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§ 0. Introduction.

Recently infinitesimal variations of submanifolds have been studied by Chen
[1], Goldstein [2], Ryan [2], Tachibana [3, 4] and one of the present authors
[1, 4].

The purpose of the present paper is to study infinitesimal variations of
invariant submanifolds of a Kaehlerian manifold and to generalize some of recent
results of Tachibana and one of the present authors.

In the preliminary § 1, we state some properties of invariant submanifolds
of a Kaehlerian manifold.

In § 2 we prove fundamental formulas in the theory of infinitesimal variations
and study complex variations, that is, infinitesimal variations which carry an in-
variant submanifold into an invariant submanifolds. In § 3, we study holomorphic
variations, that is, complex variations which preserve complex structures induced
on invariant submanifolds.

In § 4, we study complex conformal variations and prove that a complex
conformal variation of a compact invariant submanifold of a Kaehlerian manifold
is necessarily isometric and hence holomorphic, (Theorem 4.1). In the last § 5 we
prove an integral formula and show some of its applications.

§ 1. Invariant submanifolds of a Kaehlerian manifold.

Let M2m be a real 2m-dimensional Kaehlerian manifold covered by a system
of coordinate neighborhoods {U xh} and Fι

h the almost complex structure ten-
sor and gji the Hermitian metric tensor, where here and in the sequel, the indices
h, i,j, ••• run over the range {1, 2, •••, 2m}.

Then we have

(1.1) FtΨt

h=-δϊ, FJΨι%B=gJif

(1.2) PjFt

h=0,

where V 3 denotes the operator of covariant differentiation with respect to the
Christoffel symbols ΓJ

h

ι formed with gμ.
Let Mn be an n-dimensional Riemannian manifold covered by a system of
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coordinate neighborhoods {V ya} and with the metric tensor gcb where here
and in the sequel, the indices a,b,c,-- run over the range {1, 2; ,n}. We
assume that Mn is isometrically immersed in M 2 m by the immersion i: Mn-+M2m

and identify i(Mn) with Mn itself. We represent the immersion i locally by
xh~x\ya) and put Bb

h=dbx
h, db=d/dyb, which are n linearly independent vectors

of M2m tangent to Mn. Since the immersion i is isometric, we have

(1.3) gcb=gjiBc

JBb

ι.

We denote by Cy

h 2m—n mutually orthogonal unit normals to Mn, where here
and in the sequel, the indices xty, z, ••• run over the range {n+1, n+2, •••, 2m}.
Then the equation of Gauss are written as

(1.4) PeBb

h=heb*Cx

h,

where Vc denotes the operator of van der Waerden-Bortolotti covariant differ-
entiation along Mn with respect the Christoffel symbols Γ/ι

ι formed with gjt

and those Γc

a

b formed with gcb and hcb

x the second fundamental tensors of Mn

with respect to the normals Cx

h, and those of Weingarten as

(1.5) VcC*h=-he*xBa

h,

where

hcax=hebxg
ba=heb'g

bagaaι, ( g δ α ) = ( ^ α ) " 1 ,

and gzx denotes the metric tensor of the normal bundle.
If the transform by F of any vector tangent to Mn is always tangent to Mn,

that is, if there exists a tensor field fb

α of type (1, 1) of Mn such that

(1.6) Fι

hBb*=fb

αBα

h,

we say that Mn is invariant (or complex) in M2m. (1.6) shows that FihBb

lCx

h—0,
where Fιh=Fι

tgth.
For the transforms by F of normals Cy

h, we then have equations of the
form

(1.7) Ft

hCyt=fy*Cχ

h .

If we put fyx=fyzg2X, then we have fyx=—fxy.
From (1.1), (1.3), (1.6) and (1.7), we easily see that

(1.8) / 6 y β « = - δ ? , fcβfbdge*=geb,

(1.9) / / Λ * = - d S .

Differentiating (1.6) and (1.7) covariantly along Mn and using (1.2), (1.4) and
(1.5), we find

(1.10) ΓcΛα=0,



INFINITESIMAL VARIATIONS OF INVARIANT SUBMANIFOLDS 91

(1.11) FcΛ*=0,

(1.12) heb

vfy

x=hee

xfb

e.

Thus, equations (1.8) and (1.10) show that Mn is also Kaehlerian. Moreover it
follows from (1.12) that

(1.13) λ β

β *=0,

that is, Mn is minimal.
Using (1.8), (1.9) and (1.12) we easily verify that

(1.14) hcb*=-hed*fc

efb

d.

Equations of Gauss and Codazzi of the submanifold Mn are respectively
given by

(1.15) Kdeb

a=KkJt

hBd

kB^Bb'B%+hd\heb

x-he\hdb

x,

(1.16) Kkji

hBd

hBc>Bb

xC*h-(Vdheb*-Vchdb

x)=Q,

where Kdcb

a is the curvature tensor of Mn.
Finally, we prepare an useful indentity on a Kaehlerian manifold Mn for

later use (See [6])

(1.17) -γfeefb

dKeeda=Kab.

§ 2. Infinitesimal variations of invariant submanif olds.

We consider an infinitesimal variation of invariant submanifold Mn of a
Kaehlerian manifold M2Ίϊl given by

(2.1) χh=χh(y)+ξh(y)ε,

where ξ\y) is a vector field of M2m defined along Mn and ε is an infinitesimal.
We then have

(2.2) Bb

h=Bb

h+(dbξ
h)e,

where Bb

h=dbx
h are linearly independent vectors tangent to the varied submani-

fold. We displace Bb

h parallelly from the varied point (xh) to the origin point
(xh). We then obtain the vectors

at the point (xh), or

(2.3) Bb

h=Bb

h+φbξ
h)e,
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neglecting the terms of order higher than one with respect to ε, where

(2.4) F4f »=9 s

In the sequel we always neglect terms of order higher than one with respect
to ε. Thus putting

(2.5) δBb

h=Bb^Bb

h,

we have from (2.3)

(2.6) δBb

h=(Fbξ
h)ε.

Putting

(2.7) ξh=ξaBa

h+ξxCx

h,

we have

(2.8) Vbξ
h=[Vbξ«-hb\ξηBa

h+{Vbξ
x+hba

xξa)Cx

h

because of (1.4) and (1.5). _
Now we denote by Cy

h 2m—n mutually orthogonal unit normals to the
varied submanifold and Cy

h the vectors obtained from Cy

h by parallel displace-
ment from the point (xh) to (xh). Then we have

(2.9) £yh=C

We put

(2.10) δCyh=Cy

h-Cyh

and assume that δCy

h is of the form

(2.11) δCy

h=ηυ

he=(τ]yaBa

h+ηv*Cx

h)6.

Then, from (2.9), (2.10) and (2.11), we have

(2.12) Cy

h=Cyh-Γ,\ξ'Cy

ιe+(ηy

aBa

h+ηy*Cx

h)ε .

Applying the operator δ to Bb

JCy

lgji=0 and using (2.6), (2.8), (2.11) and δgjt

=0, we find

where ξy=ξ'ggy and ηyb=ηy

cgCb, or

(2.13) Vya=-(Vaξy+hb

a

vξ
b),

Va being defined to be Fa=gaΨc. Applying also the operator δ to Cy

JCx

ιgji=gyX,
and using (2.11) and δgji=0, we find

(2.14) 37^+37^=0,

where ηyx=ηy

zgzX.
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We assume that the infinitesimal variation (2.1) carries an invariant submani-
fold into an invariant submanifold, that is,

(2.15) F%

h(x+ξε)Bb

ι are linear combinations of Bb

h.

Then, using FjFί

h=0 and (1.6), we see that

that is, by (2.2)

(2.16) ί'.'Kx+fe)B»*=Λββ«*+Cί',Ψ»f t-ΛβP'βe*]ε,

or, using (2.8),

(2.17) F

Thus (2.15) is equivalent to

(2.18)

or, by (1.12), to

(2.19) (F 4 ?»)Λ*=ΛW).

An infinitesimal variation given by (2.1) is called an complex variation if it
carries an invariant submanifold into an invariant submanifold. Thus we have

THEOREM 2.1. In order for an infinitesimal variation to be complex, it is
necessary and sufficient that the variation vector ξh satisfies (2.19).

COROLLARY 2.2. // a vector field ξh defines a complex variation, then another
vector field ξrh which has the same normal part as ξh has the same property.

Suppose that an infinitesimal variation given by (2.1) carries a submanifold
xh=xh(y) into another submanifold xh=x\y) and the tangent space of the original
submanifold at (xh) and that of the varied submanifold at the corresponding point
(xh) are parallel. Then we say that the variation is parallel.

Since we have from (2.5), (2.6) and (2.8),

(2.20) Bb

h=lδ

we have the following proposition [5] :
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In order for an infinitesimal variation to be parallel, it is necessary and suf-
ficent that

(2.21) P>ζx+hba*ξa=0.

If (2.21) is satisfied, then (2.19) is satisfied. Thus we have

THEOREM 2.3. A parallel variation is a complex variation.

% 3. Holomorphic variations.

Suppose that an infinitesimal variation xh=xh+ξhε carries an invariant sub-
manifold into an invariant submanifold, that is, it is a complex variation. Then
putting

(3.1) FΛx+ζε)Bb

x-(fba+δfb

a)Ba

h,

we have from (2.17) and (2.18)

(3.2) δfb

a=Wbξ
e-hb%ζηf«-fAVeξ

a-he

a

xξ
x)-]ε.

From this fact we conclude

PROPOSITION 3.1. Suppose that an infinitesimal variation is complex. Then
the variation of fb

a is given by (3.2).

We define Tcb by

(3.3) Tcb=Pcξb-fc

efb

dPeξd-2hcbxξ*.

Equations (3.2) and (3.3) imply that δfb

a—O is equivalent to Tcb=0 because
of (1.8) and (1.14).

If a complex variation preserves fb

a, then we say that it is holomorphic [3].
According to (3.2), (3.3) and remark above, we have

PROPOSITION 3.2. A complex variation is holomorphic if and only if V bξ
a

~hb

a

xξ
x commutes with fb

a, that is,

or, equwalently Tcb=0.

Now, applying the operator δ to (1.3) and using (2.6), (2.8) and δgji—O, we
find (cf. [5])

(3.4) δgcb^{Vbξc+Vcξb-2hcbxξ
x)ε,

from which,

(3.5) δgba=
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A variation of a submanifold for which δgcb=0 is said to be isometric and
that for which δgcb proportional to gcb is said to be conformal. Thus we have

PROPOSITION 3.3 ([5]). In order for a variation of a submanifold to be iso-
metric or conformal, it is necessary and sufficient that

(3.6) F

or

(3.7) Fcξb+Fbζc-2hcbxζ*=2λgcb,

respectively λ being a certain function given by

(3.8) ^JL^-AΛf*).

We now put

(3.9) Γc\=(dcBb

h+Γ'UQBc'BfiB^

and
s Γ7 a pa in a
VL c b—L c b L c b >

where Γc

a

b are Christoffel symbols of the deformed submanifold.
Substituting (2.2) and (2.20) into (3.9), we obtain by a straightforward com-

putation,

(3.10) ^ Γ c % = [ ( F c Γ δ f Λ + ^ , / ί ^ c ^ ό

ί ) 5 \ + / 7 c / ( F ^ - } - / z / ^ d ) ] ε ,

from which, using equations (1.15) of Gauss and those (1.16) of Codazzi of the
submanifolds (cf. [5]), we have

(3.11) δrc\=(FcFb

because of (2.8).
A variation of a submanifold for which δΓc

a

b=0 is said to be affine.
We now prove

THEOREM 3.4. A complex isometric variation of a compact invariant sub-
manifold Mn of a Kaehlerian manifold is necessarily holomorphic.

Proof. If we take account of (1.14), (3.3) and (3.6), we get the following
relations:

(3.12) Teb+fceAdTed=0f

(3.13) T

and hence
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(3.14) hcb

xξ
xTcb=O.

We now calculate TcbT
cb:

(3.15) TcbT
cb=-~Tc\Tcb-Tbc) (by (3.13))

(by (3.3) and (3.14))

=2TcΨcξb. (by (3.12))

On the other hand, applying the operator Vc to (3.3) and using F c / δ

α = 0 , we
find

PcTcb=PΨcξb-^fcyb

d(PcPeξd-PePcξd)~2Fc(hcbxξ
x)f

from which, using the Ricci-identity,

or, using (1.17)

\O.LΌJ V 1 c b — V V cζb\J^b S α ^ y \'icbχζ )

An isometric variation is affine and hence we have

because of (3.11), from which

PcPcξ
a+Kdψ-2Pc(hc

a

xξ
x)=0

because of (1.13). Therefore FcTcb=0. From this fact and (3.15), we get

Pc(Tcbξ
b)=~~TcbT

cb.

Thus, integrating this over Mn, we see that Tcb=0 and consequently the varia-
tion is holomorphic by Proposition 3.2. This completes the proof.

§ 4. Conf ormal variations.

In this section, we prove the following theorem as a generalization of
Theorem 3.4.

THEOREM 4.1. A complex conformal variation of a compact invariant sub-
manifold Mn of a Kaehlerian manifold is necessarily isometric and hence holo-
morphic.
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Proof. Differentiating (3.7) covariantly along Mn, we find

(4.1) FcFbξa+FcFaξb=2Fc(hbaxζ
x+λgba),

from which, using the Ricci-identity

FcFbζa+FaFcξb-Kcabdζ
d=2Fc(hbaxξ

x+λgba),

or, substituting (4.1) into this,

FcFbξa-FaFbξc-Kcabdζ
d

=2Fc(hbaxξ
x+λgba)-2Fa(hbcxξ*+λgbc).

If we take the skew-symmetric part of this with respect to a and b and make
use of the Ricci-identity, then we have

FcFbξa-FcFaξb+Kabcaξd+Kcabdξ
d+Kcbadξ

d

= ~2Fa(hcbxξ*+λgcb)+2Fb(hcaxξ*+λgca),

or, using (4.1) and the first Bianchis identity,

(4.2) FcFbξa-Kbacdξ
d=Fc(hbaxξ

x+λgba)-{-Fb(hcaxξ^λgca)

-Fa(hcbxξ
x+λgcb).

Transvecting (4.2) with gcb and using (1.13), we have

(4.3) FΨcξa+Kadξ
d-2Fc(hcaxξη+(n-2)Faλ=0.

As in the proof of Theorem 3.4, we also have (3.12)^(3.16) under the con-
formal variation because of (1.14), (1.17), (3.3) and (3.7).

Comparing (3.16) with (4.3), we obtain

(4.4) F%Tcb+(n-2)λgcb)=0.

Thus, we have

=~-TcbT

because of (3.8) and (3.15). Since Mn is compact, by Green's theorem, it follows
that Tcb=0 and λ=0 on Mn and consequently the variation is isometric and
holomorphic. Hence the theorem is proved.



98 K. YANO, U-H. KI AND M. OKUMURA

§ 5. An integral formula.

In section 3, we found that a variation of invariant submanifold of a Kaeh-
lerian manifold is holomorphic if and only if Tcb=0.

In this section, we find some integral formulas involving TcbT
cb and prove

theorems on holomorphic variations.
We put

(5.1) f=TcbT<>.

If we take account of (1.1) and (1.14), then (5.1) reduces to

(5.2) -γ-f=(Fcξb)(F

On the other hand, we have

(5.3) Γiw"=(FΨbζη

-fψψeξc)(Fbξa)

because of (1.10), where we have put

Wb = (Fψ)ζc-f°faψe

from which, using the Ricci-identity and (1.17),

(5.4) VbWb = ξ\VΨbξe +

Comparing (5.2) with (5.4), we have

~-f=Ptwl>-ξ\FΨb

or, equivalently

=Fb(wb-2hcbxξψ)-ζ<lPΨbξc+Kcbe-2P<>(hcbxξ
x)l

Thus, assuming the submanifold Mn to be compact, we apply Green's theorem
and obain
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(5.5) \[\f+ζc{FbFbξc+Kcbξ
b-2F\hcbxζ

x)}

dV=0 ,

dV being the volume element of Mn.
From (3.4) and (3.5), the variation of dV is given by (cf. [5])

(5.6) δdV=(Faξ
a-ha

a

xξ
x)dVε.

For a compact orientable submanifold Mn, we know the following integral
formula:

\[ξψΨbξΛKcbe)+~(Pcζb+FbξcWΨ+PΨ)-φ

which is valid for any vector ξc in Mn ([6]), from which

(5.7)

-(Fcξ
c-hc

c

xξ
x)(Fbe)

or, using (1.13), (5.1) and (5.5)

(5.8) \l-TcbT
cb+(Fcζb+Fbξc-2hcbyξyχFψ+F

-2(Fcξ
cndV=0,

or, using Tc

c=0 which is obtained from (1.13) and (3.3),

(5.9)

that is, we get an integral formula for an invariant submanifold Mn in a Kae-
hlerian manifold. Thus we have

PROPOSITION 5.1. In order for a complex variation of a compact invariant
submanifold of a Kaehlenan manifold to be isometric it is necessary and sufficient
that the variation is volume-preserving and holomorphic.

Now, if a variation of the submanifold is affine, we have from (3.11)
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FcFbξa+Kdcbaξ
d-Fc(hbaxξη-Fb(hcaxζη+Fa(hcbxξη=O,

from which, using (1.13)

that is, Faζ
a=const. Thus, assuming the submanifold to be compact, we have

Faξ
a=O. From this fact and Proposition 5.1, we obtain

THEOREM 5.2. A complex variation of a compact invariant submanifold of a
Kaehlenan manifold is isometric if and only if the variation is affine and holo-
morphic.

Remark. From (5.9), we immediately see that if a variation of submanifold
is conformal, then ^=0 and Tcb=0. This gives another proof of Theorem 4.1.
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