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Abstract

In this note, we will show that a simply connected bounded domain D is strongly

starlike of order a < 1 with respect to the origin if and only if so is D4, where D4 is the

analytic inversion of the exterior of D, namely, D4¼ fw A C : 1=w A ĈCnDg. This fact

neatly explains the relationship between some known properties of strongly starlike

domains and provides several new characterizations for those domains.

1. Characterizations of strongly starlike domains

1.1. Introduction. A subset E of C with 0 A E is called starlike with respect
to 0 if the closed line segment ½0; a� between 0 and a is contained in E for each
a A E. Similarly, a subset F of the Riemann sphere ĈC ¼ CU fyg satisfying
y A F and 0 B F is called starlike with respect to y if the line segment ½a;y� ¼
fra : r A ½1;þy�g between a and y is contained in F for each a A F .

The present research is based on the very simple fact that the following three
properties are equivalent:

(i) E is starlike with respect to 0,
(ii) ĈCnE is starlike with respect to y, and
(iii) E � ¼ fa A C : 1=a A ĈCnEg is starlike with respect to 0.

Note that ðE �Þ� ¼ E.
In the following, we will see an analogous result for strongly starlike do-

mains of order a A ð0; 1Þ. This idea will enable us to give a unifying proof for
some known results scattered in several papers, and moreover, will suggest new
geometric characterizations of strong starlikeness.

1.2. Set operations. We begin by defining several operations on the subsets
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of the Riemann sphere ĈC. For a subset E of ĈC, we set E�1 ¼ IðEÞ and a � E ¼
MaðEÞ for a A ĈC, where I and Ma denote the Möbius transformations defined by
IðzÞ ¼ 1=z and MaðzÞ ¼ az for a A ĈC, respectively. Here we define M0 1 0 and
My 1y. We denote by Ext E the exterior of the set E in ĈC, i.e., Ext E ¼ ĈCnE.

We now modify the above operation E � as follows and use it in the sequel.
For a domain D, we set D4¼ ðExt DÞ�1. If D is a bounded Jordan domain
containing the origin, then so is D4 and ðD4Þ4¼ D.

1.3. Strong starlikeness. Let a be a real constant with 0a aa 1. A holo-
morphic function f on the unit disk D ¼ fz A C : jzj < 1g satisfying f ð0Þ ¼ 0 and
f 0ð0Þ0 0 is called strongly starlike of order a if f satisfies the condition

arg
zf 0ðzÞ
f ðzÞ

����
����a ap

2
ðz A Dnf0gÞ:ð1Þ

The study of strongly starlike functions was initiated by Stankiewicz [6] and by
Brannan and Kirwan [1], independently. Note that a strongly starlike function
is starlike in the usual sense, and, in particular, univalent in the unit disk. We
remark that the image of the unit disk under the strongly starlike function of
order a is a bounded Jordan domain if a < 1 (see [1]).

A meromorphic function g on the unit disk with the expansion

gðzÞ ¼ b�1

z
þ b0 þ b1zþ b2z

2 þ � � � ;

where b�1 0 0, is called meromorphic strongly starlike of order a if the condition

arg
�zg 0ðzÞ
gðzÞ

����
����a ap

2
ðz A Dnf0gÞð2Þ

is satisfied. Since zg 0=g is holomorphic, we know that g never takes 0 as a value.
As we can see from the definition, g is meromorphic strongly starlike of order a if
and only if the function 1=g is strongly starlike of order a.

A proper subdomain D of the complex plane C containing the origin is said
to be strongly starlike of order a with respect to 0 if D is simply connected and
if a conformal map f of D onto D with f ð0Þ ¼ 0 is strongly starlike of order a.
Strong starlikeness of order 1 is nothing but the usual starlikeness. If a < 1, then
D is a bounded Jordan domain starlike with respect to the origin, and hence, so
is D4 as we saw in Section 1.1.

A proper subdomain D of ĈCnf0g containing the point at infinity is called
strongly starlike of order a with respect to y if D is simply connected and if a
conformal map g of D onto D with gð0Þ ¼ y is meromorphic strongly starlike
of order a. Of course, this is equivalent to the condition that D�1 is strongly
starlike of order a with respect to 0.

1.4. Standard domains. We now introduce four standard domains to be
considered. Let a be a constant with 0 < a < 1. We define Ua by
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Ua ¼ fz : j2z cosðap=2Þ � eiap=2j < 1 and j2z cosðap=2Þ � e�iap=2j < 1g

¼ z : z� 1

2
1G i tan

ap

2

� �����
���� < 1

2 cos
ap

2

8><
>:

9>=
>;:

In other words, Ua is the convex Jordan domain bounded by two congruent
circular arcs forming the angle pð1� aÞ at the intersection points 0 and 1.

The next one, Va, will be defined as the bounded Jordan domain sur-
rounded by the logarithmic spirals ga ¼ fexpðð�tanðap=2Þ þ iÞyÞ : 0a ya pg and
ga ¼ fw : w A gag. Therefore,

Va ¼ freiy : log r < �jyj tanðap=2Þ; y A ½�p; p�g:
We also use U�1

a and V�1
a . One can easily see that

U�1
a ¼ fw A Cnf1g : jargðw� 1Þj < ap=2g

and that V�1
a is the exterior of the Jordan domain bounded by the logarithmic

spirals g�1
a ¼ fexpððtanðap=2Þ � iÞyÞ : 0a ya pg and g�1

a ¼ fw : w A g�1
a g and

satisfies

Ext V�1
a ¼ �ep tanðap=2Þ � Vað3Þ

(see Figure 1).

1.5. Radius function RDðyÞ. Let D be a proper subdomain of C containing
the origin. We define the periodic function R ¼ RD : R ! ð0;þy� by

RðyÞ ¼ supfr > 0 : ½0; reiy�HDg:

-3 -2 -1 1 2 3

-2

-1

1

2

Va Ua

Va
-1

Ua
-1

Figure 1. Ua HVa HExt V�1
a HExt U�1

a
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Notice that R is lower semi-continuous and reproduces the original domain by
the relation D ¼ freiy : r < RðyÞg if D is starlike with respect to the origin. For
example, RVaðyÞ ¼ expð�jyj tanðap=2ÞÞ for y A ½�p; p�. The following properties
are easy to see but constitute a crucial part of the present research.

Lemma 1. If RD is continuous, then D is starlike with respect to the origin.
If RD is continuous and bounded, then D is a bounded starlike Jordan domain and
the following self-duality relation holds:

RD4ðyÞ ¼ 1=RDð�yÞ ðy A RÞ:ð4Þ

1.6. Main result. Our main result is the following, which will be shown in
Section 2.

Theorem 1. Let D be a proper subdomain of C with 0 A D and let a be a
constant with 0 < a < 1. Then the following seven conditions are equivalent.

(i) D is strongly starlike of order a with respect to the origin.
(ii) Ext D is strongly starlike of order a with respect to y.
(iii) w �Ua HD for each w A D:
(iv) w �U�1

a HExt D for each w A CnD.
(v) w � Va HD for each w A D.
(vi) w � V�1

a HExt D for each w A CnD.
(vii) The function R ¼ RD is absolutely continuous and satisfies jR 0=Rja

tanðap=2Þ a.e. in R.

The equivalence of conditions (i), (iv) and (vi) was proved by Stankiewicz
[6]. The equivalence of conditions (i) and (iii) is due to Ma and Minda [5]. The
implication (i) ) (vii) was essentially used by Fait, Krzyż and Zygmunt [3] to
show the quasiconformal extendability of strongly starlike functions. The condi-
tion (v) is used in [7] to give a lower estimate of the inner radius of univalence for
a strongly starlike domain.

2. Proof of the main theorem

As we noted, some parts are known. We, however, give the whole proof in
order to emphasize the self-duality of strong starlikeness as well as in order to be
self-contained.

2.1. Structure of the proof. First we will show the implication (i) ) (vii).
Then we give a proof for the implications (vii) ) (v) ) (iii) ) (i). In view of
the self-duality relation (4), by applying D4 instead of D above, we simulta-
neously have (vii) ) (vi) ) (iv) ) (ii). The condition (ii) for D is equivalent to
(i) for D4. Hence, we immediately obtain the implication (ii) ) (i) by the im-
plication (i) ) (ii) for the domain D4.

2.2. A preparatory result. Let Dr denote the disk fjzj < rg. We need a
lemma which appeared in [4] for later use.
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Lemma 2. Let f be a holomorphic univalent function f on the unit disk with
f ð0Þ ¼ 0. Suppose that the image D ¼ f ðDÞ satisfies the condition (iii) in Theo-
rem 1. Then f ðzÞ �Ua H f ðDrÞ holds for each jzj ¼ r < 1.

Proof. Fix a point w A Ua. Then the function gðzÞ ¼ f �1ð f ðzÞwÞ is holo-
morphic in D and satisfies jgðzÞj < 1, gð0Þ ¼ 0 and jg 0ð0Þj ¼ jwj < 1. The
Schwarz lemma implies now that jgðzÞj < jzj for z A Dnf0g, which means
f ðzÞw A f ðDjzjÞ. r

2.3. (i) implies (vii). We follow the arguments in [1] and [3]. Let
f : D ! C be a strongly starlike function of order a ð0 < a < 1Þ. Note that
jzf 0ðzÞjaMjqðzÞj, where M ¼ supj f ðzÞj < y and qðzÞ ¼ zf 0ðzÞ=f ðzÞ. Since q1=a

is subordinate to ð1þ zÞ=ð1� zÞ, Littlewood’s Subordination Theorem (see [2,
Theorem 1.7]) yields that q1=a is a member of the Hardy space Hp for p < 1.
Hence, q A Hp for p < 1=a, in particular, q A H 1. Note the standard fact that
a function gðzÞ in the Hardy space has the finite limit gðeitÞ, called the non-
tangential limit, when z approaches eit in any Stolz region for almost all t. Since
jzf 0jaMjqj, also f 0 A H 1 follows. The last assertion implies that f has a con-
tinuous extension to D and the extended f is absolutely continuous on the circle
qD and the angular limit of f 0 vanishes almost nowhere on qD by the Riesz-
Privalov theorem (see [2, §3.5]). If we write f ðeitÞ ¼ rðtÞeiYðtÞ, we then observe
that YðtÞ and rðtÞ are absolutely continuous in t and obtain the relation

qðeitÞ ¼ eit f 0ðeitÞ
f ðeitÞ ¼ Y 0ðtÞ � i

r 0ðtÞ
rðtÞ

for almost all t. By (1), we note that qðeitÞ lies in the closure of the sector
jarg wj < ap=2 for almost all t. Noting that f 0ðeitÞ0 0 for almost all t, we
see that Y 0 0 0 a.e. and jargð1� ir 0=Y 0rÞja ap=2 a.e., equivalently, jr 0=Y 0rja
tanðap=2Þ a.e. Since Y is non-decreasing by the starlikeness of f , actually
Y 0 > 0 holds a.e., and thus, Y : R ! R is homeomorphic and Y�1 preserves
sets of linear measure zero. Set kðyÞ ¼ r 0ðY�1ðyÞÞ=Y 0ðY�1ðyÞÞ. Note that kðyÞ
can be defined for almost all y A R and kkky aM tanðap=2Þ < þy. We now

consider the absolutely continuous function FðyÞ ¼
Ð y

0 kðxÞ dxþ Rð0Þ on R.
Since ðF �YÞ0 ¼ k �Y �Y 0 ¼ r 0, we have F �Y ¼ r, in other words, FðyÞ ¼
rðY�1ðyÞÞ ¼ RðyÞ. The last relation implies that R is absolutely continuous and
satisfies jR 0=Rj ¼ jr 0=Y 0rj �Y�1

a tanðap=2Þ a.e.

2.4. (vii) implies (v). Let w ¼ reiy0 be an arbitrary point in D other
than the origin. Set w0 ¼ Rðy0Þeiy0 . Integrating the inequality R 0=Rb

�tanðap=2Þ, we obtain logðRðyÞ=Rðy0ÞÞb�ðy� y0Þ tanðap=2Þ, i.e., RðyÞb
Rðy0Þe�ðy�y0Þ tanðap=2Þ ¼ Rw0�VaðyÞ for y A ½y0; y0 þ p�. Similarly we can also show

that RðyÞbRðy0Þe�ðy0�yÞ tanðap=2Þ ¼ Rw0�VaðyÞ for y A ½y0 � p; y0�. Hence, w � Va H
w0 � Va HD.
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2.5. (v) implies (iii). It is enough to show Ua HVa. For y with
jyj < ap=2, we set rðyÞ ¼ supfr > 0 : ð0; reiyÞHUag. We will show rðyÞ <
RVaðyÞ ¼ e�y tanðap=2Þ if 0 < y < ap=2. An elementary calculation shows that
rðyÞ ¼ cosðyþ ap=2Þ=cosðap=2Þ. The function hðyÞ ¼ ey tanðap=2Þ cosðyþ ap=2Þ=
cosðap=2Þ satisfies h 0ðyÞ=hðyÞ ¼ tanðap=2Þ � tanðyþ ap=2Þ for y A ð0; ap=2Þ.
Therefore h 0 < 0 and thus h is decreasing. In particular, hðyÞ < hð0Þ ¼ 1, which
yields the desired inequality.

2.6. (iii) implies (i). Let f : D ! D be a conformal map of D onto D with
f ð0Þ ¼ 0. We use now the method developed by Ma and Minda [5]. Fix a
point z0 A Dnf0g and set w0 ¼ f ðz0Þ. Since the smooth curve gðtÞ ¼ f ðz0eitÞ
passes through w0 and encloses the domain w0 �Ua by Lemma 2, we have
jargðg 0ð0Þ=w0Þ � p=2ja ap=2. Since g 0ð0Þ=w0 ¼ iz0 f

0ðz0Þ=f ðz0Þ, the last inequal-
ity gives us jargðz0 f 0ðz0Þ=f ðz0ÞÞja ap=2.

The program for the proof has now finished.

3. Concluding remarks

3.1. The domain Va. As is easily seen from the characterization theorem,
the domain Va itself is strongly starlike of order a. Moreover, the conformal
map ga of D onto Va determined by gað0Þ ¼ 0 and g 0

að0Þ > 0 can be given in the
form ka=kað1Þ, where

kaðzÞ ¼ z exp

ð z

0

1þ z

1� z

� �a

� 1

� �
dz

z

� �
:

The function ka plays a role of the Koebe function in the class of normalized
strongly starlike functions of order a (see, for example, [5] and its references).

In order to see gaðDÞ ¼ Va, we have only to check

gað�1Þ ¼ �expð�p tanðap=2ÞÞ:ð5Þ

Indeed, by property (v) in Theorem 1, we obtain Va H gaðDÞ because 1 A qgaðDÞ.
On the other hand, by property (vi), we have gaðDÞHExtðgað�1Þ � V�1

a Þ. By (3)

and (5), this means gaðDÞH�expð�p tanðap=2ÞÞ � Ext V�1
a ¼ Va. Thus we con-

clude gaðDÞ ¼ Va.
To prove (5), we can use the formula

Ð p

0 cotaðy=2Þ dy ¼ p=cosðap=2Þ (see [1,
(2.4)]). In fact, since we know gað�1Þ < 0, we compute

gað�1Þ ¼ � exp

ð�1

1

1þ z

1� z

� �a
dz

z

� �����
���� ¼ �expRe i

ð p

0

1þ eiy

1� eiy

� �a

dy

� �

¼ �expRe ieap=2
ð p

0

cotaðy=2Þ dy
� �

¼ �exp �p tanðap=2Þ½ �:
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3.2. Examples. In order to check the strong starlikeness of a given do-
main, condition (vii) in Theorem 1 is probably most convenient. As a simple
example, we consider the rectangle D ¼ fz ¼ xþ iy : jxj < a; jyj < bg, where 0 <
ba a. If 0 < tan y < b=a, we have RðyÞ ¼ a=cos y and R 0ðyÞ=RðyÞ ¼ tan y. If
b=a < tan y < y, we have RðyÞ ¼ b=sin y and R 0ðyÞ=RðyÞ ¼ 1=tan y. Hence, we
see that the essential supremum of jR 0ðyÞ=RðyÞj taken over y A R is a=b. This
means that D is strongly starlike of order ð2=pÞ arctanða=bÞ with respect to the
origin, and the order is best possible. In particular, the square is strongly starlike
of order 1=2 with respect to its center.

Another example is the standard domain Ua. It is intuitively obvious
that Ua is strongly starlike of order a with respect to the point 1=2. We
rigorously check it by using Theorem 1 (vii). As is easily seen, Ua is the image
of the unit disk under the map ð1þ f Þ=2, where f ðzÞ ¼ ðð1þ zÞa � ð1� zÞaÞ=
ðð1þ zÞa þ ð1� zÞaÞ. We show that f is strongly starlike of order a. Let
R ¼ Rf ðDÞ. A simple geometric observation gives us the formula RðyÞ ¼
Rð�yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2ðap=2Þ sin2 yþ 1

q
� tanðap=2Þ sin y for y A ð0; pÞ. Since R 0ðyÞ=

RðyÞ ¼ �tanðap=2Þ cos y=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2ðap=2Þ sin2 y

q
for y A ð0; pÞ, we get jR 0ðyÞ=

RðyÞja tanðap=2Þjcos yja tanðap=2Þ.

3.3. Generalization. As a refinement of the notion of strongly starlike
functions of order a, we may consider the condition

� ap

2
a arg

zf 0ðzÞ
f ðzÞ a

bp

2
ðz A Dnf0gÞ;

where a and b are constants in ½0; 1�. In this case, by the same argument
in Section 2.4, we can see �tanðbp=2ÞaR 0=Ra tanðap=2Þ a.e. in R. Thus,
we obtain a similar statement to Theorem 1 just by replacing Ua and Va by
Ua;b and Va;b, respectively, where Ua;b is the intersection of the two disks

j2z cosðap=2Þ � eiap=2j < 1 and j2z cosðpb=2Þ � e�ipb=2j < 1 and Va;b is the bounded
Jordan domain enclosed by the two logarithmic spirals expðð�tanðap=2Þ þ iÞyÞ
ð0a ya y0Þ and expðð�tanðbp=2Þ � iÞyÞ ð0a ya 2p� y0Þ, where y0 ¼
2p tanðbp=2Þ=ðtanðap=2Þ þ tanðbp=2ÞÞ. Note that the corresponding condition
to (v) in Theorem 1 was obtained in [4].
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