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1. Introduction

For the real or complex hyperbolic space H”, a discrete subgroup of
the isometry group Isom* H” is called a Kleinian group. It is well known that
a Kleinian group G acts properly discontinuously on the hyperbolic space
H". Hence, the orbit G(0) of a point 0 € H" has accumulation points, which are
called limit points of G, only on the boundary at infinity 0H”. The set of all
limit points is called the limit set of G, which is denoted by A(G). The limit
set A(G) plays an important role in studying the Kleinian group G and the
hyperbolic 3-manifold H*/G.

We may classify limit points of G according to the way how the orbit G(o)
accumulates to the limit point. For example, if z e 0H" is a fixed point of a
loxodromic transformation g € G, then the orbit {g"(0)} converges to z inside
a cone around the axis of g. On the other hand, if z/ € JH” is the fixed point of
a parabolic transformation 4 € G, then the orbit {/#"(0)} converges to z’ on a
horosphere in H”. Comparing those two cases, we find that the growth rate of
the hyperbolic distances dj(0,¢"(0)) is much larger than that of dj(o,h"(0)) as
n — oo. Therefore, it is expected that the growth rate of the orbit would be
crucial in the theory of Kleinian groups. From this point of view, we introduce
the following quantity o(G) for a finitely generated Kleinian group G.

Take a generating set o of G. Let |g| denote the minimal word length of
g € G with respect to . We define o(G) by
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In [5], W. J. Floyd considered a relationship between Cayley graphs and
limit sets of Kleinian groups. In the discussion, he showed that for a geo-
metrically finite group G, o(G) =400 if G has no parabolic transformations
while o(G) =2 if it contains a parabolic transformation. It is also shown that
a(G) <2 for any finitely generated Kleinian group G with parabolic transfor-
mations.

a(G) = sup{oz
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In this paper, we shall show that «(G) > 2 always implies o(G) = +c0 and
the geometric finiteness of G. Namely, the following is our main theorem.

THEOREM 4.2. Let G be a finitely generated Kleinian group. Then, the
following conditions are equivalent:

1. G is convex co-compact,;

2. a(G) >2;

3. a(G) = +o0.

From this theorem, immediately we have;

COROLLARY 4.2. Let G be convex co-compact and H a geometrically infinite
group. Suppose that there exists an isomorphism ¢ : G — H. Then, for any ¢ > 0,
there exists a g€ G such that dy(o,$(g)(0)) < (2+ &) log dy(0, g(0)).

Remark. The existence of the isomorphism as above is guaranteed in many
cases. In fact, it is known (cf. [8]) that if H is a finitely generated Kleinian
group acting on H% and if the quotient H% /H has infinite volume, then there
exist a geometrically finite Kleinian group G and a type-preserving isomorphism
¢ of H onto G.

In Section 2, we explain the fundamental facts on the real and complex
hyperbolic spaces as well as on the limit sets of Kleinian groups and geomet-
rically finite groups. In Section 3, we discuss a map from the group completion
0G to the limit set A(G), due to Floyd [5]. In Section 4, we study a relation of
the word length and the limit sets, and prove the main theorem.

The author would like to thank Professors H. Shiga and A. Ushijima for
numerous advices and encouragement, and thank the referee of an earlier version
for suggestions of the improved version of Lemma 4.1.

2. Hyperbolic geometry

We will explain fundamental facts on the hyperbolic geometry. For de-
tails, see Apanasov [1], Apanasov-Xie [3], Epstein [4], Goldman [6], Matsuzaki-
Taniguchi [8].

2.1. Real hyperbolic space
We denote by By the unit ball in R” and by 0By the unit sphere in R”. The
hyperbolic metric is denoted by ds and is derived from the differential form

ds* = 74|dx|2 .
(1—|x%)?

The resulting metric space (Bg,ds) is called the n-dimensional real hyperbolic
space Hy (of ball model). In this case, 0By is denoted by dHy. The geodesics
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are arcs of Euclidean circles orthogonal to dHy. The horosphere through a point
u € Hy centered at a point y € 0Hy is the Euclidean sphere which is tangent to
O0HR at y and passes through u. We denote by Isom* Hy the group of all
orientation-preserving automorphisms of Hy that are isometric with respect to the
hyperbolic metric.

We define J : R” — R” by J(p) = p/|p|%, J(0) = o0 and J(0) =0. Let e =
(0,...,0,1) e R" and define a mapping on R" TI by II(p) = e+ 2J(J(p) + e).
Then we have II(By) =R, where R = {x=(xi,...,x,) eR"|x, >0}. By
this transformation, Hy is identified with R’, and the metric in R’ is

x|

2
X

ds* =

The upper half-space R’ is called the upper half-space model of the real hy-
perbolic space. 0Hp is identified with {co} U{x e R"|x, =0}. The horosphere
through a point u € R’ centered at a point y € {x € R"|x, = 0} is the Euclidean
sphere which is tangent to {x € R"|x, = 0} at y and passes through u, and, the
horosphere through u = (uy,...,u,—1,1) e R’ (1> 0) centered at oo is the set
{xeR"|x,=1}.

2.2. Complex hyperbolic space
We denote by B¢ the unit ball in C” and by B¢ the unit sphere in C". The
hyperbolic metric is denoted by ds and is derived from the differential form
4
ds|”

U] {Kz,dzyKdz, z)) + (1 — Kz,z2)Kdz,dz))},

where «z,z)) =ziZ; +---+z,Z,. The resulting metric space (B¢,ds) is
called the n-dimensional complex hyperbolic space (of projective model), which
denoted by H{.. In this case, 0B{. is regarded as dH{.. The horosphere through
ue H¢ centered at ye 0H{ is the set {z||(1 — &z,z))(1 — Ku,y»)| = |(1—
Ku,up)(1 — Lz, y»)|}. We denote by Isom™ H{. the group of all orientation-
preserving automorphisms of H¢. that are isometric with respect to the hyperbolic
metric.

We define P:B{ — C" by (zi,...,z,) — (z1/(L+zn), ..., zem1 /(1 + z),
1—-2,/2(1+z,)). Then we have PB¢)=8S"={z=(z",z,)eC"|z,+2Z, >
Kz',z"»}, where (z',z')) =z1Z; + -+ z,1Z,-1. By this transformation, H{.
is identified with S”, and the metric in S” is

ds|? = A(dzy — Kdz', 2" ) (dZp — K2',dz' ) + (zn + 20 — K2/, 2" D)) Kdz', dz"5)
(Zn +Zp - <<Z/azl>>)2 .
The Siegel domain S” is called the paraboloid model of the complex hyperbolic
space. OH{. is identified with {00} U{z = (z,z,) e C" |z, + 2, = K2’,z'))}. The

horosphere centered at oo is the set {z=(z',z,) e C" |z, + 2, — Kz, z') =1}
(t>0).
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2.3. Limit sets of Kleinian groups

Hereafter, H” implies Hy or H{, and Isom™ H” implies the group of all
orientation-preserving isometries with respect to the hyperbolic metric.

We classify 4 € Isom™ H” into three types. If 4 fixes a point in H", it is
called elliptic. If A has no fixed point in H” and fixes only one point in dH",
it is called parabolic. 1f A has no fixed point in H” and fixes two points in dH",
it is called loxodromic. These cases exhaust all possibilities.

A subgroup of Isom®™ H” is called discrete if it is a discrete subset of
Isom™ H”. A discrete subgroup of Isom™ H” is called a Kleinian group. A
Kleinian group G acts on H”" properly discontinuously, that is, for any com-
pact set K in H” there exist only finitely many elements g of G that satisfy
g(K)NK # 0. The quotient space H"/G is considered as a hyperbolic n-
dimensional orbifold.

For a Kleinian group G < Isom™ H", we consider the orbit G(p) = {g(p)|
g € G} of any point p in H” under the action of G. Since G acts on H” properly
discontinuously, G(p) has accumulation points only on dH”". They are called the
limit points of G, and the set of all these points is called the /imit set of G, which
is denoted by A(G). A(G) is a closed set and does not depend on the reference
point p e H".

We can classify limit points according to the way how G(p) accumulates to
the limit point.

DeriNITION 2.1. We call a point z € A(G) a conical limit point if for a
geodesic ray / ending at z and for a ¢ > 0, there exists a sequence of dis-
tinct elements {g,} = G such that the orbit {g,(p)} approximates z inside J-
neighborhood of the ray /.

The above definition of a conical limit point actually depends neither on the
reference point p € H" nor on the geodesic ray /.

DeriNITION 2.2. We call a point z € A(G) a horospherical limit point if any
horoball at z contains a point of the orbit G(p).

The above definition of a horospherical limit point also does not depend on the
reference point p e H”. A conical limit point is a horospherical limit point.

2.4. Geometrically finite groups
We explain geometrically finite Kleinian groups in H". Let G < Isom™ H”
be a Kleinian group and G. the stabilizer of a ze dH", ie., G.={ge G|

g(z) =z}

DEerNITION 2.3. A parabolic fixed point z is called a cusped parabolic fixed
point if (A(G)\{z})/G. is compact.

For a Kleinian group G, the convex hull of A(G), denoted by Hg, is the minimal
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closed convex subset of H” that contains the set of points on geodesics connecting
any two points of A(G).

DEerNITION 2.4, We call the set Cg = Hg/G the convex core of G. If Cg is
compact, G is called convex co-compact.

DEerINITION 2.5. We say that a Kleinian group G is a geometrically finite
group if the limit set A(G) entirely consists of conical limit points and cusped
parabolic fixed points. A Kleinian group which is not a geometrically finite
group is called a geometrically infinite group.

For an ¢ > 0, we divide Cg into two parts:
1. (C6) 9 = {p € Cg|there exists a non-trivial closed curve in Cg passing
through p whose length is less than ¢}.
2. (C6)p, o0y = Ca\(Ca)(p,0)-
It is known that there exist equivalent conditions for geometric finiteness defined
above (cf. Apanasov [1], Apanasov [2], Apanasov-Xie [3], Matsuzaki-Taniguchi

[8])-

THEOREM 2.1. For a Kleinian group G < Isom™ H”", the following conditions
are equivalent:

1. G is geometrically finite, i.e., the limit set A(G) entirely consists of conical

limit points and cusped parabolic fixed points,

2. for some (any) ¢ > 0, g¢-neighborhood of Cg has a finite hyperbolic volume;

3. for some (any) & >0, (Cg), ) is compact.
If a geometrically finite group G does not have a parabolic transformation, then
Cg = (Cg)y, ) for some e It is also known that there exist equivalent con-
ditions for a geometrically finite group without parabolic transformations (cf.
Matsuzaki-Taniguchi [8]).

THEOREM 2.2. For a Kleinian group G < Isom™ H", the following conditions
are equivalent:
1. G is a geometrically finite group without parabolic transformations, i.e.,
A(G) entirely consist of conical limit points;,
2. G is convex co-compact,
3. A(G) entirely consists of horospherical limit points.

3. Group completions and limit sets

In this section, we discuss a map from the group completion 0G to the limit
set A(G), due to Floyd [5]. For convenience of the reader, we will present the
proofs of some results. (See Proposition 3.1 and Theorem 3.1 below.)

Let (X,dy) and (Y,dy) be metric spaces, two groups G, H act on (X,dy)
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and (Y,dy), respectively. A map f:X — Y is called G-equivariant if there
exists a homeomorphism  : G — H such that

¥(g) o f(x) = fog(x)
holds for all xe X and for all g € G.

Let G be a finitely generated Kleinian group. We consider the Cayley graph
K(G, o) for a given finite set o of generators. This is a 1-complex whose vertices
are elements of G, and such that two vertices a,b € G are joined by an edge if
and only if @ = by*! for some generator y € 6. For a g € G, the word length of g
is the number of generators y € ¢ representing g. In general, a word length is not
determined uniquely because of the existence of relations. So, we define by |g|
the minimal word length of g € G. |g| depends on a set of generators. Hereafter,
we use the minimal word length |g| with respect to the fixed o.

DeriNiTION 3.1. We define a distance d. on the Cayley graph K(G,o) as
follows. For a,b e G,

1. d.(a,b) =0, if a=b;

2. d.(a,b) = min{|a| 2, |b| 2}, if a =by*" for some y€a;

3. dc.(a,b) = infc >, de(cx—1, ck), for general a,b € G, where the infimum is
taken over all paths C connecting a and b with vertices a = ¢, ¢y, ...,
Cph1,Cn = b.

Then, (K(G,0),d,.) is a metric space and K(G,o) is completed to K(G,o) as a
metric space.

DEerNITION 3.2, We call 0G = K(G,0)\K(G, o) the group completion of G.

For a,b e dG, the metric d. is extended on K(G,o) by defining d.(a,b) =
lim, . d.(a,, b,), where {a,} and {b,} are Cauchy sequences converging to a
and b, respectively. 0G is regarded as the set of equivalent classes of Cauchy
sequences.

DermNiTION 3.3, We call a Cauchy sequence {g,} = G a shortest path if for
all neN, there exists y € ¢ such that g, = g,y*' and |g,| = n.

The following proposition shows the existence of a shortest path.

ProrosiTioN 3.1 (Floyd [5]). For any g€ 0G, there exists a shortest path
{gn} = G such that g, — g as n — oo.

Proof. For any g€ 0G, there is a Cauchy sequence {/,} = G such that
hy — g as n— oo, We set hy =79, 17,2 V> Where y; ;€.

Since {y, 1},en i an infinite set and ¢ is a finite set, there exists a yj e o
such that y,, =y for infinitely many n. Let {i!}, .y be the subsequence of
{hn} with y,, =7{ and put

h; = yiyn,Z o 'ym\h,ﬂ'



WORD LENGTH AND LIMIT SETS OF KLEINIAN GROUPS 445

Inductively, we may find y/, € o and a subsequence {A”} of {h"~'} (m=1,2,...)
so that

h;ﬂ = V{yé T yllnyn,mJﬁl e yn,\h,’,"\ (I’l = 17 27 .. )

Put g, = y{y5---y.. Then, we may show that {g,},.n is a shortest path.
First, we show that |g,,| = m for any m e N. If |g,,| < m for some m € N, then
we have

L= 19195 VPt P i
< p1vs vl + Dt |
< |gm| + (|| = m) < |h))"|.

This is a contradiction. Hence, |g,,] = m for any m e N.
Finally, we will show d.(g,,h,) — 0 as n — oo. For any & > 0, we take a

we have

n>

. 5 1 .
M eN with Y7,/ o< From the definitions of ¢, and A

dc(gnah;«iw) < dC(gnng) + dc(ngh;iw)

n 1) 0
1 < 1 1
< E 2 + E 2 <2 E P < 2e,
k=M+1 k=M+1 k=M+1

for any n > M. Since {/,},.n 1s a Cauchy sequence, there exists N € N such
that d.(h,,h,) <& for any n,m > N. Thus, we conclude that

do(gn, hn) < dc(gn,hé\'l) + dc(hN‘ hy) < 3e

n

for any n > max{M,N}. It completes the proof of the proposition. O

It is known that there exists the following continuous mapping from G onto
A(G) if the orbit G(o) satisfies a certain geometric condition.

THEOREM 3.1 (Floyd [5]). If there is a constant k > 0 so that 2 log|g| — k <

di(0,9(0)) for any ge G, then there is a continuous, G-equivariant surjection
f:0G — A(G).

Proof.  We use the ball model By in the case of Hi or the projective model
B¢ in the case of Hg.

Fix oe H". We define F:K(G,6) — H" as follows. For every ae€ G,
F(a) = a(o). If a = by*' for some y € o, then F maps the edge [a,b] in K(G, o)
joining the vertices a,b € G to the hyperbolic geodesic connecting a(o) and b(0).

Since 2 log|g| — k < di(0,9(0)) for any g € G,

(3.1) 1= lg(0)] < 2¢¥|g| 7
because dj(0,g(0)) =log(l+ |g(o))(1 — |g(0)|)71.
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If a=>by*' for some yeo, then d.(a,b)=min{la % |b|>}. We may
assume d,(a,b) = |a| . Since F([a,b]) is the geodesic connecting from a(0) =
b(y*'(0)) to b(o), it is the image of the geodesic from o to y*!'(o) by be G.
Hence, from the triangle inequality, for any z € F([a,b]) we have

diy(0,a(0)) < dy(0,z) + di(z,a(0)) = dy(0, z) + dy(0,b'(0))

<dy(o,z2) + M,
where M = max{d;(0,7(0))|y€a}. Thus,
(32) M <21 = Ja(o))(1 = [z,

By using (3.1) and (3.2), we may estimate the Euclidean distance |F(a) — F(b)| of
F(a), F(b) in H";

(3.3)  [F(a) = F(b)| = |a(o) — b(o)]
2eM(1 — la(o)[*)
dz| < —_ 2 7dz
JF([a,b]) 42 < JF([a,h]) 1— |z|2 42
< M (1 — [a(0)|*)dy(a(0), b(0)) < 2¢™ (1 — [a(0)|) M
4ek+MM
< -

~

IA

= 4" M Md,(a,b).

If a # by*! for any y € o, then for any ¢ > 0 there exists a path C connecting
a, b such that 3" | dc(ci_1,¢;) < d.(a,b) + ¢, where a =cg,ci,...,co 1,00 = b are
the vertices in C. Applying (3.3) to ¢;—1, ¢; (i=1,2,...,n), we have

IFla) ~ FB) < 3" |F(ers — F(c)
i=1

n
< 4eftM Z d.(ci_1,¢i)
p

< 4" M Md,(a,b) + de"M Me.
Hence, we conclude that
|F(a) — F(b)| < 4e"™ Md.(a,b)
and F:K(G,0) — H" is Lipschitz continuous. Thus, it has a continuous
extension F:K(G,0) — H". Put f=F|,;. Since A(G) is the set of accu-

mulation points and K(G, o) is totally bounded, f(0G) = A(G). Thus, f is our
desired mapping. O

4. Word length and limit sets

We will study a relation of the word length and the limit sets. Let G be
a finitely generated Kleinian group. Fix a generating set ¢ of G and a point
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oeH". Let |g| be the minimal word length of g € G with respect to . We

define «(G) by
wpd IV
geG L eh(:900) .

It is easily seen that «(G) does not depend on the set of generators and the
reference point o €e H". For a geometrically finite Kleinian group G, the fol-
lowing results on o(G) are known.

a(G) = sup{fx

THEOREM 4.1 (Floyd [5]). Let G be a finitely generated Kleinian group.
1. If G is a geometrically finite group with parabolic transformations, then

a(G) = 2.
2. If G is a geometrically finite group without parabolic transformations, then
a(G) = +o0.

Remark 4.1. 1In [5, Lemma in p. 213], Floyd showed that if G is convex co-
compact, then there exist constants Cj, C; > 0 such that

(4.1) Cilgl < d(o,9(0)) < Ca|g|
for all g € G. Generally, if G is finitely generated, then an inequality
(4.2) dp(0,g(0)) < Mlg|

holds with M = max{d;(0,y(0)) |y € o} by the triangle inequality. Therefore, we
see that the inequality (4.1) holds for any g€ G if a(G) = co.

Remark 4.2. Suppose that a finitely generated Kleinian group G has a
parabolic transformation g. Then, from the fomula of the hyperbolic distance
we see that there exist constants k;,k, > 0 such that

(4.3) 2 loglg"| — ki1 < dy(0,9"(0)) < 2 loglg"| + k2

for all neN. Thus, we verify that «(G) < 2.

The author does not know whether the converse of the first statement of
Theorem 4.1 is true or not. However, we may show that the converse of the
second statement is valid.

THEOREM 4.2. Let G be a finitely generated Kleinian group. Then, the
following conditions are equivalent:

1. G is convex co-compact,;

2. a(G) >2;

3. a(G) = 4.
Hence, o(G) =2 is a necessary and sufficient condition for G to have a parabolic
transformation when G is a geometrically finite group.
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Proof. (1) = (3) follows from Theorem 4.1, and (3) = (2) is clear.

We will show (2) = (1). By Theorem 2.2, it suffices to show that A(G)
entirely consists of horospherical limit points. Since o(G) > 2, there exist an
e>0 and a k> 0 such that

(4.4) (2+¢) loglg| — k < dy(0,9(0))

for all g € G. Therefore, from Theorem 3.1 there is a continuous G-equivariant
surjection f : 3G — A(G). For each ze A(G), we may take g€ 0G so that
f(g) =z. By Proposition 3.1, there exists a shortest path {g,,} = G such that
gm — ¢ with respect to d.. Then we have g, (0) — z with respect to the Eu-
clidean distance by the construction of f.

Here we use the upper half-space model Hy = R, = {x = (x1,x2,...,x,) €
R"|x, > 0} with the metric |dx|/x,. As for the case of the complex hyperbolic
space, the following argument also works and prove Theorem 4.2.

Taking / € Isom™ H" such that h(0) = j=(0,...,0,1) and h(z) = c0, we
may assume that |g,(j)| — oo for the shortest path {g,,} = G. In order to
show that there exists a point of the orbit G(j) in any horoball {x € R"|x, > ¢}
(t>0), we have only to prove the following lemma and we will show Theorem
4.2. O

LemMa 4.1. Let G be a finitely generated Kleinian group with a(G) > 2.
Suppose that there exists a shortest path {g,} = G such that |g,(j)| — oo
as m— o for j=(0,0,...,0,1)eH". Then, if gm(j) = Xm1,Xm 2, Xmn),
{Xm.n}men s not bounded.

Proof.  Let Xy = (Xm,1,Xm.2,- -, Xmn—1,0). If there exists a P > 0 such that
|%m| < P for infinitely many m, then {x,,,} is unbounded since |g,,(j)| — oo as
m— oo.

Suppose that lim,,_..|%,| = oo and |x,, ,| < C (meN) for some constant
C > 0. From the definition of the shortest path, we see that an inequality
dn(gm-1(7),9m(j)) < M holds for M = max{d,(j,y(j))|ye€a}. Since

(45) dh(gmfl (])a gm(])) =2 10g<\/|)~cm71 - xmlz + (XWI71J1 + xm7i1)2

+ \/limfl - -)Emlz + (xmfl,n - xn@n)z)

- log(4xm71,nxm, n)

>2 IOg\me—l - )Em| - log Xm—1,nXm,ns
we have
= = M2
(46) |xm71 - xm| <e / VXm—1,nXm,n-

If go(j) = j=(0,...,0,1), then |%| =0 and
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m

(4'7) |3~Cm| |xm - xo| < Z |x, - Xi_ 1| < eM?2 Z v Xi—1,nXin

m
Z 1, +x

i—1,n in eM/zj :X[,n-
i=1 i=0

Since |X,,| — 400, we have

m

(4.8) le?n — 400 (m— o).
i=0

On the other hand, for some constant 4 > 0 we have

(49)  di(jo g (1)) = 2108y 1o + G+ 1)+ /1 + (o — 1))

—log(4x.n) < 1og(|%m|” + (Xmn + 1)%) — l0g X0

< 10g(|)~cm|2 +(C+ 1)2) —log X n
< log(A|%m]?) — 10g Xp.n-

Since «(G) > 2, we obtain

(4.10) 2+¢&)logm—k <dy(J,gm(j)) < log(A|xm| ) —log Xy n
Put
B = inf{b >0 sup{ (Zx,,,)/mb} < —|—oo}.
meN i—0

Since x,,, < C for all meN, f<1. By the definition of f, there exists a
constant L > 0 such that

(4.11) > Xiw < LR,
i=0

By (4.7), (4.10) and (4.11), we have
Mmoo )2 My2, 26222
(4.12) ok o A xin)” _ AeMLPm |

m>*ex,, , X, n

Now, we have for infinitely many m of N

2p-2-e/4
(4.13) <

Xm,n
Indeed, if not, there exist an N e N such that x;, < i?~27%* for all i> N.
Because 3.7 xi, < S.myiP2e4 and (4.8), iP5 o0 (m— o0).
Hence, 2 —2 —¢/4 > —1.
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If 28 —1—¢/4 >0, there exists a constant B; > 0 such that

m m+1
Zx,-,n < CN +J P26 di < CN + BymP 1404,
i=0 N
By the definition of f, we see that 2f—1—¢/4>f, and f>1+¢/4. This
contradicts f < 1.

If 26—1—-¢/4=0, ie., f=(4+¢)/8, there exists a constant B, > 0 such
that

m m+1
> xin < CN+J i' di < CN + B log m.

Since

S oXin  CN+ Bylogm

ml/ ml/
for all m, we have ff < 1/4 from the definition of . However, this contradicts
f = (4+¢)/8. Therefore, we verify that (4.13) holds for infinitely many m € N.
From (4.12) and (4.13), for infinitely many m of N,
ek < AeMLPm™#/%,

A contradiction occurs as m — co. This completes the proof of Lemma 4.1.

O

Let ¢ : G — H be an isomorphism of two Kleinian groups. If dj(o,g(0))
and d,(0,4(g)(0)) are close to each other for any g € G, one may expect that the
two Kleinian group have similar properties.
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COROLLARY 4.1. Let ¢: G — H be an isomorphism of two Kleinian groups,
and let G be convex co-compact. Then, the following conditions are equivalent:

1. H is convex co-compact,

2. There exist ¢ >0 and k > 0 such that

(2 +¢) log di(0,9(0)) — k < di(0, ¢(g)(0))

for any g € G;
3. There exist constants Cy, Cy, > 0 such that

Cidy(0,9(0)) < di(0,¢(g)(0)) < Crdi(0,9(0))
for any g€ G.

Proof. Note that G is finitely generated since G is geometrically finite (cf.
Apanasov [1], Apanasov [2], Matsuzaki-Taniguchi [8]). Let o be a generating set
of G. Then ¢(o) is a generating set of H and the minimal word length |¢(g)| of
#(g) (9 € G) with respect to ¢(g) is equal to |g|, the minimal word length of ¢
with respect to o.

(3) = (2) is clear. Assume (2). By Remark 4.1, there exist constants
P, 01 > 0 such that

Pilg| < dj(0,4(0)) < Q1]
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for all g e G. Hence
(2+¢) log Pi[p(g)| —k = (2+¢) log Pilg| — k
< (2+¢)logdy(o,9(0)) — k < dy(0,4(g)(0)).

This implies a(H) > 2, and we conclude that H is convex co-compact from
Theorem 4.2.
Assume (1). There exist constants P, O, > 0 such that

Pa|¢(g)] < di(o,#(9)(0)) < O2|¢(g)]
for all g e G by Remark 4.1. Since |g| = |#(g)|, we have

P>/ Q1dy(0,9(0)) < di(0,¢(g)(0)) < Oa/Prdy(0,9(0)).
This implies (3). Ul

Corollary 4.2 immediately follows from Corollary 4.1.

COROLLARY 4.2. Let G be convex co-compact and H a geometrically in-
finite group. Suppose that there exists an isomorphism ¢ : G — H. Then, for any
&> 0, there exists a g € G such that dy(o,¢(g)(0)) < (2 +¢) log dy(0, g(0)).
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