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ON VALUE DISTRIBUTION OF NONDEGENERATE HOLOMORPHIC

MAPS OF A TWO-DIMENSIONAL STEIN MANIFOLD M TO C2

AND CLASSIFICATION OF M

Yukinobu Adachi

Abstract

We classify nondegenerate holomorphic maps of a two-dimensional Stein manifold

M to C2 by study about the value distribution of them.

Introduction

In 1941, R. Nevanlinna [Ne] who had established the value distribution
theory of entire functions of one complex variable, studied ‘‘nullberandeten
Flächen’’ which formed a class of open Riemann surfaces having the value
distribution property similar to C, and made an epoch in the classification theory
of open Riemann surfaces.

The author studied value distribution of the nondegenerate entire maps of C2

to C2 in [A1, 2], which was based on the value distribution theory of entire
functions of two complex variables studied by Nishino [Ni1, 2, 3], Yamaguchi
[Y1, 2] and others, not on the Nevanlinna theory of higher dimension.

Such value distribution theory of two complex variables was extended to the
value distribution theory of holomorphic functions on a two-dimensional Stein
manifold by Suzuki [Su1, 2] and Nishino [Ni3].

In this article, we study nondegenerate holomorphic maps of a two-
dimensional Stein manifold to C2 using above theory and classify the two-
dimensional Stein manifolds by the criterion of existence or nonexistence of
certain maps.

We lay down a new paradigm that a generalization of a holomorphic
function of one complex variable is an equi-dimensional nondegenerate holo-
morphic map of several complex variables.
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Chapter 1. Definitions of types of nondegenerate holomorphic maps of a
two-dimensional Stein manifold M to C2

§1. Open Riemann surfaces

Let R and R 0 be abstract open Riemann surfaces.

Definition 1.1. We call that R is hyperboric, if there is a Green function
on it. We call that R is parabolic, that is, R A OG, if there is no Green function
on it. According to Nishino, we say that R is specially parabolic if it is
parabolic and its genus is finite, and we say that R is of algebraic type, if its
genus g is finite and its boundary consists of nð<yÞ punctures. We say that
such an algebraic type Riemann surface is of type ðg; nÞ. If there is no non-
constant bounded holomorphic function on R, we denote that R A OAB.

The following proposition is well known.

Proposition 1.2. OG YOAB.

It is easy to see the following

Proposition 1.3. Let R and R 0 be hyperbolic Riemann surfaces which do not
belong to OAB. Then there is no analytic curve in R� R 0 whose normalization is
holomorphically isomorphic to a Riemann surface belonging to OAB. It is similar
for a bounded domain of C2, that is, there is no analytic curve in it whose
normalization is holomorphically isomorphic to a Riemann surface belonging to OAB.

The following proposition is well known.

Proposition 1.4 (cf. [Ni3]). Let R and R 0 be open Rieamann surfaces. If
there is a nonconstant holomorphic map R ! R 0, then R 0 is parabolic (specially
parabolic, of algebraic type) in case R is parabolic (resp. specially parabolic, of
algebraic type).

§2. Type of nonconstant holomorphic functions on M

We assume that f A OðMÞ, the set of the holomorphic functions on M, is
nonconstant and we put D ¼ f ðMÞHC, the image of M.

Definition 2.1 (cf. [Ni3]).
(1) We say that f is a hyperbolic type function if there exists at least one

value a A D such that the normalization of one of the irreducible components of
f f ¼ ag is holomorphically isomorphic to a hyperbolic Riemann surface, in short,
a surface of hyperbolic type. Then we denote f A OHðMÞ.
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(2) We say that f is a parabolic (specially parabolic, algebraic) type func-
tion if for every a A D, f f ¼ ag consists of surfaces of parabolic (resp. specially
parabolic, algebraic) type. Then we denote f A OPðMÞ (resp. OSPðMÞ, OAðMÞ).

The following theorem is known as a principle of uniformity or resonance.

Theorem 2.2 ([Y1, 2], [Ni3], [Su1, 2]). If there is a set EHD whose
capacity is positive such that f f ¼ ag for any a A E contains a surface of parabolic
(specially parabolic, algebraic) type, then f A OPðMÞ (resp. OSPðMÞ, OAðMÞ).

§3. Type of nondegenerate holomorphic maps of M to C2

We call a holomorphic map F : M ! C2 is nondegenerate if FðMÞ contains
an open set in C2. Then we denote F A EðMÞ.

Definition 3.1. Let F A EðMÞ and Pðx; yÞ be a nonconstant polynomial in
C2.

(1) We say that F is of genuinly hyperbolic type if P � F A OHðMÞ for every
P, and denote F A GHðMÞ.

(2) We say that F is of hyperbolic type if P � F A OHðMÞ for some P, and
denote F A HðMÞ.

(3) We say that F is of parabolic (specially parabolic, algebraic) type if
P � F A OPðMÞ (resp. OSPðMÞ, OAðMÞ) for every P, and denote F A PðMÞ (resp.
SPðMÞ, AðMÞ).

(4) We say that F is of quasi-parabolic type if there are polynomials P1

and P2 such that ðP1;P2Þ � F A EðMÞ and Pi � F A OPðMÞ ði ¼ 1; 2Þ, and denote
F A QPðMÞ.

Remark 3.2. If M ¼ C2, the map F : z ¼ ex, w ¼ ey is contained in
QPðC2Þ � PðC2Þ. Because F A HðC2Þ (see Proposition 6.4 in [A2]) and if we set
P1 ¼ z, P2 ¼ w, then Pi � F A OAðC2ÞHOPðC2Þ ði ¼ 1; 2Þ.

Chapter 2. Value distribution of nondegenerate holomorphic maps of M
to C2

§4. BL(Blaschke)-type map

Let R be an open Rieamann surface. Heins [H] (cf. [S-N] and [K] p. 280)
introduced the notion SOHB for a domain in R. Roughly speaking, it is a non-
relatively compact subdomain G in R, whose relative boundary qG consits of at
most countable Jordan curves which may not necessarily be closed and do not
accumulate in R, and it is called of SOHB type, if its terminal domain has some
parabolical property. Conventionally, a relatively compact subdomain in R is
assumed to belong to SOHB type.
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Let R and R 0 be open Riemann surfaces and j : R ! R 0 be a nonconstant
holomorphic map.

Definition 4.1 ([H], [K] p. 291). We call that j is locally of BL-type at
p 0 A R 0 if there is a neiborhood U 0 of p 0 such that every connected component of
j�1ðU 0Þ is of SOHB type. We say that j is of BL-type if j is locally of BL-type
for every point of R 0.

It is easy to see the following

Proposition 4.2 ([K] p. 292). If R A OG, then for every R 0, every non-
constant holomorphic map j : R ! R 0 is of BL-type.

Definition 4.3. We denote by njðp 0Þ the number of fj�1ðp 0Þ; p 0 A R 0g
counted with multiplicity, and set nj ¼ supp 0 AR 0 njðp 0Þ ðayÞ.

Theorem 4.4 (Heins in [H], [K] p. 292). If j is a BL-type map of R to R 0,
then nj ¼ njðp 0Þ for every p 0 A R 0, except for a set of capacity zero.

§5. Value distribution of nondegenerate holomorphic maps of M to C2

The class QPðMÞ includes PðMÞ and a part of HðMÞ � GHðMÞ, and it
has a value distribution property similar to QPðC2Þ. In [A2] we proved a
generalization of the little Picard theorem for QPðC2Þ and we will prove it for
QPðMÞ by the same method.

Let F A EðMÞ and E0 be the set of points p A C2 such that fF�1ðpÞg
contains a curve of M. It is easy to see that E0 consists of at most countable
points.

Theorem 5.1. Let F A QPðMÞ. We denote that NF ¼ supp AC2�E0
NF ðpÞ,

where NF ðpÞ is the number of fF�1ðpÞg counted with multiplicity ð0aNF ðpÞa
yÞ. Then there is a set E : E0 HEHC2 with four-dimensional Lebesgue measure
0 such that NF ðpÞ ¼ NF for every point p A C2 � E and NF ðpÞ < NF for every
point p A E � E0.

Proof. Since F A QPðMÞ, there are polynomials P1 and P2 such that
ðP1 � F ;P2 � FÞ A EðMÞ and Pi � F A OPðMÞ ði ¼ 1; 2Þ. We set F ¼ ð f ; gÞ ¼
ðP1 � F ;P2 � FÞ anew.

We will separate the proof into two cases.
(1) There is a point p 0

0 such that NF ðp 0
0Þ ¼ NF . If NF < y, there is always

such a point. Let p 0
0 ¼ ða; bÞ and L ¼ fx 0 ¼ ag. Since f is a parabolic type

function on M, F�1ðLÞ ¼ S1 US2 U � � �UT1 UT2 U � � � where Si and Tj are surfaces
of parabolic type such that the holomorphic map ji ¼ F jSi

: Si ! L is non-
constant and the map F jTj

: Tj ! p 0
j A LVE0 is constant. By Proposition 4.2,

ji is a BL-type map. Then NF ¼ nj1 þ nj2 þ � � � and there is a set eHL whose
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capacity is zero such that for every point p 0 A L� e, NF ðp 0Þ ¼ NF by Theorem
4.4. We have used the fact that the capacity of the union of countable zero
capacity sets is zero.

Let L 0 ¼ fy 0 ¼ b 0g where b 0 is an arbitrary number such that ða; b 0Þ A
L� e. Since g is a parabolic type function on M, F�1ðL 0Þ ¼ S 0

1 US 0
2 U � � �UT 0

1 U
T 0
2 U � � � where S 0

i and T 0
j are surfaces of parabolic type such that j 0

i ¼ F jS 0
i
:

S 0
i ! L 0 is a BL-type map and F jT 0

j
is a constant map. Then NF ¼ nj 0

1
þ

nj 0
2
þ � � � and there is a set e 0 HL 0 whose capacity is zero for every point p 0 A

L 0 � e 0 and NF ðp 0Þ ¼ NF .
If we set E ¼ E0 U fp 0 A M � E0;NF ðp 0Þ < NFg, the four-dimensional Leb-

esgue measure of E is zero by Fubini’s thorem.
(2) There are points p 0

1; p
0
2; . . . such that NF ðp 0

i Þ ! y ði ! yÞ. From the
proof of case (1), there is a set Ei whose Lebesgue measure is zero such that, for
every point p 0 A C2 � Ei, we have NF ðp 0ÞbNi ¼ NF ðp 0

i Þ. Then for every point

p 0 A C2 �6y
i¼1

Ei, we have NF ðp 0Þ ¼ y. Since the Lebesgue measure of 6y
i¼1

Ei

is zero, we proved Theorem 5.1. r

Corollary 5.2. If F A EðMÞ has an exceptional set of positive four-
dimensional Lebesgue measure, then F A HðMÞ �QPðMÞ.

Corollary 5.3 (A generalization of the little Picard thorem). If the map
F A QPðMÞ and NF ¼ y, then NF ðpÞ ¼ y for p A C2 � E where E is a set of
four-dimensional Lebegue measure zero.

Chapter 3. Classification of two-dimensional Stein manifold M

§6. Classification of M

Definition 6.1.
(1) M is called of hyperbolic type ðM A HÞ when PðMÞ ¼ j.
(2) M is called of parabolic type ðM A PÞ when PðMÞ0j.
(3) M is called of special parabolic type ðM A SPÞ when SPðMÞ0j.
(4) M is called of algebraic type ðM A AÞ when AðMÞ0j.
(5) M is called of quasi-parabolic type ðM A QPÞ when QPðMÞ0j.
(6) M is called of genuinly hyperbolic type ðM A GHÞ when EðMÞ ¼

GHðMÞ.

By proposition 1.4 it is easy to see the following

Proposition 6.2. If there is a biholomorphic map F : M ! M 0, the type of
M and M 0 are coincident.

Proposition 6.3. For every Stein manifold M, GHðMÞ0j.
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Proof. Let F be a Fatou-Bieberbach map of C2 to C2, that is, C2 �FðC2Þ
has an inner point. Since M is assumed to be a Stein manifold, it follows
from the well known Grauert’s theorem that there is a scattered inverse holo-
morphic map C : M ! C2. It is easy to see that F ¼ F �C A GHðMÞ. r

Theorem 6.4. j0GHYH. HVP ¼ j. j0AYSPYPHQPY
ðPUHÞ � GH.

Proof.
(1) ðj0GHÞ By Proposition 1.3, a bounded Stein domain in C2 is in-

cluded in GH. And let R and R 0 be hyperbolic non-OAB Riemann surfaces and
set M1 ¼ R� R 0. Then by the same reason above, M1 A GH.

(2) ðGHYH;QPY ðPUHÞ � GHÞ Let M2 be a connected component
of fðx; yÞ A C2; j f ðx; yÞj < 1g where f A OPðC2Þ. It is easy to see that M2 B GH.
By Theorem 7.1 M2 B QP. Let R A OG and R 0 be hyperbolic non-OAB Riemann
surface and set M3 ¼ R� R 0. By the same reason above, M3 A ðH� GHÞ � QP.

(3) ðj0AÞ If M4 has a compactification ðM4;F; M̂MÞ where M̂M is a com-
pact complex manifold, F : M4 ! M0 ¼ FðM4Þ is a biholomorphic map and C ¼
M̂M �M0 is an analytic curve of M̂M, and if there is a meromorphic extension on
M̂M such that F jM0

A EðM0Þ, then M4 A A because F �F A AðM4Þ. For example
C2 A A.

(4) ðAYSPÞ Set M5 ¼ C2ðx; yÞ � fx ¼ a1; a2; . . .g � fy ¼ b1; b2; . . .g
where faig and fbjg are infinite sequences of complex numbers which do not
accumulate in inner points of C. It is easy to see that M5 A SP. By Corollary
7.4, M5 B A.

(5) ðSPYPÞ Let R be a Riemann surface of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðez � 1Þðez þ 1Þ

p
which is

a parabolic Riemann surface of the genus y and set M6 ¼ CðwÞ � R. At first,

we will prove that M6 A P. Set F : x ¼ w, y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðez � 1Þðez þ 1Þ

p
. We will

show that F A PðM6Þ. Let Pðx; yÞ be a nonconstant arbitrary polynomial. If

Pðx; yÞ is a polynomial such that
qP

qx
and

qP

qy
are not identically zero, then for

every complex value a, fPðx; yÞ � F ¼ ag be a covering space of CðzÞ except
for at most countable values a and the genus ¼ y because it is expressed
w ¼ xð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðez � 1Þðez þ 1Þ

p
Þ, where xðyÞ is an algebraic function defined by

fPðx; yÞ ¼ ag. If
qP

qy
1 0, then Pðx; yÞ ¼ PðxÞ and fPðxÞ � F ¼ ag consists of

the set such as fwig � R, where wi is a solution of PðwÞ ¼ 0. If
qP

qx
1 0, then

Pðx; yÞ ¼ PðyÞ and fPðyÞ � F ¼ ag consists of the set such as CðwÞ � fpjg where
pj A R. Therefore F A PðM6Þ.

At the second, we will prove that M6 B SP. For this, we will show that
for every F A PðM6Þ there is a polynomial Pðx; yÞ such that P � F B OSPðM6Þ.
Since F ¼ ðjðw; pÞ;cðw; pÞÞ, where w A CðwÞ and p A R, is nondegenerate, at
least one of j or c includes the variable w. So, we may assume that j is such
a function. Then for Pðx; yÞ ¼ x, every level curve of Pðx; yÞ � F is a level curve
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of jðw; pÞ and it has a nonconstant projection to R, except for at most countable
level curves. Since every level curve of j consits of surfaces of specially par-
abolic type, it is a contradiction by Proposition 1.4. Then SPðM6Þ ¼ j and
M6 B SP. r

Remark 6.5. Unfortunately, we have no example of M such that
M A QP�P, but we can not prove that QP ¼ P.

§7. Property of some class of M

Theorem 7.1. There is no nonconstant bounded holomorphic function on
M A QP.

Proof. Assume that there is a bounded function g A OðMÞ. Since M A QP,
there is a map F where P1 � F , P2 � F A OPðMÞ, ðP1 � F ;P2 � F Þ A EðMÞ and Pi

are polynomials ði ¼ 1; 2Þ. Since Pi � F A OPðMÞ and OG HOAB, g is constant
on each level curve of Pi � F . As, on each level curve of P2 � F , almost all level
curves of P1 � F intersect transversally, g is constant on M. r

Remark 7.2. Let R;R 0 A OAB �OG and set M7 ¼ R� R 0. Then by the
same reason of the above theorem, there is no nonconstant bounded holomorphic
function on M7. On the other hand, from Proposition 1.4 it is easy to see that
M7 A GH.

By virtue of Nishino [Ni2, 3] and Suzuki [Su2] following theorem is proved.

Theorem N–S (Theorem IV in [Ni3]). Let M be topologically finite, that is,
dim HiðM;ZÞ < y, ib 0, and M A A. Let F be an arbitrary map in AðMÞ.
Then there is a compactification ðM;F; M̂MÞ and F �F�1 is a rational holomorphic
map of FðMÞ to C2. Generally ðM;F; M̂MÞ depends on F.

Remark 7.3. If M ¼ C2, we proved elementarily in [A1] that F is an
element of AutðC2Þ. In this case the compactification is independent of F .

Corollary 7.4. Let M be topologically finite and M A A. Then M is
limited a sort of M4 in the proof of Theorem 6.4.

Problem 7.5. According to the properties of topological compactifications
of the elements of SP and P, can we clarify the di¤erence between SP and P?.
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