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ENTIRE FUNCTIONS WITH THREE LINEARLY

DISTRIBUTED VALUES

BY TADASHI KOBAYASHI

1. Introduction. A complex number w will be called a linearly distributed
value of the entire function f(z) if there is a straight line L of the complex
plane on which all the solutions of f(z)=w lie. For the exponential function,
every value is linearly distributed. Conversely, Baker proved that a trans-
cendental entire function for which every value is linearly distributed must have
the form a+b exp(cz), where a, b and c are constants.

In this connection we have shown the following result in our previous paper

E4]

Let f(z) be a transcendental entire function. Assume that there are three
distinct finite complex numbers a3 and three distinct straight lines L3 of the com-
plex plane on which all the solutions of f(z)—a3 lie 0 = 1,2,3). Assume further
that f{z) has a finite deficient value other than au a2 and α3. Then f(z)=
P(exp Az) with a quadratic polynomial P(z) and a non-zero constant A.

The object of this paper is to give a further substantial improvement, which
gives an essentially sharp form of the above our result.

THEOREM. Let f{z) be a transcendental entire function which has three
distinct finite linearly distributed values clf c2 and c3. If these three values never
lie on any straight line of the complex plane, then

Az),

where P(z) is a quadratic polynomial and A is a non-zero constant.

Considering the sine function or the cosine function, we easily assure that
the assumptions of our theorem cannot be improved, in general.

Let f(z) be an entire function having three distinct finite linearly distributed
values cu c2 and cs. By L3, we denote the straight line on which all the e r points
of f{z) lie C/=l, 2, 3). With these conventions, we shall show the following four
propositions.

PROPOSITION 1. // at least two of the three lines L3 coincide with each other
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and if the three values c3 do not lie on any straight line of the complex plane,
then either

f(z)=A+B exp(Cz)

with constants A, B and C, or f(z) is a polynomial.

PROPOSITION 2. Assume that the three lines L3 are distinct from one another
and that no two of which run parallel with each other. Then f{z) reduces to a
polynomial.

PROPOSITION 3. // the three lines L3 are distinct from one another and if
exactly two of which run parallel with each other, then

exp(Cz)

with constants A, B and C, unless f{z) is a polynomial.

PROPOSITION 4. Assume that the three lines L3 are distinct and parallel with
one another. Then

f(z)=P(expAz)

with a quadratic polynomial P(z) and a non-zero constant A, provided that f{z)
does not reduce to a polynomial.

In conclusion, our Theorem is an immediate consequence of the above four
propositions.

2. Preliminary results. Using the well known Bohr and Landau's theorem,
we have proved the following fact [4, Theorem 6].

LEMMA 2.1. Let f{z) be an entire function with three distinct finite linearly
distributed values. Then the order of f(z) must be finite.

The next lemma is due to Edrei and Fuchs [3].

LEMMA 2.2. Let f(z) be a transcendental entire function having only real
zeros. Then f{z) has at most one finite deficient value. Further if f{z) has a
finite deficient value other than zero, then the order of f{z) is not greater than one.

Let f(z) be an entire function and let w be a complex number. We say that
the value w is a radially distributed value of fiz) if there exists a half straight
line of the complex plane on which all the ^-points of f{z) lie. With this defini-
tion, Theorem B of [4] takes the following form.

LEMMA 2.3. Let f{z) be an entire function of finite genus q with #Ξ>1. //
the value 0 is a radially distributed value of f{z), then f(z) has zero as a deficient
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value.

Combining Lemmas 2.2 and 2.3, we can prove the following.

LEMMA 2.4. Let f(z) be an entire function of finite order satisfying

Then f(z) has at most one finite radially distributed value.

Proof. Assume that f{z) has two finite radially distributed values, say 0 and
1. Then it is possible to choose two complex numbers a (Φθ) and b so that the
function defined by

f*(z)=f(az+b)

has only negative zeros. Of course, the value 1 is a radially distributed value of
f*(z) and the characteristic function of f*(z) satisfies

T(r f*)
lim inf V } J } Φθ.

r-*oo r

Hence the genera of f*(z) and f*(z) —1 are finite and at least one. Therefore
Lemma 2.3 implies δ(0,/*)>0 and δ(l ,/*)>0. This contradicts Lemma 2.2.

Further by means of Lemma 2.2 and Theorem C of [4], we easily obtain
the next fact.

LEMMA 2.5. Let f(z) be an entire function with three distinct finite linearly
distributed values c1} c2 and c3. Then the genera of f(z)—c3 0 = 1 , 2, 3) are at
most one.

Now let g{z) be an entire function whose zeros {an} lie on a straight line

L. Express this line L as

L={z\ Re(uz)=r},

where r is a suitable real number and u is a suitable complex number with
|w|—1. Assume further that the genus of g(z) is at most one. Then Lemma 5
of [4] gives

g(uz+ur)=g( — uz+ur) exp(2Cz+z'C0
and

with suitable real constants C and C. The proofs of our propositions are based
on these relations.
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If the real constant C is equal to zero and if g(z) has at least one zero-point,
then the relation (*) yields

for Re(uz)>r and for Re(uz)<r. In particular, g'(z) fails to take the value 0 there.
Therefore all the zeros of gf(z), if exist, must lie on the line L.

Next let us assume that C>0. Then it follows from the relation (*) that

for Re(uz)^r. Thus we find

^C(b-a)

for r<aSb. From this inequality, g(ΰt) tends to infinity as t does to infinity
along the positive real axis.

Similarly, if C<0, then g(ΰt) tends to infinity as t does to infinity along the
negative real axis.

3. Principal lemmas. Let G(z) be a transcendental entire function of finite
lower order such that all the zero-points {an} of G{z) lie on the line Re z=0,
and all the one-points {bn} of G{z) lie on the line Rez=l. Then by Theorem 4
of [4], G(z) has at most order one, mean type. So by means of Lemma 5 of
[4], we find

G\z)—1 w 1^—^^

and

(3.3) G(F)=G(-z) exp(2^z+2i40,

(3.4) G(m)-1=(G(-H-1)-1) exp(2Bz+iB')

with suitable real constants A, B, A' and B'. The quantities A and B play an
important role in what follows.

Indeed if A=BΦθ, then

G(z)=P(expAz)

with a quadratic polynomial P(z). This fact was proved in Lemma 11 of [4].
Further if AB^O, then G(z) has no finite deficient values. This was also proved
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in Lemma 8 of [4].

3.1. The purpose of this section is to prove the following lemmas on which
our proofs are based.

LEMMA A. Assume that Λ=0. Then the quantity B must be positive. Assume
further that G(l-\-ιy) is real and non-negative for some real number y. Then

Proof. The fact that B must be positive was proved in Lemma 7 of [4].
So we shall prove the latter statement only. It follows from the relation (3.3)
that

(3.5)

Here we can claim that

(3.6)

For otherwise,

So, if z* is a one-point of G(z), then —z* is also a one-point. This contradicts
the assumptions. Thus G(z) has no one-points. Hence we can express G{z) as

where D and K are non-zero constants. Since all the zero-points of G(z) are
distributed on the imaginary axis, the constant D must be real. Therefore

R G'jz) D
R c

for values of z with Rez=0 and G(z)Φθ. Using A=0 and the relation (3.1), we
thus conclude that D=0. This is absurd again. Accordingly, (3.6) is true.

Assume now that O<G(1+Z3/*)<1 for some real number y*. Then the rela-
tions (3.1) and (3.2) yield

and

which are clearly absurd. Consequently, if O^G(1+ ιy*)^l for some real number
y*, then GQ.+ιy*)=l.

Next assume that G(l + Z3/*)>1 for some real number 3/*. Let us set
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ιy*)=x*>l and denote the inverse function of G(z) by G~1(w). Of course,
G~\w) is an infinitely many valued analytic function with algebraic character.
By E(w, x*), we also denote the element of G~\w) with center ** and satisfying
E(x*, x*)=l+iy*. Now let us continue analytically E(w, x*) along the segment
I={l^t^x^} toward the point t=l. Then we have an analytic continuation
G~\Ir) with algebraic character along the segment / up to some point t—r
(l^r<x*), with the possible exception of this end point. Thus using this con-
tinuation G~\Ir), we can define the simple path C*={z(t): 0^t<x*—r} such
that z(0)=l + z.y* and

(3.7) G(z(0)=**-f

for 0^t<x*—r. Since G(z) assumes only positive real values on this path C*,
by means of (3.5) and (3.6), the path C* is contained entirely in the open half
plane Re,ε>0. On the other hand, it can be verified by the assumption Λ=0
that G(z) must have at least one zero-point. So the relation (3.1) implies

(3.8) R e > 0

for values of z with Rez>0. Thus C* is a differentiate path and the identity
(3.7) yields

(3.9) GfUt))z\t)=-l

for 0^t<x*-r. Taking into account of (3.7), (3.8) and (3.9), we thus find

Re *'(*)< 0

for 0^t<x*—r, which means that the real part of z(t) decreases as t varies
from 0 to x*—r. Hereby the path C* must be contained in the open strip
0<Rez<l save for the initial point z(0). In particular, the continuation G~\Ir)
does not continue along the segment / to the point t=l. Therefore we may
assume that this continuation G~\Ir) defines a transcendental singularity at the
point t=r(l^r<x*). Accordingly, by Iversen's theorem [5], the path C* must
be an asymptotic path of G{z) and as z tends to infinity along this path C*, G(z)
approaches the value r. In addition to these facts, by virtue of (3.5) and (3.6),
G(z) omits the value exp(—ιA') in the open half plane Rez>0. Hence G{z)
omits the finite values 0 and exp(—ιA') there. Thus using Lindelδf-Iversen-
Gross' theorem [6], we obtain

(3.10) G(z)-*r

as z tends to infinity along the positive real axis. However by the fact B>0
and by what mentioned at the end of the previous section 2, G{z) must tend to
infinity when z tends to infinity along the positive real axis. This contradicts
(3.10). Consequently, if G(l+z;y*)^l for some real number y*, then G(l+ιy*)=l.
Lemma A is thus proved.
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By this Lemma A, using the exactly same argument developed in the proof
of Lemma 10 of [4], we can obtain the next lemma.

LEMMA B. Assume that ^4=0. Then B is positive and

r^» r π

where N{r, 1, G) denotes the usual counting function for the one-points of G(z).

3.2. Now we are in a position to prove the following lemma.

LEMMA C. The quantities A and B which appear in the relations (3.1) and
(3.2) must be

ABΦQ.

Proof. Let us assume that ,4=0. Then by the above Lemma B, the quantity
B must be positive and

(3.11) ^J^hGL^lβ.
r->co r π

Further since AB=0, G{z) has no finite deficient values. So (3.11) implies

(3.12) lim in
r->oo r π

On the other hand, by the fact B>0, G(z) tends to infinity as z does to
infinity along the positive real axis. Since G(z) fails to take the two values 0
and 1 in the open half plane R e z > l , Lindelof-Iversen-Gross' theorem implies

(3.13) lim | G ( r e " + l ) | = + oo
r->+oo

uniformly for | f | ^ ί # , where f* is an arbitrarily fixed number in (0, τr/2). Hence
from (3.5) and (3.13), for an arbitrarily fixed number ί* with 0<^*<7τ/2, it is
possible to find a positive number R such that

(3.14) |G(—re"+2)—1 |^1

for r^R and | ί | ^ ί * . Here recall the relation (3.4) again. Then after a slight
modification, we have

I G{re'u)-l \ = \ G{-reiι:+2)-l |
(3.15)

exp(2£r cos t-2B).

Combining (3.14) and (3.15), we thus obtain

log 1 G(re-U)-11 ^2Br cos t-2B,
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so that

(3.16) log+1 G(reίι) | ̂ 2Br cos t-2B-log 2

for r^R and \t\^t*. Therefore by means of the functional equation (3.5), this
inequality (3.16) implies

r,G)=MK'2 \og+\G(reu)\dt
π J--/2

^ — Γ \og+\G(reu)\dt
π J-t*

^ — Br sin t*+0(l)
7Γ

for values of r with r^R. Hereby

for an arbitrary number ί* with 0<f*<π/2. Consequently,

which contradicts (3.12). Hence the quantity A is never equal to zero.
Next assume that B—0. In this case we consider the auxiliary function

defined by

Evidently, all the zero-points and all the one-points of G*(z) lie on the lines
Rez=0 and Rez=l, respectively. Further the relations (3.3) and (3.4) yield

G*®=G*(-z) exp(-2Bz+ιB')
and

-l=(G*(-z+l)-l) exp(-2Az+ιA').

Hence we can apply the above result to this function G*(z), and arrive at a
contradiction. Consequently, the quantity B must be a non-zero real constant.
Lemma C is thus proved.

3.3. From this point on, we discuss the case AB>0. Assume that A and
B are both positive. Then all the one-points of G(z), if exist, are simple.
Further if G(z) does not approach the value 1 when z tends to infinity along
the negative real axis, then the one-points of G{z) which we write as {l+ιcn},
must satisfy

(3.17) (m-n-ϊ
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for arbitrary integers m and n with m^n. From these inequalities (3.17), we
can assert that either

as z tends to infinity along the negative real axis, or

These facts are Lemmas 9 and 10 of [4].
In order to go further, we need the next lemma.

LEMMA D. Let S be a positive real number and let sn be

sn=^-π ( n = l , 2 , 3 , •••).

Then

x S
lim Σ Γ Γ 2 = ^ -

This Lemma D follows immediately from the identity

cot z= — h Σ —g 2—r

However we shall give an alternative proof because it suggests us a method for
proving our fundamental Lemma E.

Proof of Lemma D. Let us set

(3.18) £(*)= Π ( l - —)exp(—) .
τi2ϊi\ lSn / \ lSn /

Then E(z) is an entire function of order one and vanishes only at the points
ιsn (n = l, 2, 3, •••)• Further set

(3.19) F(z)=zE(z)E(-z).

Then this entire function F(z) satisfies

(3.20) F(-z)=-F(z).

Since F{z) and exp(2Sz) —1 take the value 0 at the same points, F{z) can be
expressed as

(3.21) F(z)=exp(az+b)(exp(2Sz)-l)

with suitable constants a and b. Combining (3.20) and (3.21), we easily find that
exp(2Sz)=exp(—2az), so that
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(3.22) a=-S.

On the other hand, it follows from (3.18), (3.19) and (3.21) that

F'{z) _ Rez Rez ^ Rez
•^•^ 77« / \ 19. T Zj 19. T

F(z) \z\2 n i l \z — lSn\
2 n i l \zJrlSn\

Hence

2Sexp(2Sx)
7 + n Σ χ 2 ^ s 2 =g+-

for real values of *. On letting Λ:--»+OO, we thus find

n i l AT + S W

Therefore, Lemma D follows from (3.22) and (3.23) at once.

Assume now that the quantities A and B are both positive. Further assume
that G(z) does not approach the value 1 a s z tends to infinity along the negative
real axis. Then the one-points of G(z) satisfy the inequalities (3.17). Here let
us set

dn=cn-Co, hn=—π

for each integer n. Then from (3.17),

Here by we obtain

x ^ ̂  x< v x < v
n>l X2Jrdn nil

for negative real values of x. By means of Lemma D, we thus find

(3-24) lim Σ _ Ξ — = _A
a;-*-oo nil X ^ + α n Z

Similarly, by means of Lemma D, we also obtain

(O.ZD) lim Σ 2i J 2 = o~#

On the other hand, from the relation (3.2),

(3.26) R
n \x-l-idn\
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for real values of x. Combining (3.24), (3.25) and (3.26), we therefore have

G'(x + ιc0)hm = 0 .

In particular, it is possible to choose a negative number M such that

(3.27)

for each negative number x with x^M. So this (3.27) implies

(3.28) exp(t-s)^
G(f+zc o)-l

for arbitrary negative numbers s and t with t^s^M.
For a moment, we assume that there exists a strictly decreasing sequence

{rn} such that

(3.29) rn->-oo

and that

(3.30) \im\ G(rU+ico) \ = ~\-°° .

In view of (3.3) and (3.4), we easily deduce

A?G(z)exp(2(B-A)z)
(3.31)

where yl* and Λf are non-zero constants. Therefore it follows from (3.29), (3.30)
and (3.31) that

(3.32)
^JlnJ ^ G(rn+ιc0)

as n ^ + o o , where K is a suitable non-zero constant. Further using (3.29) and
(3.30), we find

(3.33)
G(rn+ιc0)-l

<
= 2

for sufficiently large n. Combining (3.28), (3.29) and (3.33), we thus obtain

G ( r n + 2 + 2 c 0 ) - l
(3.34)

for sufficiently large n. Accordingly, from (3.29), (3.32) and (3.34), we conclude
that A=B, so that

G(z)=P(exp Az)
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with a quadratic polynomial P{z). However it is clear that

which contradicts (3.29) and (3.30). Consequently, if G(z) does not converge to 1
as z tends to infinity along the negative real axis, then G(x + ιc0) is bounded for
negative real values of x.

LEMMA E. If A>B>0, then

lim G(-reu)=0

uniformly for \t\^t*, where ί* is an arbitrarily fixed number in (0, π/2). Further
if B>A>0, then

lim G(-reu) = l
r-*+oo

uniformly for \t \ ̂ ί * .

Proof. Assume that Λ>B>0. If G(z) tends to 1 as z approaches infinity
along the negative real axis, then the functional equation (3.31) implies

lim AfG(x)exp(2(B-A)x)=0.

However since B—A<0 and AfΦO, this is clearly impossible. Therefore G(z)
does not approach the value 1 as z tends to infinity along the negative real
axis. Thus by what mentioned just above, G(x + ιc0) is bounded on the negative
real axis. Recall the functional equation (3.31) again. Then

G(x + ico)exp(2(B-A)x)

must be bounded for negative real values of x. Since B—A<0, we hence con-
clude that

(3.35) li

X->-<x>

By means of Lindelof-Iverεen-Gross' theorem, it follows from (3.35) that

lim G ( - r e " ) = 0
7—»+oo

uniformly for | ί | ^ ί * , where t* is an arbitrarily fixed number with 0<ί*<ττ/2.
Next let us consider the case where B>A>0. Assume that G(z) does not

converge to 1 as z tends to infinity along the negative real axis. Then G(x+ιc0)
is bounded for negative real values of x. As above, it thus follows from (3.31)
that

(3.36) lim G(x+2+ιco)=l,
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since B—Λ>0 and A*Φ0. By this (3.36), using Lindelof-Iversen-Gross' theorem,
we obtain

lim G(x) = l,
#-»-OO

which contradicts the assumption. Consequently, G{z) must approach the value
1 as ^ tends to infinity along the negative real axis. By this fact, Lindelδf-
Iversen-Gross' theorem gives the desired result. This completes the proof of
Lemma E.

4. Proof of Proposition 1. Let f(z) be a transcendental entire function
having three distinct finite linearly distributed values clf c2 and c3 which do not
lie on any straight line of the complex plane. By L3, we denote the straight
line on which all the c ̂ -points of f(z) lie 0 — 1,2,3). Our goal of this section
is to show that if Lλ and L2 coincide with each other, then f{z) must be a
function of the form

(4.1) /(*)=Aκ+£*exp(C**)

with constants A*, B* and C#.
We may assume, as we may do without loss of generality, that the lines L1

and L2 coincide with the imaginary axis and that c1=0, c2=l and c3=c, where
c is a non-real complex number.

By Theorems 4 and 6 of [4], f(z) has at most order one, mean type. Hence
we find

with suitable real constants y4*, 5*, C* and D*. Therefore

f(z)exp(A*z+ιB*)-l

=(f(z)-l)exp(C*z+iD*),

so that

f(z)(exp(A*z+iB*)-exv(C*z+iD*))
(4.2)

=l-exp(C*z+iD*).

If exp(A*z+iB*)—exp(C*z+iD*) is identically equal to 0, then

exp(A*z+ιB*)=exp(C*z+iD*)=l

for values of z. Thus ^ * = C * = 0 and exv(ιB*)=exp(iD*)=l, so that all the
zero-points of fι{z) lie on the imaginary axis only and f(z) satisfies

(4.3) 7(F)=/(-z)
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If exp(A*z+iB*)—exp(C*z+iD*) is not identically equal to 0, then (4.2)
implies

l-exp(C*z+ίD*)

Since f(z) is entire, using an elementary calculation, we easily conclude that
either f(z) is a function of the form (4.1), or f(z) can be expressed as

(4.4) / f eJ y j l-exp(Ez+iF) '

where E and F are non-zero real constants and q is some integer with qΦO, 1.
Here let us set

(4.5) <?*(*)= Σ * * ,

where TV is a natural number. Then (4.4) can be rewritten as

(4.6) f(z)=Qq..1(exp(Ez-\-iF))-\-l

when q^2, and

(4.7) f(z)=-Q.q(fixp(-Ez-iF))

when q^—1.

Hereafter, our proof is divided into the consideration of the following two
cases.

1) f(z) satisfies the functional equation (4.3).
2) f(z) is a function of the form (4.6) or else (4.7).

4.1. Firstly, we consider the case 1). From (4.3), f(z) takes only real values
on the imaginary axis. Hence if the line L=L3 on which all the c-points of f(z)
lie coincides with the imaginary axis, then f(z) never takes the value c. Thus
by means of (4.3), f{z) omits the two finite values c and c. This is absurd.
Accordingly, the line L is distinct from the imaginary axis. Further it is clear
by the functional equation (4.3) that δ(c, f)=δ(c, / ) . So Lemma 2.2 implies

(4.8) δ(c,f)=δ(c,f)=O.

In addition to these facts, the characteristic function of f(z) satisfies

(4.9) lim inf κ f J ) ^ 0 .

On the contrary, if (4.9) is false, by virtue of Theorem D of [4], all the zero-
points of f'(z) lie on the imaginary axis and the line L, simultaneously. Thus
f\z) has at most one zero-point and satisfies
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By these facts, ff(z) reduces to a polynomial. This is impossible. Hence (4.9)
is true. In particular, f(z) is a function of order one, mean type.

Express the line L as

(4.10) L= {z : Re(uz)=r],

where u is a complex number with | w | = l , and r is a real number. Then with
this representation (4.10), we obtain

(4.11)

exp(2Kz+iK'),

(A 12) R e
l 4 ' i Z ) f{z)-c
where if and K' are suitable real constants and {c*} denote the c-points of f(z).

We now have the following three subcases.
1.1) L runs parallel with the imaginary axis.
1.2) L is orthogonal to the imaginary axis.
1.3) Neither the imaginary axis nor the real axis runs parallel with the

line L.

4.2. Assume that the subcase 1.1) occurs. Then we may assume that the
quantities u and r of (4.10) satisfy u=l and rΦO, respectively. Here let us
consider the auxiliary function defined by

(4.13) G^z)=l<ΐ*Lm

Then it is clear that all the zero-points and all the one-points of G*(z) lie on
the lines Rez=0 and Re 2=1, respectively. Further by referring to (4.3), (4.11)
and (4.13), we find

(4.14)

and

However, since we can apply the results of the previous section 3 to this func-
tion G*(z), Lemma C and (4.14) give us a contradiction. Hence the subcase 1.1)
never occurs.

Let us discuss the subcase 1.2). In this case, the complex number u is equal
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to i or -2. If the constant K which appears in the relation (4.12) is equal to 0,
then f'(z) never takes the value 0 except at the point — ir or else at the point
ir. Hence

(4.15) f(z)=Q*(z) exp(α*z)+6*,

where a*(Φθ) and b* are constants and Q*(z) is a polynomial. From this repre-
sentation (4.15), using asymptotic properties of exρ(α*z), we easily conclude that
either 0 and 1, or c and c must be radially distributed values of f(z). This is
absurd by (4.9) and Lemma 2.4. If the constant K is not equal to 0, then we
can easily see that either f(it) or /(—it) tends to infinity as the positive real
variable t tends to infinity. Thus the values 0 and 1 are both radially distri-
buted values of f(z). This is absurd again. Hereby the subcase 1.2) does not
occur, either.

Assume now that the subcase 1.3) occurs. It follows from (4.3) and (4.10)
that all the c-points of f(z) lie on the line which is the symmetry of the line L
relative to the imaginary axis. If K=0, then by the same reason as above, f(z)
must be a function of the form (4.15). Hence we arrive at a contradiction. If
K>0, then f(z) approaches infinity when z tends to infinity along the half line
J={z: z=ΰt,t>0}, which does not run parallel with the imaginary axis. Since
f(z) omits the values 0 and 1 in the open half planes Re^>0 and Re^<0, using
Lindelof-Iversen-Gross' theorem and the functional equation (4.3), we thus find
that f(z) tends to infinity as z does to infinity along an arbitrary half line which
is not parallel with the imaginary axis. By this fact, f(z) takes the two values c
and c only a finite number of times. This is clearly untenable. In the case
where K<0, by the same fashion as above, we also arrive at a contradiction..
Hence the subcase 1.3) never happens.

Consequently, all the three subcases do not occur. Therefore the case 1)
never happens.

4.3. Secondly, we discuss the case 2). Assume that f{z) has the form (4.6).
By w1}w2, "-,wq-lf let us denote all the roots of the algebraic equation Qq-X(z)
= c—1. Since Qq.1(0)=0f wkφ0 (k—l, 2, •••, q—1). Then from the representation
(4.6), f(z) takes the value c only at the points of the form

(4.16) ~rlog\wk\---(F-argwk+2nπ)

(k=l, 2, .-., q-1, n=0, ± 1 , ±2, •••).

On the other hand, by the assumptions, all the opoints of f(z), that is, all the
points (4.16) must lie on the line L. It thus follows that

(4.17) \w1\ = \w2\= -'

Similarly, if f(z) is a function of the form (4.7), then

(4.18) \wγ\ = \wt\ = »=\w*q\=R*
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where wf,w*, -",w-q are all the solutions of the algebraic equation Q_q(z)=—c.
Here, let us observe the following fact.

LEMMA F. Let QN(z) be the polynomial (4.5), and let S* be a finite complex
number. Assume that all the roots of the algebraic equation QN(z)=S* lie on a
circle with center at the origin. Then if N^3, S*=—1. // N=2, then S* must
be a negative real number.

With the help of this Lemma F, we obtain the desired result immediately.
In fact, if g^4, then (4.17) and Lemma F imply c—1=— 1. Hence c=0, which
is a contradiction. If q=3, then the value c must be real. This is absurd. If
4^—3, then (4.18) and Lemma F yield c=l. This is also untenable. Further if
q=—2, then c must be a positive real number. This is a contradiction again.
Consequently, the integer q is either 2 or —1. By referring to (4.5), (4.6) and
(4.7), we conclude that f{z) must have the form (4.1).

4.4. It remains to prove Lemma F. Assume that iV^3. By tlf t2, ••-, tN, we
denote all the roots of the equation QN(z)=S*. Then

QN(z)-S*=zN+zN-1 + ~+z-S*
(4.19)

and the assumption implies

(4.20) |

From (4.19), it is clear that

(4.21)

(4.22) Σ tl

and

(4.23)

Σ

It follows from (4.20) and (4.21) that

(4.24) 1 = ( Σ tj)( Σ h)=Nr*+ Σ t,tk.

Similarly, it follows from (4.20) and (4.22) that

(4 25) 1= Σ Σ rίN'itβk^rίN-i{Nr'+ Σ t3tk).
k=l j=l J^k

Hence on combining (4.24) and (4.25), we have r2N~A—l. Since N^3, r—1, so
that
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(4.26) |f1| = |fί| = . . .= | ^ | = i .

Therefore from (4.23) and (4.26), | S * | = 1 . Further since QN(1)=N>3, tkφl
(k=ί,2,-,N).

Here let us set

Then from

( ί » - l ) ( 3 w ( ί * ) = ί Γ 1 - ί * = ( ί * - l ) S * ,

the numbers t1,t2,-- ,tN must be also roots of PN+1(z)=0. Clearly, PN+1(Ϊ)=O.
Therefore

Pir+1(z)=zκ+1-(X+S*)z+S*
(4.27)

= ( z - ί 1 ) ( « - ^ U-ί*)(a- l ) .

By referring to this relation (4.27), we thus find

(4.28) t1+tt+-+tlf+tlf+1=O,

and

(4.29) Nf ht2-tNtN+1 = ( _ 1 ) y ( 1 + s ^

where tN+1=l. Hence by the same fashion as above, (4.26), (4.28) and (4.29)
imply

which gives S*= —1.
Next assume that N=2. By a and b, let us denote the roots of the equation

Q2(^)—5*. Then clearly α+6=—-l, α6=—S*. Thus Re α+Re 6=—1, lma=—Imb.
Further since |α | = |ft|, (Re α)2=(Re b)2, so that Rea=Reb. Consequently, ά=b.
This implies α α = — S * > 0 . Lemma F is hereby proved.

5. Proof of Proposition 2. Let /(z) be a non-constant entire function
satisfying the hypotheses of Proposition 2. With suitable real numbers r3 and
suitable complex numbers u3 with \uj\=l, we can express the straight lines L3

as

(5.1) Lj= {z : Re(tt,*)=r,} 0 = 1 , 2, 3).

By Lemma 2.5 and (5.1),

(5.2)

(5 3)
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where A3 and B 3 are real constants, and {at3} denote the c 3 -points of f(z)
0-1,2,3).

For a moment, let us assume that the characteristic function of fiz) satisfies

(5.4) lim inf T ( r ' ^ =0 .
7-H. OO γ

Then by means of Theorem D of [4], all the zero-points of f'{z) must lie on
the lines L3, simultaneously. Hence f'{z) has at most one zero-point, since these
lines L3 are distinct from one another. On the other hand, it follows from (5.4)
that

By these facts, fiz) must reduce to a polynomial. Consequently, fiz) reduces
to a polynomial. Thus our proof of Proposition 2 will be complete when we
have proved (5.4).

In order to prove (5.4), we shall make use of the relations (5.2) and (5.3).
Hereafter, we divide our consideration into three parts.

5.1. Assume that at least two of the three constants A3 which appear in
(5.2) and (5.3), are equal to 0. Then we may assume that A1=A2=0. By what
mentioned at the end of the section 2, all the zero-points of fiz) lie on the two
distinct lines Lλ and L2. Hence fiz) has at most one zero-point. Here remark
that T(r, f)=o(r2). This fact is an immediate consequence of Lemma 2.5. Thus
T(r, f)—oir2). Therefore, fiz) can be expressed as

f'(z)=(z-a)n

with a non-negative integer n and constants a, A* and B*. Hereby

(5.5) f(z)=Q*(z)

where Q*(z) is a polynomial and C* is a constant.
Assume now that our desired (5.4) is false. Then A*Φθ. While if A*Φ0,

it is easily verified by asymptotic properties of exρ(^4**) that any function of
the form (5.5) never fulfills the hypotheses of our Proposition 2. This is a con-
tradiction. Therefore (5.4) is true.

5.2. Next, let us discuss the case where one of the three constants A3 is
equal to 0 and the others are not. We may assume that Λ1=Q, A2Φ0 and A^ΦO.
Further we may assume that the line L2 is not orthogonal to the line Llf since
no two of the three lines L3 are parallel with each other. Let us consider the
function defined by

(5.6) F(z)=f(ΰ1z+ΰ1r1)-c1.
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Then all the zero-points of F(z) are distributed on the imaginary axis only, and
it follows from (5.2) and (5.6) that

(5.7) F(i)=F(-z)exp(ιB1).

Since Lx and L2 are not orthogonal and not parallel, the complex number u=ΰ1u2

is neither real nor pure imaginary. Here as a matter of convenience, let us set

(5.8) c=c2—clt s*=r2—Re(wrO , t*=-^(u—ΰ)r1.

Then by a computation, all the roots of the equation F(z)=c lie on the line

(5.9) L*={z: Re(uz)=s*},

which is neither parallel nor orthogonal to the imaginary axis. While by referr-
ing to the functional equation (5.7), we can easily assure that all the solutions
of F(z)=c exp(—iBi) are distributed on the line

(5.10) L*={z:Rφz)=-s*},

which is the symmetry of the line L* relative to the imaginary axis.
If c=cexp(—iBi), then by the above consideration, all the c-points of F(z)

must lie on the lines L* and L*. From their representations (5.9) and (5.10), it
is clear that L* and L* are different from each other. Hence F(z) never takes
the value c except at the intersecting point of L* and L*. Since the genus of
F(z) — c is at most one, we can thus express F(z) as

F(z)=c+(z-z*)n exp(A*z+B*),

where n is a non-negative integer and z*, A* and J3* are constants. Evidently,
the auxiliary function F(z) has the form (5.5). Hence by the same reason as
before, we can conclude that A*=Q, so that F(z) reduces to a polynomial. Turn-
ing back to the original function f(z), we obtain the desired result, at once.

Assume now that cφc exp(—iBJ. On taking account of (5.2), (5.6) and (5.8),
we find

(5.11)

exp(2A2z+iB2-2A2t*).

Here let us further assume that A2>0 and 0<argw<^/2. Then from (5.11) and
A2>0, F(z) must approach infinity when z tends to infinity along the half line

/ * = {z : arg(z—2:*)= — arg u},

where z*——ιs*/lmu is the intersecting point of the lines L* and L*. Since
F(z) omits the two values 0 and c in the open angular domain

D = {z : Re(wz) > s* and Re z > 0},
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and since the half line / * is contained entirely in this domain D, Lindelδf-Iversen-
Gross7 theorem implies that F{z) tends to infinity as z tends to infinity along an
arbitrary half line which is contained in the domain D and parallels neither the
line L* nor the imaginary axis. On the other hand, from (5.10) and 0<argw
<τr/2, the half line

/ * = {z : arg (z-z*)=arg u+3π/2}

is contained entirely in the domain D. This half line /* is the intersection of
the line L* and the open half plane Rez>0. By these facts, we can see that
the value cexp(—ιBλ) is a radially distributed value of F(z). Hence by virtue
of (5.7), the value c is also radially distributed. It therefore follows from Lemma
2.4 that the characteristic function of F(z) must satisfy

so that we have the desired (5.4), again. All other cases, say ^42<0 and π<arg u
<3π/2, can be also treated by the same way as above. Consequently, our desired
(5.4) is true in the case where one of the three constants A3 is equal to 0 and
the others are not.

5.3. Finally, we assume that no one of the three constants A3 is equal to 0.
Assume further that Aλ>§. Then it follows that f{uλt) tends to infinity when t
does to infinity along the positive real axis. Without loss of generality, we can
assume that

arg w2<arg w2<arg w3<arg u^π .

There occur two cases. Either ( I ) arg w3^arg Uχ+π/2, or (II) argWi+π/2
<arg w3.

In the case ( I ) , since arg u3—arg u^π/2, the variable tΰ1 must be contained
in the open angular domain

D*={z:Re(u1z)>r1 and Re(u2z)>r2}

for sufficiently large positive values of t. Here, observe that f(z) fails to take
the two values cx and c2 in the domain D*. Then using Lindelof-Iversen-Gross'
theorem, we find that f(z) approaches infinity when z tends to infinity along an
arbitrary half straight line of the form

(5.12) {z : z=z* + t exp(zs), t>0},

where z* is an arbitrary point and s is an arbitrary real number with —arg uλ

—τr/2<s<— arg w2+π/2. On the other hand, from arg u3—arg uλ<π, the inter-
section of the line L3 and the domain D* is a half straight line of the form
(5.12). It thus follows that f{z) approaches infinity as z does infinity along the
unbounded part of L3 which is contained in the domain D*. Therefore the value
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c3 must be a radially distributed value of f(z).
In the case (Π), for sufficiently large positive values of t, the variable tΰ1

must lie in the open angular domain

J9* = {z : Re(wiz) > r : and Re(u3z) < r3}.

Hence using Lindelόf-Iversen-Gross' theorem again, we can conclude that f(z)
tends to infinity as z does to infinity along an arbitrary half straight line of the
form

(5.13) {z : z=z*+t exp(zz ), t>0},

where z* is an arbitrary point and v is an arbitrary real number with — arg uz
Jrπ/2<v<—arg Ui+π/2. Further in this case, the intersection of the line L2

and the domain D* is a half straight line of the form (5.13). By these facts,
the value c2 must be a radially distributed value of f(z).

Consequently, if Aχ>0, then at least one of the two values c2 and c3 is a
radially distributed value of f(z). In the case Λ^O, we can also obtain the
same conclusion. Similarly, it follows from the fact A2Φθ that either cλ or cB

is a radially distributed value of f(z). Further the fact Λ3φ0 implies that either
cλ or c2 is a radially distributed value of f(z). Therefore f(z) has at least two
finite radially distributed values. Hereby Lemma 2.4 yields the desired (5.4). The
proof of Proposition 2 is now complete.

6. Proof of Proposition 3. Let f(z) be a transcendental entire function
which satisfies the hypotheses of Proposition 3. Then f{z) is a function of order
one and mean type, and of regular growth. We may assume, as we may do
without loss of generality, that c1=0, c2—\, ί^ : Re z=0 and L2\ Re z=l. As
before, we have

(6.1) fφ=f(-z) exp(2Az+ιA'),

(6.2) /(f+l)-l=(/(-2r+l)-l) exp(2Bz+ιB'),

where A, A', B and B' are real constants. From the results of the section 3,
there may occur the following three cases only.

1) A and B are both positive.
2) A is negative and B is positive.
3) A and B are both negative.
Firstly, let us assume that the case 2) occurs. Then it follows that f(z)

approaches infinity when z does infinity along an arbitrary half straight line
which is not parallel with the imaginary axis. Hence f(z) takes the value c3

only a finite number of times, since the line L3 on which all the <vpoints of
f{z) lie, is not parallel with the imaginary axis. Thus f{z) must have the value
c3 as a deficient value. However, since AB <0, f(z) has no finite deficient values.
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This is clearly untenable. Therefore the case 2) never occurs.
Secondly, let us discuss the case 1). In this case, Lemma E implies A=B.

In fact, if A>B, then by means of Lemma E, for an arbitrarily fixed number ί*
in (0, π/2), it is possible to choose a positive real number i?2 such that

(6.3) \f(reu)-cA^^γ-

for real values of r and t with r'^R1 and \t—π\^t*. Further from A>0, we
can find a positive real number R2 such that

(6.4) | / ( r β « ) _ C 8 | ^ _ [ | L

for real values of r and t with r^R2 and | ί | ^ ί * . On combining (6.3) and (6.4),
we thus obtain

-at

(6.5)
2t*φ- ~)\og+M(r, c3,

?t*

r

for real values of r with r^max(i?!, i?2), where

M ( / h
Therefore by virtue of Petrenko's result [7], the inequality (6.5) implies

lim irf

(6.6)

for every real number ί* with 0<£*<τr/2. Hence from this (6.6), we have δ(c3,f)
=0. On the other hand, from Lemma E and from the fact A>0, using Lindelof-
Iversen-Gross' theorem, we can see that f(z) takes the value c3 only a finite
number of times. This is clearly absurd. Quite similarly, iίB>A, then Lemma
E leads us to a contradiction. Hereby we have A~B, as we claimed. Conse-
quently,

/(z)=P*(exp Az)

with a quadratic polynomial P*(z)=az2+bz+c. Here let us assume that aΦO
and bΦO. Then at least one of the two roots of the equation P*(z)=c3 is not
equal to 0. Since the constant A is real, we can thus conclude that the line L3

on which all the c3-points of f(z) lie must be parallel with the imaginary axis.
This contradicts the assumptions. Therefore either a or b is equal to 0. Accord-
ingly, f(z) is a function of the form
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(6.7) /(*)=

where A*, B* and C* are constants.
Finally, we must consider the case 3). This case reduces to the case 1) as

follows. Let us set

Then this entire function F{z) also satisfies the hypotheses of our Proposition 3.
Indeed, all the zero-points and all the one-points of F{z) lie on the lines Re>ε=0
and Re z = l , respectively. Further all the solutions of F{z)~ 1—c3 lie on a
straight line which is not parallel with the imaginary axis. Here, recall the
relations (6.1) and (6.2). Then we find

F(z)=F(-z) exp(-2Bz+ιB'),

)-l) exp(~2Az+ιΆ) .

Hence F{z) is such a function considered in the above case 1), since the constants
A and B both negative. It thus follows that this auxiliary function F{z) must
have the form (6.7). Turning back to the original function f(z), we obtain the
desired result, immediately. The proof of Proposition 3 is now complete.

7. Proof of Proposition 4. In this final section, we shall prove our Pro-
position 4. Let f(z) be a transcendental entire function which satisfies the
hypotheses of Proposition 4. Without loss of generality, we can assume that all
the three lines Lj which are distinct from one another, run parallel with the
imaginary axis. Let us set

Lj={z:Rtz=rj} 0-1,2,3).

Then we can further assume that r1<r2<rs. By the same reason as before, we

have

(7.1)
exp{2AJz+ιBJ)

with real constants A3 and B3 (7=1,2,3). In order to obtain our desired result,
let us consider the auxiliary functions defined by

(7.2) F,,(z)
Ck~C j

for each pair and k with 1^;<&^3. Then these functions Fjk(z) take the
value 0 only on the imaginary axis, and take the value 1 only on the line Rez=l.
Further from (7.1),

(7.3) Fjk(z)=FJk(-z)exp(2(rk-rJ)AJz+iB'jk),
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exp(2(rk-r3)Akz+iB'kJ)

with suitable real constants B'jk and B'kJ. It is thus clear that these Fjk(z) are
such functions treated in the section 3. Hence for the three real constants Ajr

there may occur the following four cases only.
1) Alt A2 and A8 are all positive.
2) Aί is negative and the other two are positive.
3) As is positive and the other two are negative.
4) The three are all negative.
In the first place, we shall show the impossibility of the cases 2) and 3).

Assume now that the case 2) occurs. Then from A2>0 and A3>0, by virtue of
Lemma E, when z tends to infinity along the negative real axis, F23{z) con-
verges to 0 or 1 according to whether A2>A3 or A3> A2. Further if A2=AS,.
then with a quadratic polynomial P(z), F23(z) = P(exp(r3—r2)A2z), so that F23(z)
converges to P(0) as z tends to infinity along the negative real axis. Turn back
to the original function f(z). Then it is clear from (7.2) that f{z) must approach
some finite value when z tends to infinity along the negative real axis. On the
other hand, it follows from the fact Ax<§ that f(z) tends to infinity as z does
to infinity along the negative real axis. This is clearly absurd. Hence the case
2) never occurs. Similarly, we can also prove the impossibility of the case 3)
from that of the case 2) by using the same arguments developed at the end of
the proof of Proposition 3. Consequently, the two cases 2) and 3) never happen.

In the second place, let us consider the case 1). If we can prove that Aj—Ak
for some pair and k with l^j<k^3, then by making use of (7.3), we have

with a quadratic polynomial P(z). Returning to the original function f(z), we
at once obtain the desired result.

Here, let us assume that Aλ>A2. Then as above, by means of Lemma E,
the auxiliary function F12(z) must tend to 0 when z tends to infinity along the
negative real axis. Turning back to f(z), we thus find that f(z) converges to
the value cλ as z approaches infinity along the negative real axis. Further assume
for a moment that A2ΦAZ. Then considering F23(z), we can easily conclude that
as z approaches infinity along the negative real axis, f(z) converges to c2 or c3

according to whether A2>A3 or A3>A2. This is impossible. Therefore if Aλ>A2τ

then A2=A3. Quite similarly, if A2>Alf then A1=A3. Hereby, we have the
desired result.

For the case 4), by making use of Lemma E and the auxiliary functions
Fjk(z), we can also conclude that at least two of the three real constants A3

are equal to each other. Hence we can also obtain our desired result in this
case 4). This completes the proof of Proposition 4.
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