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§0. Introduction.

Recently infinitesimal variations of submanifolds have been studied by Chen
[1], Goldstein [27], Ryan [2], Tachibana [3, 4] and one of the present authors
1, 41.

The purpose of the present paper is to study infinitesimal variations of
invariant submanifolds of a Kaehlerian manifold and to generalize some of recent
results of Tachibana and one of the present authors.

In the preliminary § 1, we state some properties of invariant submanifolds
of a Kaehlerian manifold.

In §2 we prove fundamental formulas in the theory of infinitesimal variations
and study complex variations, that is, infinitesimal variations which carry an in-
variant submanifold into an invariant submianifolds. In § 3, we study holomorphic
variations, that is, complex variations which preserve complex structures induced
on invariant submanifolds.

In §4, we study complex conformal variations and prove that a complex
conformal variation of a compact invariant submanifold of a Kaehlerian manifold
is necessarily isometric and hence holomorphic, (Theorem 4.1). In the last § 5 we
prove an integral formula and show some of its applications.

§1. Invariant submanifolds of a Kaehlerian manifold.

Let M?" be a real 2m-dimensional Kaehlerian manifold covered by a system
of coordinate neighborhoods {U; x*} and F.,” the almost complex structure ten-
sor and g;; the Hermitian metric tensor, where here and in the sequel, the indices
h, 1,7, -+ run over the range {1, 2, -+, 2m}.

Then we have

(11) thFth:-—(;?, FJtFtsgLs:gji 5
(12) 7 Fr=0,

where V, denotes the operator of covariant differentiation with respect to the
Christoffel symbols /",*, formed with g;.
Let M™ be an n-dimensional Riemannian manifold covered by a system of
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coordinate neighborhoods {V;y” and with the metric tensor g, where here
and in the sequel, the indices g, b, ¢, -~ run over the range {l,2,-,n}. We
assume that M™ is isometrically immersed in M*™ by the immersion 7: M™®—M?®™
and identify i(M™) with M™ itself. We represent the immersion i locally by
x"=x"(y*) and put By*=0,x", 0,=0/0y°, which are n linearly independent vectors
of M*®™ tangent to M™. Since the immersion : is isometric, we have

(13) gcb:gJch]Bbl .

We denote by C,” 2m—n mutually orthogonal unit normals to M™, where here
and in the sequel, the indices x, y, z, --- run over the range {n+41, n+2, ---, 2m}.
Then the equation of Gauss are written as

(1.4) V.By"=he"C,",

where I, denotes the operator of van der Waerden-Bortolotti covariant differ-

entiation along M™ with respect the Christoffel symbols 7I",”, formed with gj;

and those [',%, formed with g, and A.” the second fundamental tensors of M™
with respect to the normals C,", and those of Weingarten as

(1.5) Vccxh:'_hca:cBah ’
where
hcax:hcbnga:hcbngagzx 5 (gba):(gba>_l s

and g,, denotes the metric tensor of the normal bundle.
If the transform by F of any vector tangent to M™ is always tangent to M™®,
that is, if there exists a tensor field f,* of type (1, 1) of M™ such that

(1.6) F‘Lth‘L: baBahy

we say that M™ is wwvariant (or complex) in M*™. (1.6) shows that F;,B,'C,"=0,

where F.,=F.'g:.
For the transforms by F of normals C,”, we then have equations of the

form
1.7 F"C)=f,*C".

If we put fy,=f,"g.., then we have fy,=—f,y.
From (1.1), (1.3), (1.6) and (1.7), we easily see that

(LS) fbefea:“5g ’ fcefbdged:gcb ’
(1.9) ffi=—0t.

Differentiating (1.6) and (1.7) covariantly along M" and using (1.2), (1.4) and
(1.5), we find

(1.10) chba:())
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(111 Vefys=0,
(1.12) heo' fv°=he"fo° .

Thus, equations (1.8) and (1.10) show that M" is also Kaehlerian. Moreover it
follows from (1.12) that

(1.13) hey=0,

that is, M™ is minimal.
Using (1.8), (1.9) and (1.12) we easily verify that
(1.14) hey®=—hea®f 15" .
Equations of Gauss and Codazzi of the submanifold M™ are respectively
given by
(1-15) chba:Kkjithch]BblBah+hdazhcbx—hcaxhdbz 5

(1-16) Kkjithch]Bblczh—(thcbr'—Vchdbx)zo s

where K,.,® is the curvature tensor of M™.
Finally, we prepare an useful indentity on a Kaehlerian manifold M™ for

later use (See [6]);

1
2

(117) fcefbcheda: ab -

§ 2. Infinitesimal variations of invariant submanifolds.

We consider an infinitesimal variation of invariant submanifold M™ of a
Kaehlerian manifold M*™ given by

2.1) Xr=xMy)+EMy)e,

where £%(y) is a vector field of M?*™ defined along M" and ¢ is an infinitesimal.
We then have

(2.2) By =B,"+(0:5")e

where B,"=9,x" are linearly independent vectors tangent to the varied submani-
fold. We displace B,* parallelly from the varied point (¥*) to the origin point
(x"). We then obtain the vectors

Byr=B*+T " (x+Ee)e"Bye
at the point (x*), or

(2.3) Byh =By 4 &M,
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neglecting the terms of order higher than one with respect to ¢, where
(2.4) V&t =0a,8"+1",":By'&" .

In the sequel we always neglect terms of order higher than one with respect
to e. Thus putting

(2.5) aBbh—:Boh—"Bbh )

we have from (2.3)

(2.6) 0B =l ,&M)e .
Putting
2.7) §'=£"B,"+E&°C,",
we have
(2.8) Vo= p&%—hy®:6%)Ba" + o&"+ hyo "6 C"

because of (1.4) and (1.5).

Now we denote by (—Sy" 2m—n mutually orthogonal unit normals to the
varied submanifold and @" the vectors obtained from C,* by parallel displace-
ment from the point (X*) to (x"). Then we have

(2.9) Cr=C 4T (x+Ee)E'Cre .
We put
(2.10) 5C,r=Cr—C,
and assume that 6C," is of the form
(2.11) 0C, =7, e=(9,"Ba"+1,"C,")e .
Then, from (2.9), (2.10) and (2.11), we have
(2.12) Cy*=C,"—T" " &'Cy e+ (0, By +1,°C. e .

Applying the operator d to B,’C,'g;;=0 and using (2.6), (2.8), (2.11) and dg;;
=0, we find

(Vb"::y"l"hbayéa)‘i'y]yb:o ’
where &,=§&°g,y and 9y="7,°gcs, O
(2.13) Nyt =—W € +h"E",

V® being defined to be V*=g*V.. Applying also the operator § to C,’C,'g,i=8yz
and using (2.11) and dg,;=0, we find

(2.14) Nyat72y=0,

where 1y;=7y"Zz0-
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We assume that the infinitesimal variation (2.1) carries an invariant submani-
fold into an invariant submanifold, that is,

(2.15) FM(x+E&e)B, are linear combinations of B,".
Then, using V;F,*=0 and (1.6), we see that
FM(x+&e)By=(F *+&70,F "e)(By'+0,€ )
=[F =& MF, =1 FMel(By+0,6%)

:Flthl+(F1th§l_fbarjhiBajgi)s ’
that is, by (2.2)

(2.16) FMx+Ee)Byr=f, B+ F W &' — £, £ e
or, using (2.8),
(2.17) FMx+E6)By = f,2 By + £,V &%+ by 6% Bole

+ (7 &7 +hoa?€9)f,*Cole
—fba(Vase_ ha.exgz)éehe

— [ &5+ hee"E)C, "
Thus (2.15) is equivalent to
(2.18) o8+ o6 f4° =o'V £+ hee™6)
or, by (1.12), to
(2.19) PN [y =1V £7) .

An infinitesimal variation given by (2.1) is called an complex variation if it
carries an invariant submanifold into an invariant submanifold. Thus we have

THEOREM 2.1. In order for an nfinitessimal variation to be complex, it 1s
necessary and sufficient that the variation vector &" satisfies (2.19).

COROLLARY 2.2. If a wvector field &" defines a complex variation, then another
vector field &'™ which has the same normal part as & has the same property.

Suppose that an infinitesimal variation given by (2.1) carries a submanifold
x"=x"y) into another submanifold £*=Z%"(y) and the tangent space of the original
submanifold at (x*) and that of the varied submanifold at the corresponding point
(x*) are parallel. Then we say that the variation is parallel.

Since we have from (2.5), (2.6) and (2.8),

(2.20) B =06, y&o—hy ", &%) 1B+ (7 &5+ hy"E9)C, 1 ,

we have the following proposition [5]:
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In order for an infinitesimal variation to be parallel, it is necessary and suf-
ficent that

(2.21) ber"f“hbazfazo .
If (2.21) is satisfied, then (2.19) is satisfied. Thus we have

THEOREM 2.3. A parallel variation is a complex variation.

§3. Holomorphic variations.

Suppose that an infinitesimal variation X*=x"+&" carries an invariant sub-
manifold into an invariant submanifold, that is, it is a complex variation. Then
putting

3.1 FMx+Ee) By —(f,*+8£,9B,",
we have from (2.17) and (2.18)
(3.2) Ofs =L & — Ry oEo) 0 £ (7 % —ho%E%) e .

From this fact we conclude

PROPOSITION 3.1. Suppose that an wnfinitessmal variation is complex. Then
the variation of f* is gwen by (3.2).

We define T, by
(33) ch:Vcéb_fcefdeeEd—thbzsz .

Equations (3.2) and (3.3) imply that §/,*=0 is equivalent to T',,=0 because

of (1.8) and (1.14).
If a complex variation preserves f,% then we say that it is holomorphic [3].

According to (3.2), (3.3) and remark above, we have

PROPOSITION 3.2. A complex varation 1s holomorphic 1f and only 1f V,&%
—Nhy*.E% commutes with %, that 1s,

(Vbée’—hbexfx)fea'“fbe(yega—heaxéx):O s
or, equwalently T .,=0.

Now, applying the operator ¢ to (1.3) and using (2.6), (2.8) and 0g;;=0, we
find (cf. [5])

(34> Bgcb:<Vb{:c+7c$b—2hcbx§z>5y
from which,

8.5) 0= — (7 &+ % —21"%,E e .
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A variation of a submanifold for which dg.,=0 is said to be isometric and
that for which dg., proportional to g, is said to be conformal. Thus we have

ProposITION 3.3 ([5]). In order for a vanation of a submanifold to be 1so-
metric or conformal, it is necessary and sufficient that

(36) Vcéb‘}‘Vb‘Ec—?fhcbez:Of

or

(3.7) Vch‘FVbEc"—ZhCI)sz:Z’ZgCD ’
respectively A being a certain function given by

(3.9) I= (7= ).

We now put

(3-9) fcab:(acébh+F;hi(f)Bc]Ebi>Eah
and

5Fcab:fcab_'rcab ’

where I",%, are Christoffel symbols of the deformed submanifold.
Substituting (2.2) and (2.20) into (3.9), we obtain by a straightforward com-
putation,

(3.10) OF &=LV Vo&"+ K, ;i"6*Be? By ) Bt heo™ 7 %6 ot-ha*:59) Je,

from which, using equations (1.15) of Gauss and those (1.16) of Codazzi of the
submanifolds (cf. [5]), we have

(3.11) O %= F o8+ Kyep"E%e

'—[Vc<hbez§x)_l_Vb(hcexEx)_Ve<hcbx'§x)]gw5
because of (2.8).
A variation of a submanifold for which 6/7,%=0 is said to be affine.
We now prove

THEOREM 34. A complex isometric variation of a compact invariant sub-
manifold M™ of a Kaehlerian manifold 1s necessarily holomorphic.

Proof. 1f we take account of (1.14), (3.3) and (3.6), we get the following
relations :

(3.12) Teo+1efo Tea=0,
(3.13) Tep+The=0

and hence
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(3.14) he,E°T ., =0.
We now calculate T, T :
(3.15) T”,TC”:%T””(TC,,—T,,C) (by (3.13)
1

:7'T6b[’7cfb‘"l7b{:c_fcefbd(VeEd—VdEe)]
(by (3.3) and (3.14))
=2T°F &,. (by (3.12))

On the other hand, applying the operator V¢ to (3.3) and using V. f,*=0, we
find

PTaml T Sy fH R T £l £ (i),

from which, using the Ricci-identity,
PT 0=l T ot f s Koes® a2 Chess)

or, using (1.17)
(3.16) VT =PV £+ K6 0a—2V (hepE7) .
An isometric variation is affine and hence we have

VoV o&+ Kaor 64—V o(hy%E")+V o(he®:€%) =V H(heps£7)1=0
because of (3.11), from which

V7 &2+ K %64 —2F (he*,£%)=0
because of (1.13). Therefore V¢T,,=0. From this fact and (3.15), we get
V”(TME”):;*TMT”’ .

Thus, integrating this over M™", we see that T.,=0 and consequently the varia-
tion is holomorphic by Proposition 3.2. This completes the proof.

§4. Conformal variations.

In this section, we prove the following theorem as a generalization of
Theorem 3.4.

THEOREM 4.1. A complex conformal variation of a compact invariant sub-
manifold M™ of a Kaehlerian manifold is necessarily isometric and hence holo-
movrphic.
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Proof. Differentiating (3.7) covariantly along M™, we find

(41) VchEa."'—VcVaéb:270<hbax€x+Zgba):

from which, using the Ricci-identity

VoV oeatV o &o—Kearab®=2V (hyaob™+AG0a)

or, substituting (4.1) into this,

Vchéa_VaVbEc_‘Kcabdsd
:?ch(hbaxEI+/nga.)_217a<hbcx§x+/ngc)-

If we take the skew-symmetric part of this with respect to a¢ and b and make
use of the Ricci-identity, then we have

VchSa—VcVa'fb+Kabcd5d+Kcabd€d+chadsd
:—ZVa(hcbeZ_i_chb)+2Vb(hcax€Z+/zgca);

or, using (4.1) and the first Bianchis identity,

(42) VchEa_Kbacd‘fd:Vc(hbaxsx'l—/nga)‘{"Vb(hcaxEr“i'/zgca)
_VU.(hcbzgz_l_/?gcb) .

Transvecting (4.2) with g and using (1.13), we have

(4.3) Vel Eat Kaab? =20 (heau®)+(n—2) ,2=0.

As in the proof of Theorem 3.4, we also have (3.12)~(3.16) under the con-
formal variation because of (1.14), (1.17), (3.3) and (3.7).

Comparing (3.16) with (4.3), we obtain

(4.4) VT .y +(n—2)2g.)=0.
Thus, we have
VT oo+ (n—2)2g:0)5" 1=(T oy Hn—2) A5, )V °E°

:%—-chT“’—l—n(n——Z)lz
because of (3.8) and (3.15). Since M" is compact, by Green’s theorem, it follows
that T.,,=0 and A=0 on M™ and consequently the variation is isometric and

holomorphic. Hence the theorem is proved.
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§5. An integral formula.

In section 3, we found that a variation of invariant submanifold of a Kaeh-
lerian manifold is holomorphic if and only if T.,=0.

In this section, we find some integral formulas involving T.,7T and prove
theorems on holomorphic variations.

We put

(5.1) J=TaT.
If we take account of (1.1) and (1.14), then (5.1) reduces to
G2) S T NI )P
Al S 2y ENEE)
On the other hand, we have
53 R N R R A AN
AT £ )
because of (1.10), where we have put
W=7V £ ),
from which, using the Ricci-identity and (1.17),
6o PwmETT e Ko7 80T~ 7 £ o).
Comparing (5.2) with (5.4), we have
P ST K )~ ey 60

+2(hepE7)(RPEY),
or, equivalently

T, ST e K~ 2 hessE)]
2 )~ 2y I U )
0y 2 6§ I b K — 27 (s )]
(T T o 2D,

Thus, assuming the submanifold M™ to be compact, we apply Green’s theorem
and obain
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1
55) [[5recwr it Kot 27 st

+(h“’yéy)(chb—!-7056—2/10,,1&”)]dV:o,

dV being the volume element of M™.
From (3.4) and (3.5), the variation of dV is given by (cf. [5])

(5.6 0dV =W £*—h,"6%)dVe.

For a compact orientable submanifold M", we know the following integral
formula :

S[Ec<Vbe§c+ch$b)+";—(l70‘=&b+Vb$c)(Vch+Vb$c>_(VbEb)Z]dVZO ,
which is valid for any vector &° in M™ ([6]), from which

57) [[& @7t Kag)—27her )47 (267

g (7 &y Vo= 2o ST 62+ 78— 20, 8)
—(V £°—h £V »E%)
AT o+ T 8= 2here) |dV =0,
or, using (1.13), (5.1) and (5.5)
(58) (LTl + 7 8ot P i —2hanf )T+ 78— 202,8%)
—27 £1dV =0,
or, using T.°=0 which is obtained from (1.13) and (3.3),

.9) g[wcsbwbec—2hcbzsz><wsb+Vbsc—zh%@

—_ z e cb \/z d cb] _
(Tota| 27 80) (104 4] 2725 |av =0,
that is, we get an integral formula for an invariant submanifold M™ in a Kae-

hlerian manifold. Thus we have

PROPOSITION 5.1. In order for a complex variation of a compact wmvariant
submanifold of a Kaehlerian manifold to be isometric it 1s necessary and sufficient
that the variation 1s volume-preserving and holomorphic.

Now, if a variation of the submanifold is affine, we have from (3.11)
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chbéa+chba5d_70(hbaz$x)—Vb(hcaxgx)_*'Va(hcbez):O’

from which, using (1.13)

V.V a§9=0,

that is, V,£=const. Thus, assuming the submanifold to be compact, we have
V,£*=0. From this fact and Proposition 5.1, we obtain

THEOREM 5.2. A complex variation of a compact wmvariant submanifold of a
Kaehlerian manifold 1s 1sometric 1f and only 1f the variation 1s affine and holo-

morphic.

Remark. From (5.9), we immediately see that if a variation of submanifold
is conformal, then A=0 and T.,=0. This gives another proof of Theorem 4.1.
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