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HARMONIC MAPS*
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Abstract

Let Mm ¼ W be a bounded domain of Rm. Jost and Xu in [7] introduced the

subelliptic harmonic map from it and proved the regularity up to the boundary of

subelliptic harmonic maps into small balls supposing that the boundary of the domain is

noncharacteristic and smooth. In this note, we investigate the boundary regularity of

this kind of maps from W with non-smooth and partial noncharacteristic boundary.

1. Introduction, main result

Let M and N be two Riemannian manifolds. A critical point in Sobolev
space H 1ðM;NÞ of the energy functional is called a (weakly) harmonic map.
Denote a geodesic ball with radius R and center p A N by BRðpÞ. BRðpÞ is said

to be small, if R < min
p

2
ffiffiffi
k

p ; iðpÞ
� �

where k is a positive upper bound of the

sectional curvature of N and iðpÞ is the injective radius of p. For instance, any
ball of the Euclidean space is small, and so is any geodesic ball with radius less
than p=2 in unit spheres. Hildebrandt et al. proved that harmonic maps into a
small ball are regular up to the boundary (see [6]).

Let Mm ¼ W be a bounded domain of Rm. Jost and Xu in [7] intro-
duced the subelliptic harmonic map (see the next section), which is a variant
of the classical harmonic map, and proved the regularity up to the boundary
of subelliptic harmonic maps into small balls supposing that the boundary of
the domain is noncharacteristic and smooth. In this note, we investigate the
boundary regularity of this kind of maps from W with non-smooth and partial
noncharacteristic boundary.

We call a vector n a outward normal to qW at x A qW, if there is an Euclidean
ball B with center x0, such that BVW ¼ fxg and n ¼ kðx0 � xÞ for some positive
number k. Apparently, if x is a smooth point of the boundary, n is the usual
outward normal vector.
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Let X ¼ fX1; . . . ;Xk0g be a family of Hörmander’s vectors, and DX be the
subLaplacian defined by X (see next section). Write the terms of the second

order of �DX by
Pm

i; j¼1 aij
q2

qxiqxj
. Let x A qW. If there exists a outward normal

vector n ¼ ðn1; . . . ; nmÞ at x to qW such that
Pm

i; j¼1 aijn
in j > 0, x is called a non-

characteristic point of qW with respect to X . The set of all noncharacteristic
points is denoted by S1.

Our main theorem is

Theorem. Suppose that u : W ! BRðpÞHN is subelliptic harmonic, where
BRðpÞ is a small ball. If u ¼ f on qW where f A C2ðWUS1;BRðpÞÞ, then u is
continuous to S1.

The plan of this paper is: in Section 2, we collect some useful definitions
and facts; in Section 3, we prove the main theorem. In the last two sections, we
proof two lemmas which are used in the proof of the main theorem.

2. Preliminaries

Let W be an open domain in Rm, X ¼ ðX1;X2; . . . ;Xk0Þ be a family of Cy

vector fields on W. We call Xa to be Hömander’s vector fields if they satisfy the
following Hörmander’s condition:

Xa; . . . ;Xk0 together with their commutators up to a fixed length r span the
tangent space at each point of W:

For any collection of vector fields X ¼ ðXa; a ¼ 1; . . . ; k0Þ, we define an as-
sociated operator of second order as follows:

DX :¼
X

X �
a Xað1Þ

where, X �
a is the adjoint operator of Xa with respect to the Lebesgue’s measure.

If X satisfies Hörmander’s condition, the operator DX is hypeoelliptic, i.e. if DXu
is smooth, then so is u. In this case, the operator is called Hömander’s operator,
or called a subelliptic Laplacian or a sub-Laplacian. In general, this is a de-
generated elliptic operator.

Let N be a Riemannian manifold with Riemannian metric g. Without loss
of generality, we assume that N is a submanifold of Rv by Nash’s embedding
theorem. Define

M 1;pðW;RvÞ :¼ fu : W ! Rv j u A Lp;Xau A Lp; a ¼ 1; . . . ; k0gð2Þ

and define M
1;p
0 ðW;RvÞ to be the closure of Cy

0 ðW;RvÞ in M 1;pðW;RvÞ with
respect to the norm

kukp

M 1; p :¼
ð
W

jujp dxþ
ð
W

X
jXaujp dx:ð3Þ
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M 1ðW;NÞ :¼ fu A M 1;2ðW;RvÞ : uðWÞHN a:e:g:ð4Þ
M 1

0 ðW;NÞ :¼ fu A M
1;2
0 ðW;RvÞ : uðWÞHN a:e:g:ð5Þ

Let u be in M 1ðW;NÞ whose coordinate representation is also denoted by u.
Define the energy density of u by

eðuÞðxÞ ¼ 1

2

X
gijðuðxÞÞXau

iðxÞXau
jðxÞð6Þ

and the energy by EðuÞ ¼
Ð
W eðuÞ dx.

A critical point of the energy functional is called a subelliptic harmonic map.
The Euler–Lagrange equations of the energy functional reads (see [11])

tðuÞ ¼:
X

X �
a Xau

l �
X

G l
ikXau

iXau
k ¼ 0:ð7Þ

When N is the Euclidean line, the above system is linear, and its solutions are
called subelliptic functions. We have

Lemma 1. Suppose that WHRn is a bounded domain. If g A
M 1 VLyðW;RÞ satisfies

DXga 0 in W

ga 0 on qW
ð8Þ

Then, ga 0 in W.

Proof. Let gþ ¼ maxðg; 0Þ. Then by hypothesis, gþ A M 1
0 ðW;RÞ. So we

can use it as a test function and obtainð
W

DXg � gþ dx ¼
ð
W

Xag
þXag

þ dxð9Þ

a 0:

Hence we have Xag
þ ¼ 0 on W for any a ¼ 1; 2; . . . ; k0. Hence ½Xa;Xb�gþ ¼

ðXaXb � XbXaÞgþ ¼ 0, ½½Xa;Xb�;Xg�gþ ¼ ð½Xa;Xb�Xg � Xg½Xa;Xb�Þgþ ¼ 0; . . . .
By Hörmander’s condition we have Xgþ ¼ 0 for any tangent vector field X on W.
Therefore gþ ¼ const. whence gþ ¼ 0 because gþjqW ¼ 0. Q.E.D.

3. Proof of the main theorem

Let x0 A qW. Denote f be a convex function over BRðpÞHN with unique
minimum 0 at uðx0Þ A BRðpÞ. Such a function exists if BRðpÞ is a small ball.
For example, we can take

f ðxÞ ¼ 1� cosð
ffiffiffi
k

p
distðuðx0Þ; xÞÞ

k cosð
ffiffiffi
k

p
distðp; xÞÞ :
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The proof of the convexity of f is arranged in the last section (see Lemma 3).
Note that dist2ðp; xÞ is convex in regular ball BRðpÞ, but uðx0Þ is not its
minimum, and that distðuðx0Þ; xÞ has unique minimum 0 at uðx0Þ, but it may not

be convex in small ball BRðpÞ because distðuðx0Þ; xÞ may be bigger than
p

2
ffiffiffi
k

p . If

we let k tend to zero, then f ðxÞ tend to 1
2 ðdistðuðx0Þ; xÞÞ

2. Hence we call this
function the modified distance. Let g be a bounded solution of the following
problem:

DXg ¼ 0 in W

g ¼ f � u on qW:
ð10Þ

The solvability of this problem is proved in Section 4 (see Lemma 2). The chain
rule is (see [7] or [11])

�DX ð f � uÞ ¼
X

Hess f ðXau;XauÞ � hgrad f ; tðuÞi:ð11Þ

Because u is subelliptic harmonic and f is convex, we have �DX ð f � uÞb 0 by
the chain rule. So

�DX ð f � u� gÞb 0:ð12Þ
But (recall f is the boundary value of u)

ð f � u� gÞjqW ¼ ð f � f� f � fÞjqW ¼ 0ð13Þ
which combined with Eq. (12) implies

f � u� ga 0ð14Þ
in W by Lemma 1. Hence we have

0b f ðuðxÞÞ � gðxÞð15Þ
¼ f ðuðxÞÞ � f ðfðx0ÞÞ þ f ðfðx0ÞÞ � gðxÞ
¼ f ðuðxÞÞ � f ðfðx0ÞÞ þ gðx0Þ � gðxÞ
¼ f ðuðxÞÞ þ gðx0Þ � gðxÞ

because f ðfðx0ÞÞ ¼ f ðuðx0ÞÞ ¼ 0 by the definition of f . Hence we get

f ðuðxÞÞa gðxÞ � gðx0Þð16Þ
On the other hand, by Taylor’s expansion and the convexity of f (Lemma 3),

we have

f ðuðxÞÞ ¼ 1
2 Hess f ðxÞðh; hÞ where h ¼ exp�1

uðx0ÞðuðxÞÞð17Þ

b 1
2 ljhj

2

¼ 1
2 l distðuðxÞ; uðx0ÞÞ2
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where Hess f is the Hessian of f , l is the infimum of the smallest eigenvalue of
Hess f on BRðpÞ, and x A Bjhjðuðx0ÞÞ. So

distðuðxÞ; uðx0ÞÞ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

l
ðgðxÞ � wðg0ÞÞ

r
:ð18Þ

If x0 A S1, then g is continuous to x0 by Lemma 2. Letting x tend to x0, we
have distðuðxÞ; uðx0ÞÞ ! 0, since gðxÞ ! gðx0Þ ¼ f ðuðx0ÞÞ ¼ 0. Q.E.D.

4. Linear boundary valued problem

In this section, we solve the linear boundary valued problem which is used in
Section 3. We have

Lemma 2. Let S1 be the noncharacteristic part of the boundary of W which
satisfies the exterior ball condition. Suppose that f A C 2ðWUS1;RÞ. Then there
exists a bounded solution u to the following linear boundary valued problem:

DXu ¼ 0 in W

u ¼ f on qW:

�
ð19Þ

The solution u is smooth in W and continuous to S1.

Proof. Denote

BRðfÞ ¼ fu A M 1ðW;NÞ j u� f A M 1
0 ðW;NÞ and distðuðxÞ; pÞaRg:ð20Þ

Let R < R 0 < minfiðpÞ; p=2
ffiffiffi
k

p
g. Then, we have ([7]):

Let u A BR 0 ðfÞ satisfy EðuÞ ¼ inf
v ABR 0 ðfÞ

EðvÞ: If fðWÞHBRðpÞ;
then; u A BRðfÞ; and u is weakly subelliptic harmonic:

If N ¼ R, the one dimensional Euclidean space, the above fact implies the
existence of bounded weak solutions of (19).

Because DX is hypoelliptic, u is smooth in W. In the following, we discuss
the boundary regularity of u. Let v ¼ u� f. Then v solves the boundary valued
problem

DXv ¼ �DXf in W

v ¼ 0 on qW:

�
ð21Þ

Write DX as �
Pm

i; j¼1 aij
q2

qxiqx j
þ
Pm

j¼1 bj
q

qx j
. Let x1 A S1 and let n ¼ ðn iÞ be a

outward normal vector to qW at x1 such that
P

aijn
in j > 0. Let Brðx0Þ be the

Euclidean ball centered at x0 such that Brðx0ÞVW ¼ x1, and that n ¼ kðx0 � x1Þ
for some positive number k. Let hðxÞ ¼ e�kjx�x0j2 � e�kjx0�x1j2 , where jxj denotes
the Euclidean norm of x. It is easily to check hðxÞ < 0 for all x A Wnfx1g and
hðx1Þ ¼ 0. Then we have
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�DXhðx1Þ ¼ 4k2
Xm
i; j¼1

aijðx j
1 � x

j
0Þðxi

1 � xi
0Þ þ lower terms of k

 !
e�kjx1�x0j2ð22Þ

b 2c

where c is a positive constant, if we let k large enough. Hence there is a
neighborhood U of x1 such that �DXhðxÞb c > 0 in U . Let V ¼ U VW and
qV ¼ B1 UB2, where B1 ¼ qWV qV and B2 ¼ qVnB1. Then vjB1

¼ 0, hjB1
a 0

and hjB2
< �e for some small positive number e. Choose a positive number

M large enough, we have (note that Df is bounded on WUS1, because
f A C2ðWUS1;RÞ.)

�DX ðMhG vÞbMcHDXfb 0 in V

ðMhG vÞa 0 on qV :
ð23Þ

By Lemma 1 and also noting ha 0, we reach Gva�Mh ¼ Mjhj. Thus

jvjaMjhj in V :ð24Þ
Because hðxÞ ! hðx1Þ ¼ 0 as x ! x1, we have vðxÞ ! 0 ¼ vðx1Þ. Therefore, v is
continuous at x1 and hence u. Q.E.D.

5. Convexity of the modified distance

Let Nn be a Riemannian manifold, the sectional curvature of which is
bounded above by a positive number k. Let p A N and BRðpÞ be a regular
ball. For a fixed point q A BRðpÞ, define

f ðxÞ ¼ 1� cosð
ffiffiffi
k

p
distðq; xÞÞ

k cosð
ffiffiffi
k

p
distðp; xÞÞ :

In this section, we prove the following lemma:

Lemma 3. Hess f ðv; vÞb ljvj2 on BRðpÞ, where l is a positive number, v
is any tangent vector at the point under consideration.

Proof. The following calculation is at x A BRðpÞ. Let F be a smooth
function on BRðpÞ, ‘ the Riemannian connection, grad the gradient operator.
Then

grad eF ¼ eF grad F;ð25Þ
‘v grad eF ¼ eFhgrad F; viþ eF‘v grad F:ð26Þ

Hence

Hess eFðv; vÞ ¼ eFhgrad F; vi2 þ eF Hess Fðv; vÞ:ð27Þ

Let w be a smooth function on BRðpÞ. By a straightforward calculation, we have
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HessðeFwÞ ¼ w Hess eFðv; vÞ þ eF Hess wðv; vÞð28Þ

þ 2hgrad eF; vihgrad w; vi:

Inserting (25) and (27) into (28) yields

e�F HessðeFwÞðv; vÞ ¼ Hess wðv; vÞ þ w Hess Fðv; vÞ þ whgrad F; vi2ð29Þ
þ 2hgrad F; vihgrad w; vi:

Let F ¼ o � c, where c : BRðpÞ ! R and o : R ! R. Then

grad F ¼ _oo � c grad c;ð30Þ
Hess Fðv; vÞ ¼ €oo � chgrad c; vi2 þ _oo � c Hess cðv; vÞ:ð31Þ

Substituting (30) and (31) into (29), we have

e�F HessðeFwÞðv; vÞð32Þ

¼ Hess wðv; vÞ þ wð €oo � chgrad c; vi2 þ _oo � c Hess cðv; vÞÞ

þ wð _oo � cÞ2hgrad c; vi2 þ 2 _oo � chgrad c; vihgrad w; vi:

If €oo ¼ _oo2, then

e�F HessðeFwÞðv; vÞð33Þ

¼ Hess wðv; vÞ þ 2wð _oo � cÞ2hgrad c; vi2 þ w _oo � c Hess cðv; vÞ
þ 2 _oo � chgrad c; vihgrad w; vi:

Let w > 0. By Young’s inequality: aba
1

2
ta2 þ 1

2t
b2 with a ¼ �2 _oo �

chgrad c; vi, b ¼ hgrad w; vi, and t ¼ w, we have

ð34Þ

�2 _oo � chgrad c; vihgrad w; via 2wð _oo � cÞ2hgrad c; vi2 þ 1

2w
hgrad w; vi2:

Applying (34) to (33) we have

e�F HessðeFwÞðv; vÞbHess wðv; vÞ þ w _oo � c Hess cðv; vÞð35Þ

� 1

2w
hgrad w; vi2:

Set ckðtÞ ¼ cosð
ffiffiffi
k

p
tÞ, skðtÞ ¼

1ffiffiffi
k

p sinð
ffiffiffi
k

p
tÞ. It is easily to get _cck ¼ �ksk, _ssk ¼ ck,

and ks2k þ c2k ¼ 1. Let rqðxÞ ¼ distðq; xÞ, qkðtÞ ¼
1

k
ð1� ckðtÞÞ, and w ¼ qk � rq.

Then

grad w ¼ sk � rq grad rq:ð36Þ
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Furthermore, if x0 q we have w > 0. By a straightforward calculation, one has

Hess wðv; vÞ ¼ _ssk � rqhgrad rq; vi
2 þ sk � rq Hess rqðv; vÞ:ð37Þ

Let g be the minimizing geodesic from gð0Þ ¼ q to gðrÞ ¼ x, where r ¼ rqðxÞ.
Denote v> ¼ hv; _ggðrÞi _ggðrÞ, v? ¼ v� v>. By [6] (p. 59), we have (it is su‰cient
to take v1 ¼ 0 and v2 ¼ v)

Hess rqðv; vÞb
_ssk � rq
sk � rq

jv?j2:ð38Þ

Apply (38) to (37). We have

Hess wðv; vÞb _ssk � rqhgrad rq; vi
2 þ _ssk � rqjv?j2ð39Þ

¼ _ssk � rqjv>j2 þ _ssk � rqjv?j2

¼ _ssk � rqjvj2

¼ ð1� kwÞjvj2:

Let c ¼ qk � rp. Then by (39) we have

Hess cðv; vÞb ð1� kcÞjvj2:ð40Þ

Take oðtÞ ¼ �logð1� ktÞ and notice that 0 < kc < 1 since x0 q and

rpðxÞ <
1

2
ffiffiffi
k

p . Then _ooðtÞ ¼ k=ð1� ktÞ, €oo ¼ _oo2. Taking use of (39) and (40)

in (35), we get

e�F HessðeFwÞðv; vÞð41Þ

b ð1� kwÞjvj2 þ w _oo � cð1� kcÞjvj2 � 1

2w
hgrad w; vi2

¼ ð1� kwÞjvj2 þ kwjvj2 � 1

2w
hgradw; vi2

¼ jvj2 � 1

2w
ðsk � rqÞ2hgrad rq; vi

2

¼ jvj2 � 1

2
ð1þ ck � rqÞhgrad rq; vi

2

> 0 if x0 q and v0 0:

At x ¼ q, w ¼ 0 and grad w ¼ sk � rq ¼ 0. Then by (32) and (36) we have

e�F HessðeFwÞðv; vÞ ¼ Hess wðv; vÞb jvj2 > 0ð42Þ
when v0 0. Hence eFw is a convex function on BRðpÞ for any R <

1

2
ffiffiffi
k

p ,

hence for R 0 where R < R 0 <
1

2
ffiffiffi
k

p . Therefore, eFw is convex on BRðpÞ. Let
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l be the infimum of the smallest eigenvalues of HessðeFwÞ on BRðpÞ. Then
HessðeFwÞðv; vÞb ljvj2. Apparently, l > 0 because of the compactness of

BRðpÞ. On the other hand, eFw ¼ 1� ck � rq
kck � rp

¼ f . The lemma follows.
Q.E.D.
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