PROJECTABLE ALMOST COMPLEX CONTACT STRUCTURES

By D. E. Blair, S. Ishihara and G.D. Ludden

A complex manifold of complex dimension $2 m+1$ is said to be a complex contact manrfold if it admits an open covering $\left\{u_{\alpha}\right\}$ such that on each u_{α} there is a holomorphic 1 -form ω_{α} with $\omega_{\alpha} \wedge\left(d \omega_{\alpha}\right)^{m} \neq 0$ on $u_{\alpha} \cap u_{\beta} \neq \emptyset, \omega_{\beta}=f \omega_{\alpha}$ for some non-vanishing holomorphic function f. In general such a structure is not given by a global 1 -form ω; in fact this is the case for a compact complex manifold if and only if its first Chern class vanishes [6]. However, a complex contact manifold is the base space of a principal fibre bundle with 1 -dimensional fibres and real contact structure. Homogeneous complex contact manifolds were studied by Boothby in [3].

It is also shown in [6] that the structural group of the tangent bundle of a Hermitian contact manifold M is reducible to $(S p(m) \cdot S p(1)) \times U(1)$ where $S p(m)$ $\cdot S p(1)=S p(m) \times S p(1) /\{ \pm I\}$ and hence equivalently M admits the following local structure tensors. Let F denote the almost complex structure and g the Hermitian metric on M. Then each coordinate neighborhood admits tensor fields G, H of type $(1,1)$ and vector fields U, V with covariant forms u and v such that (G, U, V, g) and (H, U, V, g) are metric f-structures with complemented frames (see e.g. [1]), $F U=V$ and $G H=-H G=F+v \otimes U-u \otimes V$. In the overlap of coordinate neighborhoods we have

$$
\begin{array}{ll}
G^{\prime}=a G+b H, & u^{\prime}=a u+b v, \tag{0.1}\\
H^{\prime}=-b G+a H, & v^{\prime}=-b u+a v
\end{array}
$$

with $a^{2}+b^{2}=1$. Such a structure is called an almost complex contact structure [5] and our first project here will be to given an equivalent definition in terms of global tensor fields.

A standard example of a complex contact manifold is the odd-dimensional complex projective space $P C^{2 m+1}$. It is also well known that $P C^{2 m+1}$ is a fibre space over the quaternionic projective space $P H^{m}$ with fibres $S^{2} \approx P C^{1}$. In sections 3 and 4 we generalize this situation to a projectable almost complex contact structure on a Kählerian manifold.

§ 1. Almost Complex Contact Structures

In terms of the above local tensor fields G, H, U, V we can define global
tensor fields Σ of type (1,3) and S of type (1, 1). For local vector fields X, Y, Z set
and

$$
\begin{equation*}
\Sigma_{X Y} Z=g(G X, Y) G Z+g(H X, Y) H Z \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
S X=u(X) U+v(X) V . \tag{1.2}
\end{equation*}
$$

It is then easy to check using equations (0.1) that Σ and S are globally defined. Note also that S is a projection tensor field of rank 2, i.e. $S^{2}=S$. For a unit vector $A \in T_{p} M$ with $S A=0$, let

$$
\sigma_{A}=\left\{B \in T_{p} M \mid g(A, B)=0,\|B\|=1, \underline{\Sigma}(A, B, A, B)=1\right\},
$$

where $\underset{\sim}{\Sigma}(X, Y, Z, W)=g\left(\Sigma_{X Y} Z, W\right)$ and $\left[\sigma_{A}\right]$ the subspace of $T_{p} M$ generated by σ_{A}.

The following properties of Σ and S are now easily deduced. 1)-8) are straightforward computations using equations (1.1) and (1.2) and elementary properties of metric f-structures. For 9) given A set $B=G A$ and it is easy to see that $B \in \sigma_{A}$.

1) $S F=F S$
2) $\Sigma_{X Y}=-\Sigma_{Y X}$
3) $\Sigma_{X Y}^{x}=\underline{\Sigma}(X, Y, X, Y)(-I+S)$
4) $\Sigma_{X Y} S=S \Sigma_{X Y}=0$
5) $\Sigma_{X Y F}=-F \Sigma_{X Y}$
6) $\Sigma_{X F Y} F=\Sigma_{X Y}$
7) $\underline{\Sigma}(X, Y, Z, W)=\underline{\Sigma}(Z, W, X, Y)$
8) $\Sigma_{X \Xi_{Y Z}} W=g(X,(I-S) X) \Sigma_{Y Z} W$
9) $\sigma_{A} \neq \emptyset$ for any unit vector A with $S A=0$ and at any point p of M.

Conversely we will show that an almost Hermitian manifold M with structure tensors (F, g) admitting global tensor fields Σ and S satisfying 1)-9) is an almost complex contact manifold. We first give several lemmas.

Lemma 1.1. For $B \in \sigma_{A}, \Sigma_{A B} A=B, S B=0$ and σ_{A} is invariant under F.
Proof. Since $\underline{\Sigma}(A, B, A, B)=g\left(\Sigma_{A B} A, B\right)=1$ to show that $\Sigma_{A B} A=B$ it suffices to show that $\Sigma_{A B} A$ is a unit vector.

$$
g\left(\Sigma_{A B} A, \Sigma_{A B} A\right)=-g\left(\Sigma_{A B}^{2} A, A\right)=-g(-A+S A, A)=1
$$

by 2), 7) and 3), since A is a unit vector and $S A=0$. Now $S B=S \Sigma_{A B} A=0$ by 4). Finally for the invariance by F,

$$
\Sigma_{A F B} A=-\Sigma_{A F B} F^{2} A=F \Sigma_{A B} A=F B,
$$

from which $\underline{\Sigma}(A, F B, A, F B)=1$ and $g(F B, A)=g\left(\sum_{A F B} A, A\right)=0$.
Lemma 1.2. For any unit vector $B \in \sigma_{A}$ set $C=F B \in \sigma_{A}$, then

$$
\Sigma_{A B} \Sigma_{A C}=F-S F .
$$

Proof. If we take an arbitrary vector $D \in T_{p} M$ then, using (3) and (6), we have

$$
\begin{aligned}
\Sigma_{A B} \Sigma_{A C} D & =\Sigma_{A B} \Sigma_{A F B} D=-\Sigma_{A B} \Sigma_{A F B} F^{2} D \\
& =-\Sigma_{A B} \Sigma_{A B} F D=(I-S) F D .
\end{aligned}
$$

Lemma 1.3. For any orthonormal pair $\{B, C\} \in \sigma_{A}$,

$$
\Sigma_{A B} \Sigma_{A C}=-\Sigma_{A C} \Sigma_{A B} .
$$

Proof. First, using (3), we have

$$
\begin{aligned}
\Sigma_{A B+C}^{2} & =\Sigma(A, B+C, A, B+C)(-I+S) \\
& =2(-I+S) .
\end{aligned}
$$

On the other hand, we obtain

$$
\begin{aligned}
\Sigma_{A B+C}^{2} & =\left(\Sigma_{A B}+\Sigma_{A C}\right)^{2} \\
& =2(-I+S)+\left(\Sigma_{A B} \Sigma_{A C}+\Sigma_{A C} \Sigma_{A B}\right) .
\end{aligned}
$$

Thus we have $\Sigma_{A B} \Sigma_{A C}+\Sigma_{A C} \Sigma_{A B}=0$.
Lemma 1.4. $\operatorname{dim}\left[\sigma_{A}\right]=2$.
Proof. Take B and C as in Lemma 1.1 and assume that there is a unit vector $D \in\left[\sigma_{A}\right]$ such that D is orthogonal to B and C. They by Lemmas 1.2 and 1.3 we have

$$
\Sigma_{A B} \Sigma_{A C} \Sigma_{A D}=\Sigma_{A D} \Sigma_{A B} \Sigma_{A C},
$$

and so

$$
(F-S F) \Sigma_{A D}=\Sigma_{A D}(F-S F) .
$$

Thus, using (1) and (4), we obtain

$$
F \Sigma_{A D}=\Sigma_{A D} F,
$$

which contradicts (5). Therefore, $\left[\sigma_{A}\right]$ is necessarily of dimension 2.
Lemma 1.5. For any vectors $B, C \in T_{p} M$, satisfying $\quad \underline{\Sigma}(B, C, B, C)=1$, $\Sigma_{B C} A \in \sigma_{A}$.

Proof. Using (8), we have

$$
\Sigma_{A \Sigma_{B C} A} A=\Sigma_{B C} A,
$$

from which it follows that $\Sigma_{B C} A \in \sigma_{A}$.

Lemma 1.6. Take a unit vector $A \in T_{p} M$ with $S A=0$ and a unt vector $B \in \sigma_{A}$. Put $C=F B \in \sigma_{A}$. The $\Sigma_{A B} D$ and $\Sigma_{A C} D$ are orthonormal, where D is an arbitrary unit vector at p such that $S D=0$.

Proof. $g\left(\Sigma_{A B} D, \Sigma_{A B} D\right)=-g\left(\Sigma^{2}{ }_{A B} D, D\right)=g(D-S D, D)=1$ and similarly $\Sigma_{A C} D$ is also a unit vector. Finally

$$
\begin{aligned}
g\left(\Sigma_{A B} D, \Sigma_{A C} D\right) & =-g\left(\Sigma_{A B} D, \Sigma_{A F B} F^{2} D\right)=-g\left(\Sigma_{A B} D, \Sigma_{A B} F D\right) \\
& =g\left(\Sigma_{A B} D, F \Sigma_{A B} D\right)=0 .
\end{aligned}
$$

Summing up Lemmas 1.4, 1.5 and 1.6, we have
Proposition 1. Take a unit vector $A \in T_{p} M$ such that $S A=0$ and a unt vector $B \in \sigma_{A}$. Put $C=F B \in \sigma_{A}$. Then, for any unit vector $D \in T_{p} M$ with $S D=0$, $\Sigma_{A B} D$ and $\Sigma_{A C} D$ form an orthonormal basis of $\left[\sigma_{D}\right]$.

Lemma 1.7. Take A, B and C as in Proposition 1. Then, for any D, E $\in T_{p} M$,

$$
\Sigma_{D E}=\underline{\Sigma}(A, B, D, E) \Sigma_{A B}+\underline{\Sigma}(A, C, D, E) \Sigma_{A C} .
$$

Proof. When D (or E) satisfies $S D=D$ (or $S E=E$), then both sides of the equation above vanish because of (4). So, D and E may be assumed to satisfy $S D=S E=0$ and also that D and E are unit. First, we consider the case in which E is orthogonal to σ_{D}. Linearizing (3) we have $\Sigma_{X Y} \Sigma_{X Z}+\Sigma_{X Z} \Sigma_{X Y}$ $=2 \underline{\Sigma}(X, Y, X, Z)(-I+S)$. Thus if $Y \in \sigma_{D}, \Sigma_{D E}$ anti-commutes with $\Sigma_{D Y}$ and $\Sigma_{D F Y}$ and hence $\Sigma_{D E}$ commutes with $\Sigma_{D Y} \Sigma_{D F X}$ which by Lemma 1.2 is equal to $F-S F$. Therefore using (1) and (4)

$$
F \Sigma_{D E}=(F-S F) \Sigma_{D E}=\Sigma_{D E}(F-S F)=\Sigma_{D E} F,
$$

from which by (5) and the non-singularity of F we have $\Sigma_{D E}=0$ and again both sides of the above equation vanish.

Finally we consider the case where $E \in \sigma_{D}$. For simplicity set $a=g\left(\sum_{A B} D, E\right)$ and $b=g\left(\Sigma_{A C} D, E\right)$. Then as $\left\{\Sigma_{A B} D, \Sigma_{A C} D\right\}$ is an orthonormal basis of $\left[\sigma_{D}\right]$,

$$
E=a \Sigma_{A B} D+b \Sigma_{A C} D .
$$

Using (8) we have

$$
\begin{aligned}
\Sigma_{D E} A & =a \Sigma_{D \Sigma_{A B} D} A+b \Sigma_{D \Sigma_{A C} D} A \\
& =a \Sigma_{A B} A+b \Sigma_{A C} A \\
& =a B+b C .
\end{aligned}
$$

Using (8) again

$$
\Sigma_{D E}=\Sigma_{A \Sigma_{D E} A}=a \Sigma_{A B}+b \Sigma_{A C},
$$

which is the desired formula.

Take a suitable coordinate neighborhood u of an arbitrary point p of M and a unit vector field A in u. Then there is in u a unit vector field B belonging to σ_{A} at each point of u. On putting $C=F B \in \sigma_{A}$ we define locally in u two tensor fields G and H of type (1,1) respectively by

$$
G=\Sigma_{A B}, \quad H=\Sigma_{A C} .
$$

Then setting $F^{H}=F-F S$ and using (3) and (4) and Lemma 1.3, we have

$$
\begin{align*}
& \left(F^{H}\right)^{2}=G^{2}=H^{2}=-I+S, \\
& G H=-H G=F^{H}, H F^{H}=-F^{H} H=G, F^{H} G=-G F^{H}=H, \tag{1.3}\\
& F^{H} S=S F^{H}=G S=S G=H S=S H=0 .
\end{align*}
$$

Next, (1), (2), and (7) imply

$$
\begin{aligned}
& g\left(F^{H} X, Y\right)=-g\left(F^{H} Y, X\right), \\
& g(G X, Y)=-g(G Y, X), g(H X, Y)=-g(H Y, X),
\end{aligned}
$$

for all X and Y. By Lemma 1.7, a local expression for $\Sigma_{X Y}$ in u is the following

$$
\begin{equation*}
\Sigma_{X Y}=g(G X, Y) G+g(H X, Y) H . \tag{1.4}
\end{equation*}
$$

We now take another coordinate neighborhood $u^{\prime}\left(u \cap u^{\prime} \neq \emptyset\right)$ and define G^{\prime} and H^{\prime} as in u, say $G^{\prime}=\Sigma_{A^{\prime} B^{\prime}}$ and $H^{\prime}=\Sigma_{A^{\prime} C^{\prime}}$. By the formula of Lemma 1.7

$$
\begin{aligned}
& \Sigma_{A^{\prime} B^{\prime}}=\underline{\Sigma}\left(A, B, A^{\prime}, B^{\prime}\right) \Sigma_{A B}+\underline{\Sigma}\left(A, C, A^{\prime}, C^{\prime}\right) \Sigma_{A C} . \\
& \Sigma_{A^{\prime} C^{\prime}}=\underline{\Sigma}\left(A, B, A^{\prime}, C^{\prime}\right) \Sigma_{A B}+\underline{\Sigma}\left(A, C, A^{\prime}, C^{\prime}\right) \Sigma_{A C} .
\end{aligned}
$$

Setting $a=\underline{\boldsymbol{\Sigma}}\left(A, B, A^{\prime}, B^{\prime}\right)$ and $b=\underline{\boldsymbol{\Sigma}}\left(A, C, A^{\prime}, B^{\prime}\right)$ we have that

$$
1=g\left(\Sigma_{A^{\prime} B^{\prime}} A^{\prime}, B^{\prime}\right)=\underline{\Sigma}\left(A, B, A^{\prime}, B^{\prime}\right)^{2}+\underline{\Sigma}\left(A, C, A^{\prime}, B^{\prime}\right)^{2}=a^{2}+b^{2}
$$

and

$$
\begin{aligned}
\underline{\Sigma}\left(A, C, A^{\prime}, C^{\prime}\right) & =-g\left(\Sigma_{A F B} F^{2} A^{\prime}, F B^{\prime}\right)=-g\left(\Sigma_{A B} F A^{\prime}, F B^{\prime}\right) \\
& =g\left(F \Sigma_{A B} A^{\prime}, F B^{\prime}\right)=g\left(\Sigma_{A B} A^{\prime}, B^{\prime}\right)=a, \\
\underline{\Sigma}\left(A, B, A^{\prime}, C^{\prime}\right) & =-g\left(\Sigma_{A F B} F A^{\prime}, F^{2} C^{\prime}\right)=-g\left(F \Sigma_{A C} A^{\prime}, F B^{\prime}\right) \\
& =-g\left(\Sigma_{A C} A^{\prime}, B^{\prime}\right)=-b,
\end{aligned}
$$

so that $G^{\prime}=a G+b H$ and $H^{\prime}=-b G+a H$.
Theorem 1. Let (M, G, F) be an almost Hermitian manıfold. Then M is an almost complex contact manfold if and only if M admits a global tensor field Σ of type $(1,3)$ and a projection tensor field S of rank 2 satısfying 1)-9).

§ 2. Horizontal and Vertical Tensors

Given a vector field X on an almost Hermitian manifold (M, g, F) with almost complex contact structure (g, F, Σ, S), $X^{V}=S X$ and $X^{H}=X-X^{V}$ will be called the vertical and the horizontal parts of X, respectively. For a 1 -form ω, $\omega^{V}=\omega^{\circ} S$ and $\omega^{H}=\omega-\omega^{V}$ will be called the vertical and the horizontal parts of ω, respectively. We now define, for a function $f, f^{H}=f^{V}=f$. Then we easily have

$$
\begin{align*}
& (f X+h Y)^{H}=f^{H} X^{H}+h^{H} Y^{H},(f X+h Y)^{V}=f^{V} X^{V}+h^{V} Y^{V}, \tag{2.1}\\
& (f \omega+h \pi)^{H}=f^{H} \omega^{H}+h^{H} \pi^{H},(f \omega+h \pi)^{V}=f^{V} \omega^{V}+h^{V} \pi^{V},
\end{align*}
$$

where f, h are arbitrary functions and ω, π are arbitrary 1 -forms.
We now define the horizontal part T^{H} of an arbitrary tensor field T. Assume that the operation of taking the horizontal part satisfies

$$
\begin{equation*}
(P+Q)^{I}=P^{H}+Q^{H},(P \otimes U)^{H}=P^{H} \otimes U^{H}, \tag{2.2}
\end{equation*}
$$

where P and Q are arbitrary tensor fields of the same type and U another arbitrary tensor field, then by using (2.1) we can inductively define the horizontal part T^{H} of an arbitrary tensor field T on M.

§ 3. Almost Complex Contact Structures which are Projectable

The Riemannian connection is denoted by V in a Kählerian manifold M with almost complex contact structure (g, F, Σ, S). We define a tensor field P of type $(1,2)$ by

$$
\begin{equation*}
P_{X} Y=\left(\left(\nabla_{Y} S\right) X\right)^{H} . \tag{3.1}
\end{equation*}
$$

Note that

$$
\begin{equation*}
S P_{X}=0 . \tag{3.2}
\end{equation*}
$$

Next, differentiating covariantly $S^{2}=S$ we have

$$
\begin{equation*}
P_{S X}=P_{X} \tag{3.3}
\end{equation*}
$$

and differentiating covariantly (1)

$$
\begin{equation*}
P_{F X}=F P_{X} . \tag{3.4}
\end{equation*}
$$

Lemma 3.1. When $P=0$, a Kählerian manafold M of complex dimension $2 m+1$ with almost complex contact structure (g, F, Σ, S) is locally a product of two Kählerıan manifolds of complex dimensions $2 m$ and 1 respectively.

Proof. If $P=0$, (3.1) implies

$$
\left(\nabla_{Y}(S X)\right)^{H}=\left(\left(\nabla_{Y} S\right) X\right)^{H}=0,
$$

which means that the distribution determined by S and its complement are parallel. This with $S F=F S$ proves the lemma.

We now consider the following conditions:
(P1) for any vector $A \in T_{p} M$, there are two vectors $B, C \in T_{p} M$ such that $P_{A}=\Sigma_{B C}, \underline{\Sigma}(B, C, B, C)=a g(S A, S A)$ with constant a;
(P2) $\quad\left(\nabla_{S X} \underline{\Sigma}\right)^{H}=0$.
When an almost complex contact structure (g, F, Σ, S) satisfies the conditions (P1) and (P2), it is said to be projectable.

In this section, the almost complex contact structure (g, F, Σ, S) is assumed to be projectable. Then 3)-4) and (P1) imply

$$
\begin{equation*}
P_{X}{ }^{2}=a g(S X, S X)(-I+S) \tag{3.5}
\end{equation*}
$$

for some a and

$$
\begin{equation*}
P_{X} S=0 \tag{3.6}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
S\left(\nabla_{S Y} S\right)=\nabla_{S Y} S \tag{3.7}
\end{equation*}
$$

Thus we now have from (1) and (3.7)
Proposition 2. In a Kählerian manifold M with almost complex contact structure (g, F, Σ, S) which satisfies (P1), the distribution determined by S is integrable and each of its integral submanifolds is totally geodesic and holomorphic.

Since (P1) is satisfied, restricting ourselves to a coordinate neighborhood u in which (1.4) is established, we find

$$
\begin{equation*}
P_{X}=c(u(X) G+v(X) H) \tag{3.8}
\end{equation*}
$$

with local 1-forms u and v defined in u, where the associated vector fields U of u and V of v satisfy $\|U\|^{2}=\|V\|^{2}=1, g(U, V)=0$, i. e.,

$$
\begin{equation*}
S=u \otimes U+v \otimes V \tag{3.9}
\end{equation*}
$$

(3.8) implies that

$$
\begin{equation*}
(\nabla(S X))^{H}=c(u(x) G+v(x) H) . \tag{3.10}
\end{equation*}
$$

The fundamental 2 -form Φ of the Kählerian manifold (M, g, F) is defined by $\Phi(X, Y)=g(F X, Y)$. We now define in M a tensor field $\underline{\Lambda}$ of type (0,4) by

$$
\begin{equation*}
\underline{\Lambda}=\Phi^{H} \otimes \Phi^{H}+\underline{\Sigma} \tag{3.11}
\end{equation*}
$$

which is horizontal, that is, $\underline{\Lambda}^{H}=\underline{1}$. Then, using (1.3) and (3.8), we can verify that in u

$$
P_{U} \cdot \underline{1}=0, \quad P_{V} \cdot \underline{A}=0,
$$

where P_{X}. denotes the action of P_{X} as a derivation. Thus, using (3.9), we obtain

$$
\begin{equation*}
P_{X} \cdot \underline{\Lambda}=0 . \tag{3.13}
\end{equation*}
$$

Since $\nabla F=0$, we find

$$
\begin{equation*}
\left(\nabla_{S X} \underline{\Lambda}\right)^{H}=0 \tag{3.14}
\end{equation*}
$$

as a consequence of (P2). As is well known, the Lie derivative $\mathcal{L}_{S_{X}} \underline{\Lambda}$ is given by

$$
\mathcal{L}_{S_{X} \underline{1}}=\nabla_{S X} \underline{1}+P_{X} \cdot \underline{1}
$$

(See e.g. Yano [8]). Thus we have

$$
\begin{equation*}
\left(\mathcal{L}_{X} V \underline{\Lambda}\right)^{H}=0 . \tag{3.15}
\end{equation*}
$$

Lemma 3.2. If an almost complex contact structure (g, F, Σ, S) is projectable, then

$$
\left(\mathscr{L}_{X} V \underline{\Lambda}^{I I}\right)^{H}=0 .
$$

On the other hand, by Proposition 2, each integral submanifold of the distribution determined by S is totally geodesic. Thus we have (see Ishihara and Konishi [5])

Lemma 3.3. If an almost complex contact structure (g, F, Σ, S) is projectable, then

$$
\left(\mathcal{L}_{X}{ }^{V} g^{H}\right)^{I I}=0 .
$$

We now put

$$
\Lambda=\Phi \otimes F+\Sigma
$$

Then Lemmas 3.2 and 3.3 imply
Lemma 3.4. If an almost complex contact structure (g, F, Σ, S) is projectable, then

$$
\left(\mathcal{L}_{X} \nabla \Lambda^{H}\right)^{H}=0 .
$$

§4. Submersion of a Kählerian Manifold with Almost Complex Contact Structure

Let (M, G, F) be a Kählerian manifold of complex dimension $2 m+1$ with almost complex contact structure (g, F, Σ, S), which is projectable, and \tilde{M} a manifold of real dimension 4 m . Suppose that there is a differential mapping $\pi: M \rightarrow \tilde{M}$ which is of rank $4 m$ everywhere and satisfies $\pi(M)=\tilde{M}$ and that for each point p of $\tilde{M}, \pi^{-1}(p)$ is a connected integral submanifold of the distribution
determined by S. In such a case, the Kählerian manifold M with almost complex contact structure is said to have a fibred Riemanman structure $\pi: M \rightarrow \tilde{M}$ and \tilde{M} is called the base space. When M is compact and the distribution \mathscr{D} determined by S is regular, M has a fibred Riemannian structure if \tilde{M} is defined as the set of all maximal integral submanifolds of $\mathscr{D}, \pi: M \rightarrow \tilde{M}$ being defined by $\pi(p)=\mathscr{D} p$, $p \in M$, where $\mathscr{D} p$ is the maximal integral submanifold passing through p, and \tilde{M} is naturally topologized.

Consider a Kählerian manifold M with almost complex contact structure (g, F, Σ, S), which is projectable, and with fibred Riemannian structure $\pi: M \rightarrow \tilde{M}$. Then, taking account of arguments developed in [5], we see by Lemma 3.4 that the tensor field Λ is projectable in M and its projection is a tensor field \tilde{A} of type $(1,3)$ in the base space \tilde{M}. The metric tensor g in M is, by Lemma 3.3, projectable and its projection \tilde{g} defines a Riemannian structure on \tilde{M}. Thus, (2)-(9) implies that ($\tilde{g}, \tilde{\Lambda}$) is an almost quaternionic structure in the base space \tilde{M} (see Blair and Showers [2]). Thus, summing up, we have

Theorem 2. Suppose that (M, g, F) is a Kählerian manifold with almost complex contact structure (g, F, Σ, S), which is projectable. Assume moreover that (M, g, F) has a fibred Riemannian structure $\pi: M \rightarrow \tilde{M}$. Then ($\tilde{g}, \tilde{\Lambda}$) is an almost quaternionc structure in the base space \tilde{M}, where \tilde{g} and \tilde{A} are the projections of g and Λ, respectwely.

If in a Kählerian manifold M satisfying the conditions given in Theorem 2

$$
\left(\nabla \Lambda^{H}\right)^{H}=0
$$

holds, then the projection \tilde{A} of Λ in \tilde{M} is covariantly constant. Thus in such a case ($\tilde{g}, \tilde{\Lambda}$) is a quaternionic Kählerian structure (see Ishihara [4]). Thus we have

Theorem 3. If, an a Kählerzan manifold M satisfyng the conditions given in Theorem 2, $\left(\nabla \Lambda^{H}\right)^{H}=0$, then $(\tilde{g}, \tilde{\Lambda})$ is a quaternonic Kählernan structure in the base space \tilde{M}.

Taking account of Lemma 3.1, we easily have
Proposition 3. If a Kählerian manıfold M of complex dimension $2 m+1$ with almost complex contact structure (g, F, Σ, S), which is projectable, satisfies the condition $P=0$, then M is locally a product of Kählerian manrfolds (M_{1}, g_{1}, F_{1}) of complex dimension $2 m$ and $\left(M_{2}, g_{2}, F_{2}\right)$ of complex dimension 1 , where M_{1} admits quaternion structure (g_{1}, Λ_{1}).

Proposition 4. If, in a Kählerian mannfold M satisfying the conditions given in Proposition $3\left(\nabla \Lambda^{H}\right)^{H}=0$ then M_{1} admits a quaternomic Kählerzan structure (g_{1}, Λ_{1}) with vanushing Riccı tensor (see Ishihara [4]).

Bibliography

[1] D. E. Blair, Geometry of Manifolds with Structural Group $u(n) \times O(S)$, J. Diff. Geom. 4 (1970) 155-167.
[2] D. E. Blair and D. K. Showers, A Note on Quaternionic Geometry, to appear.
[3] W. M. Boothby, Homogeneous Complex Contact Manifolds, Proc. Symposia in Pure Math. of A. M. S., Vol. III, Diff. Geom., 1961, 144-154.
[4] S. Ishihara, Quaternıon Kählerıan manifolds, J. Diff. Geom. 9 (1974) 483-500.
[5] S. Ishihara and M. Konishi, Complex Almost Contact Structures and Fiberings, to appear.
[6] S. Kobayashi, Remarks On Complex Contact Manifolds, Proc. of A. M. S. 10 (1959), 164-167.
[7] S. SASAKI, Almost Contact Manifolds I, II, III, Lecture Notes, Tôhoku University, 1965.
[8] K. Yano, Theory of Lie Derivatives, North Holland, Amsterdam, 1957.

Michigan State University
East Lansing
Department of Mathematics
Tokyo Institute of Technology
Michigan State University
East Lansing

