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Abstract

It is known that Kleinian groups and complex dynamics have many properties in

common. We shall show that the structure of the Martin boundaries of the region of

discontinuity and the Fatou set are similar under a certain condition. We also show

that any conformal mapping defined on the region of discontinuity (resp. the Fatou set)

has a continuous extension on the conical limit set (resp. the conical Julia set in the

sense of Lyubich and Minsky).

1. Introduction and statements of results

Let f ðzÞ be a rational function of degree db 2 and G a non-elementary
Kleinian group. A lot of computational experiences show that the Julia set Jð f Þ
of f and the limit set LðGÞ of G seem to be similar. In this paper, we shall prove
that Julia sets and limit sets have some complex analytic properties in common.
Especially, we focus on conical limit sets of Fuchsian groups and conical Julia
sets of rational functions in the sense of Lyubich and Minsky. In a study of
Hausdor¤ dimensions, it is observed that some statements are hold for these
sets simultaneously ([8], [9]). We show that several common phenomena are
observed in both sets from the view point of the Martin compactification and
functions theoretic null sets.

First, we consider the Martin compactification of the Fatou sets F ð f Þ of
a rational map f and the region of discontinuity WðGÞ of a Kleinian group G, a
discrete subgroup of PSLð2;CÞ.

Suppose that both F ð f Þ and WðGÞ are connected. We denote by Fð f Þ� and
WðGÞ� the Martin compactification of the Fatou set and the region of discon-
tinuity, respectively. In the theory of the Martin compactification, the Martin
boundary consists of two disjoint sets, minimal points and non-minimal points.
Important is the set of minimal points because the representing measure for a
positive harmonic function is supported on the set of minimal points (Proposition
2.1).
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For z A qFð f Þ (resp. A qWðGÞ), we denote by DðzÞ the set of the Martin
boundary over z (see Sec. 2 for the terminologies).

Theorem 1.1. Let DðzÞ be the same one as above.
(A): Suppose that G be a Fuchsian group of the second kind. If z A LðGÞ is

a parabolic fixed point of G, then DðzÞ contains exactly two minimal
boundary points. On the other hand, if z is a conical limit point, then
DðzÞ consists of a single minimal point. Furthermore, if G is a Schottky
group, then the Martin compactification WðGÞ� is homeomorphic to the
Riemann sphere ĈC.

(B): Let f be a rational function of degree db 2 with totally disconnected
Julia set Jð f Þ. Then for every z in the conical Julia set Jconð f Þ of f ,
DðzÞ consists of a single minimal point.

From this theorem, we have:

Corollary 1.1. Let PðzÞ be a polynomial of degree db 2. Suppose that
all critical points are attracted to y. Then for every z A JðPÞ, DðzÞ consists of a
single minimal point. Therefore, the Martin compactification FðPÞ� of the Fatou
set is homeomorphic to ĈC.

Corollary 1.2. Suppose that BðzÞ is a finite Blaschke product of degree
db 2 with the disconnected Julia set JðBÞ on the unit circle. If z A JðBÞ does not
belong to the backward orbit of the parabolic fixed point of B, then DðzÞ consists of
a single minimal point. In particular, if BðzÞ does not have a parabolic fixed point
and if JðBÞ is totally disconnected, then the Martin compactification F ðBÞ� of the
Fatou set is homeomorphic to ĈC.

Next, we consider a continuous extendability of quasiconformal mappings
defined on WðGÞ and Fð f Þ.

A compact subset E of C is called holomorphically removable if any ho-
meomorphism on a neighbourhood U of E which is holomorphic on U � E is
holomorphically extended to U . It is known that the Julia set Jð f Þ is holo-
morphically removable if f satisfies a certain condition (cf. [3], [15]).

Here, we consider a strong removability for a totally disconnected compact
subset. Namely, we consider the extendability of holomorphic functions defined
only on the outside of E. In general, there exists a totally disconnected compact
set EHC such that a conformal mapping on the complement of E does not
have a limit at some point of E (cf. [11] XI. 3L). But for conical limit sets and
conical Julia set, the situation is quite satisfactory if they are totally disconnected.

Theorem 1.2. (A): Let G be a Fuchsian group of the second kind. Then,
for any neighbourhood U of the limit set LðGÞ every quasiconformal
mapping defined on U VWðGÞ has a limit at every conical limit point
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of G. Furthermore, if G is finitely generated and has no parabolic
elements, then every quasiconformal (resp. conformal ) mapping on
U VWðGÞ is extended to a quasiconformal (resp. conformal ) map of U .

(B1): Let f be a rational function of degree db 2 with totally disconnected
Julia set Jð f Þ. Then, for any neighbourhood U of the Julia set every
quasiconformal mapping defined on U VF ð f Þ has a limit at every point
in the conical Julia set of f. Furthermore, if every point of the Julia
set of f belongs to the conical Julia set of f , then every quasiconformal
(resp. conformal ) mapping defined on U VFð f Þ is extended to a quasi-
conformal (resp. conformal ) mapping on U .

(B2): Let BðzÞ be a finite Blaschke product of degree db 2 with the discon-
nected Julia set JðBÞ. Then, for any neighbourhood U of JðBÞ, every
bounded holomorphic function on U VF ðBÞ is extended to a holomorphic
function on U. Furthermore, every quasiconformal mapping defined on
U VF ðBÞ is extended to a quasiconformal mapping on U. In partic-
ular, any conformal mapping on F ðBÞ is a Möbius transformation.

From the above theorem, we see that if G is a Schottky group, then any
quasiconformal (resp. conformal) mapping on WðGÞ is extended to a quasi-

conformal (resp. conformal) map of ĈC. Also we see that if f is a hyperbolic
rational map with the totally disconnected Julia set, then every quasiconformal
mapping on the Fatou set is extended to a quasiconformal mapping on the
Riemann sphere and every conformal mapping on the Fatou set must be a
Möbius transformation.

Finally, we shall consider the extendability of quasiconformal mappings to
the Martin boundary, which is one of interesting problems in the theory of the
Martin compactification. It is known ([14]) that there are a plane region D and
a quasiconformal mapping w on D such that the mapping w does not have a
continuous extension to the Martin compactification D� of D.

Combining our results, we have:

Corollary 1.3. Let D be either a region of discontinuity of a Schottky
group or the Fatou set of a finite Blaschke product with no parabolic fixed point or
a rational function f with Jconð f Þ ¼ Jð f Þ. Then, every quasiconformal mapping w
on D has a homeomorphic extension to the Martin compactification D� of D.

Acknowledgement. The author thanks to Masahiko Taniguchi for his
valuable suggestion.

2. Preliminaries

2.1. Conical limit points and conical Julia sets. We define conical limit
points for Fuchsian groups and conical Julia sets for rational functions which is
defined in [8].
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A Fuchsian group G acting on H is called of the first kind if the limit set
LðGÞ ¼ R̂R ¼ RU fyg. If G is not of the first kind, it is called of the second kind.
The limit set of a non-elementary Fuchsian group of the second kind is totally
disconnected.

Definition 2.1. Let x be a limit point of a Fuchsian group G acting on the
upper half plane H. The point x is called a conical limit point if there exist a
non-tangential cone C in H and a sequence fgngHG such that C V qH ¼ fxg and
gnðiÞ A C for all n.

It is known that the limit set of any finitely generated Fuchsian group
consists of parabolic fixed points and conical limit points.

Let f be a rational function of degree db 2. We define the conical Julia
set of f in the sense of Lyubich and Minsky.

Definition 2.2. We take any r > 0 and fix it. We say a point x A Jð f Þ
belongs to Jp�conð f ; rÞ for some p A N if for any e > 0, there exist a simply
connected neighbourhood U of x and n A N such that diamðUÞ < e and

f n : U ! Dð f nðxÞ; rÞ
is a p to one analytic mapping, where Dða; rÞ stands for a disk of center a with
radius r. We define the conical Julia set Jconð f Þ of f by

Jconð f Þ ¼ 6
r>0;p AN

Jp�conð f ; rÞ:

Remark 2.1. Actually, the set Jconð f Þ above is denoted by D1 in [8]. It is
slightly bigger that the ‘‘conical’’ set defined in the paper (see [8] p. 71).

Remark 2.2. The set Jradð f Þ ¼ 6
r>0

J1�conð f ; rÞ is called the radial Julia set

of f (cf. [9]). A set X H Jð f Þ is called hyperbolic if f is expanding there. The
union of hyperbolic sets is called the hyperbolic Julia set and it is denoted by
Jhypð f Þ. It is observed that

Jhypð f ÞH Jradð f ÞH Jconð f ÞH Jð f Þ:

2.2. Martin compactification. In this section, we give a brief introduction
of the Martin compactification of a Riemann surface. See [2] for the detail.

Let S be an open Riemann surface with Green’s function. We denote by
gð� ; qÞ Green’s function with pole at q A S. For a fixed point a0 A S, we set

kqð pÞ ¼ kðp; qÞ ¼ gð p; qÞ
gða0; qÞ

: ðp; q A SÞ

The Martin compactification S � of S is the smallest compactification such that
kðp; qÞ has a continuous extension as a function of q. The set D ¼ DðSÞ ¼
S � � S is called the Martin boundary of S. Note that kqð�Þ is a positive harmonic
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function on S when q is on the Martin boundary. It is known that S � is
metrizable.

A point q A D is called a minimal point if there exists a constant c > 0
such that u ¼ ckq whenever a positive harmonic function u on S satisfies
0a uð�Þa kqð�Þ. The set of minimal points is denoted by D1 ¼ D1ðSÞ. The
following is a fundamental results of the theory of Martin compactification.

Proposition 2.1. Let u be a positive harmonic function on S. Then there
exists a unique positive measure m on D1ðSÞ such that

uðpÞ ¼
ð
D1ðSÞ

kqðpÞ dmðqÞ:

Now we consider a planar domain WH ĈC whose complement has positive
logarithmic capacity. For each z A qW, we denote by DðzÞ the set of points in
D over z, that is, the set of points in D obtained by all sequences fqngyn¼1 HW
converging to z. The cardinal number of DðzÞ is denoted by dim DðzÞ.

As for the structure of DðzÞ, the following is known (cf. [2] Satz 13. 2).

Proposition 2.2. The set DðzÞ contains at least one minimal point. If
z A qW is an irregular point of the Dirichlet problem on W, then dim DðzÞ ¼ 1.

Therefore, if dim DðzÞ ¼ 1, then DðzÞ consists of a single minimal point and
we only consider regular points on the boundary. For a regular point z on the
boundary, we have also a su‰cient condition for dim DðzÞ ¼ 1. Before giving it,
we shall introduce a notion of coarseness for compact subsets of C.

Definition 2.3. Let E be a compact subset of C. A point z A E is called
annularly coarse for E if there exists a sequence fAngyn¼1 of annuli with the
following conditions.

� Every An is in C� E.
� fAngyn¼1 is nested to z, that is, Anþ1 separates z from An for each n A N and
An ! z as n ! y.

� infn modðAnÞ > 0.
A compact set E is called annularly coarse if any point z A E is annularly coarse.

Then the following is known.

Proposition 2.3 ([13] Lemma 3). Let z be a regular point on qW. If z A qW
is annularly coarse for qW, then dim DðzÞ ¼ 1.

2.3. Function theoretic null sets. In this section, we describe the null sets
appeared in the theorems of Sec. 1. Throughout this section, E is a totally
disconnected compact subset of C.
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Definition 2.4. A point z A E is called weak for E if any conformal
mapping on C� E has a limit at z.

Proposition 2.4 (cf. [11] VII. 5C). Let E be a compact subset of C.
Suppose that every point of E is weak for E. Then, E belongs to NSD, that is,
C� E has no non-constant injective analytic functions with finite Dirichlet integrals.

It is known that there exists a totally disconnected compact subset E such
that any point of E is not weak (cf. [11] XI).

From the definition, we have the following.

Lemma 2.1. Let E be a compact subset of C. If z A E is weak for E, then
any quasiconformal mapping w on C� E has the limit at z.

Proof. There exists a measurable function m on C such that kmky < 1 and
f ¼ wm � w is conformal on C� E, where wm is a quasiconformal mapping on C
with

ðwmÞzðzÞ ¼ mðzÞðwmÞzðzÞ: ða: e:Þ

The existence of wm is guaranteed by the Ahlfors-Bers theory (cf. [7]). From the
weakness of z, f has a limit at z. Since wm is a homeomorphism on C, w ¼
ðwmÞ�1 � f also has a limit at z. r

A lot of conditions for weakness are known. Here, we note a test called
Poincaré’s metric test ([11] XI. Theorem 1E).

Proposition 2.5. Let E be a compact subset of C and z A E. Suppose that
there exists a sequence fcngyn¼1 of simple closed curves in C� E such that

� cnþ1 is contained in a bounded domain of the complement of cn
ðn ¼ 1; 2; . . .Þ,

� cnþ1 separates z from cn,
� cn converges to z as n ! y, and
� the hyperbolic lengths of cn in C� E ðn ¼ 1; 2; . . .Þ are bounded.

Then, z is weak for E.

Finally in this section, we shall note a recent work of Gotoh and Taniguchi
([5]) which is a generalization of a result in [6].

Proposition 2.6 (Gotoh and Taniguchi). Let E be a compact subset of the
plane. Suppose that the set E is annularly coarse. Then, the area of E is zero
and every quasiconformal mapping defined on C� E is uniquely extended to a
quasiconformal mapping on C.

3. Proofs of the theorems (limit sets)

In this section, we prove the statements of the theorems for limit sets.
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Proofs of Theorem 1.1 (A) and Theorem 1.2 (A). Let z be a parabolic fixed
point of g A G. We may assume that G acts on the upper half plane, gðzÞ ¼ zþ 1
and z ¼ y. It is known that for a non-elementary Fuchsian group G, the limit
set LðGÞ has positive capacity. Hence, our assertion for a parabolic fixed point
is immediately obtained from the following fact.

Proposition 3.1 ([12] Theorem 2). Let E0 be a closed subset in ½0; 1� with
positive capacity. Set En ¼ gnðE0Þ and E ¼ 6

n AN En U fyg, where gnðzÞ ¼ zþ n

ðn A NÞ. Then, for the Martin compactification of W ¼ ĈC� E, DðyÞ contains
exactly two minimal points.

As for a conical limit point z, it su‰ces to show that the existence of annuli
fAngyn¼1 satisfying the conditions in Proposition 2.3.

We may assume that z ¼ 0. Let fgng
y
n¼1 be a sequence in G which con-

verges conically to z. Take hyperbolic geodesics c, c 0 from z ¼ i so that the
closures c, c 0 are contained in WðGÞ and their intersection angle at z ¼ i is almost
p. Put C ¼ cU c 0.

First, we suppose that Cn ¼ gnðCÞ intersects with I ¼ fz ¼ iy j 0 < y < 1g for
all n A N. Then we have a domain Hn bounded by Cn and the real axis such
that the closure contains z ¼ 0. Furthermore, if Cnþ1 V I 0j and Cnþ1 HHn for
all n A N, then we obtain a sequence fAngyn¼1 of annuli in WðGÞ satisfying the
desired condition. Indeed, in this case, C together with its mirror image C 0 for
the real axis becomes a simple closed curve a in WðGÞ. By fatting a, we have an
annulus A in WðGÞ. Then An ¼ gnðAÞ ðn ¼ 1; 2; . . .Þ give a nested sequence of
annuli for z ¼ 0.

Since gn is a conformal mapping, modðAnÞ ¼ modðAÞ. Hence, fAngyn¼1 is
our desired sequence of annuli (Figure 1).

A modification of the above argument gives the proof for general case. To
do so, we note a result of the hyperbolic geometry.

O

z = i
C

C

C

C'

A

γn (i)

Hn

n

n+1

Figure 1
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Lemma 3.1. Let S ¼ z A H

���� p2 � f < arg z <
p

2
þ f

� �
be a cone for some

f 0 < f <
p

2

� �
. For a constant M > 1, we set

AM ¼ fz A H jM�1 < jzj < Mg:

Then there exists a constant yðf;MÞ > 0 depending only on f and M such that
the intersection angle of any two geodesic rays from any z0 A S V fz A H j jzj ¼ 1;
Re z > 0g is less than yðf;MÞ if they are entirely contained in AM V fRe z > 0g.

Proof. An elementary argument of the hyperbolic geometry gives the proof
of the lemma. So, we omit it (see Figure 2). r

Suppose that the cone S in Lemma 3.1 contains all gnðiÞ ðn ¼ 1; 2; . . .Þ. By
taking a subsequence, we may assume that

gnðiÞ
gnþ1ðiÞ

����
���� > M 3 ðn ¼ 1; 2; . . .Þð1Þ

for some M > 0. Now, we take geodesic rays c1; c2; . . . ; c2k from z ¼ i satisfying
the following conditions for k A N (see Figure 3 below).

� cj intersects ckþj at z ¼ i with an angle almost p.
� cj (resp. ckþj) intersects cjþ1 (resp. ckþjþ1) at z ¼ i with an angle less than
yðf;MÞ (here we set c2kþ1 ¼ c1).

� The closures cj and ckþj are contained in WðGÞ.

S

O MM -1

AM
θ

Figure 2

z=i

Ck+1
C2k

Ck

C1

O

Figure 3
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It is always possible if we take the number k su‰ciently large because
the limit set LðGÞ is nowhere dense in the real axis. Then, from Lemma
3.1 some C

ð jnÞ
n ¼ gnðcj U ckþjÞ ð1a jn a kÞ is entirely contained in an annulus

fjgnðiÞjM�1 < jzj < jgnðiÞjMg. By taking a subsequence and renumbering
fcj; ckþjgkj¼1, we may assume that jn ¼ 1 for all n. Moreover, from (1)

dðC ð1Þ
n ;C

ð1Þ
nþ1Þ > d > 0ð2Þ

holds for some d which does not depend on n, where dð� ; �Þ is the hyperbolic
distance. Therefore, by fatting a closed curve formed by c1 U ckþ1 and the mirror
image for the real axis, we have an annulus A0 so that for An ¼ gnðA0Þ,

(1) Anþ1 is contained a bounded component of C� An

(2) modðAnÞ ¼ modðA0Þ.
(3) limn!y An ¼ f0g.

Hence, the sequence fAngyn¼1 of annuli satisfies the conditions of Proposition
2.3. So, dim Dð0Þ ¼ 1. Therefore we conclude from Proposition 2.2 that Dð0Þ
consists of a single minimal point.

As for a Schottky group, from a canonical fundamental region for the group,
we may easily obtain a sequence of annuli as above for each limit point. Thus,
every limit point is weak. The proof of Theorem 1.1 (A) is completed.

The proof of Theorem 1.2 (A) is obtained simultaneously. Indeed, the
sequence fC ð1Þ

n gyn¼1 of the above proof satisfies the conditions of Proposition 2.5
for z ¼ 0 because each gn is the isometry for the hyperbolic distance on WðGÞ.
Hence every conical limit point is weak.

If G is a Schottky group, then it is a quasiconformal deformation of a
finitely generated Fuchsian group G of the second kind with no parabolic ele-
ment. Let f be the quasiconformal mapping, that is, G ¼ fG f �1. It is known
that every point of LðGÞ is a conical limit point. Thus, for any z A LðGÞ,
we have a sequence fCngyn¼1 of simple closed curves in WðGÞ for z as in the proof
of Theorem 1.1 (A). Since Cn ¼ gnðC1Þ for some gn A G, f ðCnÞ ¼ gnð f ðC1ÞÞ
ðgn ¼ fgn f

�1; n ¼ 1; 2; . . .Þ satisfy the conditions of Proposition 2.5 for f ðzÞ.
Therefore, f ðzÞ is weak and the proof of Theorem 1.2 (A) is completed.

4. Proofs of the theorems (Julia sets)

In this section, we prove the statements of the theorems for Julia sets.

4.1. Proofs of Theorem 1.1 (B) and Theorem 1.2 (B1). Let x A Jconð f Þ be
an arbitrary point of the conical Julia set of f . Then, the point x belongs to
Jp�conð f ; rÞ for some r > 0 and p A N. We may assume that x0y.

Take a monotone decreasing sequence femgym¼1 of positive number em with
em ! 0 as m ! y. From the definition of Jp�conð f ; rÞ, there exist nm A N and a
simply connected neighbourhood Um of x for each m such that diam Um < em
and

f nm : Um ! Dð f nmðxÞ; rÞ
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is a p to one analytic mapping. Therefore, the number of critical points of f nm

in Um is p� 1.
Furthermore, we may assume that f f nmðxÞgym¼1 converges to a point

x0 A Jð f Þ. We may also assume that x0 0y. Hence, for su‰ciently large m,

f nmðUmÞ ¼ Dð f nmðxÞ; rÞID x0;
1

2
r

� �
:

Since D x0;
1

2
r

� �
contains at most ðp� 1Þ critical values of f nm , we may find an

annulus A 0
k ¼ 1

2kþ1
r < jz� x0j <

1

2k
r

� �
ð1a ka pÞ which contains no critical

values of f nm . Moreover, taking a subsequence of f f nmgym¼1 if necessary, we
may assume that A 0

k does not contain any critical values of f nm ðm ¼ 1; 2; . . .Þ.
Noting that Jð f Þ is totally disconnected, we may take an annulus

AHA 0
k VFð f Þ so that the bounded component of Ac contains both f nmðxÞ and

x0 for su‰ciently large m. The annulus A does not contain any critical value
of f nm ðm ¼ 1; 2; . . .Þ. Thus, all components of f �nmðAÞ are annuli and we see
that there exists an annulus ~AAm in Um such that f nmð ~AAmÞ ¼ A and the bounded
component of ~AAc

m contains x.

Indeed, if for any component ~AA of f �nmðAÞ, the bounded component of ~AAc

does not contain x, then there exists a curve C in Um � f �nmðAÞ such that the
curve C connects x and qUm. Hence f nmðCÞ is a curve in Dð f nmðxÞ; rÞ con-
necting f nmðxÞ and qDð f nmðxÞ; rÞ with f nmðCÞVA0j. It is absurd.

Here, we note the following.

Lemma 4.1. Let j : A1 ! A2 be a k-sheeted smooth holomorphic mapping of
an annulus A1 onto an annulus A2. Then

modðA1Þ ¼
1

k
modðA2Þ:ð3Þ

Proof. We may assume that Aj ¼ f1 < jzj < eRjg, where Rj ¼ modðAjÞ
ð j ¼ 1; 2Þ. We may also assume that the mapping j is continuous on A1 and

Um

m

f mn

f mn∆( (x), r/2)

f mn∆( (x), r)

A

A
~x

Figure 4
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jðfjzj ¼ 1gÞ ¼ fjwj ¼ 1g and jðfjzj ¼ eR1gÞ ¼ fjwj ¼ eR2g. Hence, by using the
reflection principle repeatedly, we have a holomorphic mapping F which is an
extension of j of ĈC onto itself with Fð0Þ ¼ 0 and FðyÞ ¼ y. Therefore, we
conclude that FðzÞ ¼ zk and R2 ¼ kR1 which implies (3). r

The mapping f nm on ~AAm is at most p-sheeted over A. Hence, we have

modð ~AAmÞb
1

p
modðAÞ:

Therefore, we verify that the sequence f ~AmAmgym¼1 of annuli satisfies the conditions
of Proposition 2.3 and DðxÞ consists of a single minimal point.

As we have seen in Sec. 3, the above argument proves Theorem 1.2 (B1) as
well as Theorem 1.1 (B).

4.2. Proofs of Corollaries. In this section, we prove Corollary 1.1, 1.2 and
1.3.

Corollary 1.1 is easily verified because it is well known (cf. [4]) that any
polynomial as in the corollary is hyperbolic.

Similar consideration gives a proof of Corollary 1.2. Here, we present a
direct proof for convenience of the readers.

Proof of Corollary 1.2. Let BðzÞ be a finite Blaschke product of degree
db 2. It follows from Denjoy-Wol¤ theorem (cf. [4]) and from local dymanics
at a parabolic periodic point that B has at most one parabolic periodic point and
that it is a fixed point.

Suppose that the Blaschke product has a parabolic fixed point z0 A JðBÞ.
We denote by O�ðz0Þ the set of backward orbits of z0. For any z A JðBÞ�
O�ðz0Þ, there exists a monotone sequence fnpgyp¼1 HN such that fBnpðzÞgyp¼1 has a
limit z0 0 z0 as p ! y. Indeed, it is easily seen from local dynamics of B near
the parabolic fixed point z0 (cf. [4]). Since every critical point of B is attracted
to z0, there exists a neighbourhood Dðz0; rÞ ¼ fz A C j jz� z0j < rg ðr > 0Þ of z0
such that Dðz0; rÞVPB ¼ j, where PB is the post-critical set of B, that is, the set
of critical points and their forward orbits of B.

Lemma 4.2. There exist local inverses fn of Bn ðn ¼ 1; 2; . . .Þ in Dðz0; rÞ so
that fnpðz0Þ ! z as p ! y.

Proof. Since Dðz0; rÞVPB ¼ j, any branch of of B�n exists for any
n A N on Dðz0; rÞ. Take a branch fnp of B�np as fnpðBnpðzÞÞ ¼ z. The map fnp is
a holomorphic map of Dðz0; rÞ to SB ¼ ĈC� PB and PB is an infinite set.
Hence, SB is hyperbolic as a Riemann surface and it follows from Schwartz’s
lemma that

dSB
ðz; fnpðz0ÞÞ ¼ dSB

ð fnpðBnpðzÞÞ; fnpðz0ÞÞa dDðz0; rÞðB
npðzÞ; z0Þ;
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where dSð� ; �Þ stands for the hyperbolic distance on a hyperbolic Riemann surface
S. Since BnpðzÞ ! z0, we have

lim
p!y

fnpðz0Þ ¼ z:

Hence, the proof of the lemma is completed. r

Since fnp is a holomorphic map of Dðz0; rÞ to ĈC� PB, f fnpg
y
p¼1 becomes a

normal family of univalent functions. Thus, a limit function f ¼ limp!y fnp is
either an univalent function or a constant. If it is not a constant, the image
f ðDðz0; rÞÞ of Dðz0; rÞ contains an open set U C z with U H f ðDðz0; rÞÞ. Since
f fnpg

y
p¼1 converges to f uniformly on every compact subset of Dðz0; rÞ, we verify

that there exist a compact subset K of Dðz0; rÞ such that fn p
ðKÞIU for suf-

ficiently large np. This implies KIBnpðUÞ and it contradicts to U V JðBÞ0j.
Therefore, we conclude that f 1 z, i.e., f fn p

gyp¼1 converges to a constant function.

Since the Julia set JðBÞ of B is totally disconnected, we may take an annulus
A in Dðz0; rÞVF ðBÞ so that the closure A is contained in Dðz0; rÞ and the bounded
component of Ac contains z0. As BnpðzÞ ! z0, B

npðzÞ and z0 belong to the same
component of Ac for su‰ciently large np. Hence, the bounded component Unp

of Ac
np

contains z. Since f fnpg
y
p¼1 converges to f 1 z uniformly on A, we may

assume that

Unpþ1
HAnpþ1

HUnp ðp ¼ 1; 2; . . .Þ:
Noting that modðAnpÞ ¼ modðAÞ for Anp ¼ fnpðAÞ, we verify that the sequence

fAnpg
y
p¼1 of annuli satisfies the conditions of Proposition 2.3 and dim D1ðzÞ ¼ 1.
It is easily seen that the above argument also works if B does not have a

parabolic fixed point. Hence, we complete the proof of the corollary.

Proof of Corollary 1.3. From Theorem 1.2, any quasiconformal mapping w
on D is extended to a quasiconformal mapping on ĈC. We denote it by the same
letter w.

Let z be an arbitrary point of qD. According to the proof of Theorem 1.2,
there exists a sequence fAngyn¼1 of annuli in D such that it satisfies the conditions
of Proposition 2.3 for z A qD and D. Since w is a quasiconformal mapping, we
have

KðwÞ�1 modðAnÞamodðwðAnÞÞaKðwÞ modðAnÞ
for each n A N, where KðwÞ is the maximal dilatation of w. Therefore,
fwðAnÞgyn¼1 also satisfies the conditions of Proposition 2.3 and we verify that both
D� and wðDÞ� are homeomorphic to ĈC. Hence, we conclude that w gives a
homeomorphism from D� onto wðDÞ�.

4.3. Proof of Theorem 1.2 (B2). First, we note the following lemma.

Lemma 4.3. Let E be a compact subset of C. If E is of linear measure zero,
then it is AB-removable, that is, for any open neighbourhood U of E, any bounded
holomorphic function on U � E is extended holomorphically to whole U .
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Proof. The proof is done as an elementary application of Cauchy’s integral
formula. See [11], for example. r

Therefore, it is su‰cient to show that the Julia set JðBÞ on the unit circle
qDð0; 1Þ is of linear measure zero. If not, the harmonic measure oJðBÞ in the unit
disk Dð0; 1Þ for JðBÞ is a positive harmonic function in Dð0; 1Þ.

Lemma 4.4. For any z A Dð0; 1Þ,
oJðBÞðBðzÞÞ ¼ oJðBÞðzÞ:ð4Þ

Proof. From Perron’s method for the Dirichlet problem (cf. [2]), we see that

oJðBÞðzÞ ¼ inf
s A S

sðzÞ ¼ sup
s A S

sðzÞ;

where S (resp. S) is the family of superharmonic (resp. subharmonic) functions
in Dð0; 1Þ such that for

lim inf
z!z A qDð0;1Þ

sðzÞb wJðBÞðzÞ resp: lim sup
z!z A qDð0;1Þ

sðzÞa wJðBÞðzÞ
 !

;

where wJðBÞ is the characteristic function of JðBÞ in qDð0; 1Þ.
Since B�1ðJðBÞÞ ¼ JðBÞ, we see that s � B A S for any s A S. Hence, we

have

oJðBÞ � BðzÞboJðBÞðzÞ:
Similarly, we obtain

oJðBÞ � BðzÞaoJðBÞðzÞ:
Thus, we have (4). r

For z A F ðBÞ, the grand orbit of z is the set of y A FðBÞ with

BnðzÞ ¼ BmðyÞ
for some n;m A N.

The above equation (4) shows that the harmonic measure oJðBÞ is regarded
as a function of the set of grand orbits of Dð0; 1Þ. Since JðBÞ is not connected,
FðBÞ is either a parabolic component or an attractive component which is not
super attractive. Thus, the set of grand orbits of F ðBÞ forms a Riemann surface
of type ð1; kÞ or ð0; 2þ kÞ for some kb 1 ([10]). Noting that the Riemann
surface is a double of the space of grand orbits in Dð0; 1Þ, we see that the grand
orbits of Dð0; 1Þ forms a finite bordered Riemann surface S and oJðBÞ is con-

sidered as a bounded harmonic function u on S which vanishes identically on the
relative boundary qS. Hence, the maximal principle of harmonic functions yields
that

u ¼ oJðBÞ ¼ 0:
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We have a contradiction and the linear measure of JðBÞ is zero. From Lemma
4.3, we complete the proof of Theorem 1.2 (B2).
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