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Abstract

Let j : X !W be an elementary divisorial Fano-Mori contraction from a smooth

projective variety, defined by a linear system jmðKX þ tLÞj, with L a j-ample line bundle

in PicðXÞ, t a positive integer and mg 0.

General fibers of such contractions are known to be irreducible if tb dim X � 3

(and so if dim X a 4). We prove that, if tb dim X � 4, except possibly for one case, a

general non trivial fiber is irreducible.

The special case, which can occur when dim X ¼ 5, is e¤ective, as we show by an

example in the last section of the paper.

1. Introduction

Let X be a smooth projective variety of dimension n defined over the field
of complex numbers; a contraction j : X !W is a proper surjective map with
connected fibers onto a normal variety W . If the canonical bundle KX is not nef
then the negative part of the cone of e¤ective 1-cycles NEðXÞ is locally poly-
hedral, by the Cone Theorem, and to every face in this part of the cone, by the
Contraction Theorem, is associated a contraction; such contractions are called
Fano-Mori contractions or extremal contractions. A Fano-Mori contraction is
called elementary if rðX=WÞ ¼ 1 or equivalently if it is associated to an extremal
ray, i.e. to a face of dimension one in NEðXÞKX<0; in this case we define the
length of the ray to be the minimum anticanonical degree of contracted curves.

A Fano-Mori contraction j : X !W is defined by a linear system
jmðKX þ tLÞj, with L a j-ample line bundle, t a positive integer and mg 0; the
divisor KX þ tL is called a supporting divisor of the contraction.

The integer t is bounded above by nþ 1 if j is of fiber type, i.e. if
dim W < dim X and by n� 1 if j is birational; elementary contractions with
values of t close to the maximum were studied by general adjunction theory [6].

The situation, which is quite simple for the maximum values of t (j is the
contraction of a projective space to a point in the fiber type case or the blow-up
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of a smooth point in the birational case) becomes more and more complicated as
values of t decrease.

Elementary contractions with tb n� 2 were classified by Mori [13] in the
case of smooth threefolds and by Fujita [8] and Ionescu [9] in the general case,
while more recently Kawamata [10], Andreatta and Wiśniewski [4] dealt with the
case n ¼ 4 and t ¼ 1 and gave a complete classification.

To proceed in the classification, i.e. to study either the case t ¼ n� 3 with
n > 4 or t < n� 3, the first step is to consider the general non trivial (i.e. non
0-dimensional) fiber of the contraction. Nakamura [14] considered the case of
Fano-Mori elementary contractions either of fiber type or divisorial, supported by
KX þ ðn� 3ÞL.

A new problem arises in the divisorial case: the exceptional divisor of the
contraction is known to be irreducible by [11, Proposition 5.1.6], but it is no
longer easy to prove that the general non trivial fiber of the contraction is
irreducible. Nevertheless in the case t ¼ n� 3 general non trivial fibers of divi-
sorial contractions are actually irreducible, as proved in [14].

In the subsequent case (i.e. t ¼ n� 4) proving the irreducibility of a general
fiber becomes an hard problem. Actually a new phenomenon occurs: there exist
elementary divisorial contractions with reducible general non trivial fibers. This
is the subject of our paper; more precisely, we prove the following:

Theorem 1.1. Let X be a smooth complex projective variety, let jX : X !W
be a divisorial elementary Fano-Mori contraction supported by KX þ tL and denote
by E the exceptional divisor. Suppose that tb dim X � 4. Then the general non
trivial fiber of jX is irreducible, except in the following e¤ective case:

1. dim X ¼ 5;
2. t ¼ 1;
3. the length of the extremal ray contracted by jX is one;
4. the image of E, jX ðEÞ is a curve;
5. a general non trivial fiber is the union of two irreducible components

isomorphic to PP1ðOl2 lOð2ÞÞ which meet along a smooth quadric surface.

In section 2 and 3 we recall general definitions and properties of families of
rational curves and Fano-Mori contractions; then, in section 4, we explain the
vertical slicing costruction which allows us to reduce to the case of a non ele-
mentary divisorial contraction j : Y ! Z whose exceptional locus is a reducible
divisor contracted to a point and such that dim Y < dim X .

In section 5 we study families of rational curves which cover the irreducible
components of the exceptional locus of j; the key observation is to consider
deformation of curves in the irreducible components of the exceptional locus
rather than in the ambient variety. As a byproduct we obtain in this section
a di¤erent proof of the irreducibility of the general fiber in the case studied in
[14]. Section 6 contains the proof of theorem 1.1, while in the last section
is presented an example, suggested by Jaroslaw Wiśniewski, which shows the
e¤ectiveness of the result.
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2. Families of rational curves

Throughout this section our main reference is [12], with which our notation
is coherent.

Let X be a projective scheme and let HomðP1;XÞ be the scheme para-
metrizing morphisms from P1 to X . Let HombirðP1;XÞHHomðP1;X Þ be the
open subscheme corresponding to those morphisms which are birational onto

their image and let Homn
birðP1;XÞ be the normalization of HombirðP1;X Þ: the

group AutðP1Þ acts on Homn
birðP1;XÞ and the quotient exists.

Definition 2.1. We define the space RatCurvesnðXÞ to be the quotient
of Homn

birðP1;X Þ by the action of AutðP1Þ and the space UnivðX Þ to be the

quotient of the product action of AutðP1Þ on Homn
birðP1;X Þ � P1.

We have the following commutative diagram:

Homn
birðP1;XÞ � P1

���!U UnivðX Þ ���!
i

X
?
?
?
y p

?
?
?
y

Homn
birðP1;X Þ ���!u RatCurvesnðXÞ

ð2:2Þ

ev

where u and U are principal AutðP1Þ-bundles, p is a P1-bundle and ev is the
evaluation map.

There exists a ‘‘pointed’’ version of this construction: let x A X be a point
and let HombirðP1;X ; 0 7! xÞ be the scheme that parametrizes morphisms f :
P1 ! X which send the point 0 A P1 to x A X . Let AutðP1; 0Þ be the group of

the automorphisms of P1 which fix a point 0 A P1 and let Homn
birðP1;X ; 0 7! xÞ

be the normalization of HombirðP1;X ; 0 7! xÞ: the group AutðP1; 0Þ acts on
Homn

birðP1;X ; 0 7! xÞ and the quotient exists.

Definition 2.3. The space RatCurvesnðx;X Þ is the quotient of
Homn

birðP1;X ; 0! xÞ by the action of AutðP1; 0Þ and the space Univðx;XÞ is the
quotient of the product action of AutðP1; 0Þ on Homn

birðP1;X ; 0! xÞ � P1.

Definition 2.4. A family of rational curves V on X is an irreducible
subvariety of RatCurvesnðX Þ. Given a family of rational curves V , we can
consider the curves of V passing through a fixed point x A X and call it Vx :¼
V VRatCurvesnðx;XÞ.

To each family of rational curves V we can associate its universal family U ,
which is the restriction of UnivðXÞ.
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U ���!i X

p

?
?
?
y

V

We denote by LocusðVÞ the closure of iðUÞ and we call it the locus of the family;
finally we denote by LocusðVxÞ the locus of V VRatCurvesnðx;XÞ, i.e. the locus
of the curves in the family which pass through x.

Definition 2.5. Let V be a family of rational curves on X . Then
1. V is unsplit if it is proper;
2. V is locally unsplit if every component of Vx is unsplit for a general

x A LocusðVÞ;
3. V is generically unsplit if there is at most a finite number of curves of V

passing through two general points of LocusðVÞ.

Definition 2.6 [18, Definition 4]. Let X be a projective variety, H an
ample divisor on X and EJX a closed subset.

A family of rational curves V is a minimal dominating family for E if E ¼
LocusðVÞ and H � V is minimal among the families whose locus is E.

Remark 2.7. With the above notation, if V is a minimal dominating family
for E, then V is locally unsplit.

Proposition 2.8 [12, IV.2.6 and II.1.3]. Let X be a projective variety which
is a local complete intersection and let V be a family of rational curves whose locus
meets the smooth locus of X .

Assume either that V is generically unsplit and x is a general point in LocusðVÞ
or that V is unsplit and x is any point in LocusðVÞ; then

dimLocusðVÞ þ dimLocusðVxÞ þ 1b dim X � KX � V :

What follows is a variation of a classical construction of Mori theory (see for
instance [7, Proof of 1.4.5] or [12, II.4.19]).

Definition 2.9. Let X be a projective variety, let V be an unsplit family of
rational curves and let Y be a subset of X . We define

LocusðVÞY :¼ fx A X j bC in V with C VY 0j; x A Cg

i.e. LocusðVÞY is the set of points that can be joined to Y by a curve of V .

Lemma 2.10 [15, Lemma 1]. Let X be a projective variety; let Y be a closed
subset of X and let V be an unsplit family of rational curves. Then LocusðVÞY is
closed in X and every curve in LocusðVÞY is numerically equivalent to a linear
combination with rational coe‰cients
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aCY þ bCV ;

where CY HY , CV belongs to the family V and ab 0.

Corollary 2.11. Let V be a family of rational curves on a projective variety
X , and let x A X be a point such that an irreducible component of Vx is proper and
dominant. Then rðXÞ ¼ 1.

3. Fano-Mori contractions

Our notation is coherent with [11], to which we refer for the details.
Let X be a complex projective variety and let

N1ðXÞ ¼ ðð1� cyclesÞ=1ÞnR; N 1ðXÞ ¼ ðPicðX Þ=1ÞnR;

where 1 denotes numerical equivalence. These vector spaces are dual to each
other via the intersection pairing and they are of finite dimension rðXÞ, the

Picard number of X . Let also NEðX ÞHN1ðX Þ be the closure of the cone of
e¤ective 1-cycles.

From now on we will assume that X is smooth and that KX is not nef, that
is there exists an e¤ective curve C such that KX � C < 0; thus by the Cone
Theorem the negative part (with respect to the canonical bundle of X ) of NEðX Þ
is locally polyhedral. We will call any face s in the negative part of the cone an
extremal face of X . By the Rationality Theorem, given an extremal face s of X ,

there exists a nef divisor on X such that s ¼ fz A NEðXÞ jH � z ¼ 0g; H is called
a supporting divisor for s. Moreover, for each extremal face s, the Contrac-
tion Theorem gives a normal projective variety W and a surjective morphism
j : X !W with connected fibers such that

1. for every curve C in X , jðCÞ is a point if and only if the class ½C� A
N1ðXÞ is in s;

2. H ¼ j�ðAÞ, with A an ample Cartier divisor on W .
The map j is called Fano-Mori (or extremal ) contraction, the contraction of
the face s, and H is called a supporting divisor for the map j. We denote by
ExcðjÞ the largest subset such that j is an isomorphism on XnExcðjÞ and we call
it the exceptional locus of j. If the map j is birational, it can be divisorial
(if the exceptional locus is a divisor on X ) or small (if the codimension of the
exceptional locus in X is greater or equal than 2). If dimR s ¼ 1 the face s is
called an extremal ray, while j is called an elementary contraction.

Remark 3.1. We have also (see [13]) that if X has an extremal ray R then
there exists a rational curve G on X such that 0 < �KX � Ga dimX þ 1 and R ¼
Rþ½G�. A rational curve C in R whose intersection number with �KX is minimal
is called a minimal extremal curve, while the intersection number lðRÞ ¼ �KX � C
is called length of the ray R.

Remark 3.2. We can always choose a supporting divisor of the form
KX þ rL, where L is an ample Cartier divisor and r is an integer.
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Lemma 3.3. Let j : X !W be the contraction of an extremal ray R; then
there exists a locally unsplit family of rational curves V whose numerical class is in
R, and such that LocusðVÞ ¼ ExcðjÞ.

Proof. ExcðjÞ is covered by rational curves whose numerical class is in R,
so there exists at least an irreducible component of RatCurvesnðX Þ with these
properties; let V be one of these components whose degree with respect to L is
minimal. We claim that V is locally unsplit: in fact, if for a general x A ExcðjÞ
curves in Vx degenerate to a reducible cycle, then the numerical class of every
irreducible component of this cycle belongs to R by the extremality of R. Then
through a general point of ExcðjÞ we would have a rational curve of the extremal
ray R of degree strictly less than L � V , and so a family which covers ExcðjÞ with
this property, a contradiction. r

4. Divisorial elementary contractions

In this paper we deal with elementary divisorial contractions, a special case
of Fano-Mori contractions, which have the following fundamental property:

Proposition 4.1 [11, Proposition 5.1.6]. Let j : X !W be an elementary
divisorial Fano-Mori contraction with exceptional divisor E; then E is irreducible.

In order to fix more precisely our setup, we give the following

Definition 4.2. Let X be a smooth n-fold and let jX : X !W be the
contraction of an extremal ray R, supported by KX þ tL, with L a jX -ample line
bundle on X .

We say that L is numerically reduced on X with respect to R if for every jX -
ample line bundle L 0 A PicðXÞ we have L � CaL 0 � C for any curve C whose
numerical class is in R.

Let X be a smooth n-fold and let

jX : X !W

be the contraction of an extremal ray R. Suppose that jX is divisorial and it is
supported by KX þ tL, where L is a jX -ample line bundle which is numerically
reduced on X with respect to R. We denote by E the exceptional divisor, and
by G a general non trivial fiber of jX , both considered as subschemes of X with
the reduced structure.

Lemma 4.3 (See [1, Theorem 2.1] and [14, Lemma 4.2]). The image of the
restriction map PicðXÞ ! PicðGÞ is of rank one, generated by LG ¼ LjG, and we
have

1. KX jG ¼ �tLG;
2. EjG ¼ ðNE=X ÞjG ¼ �qLG.
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The assumption that L is numerically reduced with respect to R implies that t and
q are ( positive) integers.

To study a general fiber of the contraction jX : X !W , we will use the vertical
slicing technique, following Ando [1]:

4.4 (Construction: Vertical slicing). Let jX : X !W be an elementary di-
visorial Fano-Mori contraction with exceptional divisor E and let r ¼ dim jX ðEÞ.
If r ¼ 0 then the contraction jX maps E to a point and so there is a unique
fiber E, otherwise we take r general very ample divisors Z1; . . . ;Zr on W , we set
Yi ¼ j�X ðZiÞ, and we consider the two varieties

Y :¼7
i

Yi; Z :¼7
i

Zi;

with dim Y ¼ dim Z ¼ n� r :¼ m.
From Bertini theorem we know that Y is smooth and Z is normal; moreover

a connected component of E VY is a general fiber G of jX . It is straightforward
to prove that the restriction of jX to Y is a Fano-Mori contraction j : Y ! Z,
supported by KY þ tLY , which maps G (a divisor in Y ) to a point in Z.

Remark 4.5. If jX contracts E to a point (i.e. if Y ¼ X ), then theorem 1.1
follows immediately from proposition 4.1, so from now on we assume that m ¼
dim Y < n ¼ dim X .

The normal bundle NG=Y in Y is well defined and we have:

NG=Y ¼ ðNE=X ÞjG:
Combining this with lemma 4.3, we have

KX jG ¼ �tLG; GjG ¼ NG=Y ¼ ðNE=X ÞjG ¼ �qLG:ð4:6Þ
Suppose that G is reducible:

G ¼ G1 þ � � � þ Gs with s > 1;

in this case, by proposition 4.1, j can not be elementary, so j is the contraction
of an extremal face sHNEðYÞ such that dim sb 2. Let R1; . . . ;Rt be the ex-
tremal rays in s and for every i ¼ 1; . . . ; t denote by ji : Y ! Zi the contraction
of the ray Ri. We have commutative diagrams:

Y ���!j Z

ji ci

Zi

 
�
��

�
��
!

so the contractions ji are birational and supported by KY þ tL 0i , with L 0i a ji-
ample divisor on Y which can be written as L 0i ¼ Lþ j�i ðAiÞ for a suitable ample
divisor Ai A PicðZiÞ.
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For every i ¼ 1; . . . ; s we can consider the decomposition of G

G ¼ Gi þ ~GGi;

where we denote by ~GGi the sum of all the components of G di¤erent from Gi.
Since G is connected and reducible, ~GGi is non empty and the restriction

Di :¼ ~GGijGi
:

is an e¤ective divisor on Gi.
Using the formulas 4.6, we can compute the normal bundle of Gi in Y :

NGi=Y ¼ GijGi
¼ ðG � ~GGiÞjGi

¼ �qLGi
�Dið4:7Þ

and so, by adjunction, we have

KGi
¼ �ðtþ qÞLGi

�Di:ð4:8Þ

5. Rational curves and reducible fibers

Using the vertical slicing construction we have reduced the study of the
general fiber of jX : X !W to the study of the exceptional divisor G of a Fano-
Mori contraction j : Y ! Z, from a smooth m-fold Y , supported by KY þ tL,
whose exceptional locus is a (possibly reducible) divisor G which is mapped to a
point. Moreover

KG ¼ �ðtþ qÞL NG=Y ¼ �qL
for some positive integers t and q.

In order to understand the geometry of G, in this section we will analyze the
properties of the families of rational curves which cover it. The main idea is to
use deformations of rational curves in the irreducible components of G, as they
can give stronger restrictions than deformations in Y .

Let V be a generically unsplit family of rational curves in Gi, such that there
exists a curve C in V which meets the smooth locus of Gi. By proposition 2.8,
we have

dimLocusðVÞ þ dimLocusðVxÞ þ 1b dim Gi � KGi
� C;

so, recalling formula 4.8, we obtain the following inequality:

dimLocusðVÞ þ dimLocusðVxÞ þ 1bm� 1þ ðtþ qÞL � C þDi � C:ð5:1Þ

Remark 5.2. Let V be an unsplit family of rational curves in Gi, C a curve
of the family and x a point of C. Since Di is an e¤ective divisor on Gi, if
Di � C ¼ 0, we have that LocusðVxÞHDi.

Proposition 5.3. Let j : Y ! Z be a Fano-Mori contraction from a smooth
m-fold Y , supported by KY þ tL, whose exceptional locus is a divisor G which is
mapped to a point and such that

KG ¼ �ðtþ qÞL NG=Y ¼ �qL:
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Suppose moreover that G is reducible and that tbm� 3; then
1. each irreducible component Gi of G is covered by an unsplit family of

rational curves W i such that L �W i ¼ 1. Moreover the families W j and
W k are independent in N1ðYÞ if j0 k;

2. if Gj;k is an irreducible component of Gj VGk, and x A Gj;k is a general
point then there exist curves of W j

x and W k
x which are contained in Gj;k;

3. every curve in Gj;k is numerically equivalent in Y to a linear combination
with nonnegative rational coe‰cients

aGj þ bGk;

where Gj belongs to W j and Gk belongs to W k.

Proof of 1. Let W i be a minimal dominating family for Gi, let x be a
general point in Gi, not contained in Sing Gi UDi and let Gi be a curve in W i

through x; since W i is dominating for Gi we have dimLocusðW iÞ ¼ dimGi ¼
m� 1, and so inequality (5.1) gives

mb dimLocusðW i
xÞ þ 1b ðtþ qÞL � Gi þDi � Gi:ð5:4Þ

Since Di is e¤ective and Gi QDi we have Di � Gi b 0 and so we obtain that

mb dimLocusðW i
xÞ þ 1b ðtþ qÞL � Gi b ðm� 2ÞL � Gi:ð5:5Þ

Suppose, by contradiction, that L � Gi b 2; it is easy to show that this can happen
only if m ¼ 4, q ¼ 1, Di � Gi ¼ 0 and LocusðW i

xÞ ¼ Gi.
Since W is locally unsplit, the last condition, together with corollary 2.11,

gives rðGiÞ ¼ 1; in particular Di, which is an e¤ective divisor on Gi, is ample,
against the condition Di � Ci ¼ 0. Hence L � Gi ¼ 1 and W i is an unsplit family.

To prove the independence of W j and Wk we note that G � Gi ¼ �qL � Gi ¼
�q and LocusðW iÞ ¼ Gi for every i; hence Gi is negative on Gi, and it is the only
irreducible component of G with this property. Therefore Gj � Gk < 0 if j ¼ k
and Gj � Gk b 0 if j0 k. r

Proof of 2. The irreducible components of Gj VGk are the common com-
ponents of Dj and Dk, so it is enough to show that for every i and for a general
x belonging to an irreducible component Di of Di there exists a curve of W i

x

contained in Di. We will show that this is the case if x is not contained in any
other irreducible component of Di.

By inequality 5.5 we have three cases, according to the dimension of
LocusðW i

xÞ.
a) dimLocusðW i

xÞ ¼ m� 3.
If Gi is a curve in W i

x, inequality 5.4 gives that Di � Gi ¼ 0;
from remark 5.2 we get LocusðW i

xÞHDi and so, by our choice of x,
LocusðW i

xÞHDi and we are done.
b) dimLocusðW i

xÞ ¼ m� 2.
If Gi is a curve in W i

x, inequality 5.4 gives that either Di � Gi ¼ 0 or
Di � Gi ¼ 1.
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In the first case, LocusðW i
xÞHDi by remark 5.2 and we conclude as

in a).
If Di � Gi ¼ 1, let Gl be an irreducible component of G, di¤erent from Gi

and containing Di; since Gi VGl HDi and LocusðW i
xÞHGi,

LocusðW i
xÞVGl HLocusðW i

xÞVDi:

By inequality 5.4 we have mb4, hence dimLocusðW i
xÞþ dim Gl > dim Y ,

and from Serre’s inequality we have that LocusðW i
xÞVDi contains a curve;

in particular there exists a point y0 x A LocusðW i
xÞVDi, hence a curve G

in W i
x which passes through y. Being Di � G ¼ 1, G must be contained in

Di (hence in Di, by our choice of x) and we are done.

Claim. Case c), i.e. dimLocusðW i
xÞ ¼ m� 1 cannot happen for any x in Gi.

Suppose by contradiction that for some x A Gi we have dimLocusðW i
xÞ ¼

m� 1. This implies LocusðW i
xÞ ¼ Gi and, since W i

x is unsplit, rðGiÞ ¼ 1 by
corollary 2.11. In particular every curve in Gi (and so in Di) is numerically
proportional to curves of W i.

Let Gl be an irreducible component of G containing Di and di¤erent from
Gi, let x 0 A Di be a generic point and consider LocusðW l

x 0 Þ.
If dimLocusðW l

x 0 Þ ¼ m� 3 or m� 2 then Di contains curves of W l
x 0 by

cases a) and b), while if dimLocusðW l
x 0 Þ ¼ m� 1 every curve in Di is numerically

proportional to curves of W l
x 0 as before.

In all cases this leads to a contradiction with the fact that every curve in Di

is numerically proportional to curves of W i, while W i and W l are numerically
independent. r

Proof of 3. Let x be a general point of Gj;k (i.e. a point which is not
contained in any other irreducible component of Gj VGk) and let Gj be a curve of
W j

x contained in Gj;k; by our choice of x and Gj , the generic point x 0 of Gj is not
contained in any other irreducible component of Gj VGk.

Consider LocusðWkÞGj
JGk (see Definition 2.9): this is a closed subset of X

by lemma 2.10 and, by [3, Lemma 5.4] we have

dimLocusðWkÞGj
¼ dimLocusðWk

x Þ þ 1:

Therefore according to the proof of part 2 we have two possibilities, depending
on the dimension of LocusðWk

x Þ:
if dimLocusðWk

x Þ ¼ m� 2, we have that dimLocusðWkÞGj
¼ m� 1, and so

LocusðWkÞGj
¼ Gk;

if dimLocusðWk
x Þ ¼ m� 3, we have that dimLocusðWkÞGj

¼ m� 2 and, if x 0 is

a generic point of Gj, LocusðWk
x 0 Þ is contained in Gj;k by proof of part 2

case a). Thus LocusðWkÞGj
VGj;k contains a dense subset of Gj;k (that is

6
x 0 LocusðWk

x 0 Þ with x 0 general in Gj) and so Gj;k HLocusðWkÞGj
.

In both cases, we have that Gj;k JLocusðWkÞGj
.
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Let C be a curve in Gj;k; by Lemma 2.10 C is numerically equivalent to a
linear combination

C1 ajGj þ bjGk;

of curves in W j and Wk, with aj; bj A Q and aj b 0. We can repeat all the
argument exchanging j and k to show that there exist ak; bk A Q, with bk b 0,
such that

C1 akGj þ bkGk:

Since ½Gj�; ½Gk� A N1ðYÞ are linearly independent, the decomposition of ½C� is
unique, and so

a ¼ aj ¼ ak b 0; b ¼ bj ¼ bk b 0

as claimed. r

Corollary 5.6. With the assumptions and the notations of proposition 5.3
we have t ¼ m� 3 and GjG ¼ �LG i.e. q ¼ 1.

Proof. By the claim in the proof of proposition 5.3, part 2, for every
x A Gi we have dimLocusðW i

xÞam� 2; therefore we can rewrite inequality 5.4
as follows:

m� 1b dimLocusðW i
xÞ þ 1b tþ qþDi � Gi:

Suppose, by contradiction, that q > 1, or tbm� 2; this can happen only if

dimLocusðW i
xÞ ¼ m� 2 and Di � Gi ¼ 0:

In particular, if we choose x 0 A Di, by remark 5.2 we have that LocusðW i
x 0 Þ is a

closed subscheme of Di with the same dimension and so it is an irreducible
component Di of Di and has Picard number one by corollary 2.11.

By proposition 5.3, part 2 we have that each component of Di contains
curves of two independent unsplit families and so its Picard number cannot be
one, a contradiction. r

Corollary 5.7 [14, Lemma 8.1]. Let X be a smooth complex projective
variety of dimension n and let jX : X !W be a divisorial elementary Fano-Mori
contraction supported by KX þ tL, with tb n� 3. Then the general fiber G of jX
is irreducible.

Proof. Suppose by contradiction that G is reducible. By vertical slicing we
reduce to a Fano-Mori contraction j : Y ! Z from a smooth m-fold Y which
satisfies the assumptions of proposition 5.3.

As noted in remark 4.5, we can assume that m < n, so, by corollary 5.6 we
have t ¼ m� 3 < n� 3, a contradiction. r
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6. Proof of theorem 1.1

We are now ready to use the results of the previous sections to prove
the main theorem. By vertical slicing we reduce to the study of the following
situation:

6.1 (Setup). Let j : Y ! Z be a Fano-Mori contraction from a smooth
m-fold Y , with m ¼ dim Y < dim X ¼ n, supported by KY þ tL, with tb n� 4,
whose exceptional locus is a reducible divisor G which is mapped to a point and
such that KG ¼ �ðtþ qÞL and NG=Y ¼ �qL.

Since m < n we have that tbm� 3, so, by corollary 5.6 we have t ¼ m� 3
and q ¼ 1, hence

KG ¼ �ðm� 2ÞL NG=Y ¼ �L:

STEP 1. Elementary contractions of a vertical section
As we have seen in section four, j is the contraction of an extremal face

s ¼ hR1; . . . ;Rti of dimensionb 2. The contraction ji : Y ! Zi associated to
the ray Ri is supported by KY þ ðm� 3ÞL 0i where L 0i is ji-ample and L 0i ¼
Lþ j�i Ai for a suitable Ai ample on Zi.

The following lemmata describe some properties of these contractions.

Lemma 6.2. In the assumptions of Setup 6.1 suppose that one of the contrac-
tions ji, call it j1, is divisorial; then every fiber of j1 has dimensionam� 2.

Proof. By proposition 4.1 the exceptional locus Excðj1Þ of j1 is an irre-
ducible divisor, so, being contained in G, it coincides with one of its irreducible
components, call it G1.

Suppose by contradiction that dim j1ðG1Þ ¼ 0; let G2 be an irreducible
component of G meeting G1; by part 2 of proposition 5.3, G1 VG2 contains
curves of W 2, the unsplit family which covers of G2 whose existence is guar-
anteed by part 1 of proposition 5.3.

Since a general curve of W 2 is not contained in Excðj1Þ, curves of W 2 are
not contracted by j1; in particular the curves of W 2 contained in G1 VG2 are not
contracted by j1, a contradiction. r

Lemma 6.3. In the assumptions of Setup 6.1 suppose that one of the con-
tractions ji, call it j1, is a small contraction, and denote by C1 a curve in R1 of
minimal anticanonical degree. Then Gi � C1 a 0 for every i ¼ 1; . . . ; s.

Proof. Since j1 is a small contraction supported by KY þ ðm� 3ÞL 01, by [2,

Theorem A], we have that j1 contracts a finite number of disjoint Pm�2 to points
and that L 01 � C1 ¼ 1.

Fix one of these projective spaces and call it P: of course PHG and so there
exists a component G1 such that PHG1; we claim that P does not meet any
other irreducible component of G.
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Suppose by contradiction that P meets G2 0G1; then by Serre’s inequality
G2 VP contains a curve G of P. Hence G is contained in an irreducible com-
ponent G1;2 of G1 VG2.

Thus from part 3 of proposition 5.3 there exist a; b A Q, with a; bb 0, and
ða; bÞ0 ð0; 0Þ such that

G1 aG1 þ bG2;

where Gi is a curve in an unsplit family of rational curves W i which dominates Gi.
Since G is contracted by j1 it is extremal in NEðY Þ, so at least one among

G1 and G2 belongs to the extremal ray R1 and this is not possible, since
LocusðW iÞ ¼ Gi is a divisor for every i.

Thus we have shown that each irreducible component of the locus of a
small ray meets only one component of G (the one in which it is included); then
Gi � C1 ¼ 0 for i0 1. Hence G1 � C1 ¼ G � C1 ¼ �L � C1 ¼ �L 01 � C1 ¼ �1. r

STEP 2. Bounding the number of irreducible components

Proposition 6.4. Let j : Y ! Z and G be as in Setup 6.1. Then m ¼
dim Y ¼ 4, t ¼ 1 and G has exactly two irreducible components G1 and G2.
Moreover G1 and G2 are the exceptional loci of two elementary (divisorial ) con-
tractions of length one with every non trivial fiber of dimension two.

Proof. Fix one component G1 of G. Since G is connected we can find a
curve GHG which has positive intersection with G1 and is not contained in it.
The numerical class of G belongs to the face s, so it is a positive linear com-
bination of numerical classes of extremal rational curves. Therefore we can find
a minimal extremal curve, say C2, which has positive intersection with G1.

From lemma 6.3 we have that R2 ¼ Rþ½C2� is a divisorial ray; moreover it is
clear that LocusðR2Þ meets G1. We claim that LocusðR2Þ0G1.

In fact, since C2 is contained in G we have that G � C2 ¼ �L � C2 < 0 and so
there exists an irreducible component of G, call it G2 which is negative on C2.
In particular we have LocusðR2ÞHG2.

Obviously G1 0G2, since the intersection numbers with C2 have opposite
sign. Since R2 is divisorial we have LocusðR2Þ ¼ G2 and so Gi � C2 b 0 for every
i0 2; in particular since G1 � C2 > 0 we have that

D2 � C2 ¼ ðG1 þ G3 þ � � � þ GsÞ � C2 > 0:ð6:5Þ
Let V 2 be a locally unsplit family of rational curves in R2 which covers G2 (see
lemma 3.3) and let C be a curve of V 2. Denote by F2 a general fiber of j2 and
let x be a general point of F2; by inequality 5.1 and lemma 6.2 we have

m� 2b dim F2 bLocusðV 2
x Þb ðm� 2ÞL � C þD2 � C � 1ð6:6Þ

The curve C belongs to R2, so D2 � C > 0, forcing L � C ¼ D2 � C ¼ 1, and
½C� ¼ ½C2� in N1ðYÞ. Therefore

L � C2 ¼ 1 ¼ D2 � C2:ð6:7Þ
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Inequality 6.6 also gives dim F2 ¼ m� 2 for a general fiber of j2; combining this
with lemma 6.2 and with upper semicontinuity of the dimension of the fibers we
have that dim F2 ¼ m� 2 for every non trivial fiber of j2.

Note that, by the first equality of 6.7 the extremal ray R2 has length one,
while from the second equality and from the fact that G1 � C2 > 0 inequality 6.5
gives Gi � C2 ¼ 0 for all i0 1; 2.

Claim. G1 is the only component of G which meets G2.

Suppose by contradiction that there exists another irreducible component G3

of G which meets G2; since G3 � C2 ¼ 0, if x is a general point of G2 VG3 then
LocusðV 2

x ÞHG2 VG3 and, being of the same dimension, it is an irreducible com-
ponent G2;3 of G2 VG3. This forces rðG2;3Þ ¼ 1, against part 2 of proposition
5.3, and the claim follows.

Now we fix G2 and we repeat the first argument of the proof in step 2 to find
a divisorial ray R1 whose locus is an irreducible component of G di¤erent from
G2 which meets G2; from the claim we have LocusðR1Þ ¼ G1.

We can repeat now for R1 all the steps of the proof; in the end we find that
G2 is the only component of G which meets G1, so, since G is connected we have
that G has exactly two irreducible components.

We have also proved that each of this components is the exceptional locus of
an elementary divisorial contraction of length one. To prove that m ¼ dim Y ¼ 4
(and so that t ¼ 1) we consider a point x in G1 VG2; denoted by F1 and F2 the
fibers of j1 and j2 containing x, by Serre’s inequality we have

dimðF1 VF2Þb dim F1 þ dim F2 � dim Y bm� 4:

Thus if mb 5 there exists a curve whose numerical class belongs to two di¤erent
extremal rays, and this is impossible. r

STEP 3. Description of the irreducible components

Proposition 6.8. Let j : Y ! Z and G be as in Setup 6.1; then the two irre-
ducible components G1 and G2 of G are P2-bundles isomorphic to PP1ðOl2 lOð2ÞÞ
which meet along a smooth quadric.

Proof. Denote by ji the divisorial contraction whose locus is Gi and by
Ci a curve in Ri which has minimal anticanonical degree; by [5, Theorem 4.1],
or [17, Main Theorem], we have two possibilities: ji is either a P2-bundle or a
quadric bundle over a smooth curve.

The second case is ruled out because, applying inequality 6.6 to a general
point x in a general fiber of ji, we have dimLocusðV i

xÞ ¼ 2. Thus ji gives to Gi

a P2-bundle structure over a smooth curve Bi.
Let G1;2 be an irreducible component of G1 VG2 (and so of Di); since G1;2

is an e¤ective divisor on Gi we have that G1;2 � Ci b 0 in Gi ði ¼ 1; 2Þ, equality
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holding if and only if G1;2 is a fiber of ji, but this possibility is ruled out by part
2 of proposition 5.3.

Therefore G1;2 � Ci > 0; since, by formula 6.7, we have Di � Ci ¼ 1 we con-
clude that D :¼ D1 ¼ D2 ¼ G1;2 is irreducible.

Since D1 � C1 ¼ D2 � C2 ¼ 1 and D is irreducible we see that D restricts to a
line on every fiber of ji and so D, being a surface with two P1-bundle structures,
is isomorphich to P1 � P1.

Moreover Ei ¼ ji�D is a locally free sheaf of rank three on Bi, which is
rational and Gi ¼ PBi

ðEiÞ. In Gi we have

ðD � CjÞGi
¼ GjjGi

� Cj ¼ ðG � GiÞ � Cj ¼ �2;
so, pushing forward the exact sequence

0! OGi
! OGi

ðDÞ ! ODðDÞ ! 0

to Bi FP1 we obtain the exact sequence

0! OP1 ! Ei ! Oð�2ÞlOð�2Þ ! 0:

This sequence splits, hence we have Gi ¼ PðOP1 l2 OP1ð�2ÞÞ. r

Conclusion of proof of theorem 1.1
We have only to show that dim X ¼ 5, since this will imply also that

dim jX ðEÞ ¼ 1, but the assertion is clear, since we have proved that t ¼ 1 and
we are assuming tb dim X � 4 and dim X > dim Y ¼ 4.

7. Example

We will now present an example, due to Jaroslaw A. Wiśniewski, of an
elementary Fano-Mori contraction of a smooth fivefold contracting a divisor
to a curve and such that any positive dimensional fiber is reducible (and its
structure is as described in theorem 1.1). The construction is divided in two
steps: first, using toric geometry, we construct a Fano-Mori divisorial contraction
of a fourfold with reducible exceptional locus (corresponding to the situation
described in proposition 6.8) and then we fit it in a suitable five dimensional
manifold.

7.1. A Fano Mori contraction with a Z2-action
Let e1, e2, v1, v2 be a basis of a 4-dimensional lattice, and let w1 ¼ 2e1�

e2 � v1 and w2 ¼ 2e2 � e1 � v2. Let D be the fan generated by these six vectors
and containing the following maximal cones:

he1; v1;w1; v2i he1; v1;w1;w2i he1; e2; v1;w2i he1; e2; v1; v2i

he2; v2;w2; v1i he2; v2;w2;w1i he1; e2; v2;w1i he1; e2;w1;w2i

Let Y be the variety associated to this fan and let Z be the a‰ne toric variety
associated to the cone S ¼ hv1; v2;w1;w2i. The fan D is a subdivision of S,
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obtained introducing the vectors e1 and e2; let j : Y ! Z be the proper birational
morphism associated to this subdivision (see figure 1).

It is straightforward to prove, using basic toric geometry, that

1. Y is smooth;
2. ExcðjÞ consists of two divisors G1 and G2, isomorphic to PP1ðOl2lOð2ÞÞ,

which intersect along a quadric P1 � P1 and are mapped to a point by j;
3. j is a Fano-Mori contraction;
4. there is a Z2-action which interchanges e1 and e2, v1 and v2, w1 and w2.

N1ðGÞ is generated by two classes of rational curves ½C1� and ½C2�: in G1, ½C1�
is the class of lines in the fibers and ½C2� is the class of a minimal section corre-
sponding to a surjection Ol2 lOð2Þ ! O, while in G2 these classes are exchanged;
moreover the Z2-action exchanges G1 with G2 and ½C1� with ½C2�.

7.2. Moebius strip construction
Let C 0 be a smooth curve with a free Z2-action, so that the action induces an

étale covering C 0 ! C of degree 2. Take the product actions p : Y � C 0 ! X
and p 0 : Z � C 0 !W , where X and W are the quotients; these product actions
are free and so X is smooth.

By the universal property of group actions there exists a morphism
jX : X !W such that the following diagram commutes:

Y � C 0 ���!j�1
Z � C 0

p

?
?
?
y

?
?
?
yp 0

X ���!jX W

ð7:1Þ

Claim. The map jX : X !W is an elementary Fano-Mori contraction,
whose exceptional locus is E ¼ pðG � C 0Þ (where G is the exceptional locus of j
and jðGÞ ¼ z A Z), which is mapped to CHW ; moreover, a vertical slicing of jX
is the contraction j : Y ! Z constructed in the previous subsection.

 
  

 
 

  

 

Figure 1. The fan D and two elements of the subdivision of D
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We prove only the non trivial fact that jX is elementary.
Fix c A C, and let F ¼ j�1X ðcÞ be the fiber of jX over c; F is isomorphic to G

via p and we denote by F1 and F2 its irreducible components, which are rational
P2-bundles.

We will show that a line in a fiber of F1 is algebraically equivalent to a line
in a fiber of F2; since N1ðFÞ is generated by the classes of such lines, jX is
elementary.

Let l be a line in a fiber of G1 and consider the product l� C 0HG � C 0: it
is a flat family of rational curves and it is mapped by p into the exceptional locus
of jX . Let z� fc 01; c 02g ¼ p 0�1ðcÞ, let l 0i ¼ l� fc 0igHG1 � fc 0ig and consider the
restriction of the previous diagram

G � fc 01; c 02g ���!j�1
z� fc 01; c 02g

p

?
?
?
y

?
?
?
yp 0

F ���!jX c

Since the product action identifies G1 � fc 01g with G2 � fc 02g and G2 � fc 01g with
G1 � fc 02g we have that l1 ¼ pðl 01Þ is a line in a fiber of F1 and l2 ¼ pðl 02Þ is a line
in a fiber of F2.
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Figure 2. l1 and l2 are algebraically equivalent
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