle)$ respectively.

Proof. In this proof we identify M with its image by f. Let $\alpha(t)$ be a C^1 -curve in M with $\alpha(0)=x$ and $\alpha'(0)=X_i(e)$. Take $e(t)=e(\alpha(t))$, a normal vector field of f along $\alpha(t)$, such that e(0)=e. Let $()^T : T_{\pi_p \cdot f(x)} E^{m+k} \to T_x M$ be the tangential projection of $\pi_p \cdot f$. Since

$$\widetilde{S}_{p}(\widetilde{e})\left(\frac{1}{k}X_{i}(e)\right) = \frac{1}{k}\left(\frac{d}{dt}\widetilde{e}(t)|_{t=0}\right)^{T}$$

where $\tilde{e}(t) = \lambda_{\alpha(t)} e(t)$, denoting

$$k(\alpha(t)) = \frac{2}{1 - \langle \alpha(t), p \rangle} \quad \text{by} \quad k(t),$$

$$\widetilde{S}_{p}(\widetilde{e}) \Big(\frac{1}{k} X_{i}(e) \Big) = \frac{1}{k} \Big(\frac{d}{dt} \Big(e(t) + \frac{k(t)}{2} \langle e(t), p \rangle (\alpha(t) - p) \Big) \Big|_{t=0} \Big)^{T}$$

$$= \frac{1}{k} \Big(e'(0) + \frac{k'(0)}{2} \langle e, p \rangle (x - p) + \frac{k}{2} \langle e'(0), p \rangle (x - p) + \frac{k}{2} \langle e, p \rangle X_{i}(e) \Big)^{T}$$

Since $((\pi_p)_*(e'(0)))^T = S_e(X_i(e)) = a_i(e) X_i(e)$,

$$\begin{split} \widetilde{S}_{p}(\widetilde{e})\Big(\frac{1}{k}X_{i}(e)\Big) &= \frac{1}{k}\Big(\frac{1}{k}(\pi_{p})_{*}(e'(0)) \\ &\quad + \frac{k}{2}\langle e, \ p \rangle (\pi_{p})_{*}\Big(\frac{1}{k}X_{i}(e)\Big)\Big)^{T} \\ &= \frac{1}{k}\Big(a_{i}(e) + \frac{k}{2}\langle e, \ p \rangle\Big)\Big(\frac{1}{k}X_{i}(e)\Big) \\ q. e. d. \end{split}$$

Let $\tilde{G}_p(\tilde{e})$ be the Lipschitz-Killing curvature of $\pi_p \cdot f$ with respect to $\tilde{e} = \lambda_p(e) \in N_{\pi_p \cdot f}^1(x)$. Since $\tilde{G}_p(\tilde{e}) = \prod_{i=1}^m (a_i(e) + k/2 \langle e, p \rangle)$ and λ_p is an isometry of $N_f^1(x)$ into $N_{\pi_p \cdot f}^1(x)$,

$$\tau(\pi_{p} \cdot f, x) = (c_{m+k-1})^{-1} \int_{N_{\pi_{p} \cdot f}^{1}(x)} |\tilde{G}_{p}(\tilde{e})| d\sigma^{k-1}(\tilde{e})$$
$$= (c_{m+k-1})^{-1} \int_{N_{f}^{1}(x)} \frac{1}{k^{m}} \prod_{i=1}^{m} \left| a_{i}(e) + \frac{k}{2} \langle e, p \rangle \right| d\sigma^{k-1}(e)$$
.....(2)

Proof of Theorem.

We now assume that M is orientable. When M is non-orientable, the proof of the theorem can be reduced to the orientable case through the double covering of M.

Let dV be the volume element of M with respect to the metric induced from E^{m+k+1} by $i \cdot f$ and dV_p be the one with respect to the metric induced from E^{m+k} by $\pi_p \cdot f$. Then we have $dV_p = k^m dV$. Since

$$\tau(\iota \cdot f) = \int_{\mathcal{M}} \tau(\iota \cdot f, x) \, dV(x) \quad \text{and} \quad \tau(\pi_p \cdot f) = \int_{\mathcal{M}} \tau(\pi_p \cdot f, x) \, dV_p(x),$$

by (1) and (2), it is sufficient for the proof of the theorem to show the following equality (3) for any $x \in M$ and $e \in N_f^1(x)$:

We parameterize S^{m+k} by $p = (\sin^2 \theta_1 - \cos^2 \theta_1 \sin \theta_2, \sin \theta_1 \cos \theta_1 (1 + \sin \theta_2), \cos \theta_1 \cos \theta_2 \sin \theta_3, \cos \theta_1 \cos \theta_2 \cos \theta_3 \sin \theta_4, \dots, \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{m+k-1} \sin \theta_{m+k}, \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{m+k-1} \cos \theta_{m+k-1} \cos \theta_{m+k})$

The volume element of S^{m+k} in terms of this coordinate system is

$$d\sigma^{m+k}(p) = \cos^{m+k-1}\theta_1(1+\sin\theta_2)\cos^{m+k-2}\theta_2\cos^{m+k-3}\theta_3\cdots\cdots$$
$$\cdots\cdots\cos\theta_{m+k-1}d\theta_1\wedge d\theta_2\cdots\cdots\wedge d\theta_{m+k-1}\wedge d\theta_{m+k}$$

We may assume $x=(1, 0, \dots, 0)$ and $e=(0, 1, 0, \dots, 0)$. Then $k/2\langle e, p \rangle = \tan \theta_1$. Hence

262

$$= c_{m+k-1} \int_{-\pi/2}^{\pi/2} \prod_{i=1}^{m} |a_i(e) + \tan \theta_1| \cos^{m+k-1} \theta_1 d\theta_1$$
$$= c_{m+k-1} \int_{-\pi/2}^{\pi/2} \prod_{i=1}^{m} |\sin \theta_1 + a_i(e) \cos \theta_1| \cos^{k-1} \theta_1 d\theta_1$$

Thus the equality (3) is shown and the proof of the theorem is completed.

References

- [1] T.F. BANCHOFF, Total central curvature of curves, Duke Math. J., 37 (1970) 281-289
- [2] D.FERUS, Totale Absolutkrümmung in Differentialgeometrie und -topologie, Lecture Notes in Mathematics No. 66, Springer-Verlag (1968).

TOKYO INSTITUTE OF TECHNOLOGY