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1. Introduction

For the real or complex hyperbolic space Hn, a discrete subgroup of
the isometry group Isomþ Hn is called a Kleinian group. It is well known that
a Kleinian group G acts properly discontinuously on the hyperbolic space
Hn. Hence, the orbit GðoÞ of a point o A Hn has accumulation points, which are
called limit points of G, only on the boundary at infinity qHn. The set of all
limit points is called the limit set of G, which is denoted by LðGÞ. The limit
set LðGÞ plays an important role in studying the Kleinian group G and the
hyperbolic 3-manifold H3=G.

We may classify limit points of G according to the way how the orbit GðoÞ
accumulates to the limit point. For example, if z A qHn is a fixed point of a
loxodromic transformation g A G, then the orbit fgnðoÞg converges to z inside
a cone around the axis of g. On the other hand, if z 0 A qHn is the fixed point of
a parabolic transformation h A G, then the orbit fhnðoÞg converges to z 0 on a
horosphere in Hn. Comparing those two cases, we find that the growth rate of
the hyperbolic distances dhðo; gnðoÞÞ is much larger than that of dhðo; hnðoÞÞ as
n ! y. Therefore, it is expected that the growth rate of the orbit would be
crucial in the theory of Kleinian groups. From this point of view, we introduce
the following quantity aðGÞ for a finitely generated Kleinian group G.

Take a generating set s of G. Let jgj denote the minimal word length of
g A G with respect to s. We define aðGÞ by

aðGÞ ¼ sup a

���� sup
g AG

jgja

edhðo;gðoÞÞ

� �
< þy

( )
:

In [5], W. J. Floyd considered a relationship between Cayley graphs and
limit sets of Kleinian groups. In the discussion, he showed that for a geo-
metrically finite group G, aðGÞ ¼ þy if G has no parabolic transformations
while aðGÞ ¼ 2 if it contains a parabolic transformation. It is also shown that
aðGÞa 2 for any finitely generated Kleinian group G with parabolic transfor-
mations.
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In this paper, we shall show that aðGÞ > 2 always implies aðGÞ ¼ þy and
the geometric finiteness of G. Namely, the following is our main theorem.

Theorem 4.2. Let G be a finitely generated Kleinian group. Then, the
following conditions are equivalent:

1. G is convex co-compact;
2. aðGÞ > 2;
3. aðGÞ ¼ þy.

From this theorem, immediately we have;

Corollary 4.2. Let G be convex co-compact and H a geometrically infinite
group. Suppose that there exists an isomorphism f : G ! H. Then, for any e > 0,
there exists a g A G such that dhðo; fðgÞðoÞÞ < ð2þ eÞ log dhðo; gðoÞÞ.

Remark. The existence of the isomorphism as above is guaranteed in many
cases. In fact, it is known (cf. [8]) that if H is a finitely generated Kleinian
group acting on H3

R and if the quotient H3
R=H has infinite volume, then there

exist a geometrically finite Kleinian group G and a type-preserving isomorphism
f of H onto G.

In Section 2, we explain the fundamental facts on the real and complex
hyperbolic spaces as well as on the limit sets of Kleinian groups and geomet-
rically finite groups. In Section 3, we discuss a map from the group completion
qG to the limit set LðGÞ, due to Floyd [5]. In Section 4, we study a relation of
the word length and the limit sets, and prove the main theorem.

The author would like to thank Professors H. Shiga and A. Ushijima for
numerous advices and encouragement, and thank the referee of an earlier version
for suggestions of the improved version of Lemma 4.1.

2. Hyperbolic geometry

We will explain fundamental facts on the hyperbolic geometry. For de-
tails, see Apanasov [1], Apanasov-Xie [3], Epstein [4], Goldman [6], Matsuzaki-
Taniguchi [8].

2.1. Real hyperbolic space
We denote by Bn

R the unit ball in Rn and by qBn
R the unit sphere in Rn. The

hyperbolic metric is denoted by ds and is derived from the di¤erential form

ds2 ¼ 4jdxj2

ð1� jxj2Þ2
:

The resulting metric space ðBn
R; dsÞ is called the n-dimensional real hyperbolic

space Hn
R (of ball model). In this case, qBn

R is denoted by qHn
R. The geodesics
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are arcs of Euclidean circles orthogonal to qHn
R. The horosphere through a point

u A Hn
R centered at a point y A qHn

R is the Euclidean sphere which is tangent to
qHn

R at y and passes through u. We denote by Isomþ Hn
R the group of all

orientation-preserving automorphisms of Hn
R that are isometric with respect to the

hyperbolic metric.
We define J : Rn ! Rn by JðpÞ ¼ p=jpj2, Jð0Þ ¼ y and JðyÞ ¼ 0. Let e ¼

ð0; . . . ; 0; 1Þ A Rn and define a mapping on Rn P by PðpÞ ¼ eþ 2JðJðpÞ þ eÞ.
Then we have PðBn

RÞ ¼ Rn
þ, where Rn

þ ¼ fx ¼ ðx1; . . . ; xnÞ A Rn j xn > 0g. By
this transformation, Hn

R is identified with Rn
þ, and the metric in Rn

þ is

ds2 ¼ jdxj2

x2
n

:

The upper half-space Rn
þ is called the upper half-space model of the real hy-

perbolic space. qHn
R is identified with fygU fx A Rn j xn ¼ 0g. The horosphere

through a point u A Rn
þ centered at a point y A fx A Rn j xn ¼ 0g is the Euclidean

sphere which is tangent to fx A Rn j xn ¼ 0g at y and passes through u, and, the
horosphere through u ¼ ðu1; . . . ; un�1; tÞ A Rn

þ ðt > 0Þ centered at y is the set
fx A Rn j xn ¼ tg.

2.2. Complex hyperbolic space
We denote by Bn

C the unit ball in Cn and by qBn
C the unit sphere in Cn. The

hyperbolic metric is denoted by ds and is derived from the di¤erential form

jdsj2 ¼ 4

ð1� hhz; ziiÞ2
fhhz; dziihhdz; ziiþ ð1� hhz; ziiÞhhdz; dziig;

where hhz; zii ¼ z1z1 þ � � � þ znzn. The resulting metric space ðBn
C; dsÞ is

called the n-dimensional complex hyperbolic space (of projective model), which
denoted by Hn

C. In this case, qBn
C is regarded as qHn

C. The horosphere through
u A Hn

C centered at y A qHn
C is the set fz j jð1� hhz; ziiÞð1� hhu; yiiÞj ¼ jð1�

hhu; uiiÞð1� hhz; yiiÞjg. We denote by Isomþ Hn
C the group of all orientation-

preserving automorphisms of Hn
C that are isometric with respect to the hyperbolic

metric.
We define P : Bn

C ! Cn by ðz1; . . . ; znÞ 7! ðz1=ð1þ znÞ; . . . ; zn�1=ð1þ znÞ;
1� zn=2ð1þ znÞÞ. Then we have PðBn

CÞ ¼ Sn ¼ fz ¼ ðz 0; znÞ A Cn j zn þ zn >
hhz 0; z 0iig, where hhz 0; z 0ii ¼ z1z1 þ � � � þ zn�1zn�1. By this transformation, Hn

C

is identified with Sn, and the metric in Sn is

jdsj2 ¼ 4ðdzn � hhdz 0; z 0iiÞðdzn � hhz 0; dz 0iiÞ þ ðzn þ zn � hhz 0; z 0iiÞhhdz 0; dz 0ii
ðzn þ zn � hhz 0; z 0iiÞ2

:

The Siegel domain Sn is called the paraboloid model of the complex hyperbolic
space. qHn

C is identified with fygU fz ¼ ðz 0; znÞ A Cn j zn þ zn ¼ hhz 0; z 0iig. The
horosphere centered at y is the set fz ¼ ðz 0; znÞ A Cn j zn þ zn � hhz 0; z 0ii ¼ tg
ðt > 0Þ.
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2.3. Limit sets of Kleinian groups
Hereafter, Hn implies Hn

R or Hn
C, and Isomþ Hn implies the group of all

orientation-preserving isometries with respect to the hyperbolic metric.
We classify A A Isomþ Hn into three types. If A fixes a point in Hn, it is

called elliptic. If A has no fixed point in Hn and fixes only one point in qHn,
it is called parabolic. If A has no fixed point in Hn and fixes two points in qHn,
it is called loxodromic. These cases exhaust all possibilities.

A subgroup of Isomþ Hn is called discrete if it is a discrete subset of
Isomþ Hn. A discrete subgroup of Isomþ Hn is called a Kleinian group. A
Kleinian group G acts on Hn properly discontinuously, that is, for any com-
pact set K in Hn there exist only finitely many elements g of G that satisfy
gðKÞVK0j. The quotient space Hn=G is considered as a hyperbolic n-
dimensional orbifold.

For a Kleinian group GH Isomþ Hn, we consider the orbit GðpÞ ¼ fgðpÞ j
g A Gg of any point p in Hn under the action of G. Since G acts on Hn properly
discontinuously, GðpÞ has accumulation points only on qHn. They are called the
limit points of G, and the set of all these points is called the limit set of G, which
is denoted by LðGÞ. LðGÞ is a closed set and does not depend on the reference
point p A Hn.

We can classify limit points according to the way how GðpÞ accumulates to
the limit point.

Definition 2.1. We call a point z A LðGÞ a conical limit point if for a
geodesic ray l ending at z and for a d > 0, there exists a sequence of dis-
tinct elements fgngHG such that the orbit fgnðpÞg approximates z inside d-
neighborhood of the ray l.

The above definition of a conical limit point actually depends neither on the
reference point p A Hn nor on the geodesic ray l.

Definition 2.2. We call a point z A LðGÞ a horospherical limit point if any
horoball at z contains a point of the orbit GðpÞ.

The above definition of a horospherical limit point also does not depend on the
reference point p A Hn. A conical limit point is a horospherical limit point.

2.4. Geometrically finite groups
We explain geometrically finite Kleinian groups in Hn. Let GH Isomþ Hn

be a Kleinian group and Gz the stabilizer of a z A qHn, i.e., Gz ¼ fg A G j
gðzÞ ¼ zg.

Definition 2.3. A parabolic fixed point z is called a cusped parabolic fixed
point if ðLðGÞnfzgÞ=Gz is compact.

For a Kleinian group G, the convex hull of LðGÞ, denoted by HG, is the minimal
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closed convex subset of Hn that contains the set of points on geodesics connecting
any two points of LðGÞ.

Definition 2.4. We call the set CG ¼ HG=G the convex core of G. If CG is
compact, G is called convex co-compact.

Definition 2.5. We say that a Kleinian group G is a geometrically finite
group if the limit set LðGÞ entirely consists of conical limit points and cusped
parabolic fixed points. A Kleinian group which is not a geometrically finite
group is called a geometrically infinite group.

For an e > 0, we divide CG into two parts:
1. ðCGÞð0; eÞ ¼ fp A CG j there exists a non-trivial closed curve in CG passing

through p whose length is less than eg.
2. ðCGÞ½e;yÞ ¼ CGnðCGÞð0; eÞ.

It is known that there exist equivalent conditions for geometric finiteness defined
above (cf. Apanasov [1], Apanasov [2], Apanasov-Xie [3], Matsuzaki-Taniguchi
[8]).

Theorem 2.1. For a Kleinian group GH Isomþ Hn, the following conditions
are equivalent:

1. G is geometrically finite, i.e., the limit set LðGÞ entirely consists of conical
limit points and cusped parabolic fixed points;

2. for some (any) e > 0, e-neighborhood of CG has a finite hyperbolic volume;
3. for some (any) e > 0, ðCGÞ½e;yÞ is compact.

If a geometrically finite group G does not have a parabolic transformation, then
CG ¼ ðCGÞ½e;yÞ for some e. It is also known that there exist equivalent con-
ditions for a geometrically finite group without parabolic transformations (cf.
Matsuzaki-Taniguchi [8]).

Theorem 2.2. For a Kleinian group GH Isomþ Hn, the following conditions
are equivalent:

1. G is a geometrically finite group without parabolic transformations, i.e.,
LðGÞ entirely consist of conical limit points;

2. G is convex co-compact;
3. LðGÞ entirely consists of horospherical limit points.

3. Group completions and limit sets

In this section, we discuss a map from the group completion qG to the limit
set LðGÞ, due to Floyd [5]. For convenience of the reader, we will present the
proofs of some results. (See Proposition 3.1 and Theorem 3.1 below.)

Let ðX ; dX Þ and ðY ; dY Þ be metric spaces, two groups G, H act on ðX ; dX Þ
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and ðY ; dY Þ, respectively. A map f : X ! Y is called G-equivariant if there
exists a homeomorphism c : G ! H such that

cðgÞ � f ðxÞ ¼ f � gðxÞ
holds for all x A X and for all g A G.

Let G be a finitely generated Kleinian group. We consider the Cayley graph
KðG; sÞ for a given finite set s of generators. This is a 1-complex whose vertices
are elements of G, and such that two vertices a; b A G are joined by an edge if
and only if a ¼ bgG1 for some generator g A s. For a g A G, the word length of g
is the number of generators g A s representing g. In general, a word length is not
determined uniquely because of the existence of relations. So, we define by jgj
the minimal word length of g A G. jgj depends on a set of generators. Hereafter,
we use the minimal word length jgj with respect to the fixed s.

Definition 3.1. We define a distance dc on the Cayley graph KðG; sÞ as
follows. For a; b A G,

1. dcða; bÞ ¼ 0, if a ¼ b;
2. dcða; bÞ ¼ minfjaj�2; jbj�2g, if a ¼ bgG1 for some g A s;
3. dcða; bÞ ¼ infC

Pn
k¼1 dcðck�1; ckÞ, for general a; b A G, where the infimum is

taken over all paths C connecting a and b with vertices a ¼ c0; c1; . . . ;
cn�1; cn ¼ b.

Then, ðKðG; sÞ; dcÞ is a metric space and KðG; sÞ is completed to KðG; sÞ as a
metric space.

Definition 3.2. We call qG ¼ KðG; sÞnKðG; sÞ the group completion of G.

For a; b A qG, the metric dc is extended on KðG; sÞ by defining dcða; bÞ ¼
limn!y dcðan, bnÞ, where fang and fbng are Cauchy sequences converging to a
and b, respectively. qG is regarded as the set of equivalent classes of Cauchy
sequences.

Definition 3.3. We call a Cauchy sequence fgngHG a shortest path if for

all n A N, there exists g A s such that gnþ1 ¼ gng
G1 and jgnj ¼ n.

The following proposition shows the existence of a shortest path.

Proposition 3.1 (Floyd [5]). For any g A qG, there exists a shortest path
fgngHG such that gn ! g as n ! y.

Proof. For any g A qG, there is a Cauchy sequence fhngHG such that
hn ! g as n ! y. We set hn ¼ gn;1gn;2 � � � gn; jhnj, where gi; j A s.

Since fgn;1gn AN is an infinite set and s is a finite set, there exists a g 01 A s

such that gn;1 ¼ g 01 for infinitely many n. Let fh1ngn AN be the subsequence of
fhng with gn;1 ¼ g 01 and put

h1n ¼ g 01gn;2 � � � gn; jh1n j:
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Inductively, we may find g 0m A s and a subsequence fhm
n g of fhm�1

n g ðm ¼ 1; 2; . . .Þ
so that

hm
n ¼ g 01g

0
2 � � � g 0mgn;mþ1 � � � gn; jhm

n j ðn ¼ 1; 2; . . .Þ:

Put gn ¼ g 01g
0
2 � � � g 0n. Then, we may show that fgngn AN is a shortest path.

First, we show that jgmj ¼ m for any m A N. If jgmj < m for some m A N, then
we have

jhm
n j ¼ jg 01g 02 � � � g 0mgn;mþ1 � � � gn; jhm

n jj

a jg 01g 02 � � � g 0mj þ jgn;mþ1 � � � gn; jhm
n jj

a jgmj þ ðjhm
n j �mÞ < jhm

n j:

This is a contradiction. Hence, jgmj ¼ m for any m A N.
Finally, we will show dcðgn; hnÞ ! 0 as n ! y. For any e > 0, we take a

M A N with
Py

k¼Mþ1

1

k2
< e. From the definitions of gn and hm

n , we have

dcðgn; hM
n Þa dcðgn; gMÞ þ dcðgM ; hM

n Þ

a
Xn

k¼Mþ1

1

k2
þ
XjhM

n j

k¼Mþ1

1

k2
a 2

Xy
k¼Mþ1

1

k2
< 2e;

for any n > M. Since fhngn AN is a Cauchy sequence, there exists N A N such
that dcðhn; hmÞ < e for any n;mbN. Thus, we conclude that

dcðgn; hnÞa dcðgn; hN1
n Þ þ dcðhN1

n ; hnÞ < 3e

for any n > maxfM;Ng. It completes the proof of the proposition. r

It is known that there exists the following continuous mapping from qG onto
LðGÞ if the orbit GðoÞ satisfies a certain geometric condition.

Theorem 3.1 (Floyd [5]). If there is a constant k > 0 so that 2 logjgj � ka
dhðo; gðoÞÞ for any g A G, then there is a continuous, G-equivariant surjection
f : qG ! LðGÞ.

Proof. We use the ball model Bn
R in the case of Hn

R or the projective model
Bn
C in the case of Hn

C.
Fix o A Hn. We define F : KðG; sÞ ! Hn as follows. For every a A G,

FðaÞ ¼ aðoÞ. If a ¼ bgG1 for some g A s, then F maps the edge ½a; b� in KðG; sÞ
joining the vertices a; b A G to the hyperbolic geodesic connecting aðoÞ and bðoÞ.

Since 2 logjgj � ka dhðo; gðoÞÞ for any g A G,

1� jgðoÞja 2ekjgj�2ð3:1Þ

because dhðo; gðoÞÞ ¼ logð1þ jgðoÞjÞð1� jgðoÞjÞ�1.
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If a ¼ bgG1 for some g A s, then dcða; bÞ ¼ minfjaj�2; jbj�2g. We may
assume dcða; bÞ ¼ jaj�2. Since F ð½a; b�Þ is the geodesic connecting from aðoÞ ¼
bðgG1ðoÞÞ to bðoÞ, it is the image of the geodesic from o to gG1ðoÞ by b A G.
Hence, from the triangle inequality, for any z A Fð½a; b�Þ we have

dhðo; aðoÞÞa dhðo; zÞ þ dhðz; aðoÞÞ ¼ dhðo; zÞ þ dhðo; b�1ðoÞÞ
a dhðo; zÞ þM;

where M ¼ maxfdhðo; gðoÞÞ j g A sg. Thus,

e�M
a 2ð1� jaðoÞjÞð1� jzjÞ�1:ð3:2Þ

By using (3.1) and (3.2), we may estimate the Euclidean distance jFðaÞ � FðbÞj of
FðaÞ, F ðbÞ in Hn;

jFðaÞ � FðbÞj ¼ jaðoÞ � bðoÞjð3:3Þ

a

ð
Fð½a;b�Þ

jdzja
ð
Fð½a;b�Þ

2eMð1� jaðoÞj2Þ
1� jzj2

jdzj

a eMð1� jaðoÞj2ÞdhðaðoÞ; bðoÞÞa 2eMð1� jaðoÞjÞM

a
4ekþMM

jaj2
¼ 4ekþMMdcða; bÞ:

If a0 bgG1 for any g A s, then for any e > 0 there exists a path C connecting
a, b such that

Pn
i¼1 dcðci�1; ciÞa dcða; bÞ þ e, where a ¼ c0; c1; . . . ; cn�1; cn ¼ b are

the vertices in C. Applying (3.3) to ci�1, ci ði ¼ 1; 2; . . . ; nÞ, we have

jFðaÞ � FðbÞja
Xn
i¼1

jF ðci�1 � FðciÞj

a 4ekþM
Xn
i¼1

dcðci�1; ciÞ

a 4ekþMMdcða; bÞ þ 4ekþMMe:

Hence, we conclude that

jF ðaÞ � F ðbÞja 4ekþMMdcða; bÞ
and F : KðG; sÞ ! Hn is Lipschitz continuous. Thus, it has a continuous

extension F : KðG; sÞ ! Hn. Put f ¼ F jqG. Since LðGÞ is the set of accu-
mulation points and KðG; sÞ is totally bounded, f ðqGÞ ¼ LðGÞ. Thus, f is our
desired mapping. r

4. Word length and limit sets

We will study a relation of the word length and the limit sets. Let G be
a finitely generated Kleinian group. Fix a generating set s of G and a point
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o A Hn. Let jgj be the minimal word length of g A G with respect to s. We
define aðGÞ by

aðGÞ ¼ sup a

���� sup
g AG

jgja

edhðo;gðoÞÞ

� �
< þy

( )
:

It is easily seen that aðGÞ does not depend on the set of generators and the
reference point o A Hn. For a geometrically finite Kleinian group G, the fol-
lowing results on aðGÞ are known.

Theorem 4.1 (Floyd [5]). Let G be a finitely generated Kleinian group.
1. If G is a geometrically finite group with parabolic transformations, then

aðGÞ ¼ 2.
2. If G is a geometrically finite group without parabolic transformations, then

aðGÞ ¼ þy.

Remark 4.1. In [5, Lemma in p. 213], Floyd showed that if G is convex co-
compact, then there exist constants C1;C2 > 0 such that

C1jgja dhðo; gðoÞÞaC2jgjð4:1Þ

for all g A G. Generally, if G is finitely generated, then an inequality

dhðo; gðoÞÞaMjgjð4:2Þ

holds with M ¼ maxfdhðo; gðoÞÞ j g A sg by the triangle inequality. Therefore, we
see that the inequality (4.1) holds for any g A G if aðGÞ ¼ y.

Remark 4.2. Suppose that a finitely generated Kleinian group G has a
parabolic transformation g. Then, from the fomula of the hyperbolic distance
we see that there exist constants k1; k2 > 0 such that

2 logjgnj � k1 a dhðo; gnðoÞÞa 2 logjgnj þ k2ð4:3Þ

for all n A N. Thus, we verify that aðGÞa 2.

The author does not know whether the converse of the first statement of
Theorem 4.1 is true or not. However, we may show that the converse of the
second statement is valid.

Theorem 4.2. Let G be a finitely generated Kleinian group. Then, the
following conditions are equivalent:

1. G is convex co-compact;
2. aðGÞ > 2;
3. aðGÞ ¼ þy.

Hence, aðGÞ ¼ 2 is a necessary and su‰cient condition for G to have a parabolic
transformation when G is a geometrically finite group.
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Proof. ð1Þ ) ð3Þ follows from Theorem 4.1, and ð3Þ ) ð2Þ is clear.
We will show ð2Þ ) ð1Þ. By Theorem 2.2, it su‰ces to show that LðGÞ

entirely consists of horospherical limit points. Since aðGÞ > 2, there exist an
e > 0 and a k > 0 such that

ð2þ eÞ logjgj � ka dhðo; gðoÞÞð4:4Þ

for all g A G. Therefore, from Theorem 3.1 there is a continuous G-equivariant
surjection f : qG ! LðGÞ. For each z A LðGÞ, we may take g A qG so that
f ðgÞ ¼ z. By Proposition 3.1, there exists a shortest path fgmgHG such that
gm ! g with respect to dc. Then we have gmðoÞ ! z with respect to the Eu-
clidean distance by the construction of f .

Here we use the upper half-space model Hn
R GRn

þ ¼ fx ¼ ðx1; x2; . . . ; xnÞ A
Rn j xn > 0g with the metric jdxj=xn. As for the case of the complex hyperbolic
space, the following argument also works and prove Theorem 4.2.

Taking h A Isomþ Hn such that hðoÞ ¼ j ¼ ð0; . . . ; 0; 1Þ and hðzÞ ¼ y, we
may assume that jgmð jÞj ! y for the shortest path fgmgHG. In order to
show that there exists a point of the orbit Gð jÞ in any horoball fx A Rn j xn b tg
ðt > 0Þ, we have only to prove the following lemma and we will show Theorem
4.2. r

Lemma 4.1. Let G be a finitely generated Kleinian group with aðGÞ > 2.
Suppose that there exists a shortest path fgmgHG such that jgmð jÞj ! y
as m ! y for j ¼ ð0; 0; . . . ; 0; 1Þ A Hn. Then, if gmð jÞ ¼ ðxm;1; xm;2; . . . ; xm;nÞ,
fxm;ngm AN is not bounded.

Proof. Let ~xxm ¼ ðxm;1; xm;2; . . . ; xm;n�1; 0Þ. If there exists a P > 0 such that
j~xxmj < P for infinitely many m, then fxm;ng is unbounded since jgmð jÞj ! y as
m ! y.

Suppose that limm!yj~xxmj ¼ y and jxm;nj < C ðm A NÞ for some constant
C > 0. From the definition of the shortest path, we see that an inequality
dhðgm�1ð jÞ; gmð jÞÞaM holds for M ¼ maxfdhð j; gð jÞÞ j g A sg. Since

dhðgm�1ð jÞ; gmð jÞÞ ¼ 2 logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~xxm�1 � ~xxmj2 þ ðxm�1;n þ xm;nÞ2

q
ð4:5Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~xxm�1 � ~xxmj2 þ ðxm�1;n � xm;nÞ2

q
Þ

� logð4xm�1;nxm;nÞ
b 2 logj~xxm�1 � ~xxmj � log xm�1;nxm;n;

we have

j~xxm�1 � ~xxmja eM=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xm�1;nxm;n

p
:ð4:6Þ

If g0ð jÞ ¼ j ¼ ð0; . . . ; 0; 1Þ, then j~xx0j ¼ 0 and
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j~xxmj ¼ j~xxm � ~xxoja
Xm
i¼1

j~xxi � ~xxi�1ja eM=2
Xm
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi�1;nxi;n

pð4:7Þ

a eM=2
Xm
i¼1

xi�1;n þ xi;n

2
a eM=2

Xm
i¼0

xi;n:

Since j~xxmj ! þy, we have

Xm
i¼0

xi;n ! þy ðm ! yÞ:ð4:8Þ

On the other hand, for some constant A > 0 we have

dhð j; gmð jÞÞ ¼ 2 logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~xxmj2 þ ðxm;n þ 1Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~xxmj2 þ ðxm;n � 1Þ2

q
Þð4:9Þ

� logð4xm;nÞa logðj~xxmj2 þ ðxm;n þ 1Þ2Þ � log xm;n

a logðj~xxmj2 þ ðC þ 1Þ2Þ � log xm;n

a logðAj~xxmj2Þ � log xm;n:

Since aðGÞ > 2, we obtain

ð2þ eÞ log m� ka dhð j; gmð jÞÞa logðAj~xxmj2Þ � log xm;nð4:10Þ
Put

b ¼ inf bb 0

����� supm AN

Xm
i¼0

xi;n

 !
=mb

( )
< þy

( )
:

Since xm;n < C for all m A N, ba 1. By the definition of b, there exists a
constant L > 0 such that

Xm
i¼0

xi;n aLmbþe=4:ð4:11Þ

By (4.7), (4.10) and (4.11), we have

e�k
a

AeMð
Pm

i¼0 xi;nÞ
2

m2þexm;n
a

AeML2m2b�2�e=2

xm;n
:ð4:12Þ

Now, we have for infinitely many m of N

m2b�2�e=4

xm;n
a 1:ð4:13Þ

Indeed, if not, there exist an N A N such that xi;n < i2b�2�e=4 for all ibN.

Because
Pm

i¼N xi;n <
Pm

i¼N i2b�2�e=4 and (4.8),
Pm

i¼N i2b�2�e=4 ! y ðm ! yÞ.
Hence, 2b � 2� e=4b�1.
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If 2b � 1� e=4 > 0, there exists a constant B1 > 0 such thatXm
i¼0

xi;n aCN þ
ðmþ1

N

i2b�2�e=4 di < CN þ B1m
2b�1�e=4:

By the definition of b, we see that 2b � 1� e=4b b, and bb 1þ e=4. This
contradicts ba 1.

If 2b � 1� e=4 ¼ 0, i.e., b ¼ ð4þ eÞ=8, there exists a constant B2 > 0 such
that Xm

i¼0

xi;n aCN þ
ðmþ1

N

i�1 di < CN þ B2 log m:

Since Pm
i¼0 xi;n

m1=4
<

CN þ B2 log m

m1=4
< þy

for all m, we have ba 1=4 from the definition of b. However, this contradicts
b ¼ ð4þ eÞ=8. Therefore, we verify that (4.13) holds for infinitely many m A N.

From (4.12) and (4.13), for infinitely many m of N,

e�k
aAeML2m�e=4:

A contradiction occurs as m ! y. This completes the proof of Lemma 4.1.
r

Let f : G ! H be an isomorphism of two Kleinian groups. If dhðo; gðoÞÞ
and dhðo; fðgÞðoÞÞ are close to each other for any g A G, one may expect that the
two Kleinian group have similar properties.

Corollary 4.1. Let f : G ! H be an isomorphism of two Kleinian groups,
and let G be convex co-compact. Then, the following conditions are equivalent:

1. H is convex co-compact;
2. There exist e > 0 and k > 0 such that

ð2þ eÞ log dhðo; gðoÞÞ � ka dhðo; fðgÞðoÞÞ
for any g A G;

3. There exist constants C1;C2 > 0 such that

C1dhðo; gðoÞÞa dhðo; fðgÞðoÞÞaC2 dhðo; gðoÞÞ
for any g A G.

Proof. Note that G is finitely generated since G is geometrically finite (cf.
Apanasov [1], Apanasov [2], Matsuzaki-Taniguchi [8]). Let s be a generating set
of G. Then fðsÞ is a generating set of H and the minimal word length jfðgÞj of
fðgÞ ðg A GÞ with respect to fðsÞ is equal to jgj, the minimal word length of g
with respect to s.

ð3Þ ) ð2Þ is clear. Assume (2). By Remark 4.1, there exist constants
P1;Q1 > 0 such that

P1jgja dhðo; gðoÞÞaQ1jgj
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for all g A G. Hence

ð2þ eÞ log P1jfðgÞj � k ¼ ð2þ eÞ log P1jgj � k

a ð2þ eÞ log dhðo; gðoÞÞ � ka dhðo; fðgÞðoÞÞ:
This implies aðHÞ > 2, and we conclude that H is convex co-compact from
Theorem 4.2.

Assume (1). There exist constants P2;Q2 > 0 such that

P2jfðgÞja dhðo; fðgÞðoÞÞaQ2jfðgÞj
for all g A G by Remark 4.1. Since jgj ¼ jfðgÞj, we have

P2=Q1dhðo; gðoÞÞa dhðo; fðgÞðoÞÞaQ2=P1dhðo; gðoÞÞ:
This implies (3). r

Corollary 4.2 immediately follows from Corollary 4.1.

Corollary 4.2. Let G be convex co-compact and H a geometrically in-
finite group. Suppose that there exists an isomorphism f : G ! H. Then, for any
e > 0, there exists a g A G such that dhðo; fðgÞðoÞÞ < ð2þ eÞ log dhðo; gðoÞÞ.
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