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Abstract

It is known that Kleinian groups and complex dynamics have many properties in
common. We shall show that the structure of the Martin boundaries of the region of
discontinuity and the Fatou set are similar under a certain condition. We also show
that any conformal mapping defined on the region of discontinuity (resp. the Fatou set)
has a continuous extension on the conical limit set (resp. the conical Julia set in the
sense of Lyubich and Minsky).

1. Introduction and statements of results

Let f(z) be a rational function of degree d >2 and I' a non-elementary
Kleinian group. A lot of computational experiences show that the Julia set J(f)
of f and the limit set A(I") of I seem to be similar. In this paper, we shall prove
that Julia sets and limit sets have some complex analytic properties in common.
Especially, we focus on conical limit sets of Fuchsian groups and conical Julia
sets of rational functions in the sense of Lyubich and Minsky. In a study of
Hausdorff dimensions, it is observed that some statements are hold for these
sets simultaneously ([8], [9]). We show that several common phenomena are
observed in both sets from the view point of the Martin compactification and
functions theoretic null sets.

First, we consider the Martin compactification of the Fatou sets F(f) of
a rational map f and the region of discontinuity Q(I") of a Kleinian group T, a
discrete subgroup of PSL(2,C).

Suppose that both F(f) and Q(T") are connected. We denote by F(f)" and
Q(T)" the Martin compactification of the Fatou set and the region of discon-
tinuity, respectively. In the theory of the Martin compactification, the Martin
boundary consists of two disjoint sets, minimal points and non-minimal points.
Important is the set of minimal points because the representing measure for a
positive harmonic function is supported on the set of minimal points (Proposition
2.1).
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For (€ 0F(f) (resp. € 0Q(T")), we denote by A({) the set of the Martin
boundary over { (see Sec. 2 for the terminologies).

THEOREM 1.1. Let A({) be the same one as above.

(A): Suppose that T be a Fuchsian group of the second kind. If { € A(T) is
a parabolic fixed point of T', then A({) contains exactly two minimal
boundary points. On the other hand, if { is a conical limit point, then
A($) consists of a single minimal point.  Furthermore, if T is a Schottky
group, then the Martin compactification Q(T')" is homeomorphic to the
Riemann sphere C.

(B): Let f be a rational function of degree d > 2 with totally disconnected
Julia set J(f). Then for every ( in the conical Julia set J.on(f) of f,
A(Q) consists of a single minimal point.

From this theorem, we have:

COROLLARY 1.1. Let P(z) be a polynomial of degree d > 2. Suppose that
all critical points are attracted to co. Then for every { € J(P), A({) consists of a
single minimal point. ~ Therefore, the Martin compactification F(P)* of the Fatou
set is homeomorphic to C.

COROLLARY 1.2. Suppose that B(z) is a finite Blaschke product of degree
d =2 with the disconnected Julia set J(B) on the unit circle. If { € J(B) does not
belong to the backward orbit of the parabolic fixed point of B, then A({) consists of
a single minimal point.  In particular, if B(z) does not have a parabolic fixed point
and if J(B) is totally disconnected, then the Martin compactification F(B)" of the
Fatou set is homeomorphic to C.

Next, we consider a continuous extendability of quasiconformal mappings
defined on Q(I") and F(f).

A compact subset E of C is called holomorphically removable if any ho-
meomorphism on a neighbourhood U of E which is holomorphic on U — E is
holomorphically extended to U. It is known that the Julia set J(f) is holo-
morphically removable if f satisfies a certain condition (cf. [3], [15]).

Here, we consider a strong removability for a totally disconnected compact
subset. Namely, we consider the extendability of holomorphic functions defined
only on the outside of E. In general, there exists a totally disconnected compact
set E = C such that a conformal mapping on the complement of E does not
have a limit at some point of E (cf. [11] XI. 3L). But for conical limit sets and
conical Julia set, the situation is quite satisfactory if they are totally disconnected.

THEOREM 1.2. (A): Let T' be a Fuchsian group of the second kind. Then,
for any neighbourhood U of the limit set A(T) every quasiconformal
mapping defined on UNQ(T) has a limit at every conical limit point
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of T'. Furthermore, if T is finitely generated and has no parabolic
elements, then every quasiconformal (resp. conformal) mapping on
UNQ(T) is extended to a quasiconformal (resp. conformal) map of U.

(B1): Let f be a rational function of degree d =2 with totally disconnected
Julia set J(f). Then, for any neighbourhood U of the Julia set every
quasiconformal mapping defined on UNF(f) has a limit at every point
in the conical Julia set of f. Furthermore, if every point of the Julia
set of [ belongs to the conical Julia set of f, then every quasiconformal
(resp. conformal) mapping defined on UNF(f) is extended to a quasi-
conformal (resp. conformal) mapping on U.

(B2): Let B(z) be a finite Blaschke product of degree d > 2 with the discon-
nected Julia set J(B). Then, for any neighbourhood U of J(B), every
bounded holomorphic function on U N F(B) is extended to a holomorphic
function on U. Furthermore, every quasiconformal mapping defined on
UNF(B) is extended to a quasiconformal mapping on U. In partic-
ular, any conformal mapping on F(B) is a Mdbius transformation.

From the above theorem, we see that if I" is a Schottky group, then any
quasiconformal (resp. conformal) mapping on Q(I') is extended to a quasi-
conformal (resp. conformal) map of C. Also we see that if f is a hyperbolic
rational map with the totally disconnected Julia set, then every quasiconformal
mapping on the Fatou set is extended to a quasiconformal mapping on the
Riemann sphere and every conformal mapping on the Fatou set must be a
Mobius transformation.

Finally, we shall consider the extendability of quasiconformal mappings to
the Martin boundary, which is one of interesting problems in the theory of the
Martin compactification. It is known ([14]) that there are a plane region D and
a quasiconformal mapping w on D such that the mapping w does not have a
continuous extension to the Martin compactification D* of D.

Combining our results, we have:

COROLLARY 1.3. Let D be ecither a region of discontinuity of a Schottky
group or the Fatou set of a finite Blaschke product with no parabolic fixed point or
a rational function f with Jon(f) = J(f). Then, every quasiconformal mapping w
on D has a homeomorphic extension to the Martin compactification D* of D.

Acknowledgement. The author thanks to Masahiko Taniguchi for his
valuable suggestion.

2. Preliminaries

2.1. Conical limit points and conical Julia sets. We define conical limit
points for Fuchsian groups and conical Julia sets for rational functions which is
defined in [8].
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A Fuchsian group I' acting on H is called of the first kind if the limit set
A(T)=R=RU{w0}. IfT isnot of the first kind, it is called of the second kind.
The limit set of a non-elementary Fuchsian group of the second kind is totally
disconnected.

DerFmNITION 2.1.  Let x be a limit point of a Fuchsian group I' acting on the
upper half plane H. The point x is called a conical limit point if there exist a
non-tangential cone C in H and a sequence {y,} < I such that CNdH = {x} and
y,(7) € C for all n.

It is known that the limit set of any finitely generated Fuchsian group
consists of parabolic fixed points and conical limit points.

Let f be a rational function of degree d > 2. We define the conical Julia
set of f in the sense of Lyubich and Minsky.

DErFINITION 2.2. We take any r > 0 and fix it. We say a point x € J(f)
belongs to J,_con(f,r) for some peN if for any &> 0, there exist a simply
connected neighbourhood U of x and n e N such that diam(U) < ¢ and

" U = A(f"(x),r)

is a p to one analytic mapping, where A(a,r) stands for a disk of center a with
radius r. We define the conical Julia set J,.,,(f) of f by

Jcon(f) = U prcon(fa }’).

r>0,peN

Remark 2.1. Actually, the set J.,,(f) above is denoted by A; in [8]. Tt is
slightly bigger that the “conical” set defined in the paper (see [8] p. 71).

Remark 2.2. The set Jq(f) = Ur>0 Ji—con(f,7) 1is called the radial Julia set
of f (cf. [9]). A set X = J(f) is called hyperbolic if f is expanding there. The
union of hyperbolic sets is called the hyperbolic Julia set and it is denoted by
Jup(f). 1Tt is observed that

Jhyp(f) < rad(f) < Jcon(f) < J(f)

2.2. Martin compactification. In this section, we give a brief introduction
of the Martin compactification of a Riemann surface. See [2] for the detail.

Let S be an open Riemann surface with Green’s function. We denote by
g(-,q) Green’s function with pole at g€ S. For a fixed point ay € S, we set

9(p,q)
ky(p) = k(p,q) = - (pqes
((P) = k() = TP (g <)
The Martin compactification S* of S is the smallest compactification such that
k(p,q) has a continuous extension as a function of ¢g. The set A =A(S) =
S* — S is called the Martin boundary of S. Note that k,(-) is a positive harmonic
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function on S when ¢ is on the Martin boundary. It is known that S* is
metrizable.

A point ge A is called a minimal point if there exists a constant ¢ > 0
such that u = ck, whenever a positive harmonic function u on § satisfies
0 <u(-) <ky(-). The set of minimal points is denoted by A; = A;(S). The
following is a fundamental results of the theory of Martin compactification.

PrROPOSITION 2.1. Let u be a positive harmonic function on S. Then there
exists a unique positive measure u on A((S) such that

u(p) = J ky(p) du(q).

A(S)

Now we consider a planar domain Q C whose complement has positive
logarithmic capacity. For each { € 0Q, we denote by A({) the set of points in
A over (, that is, the set of points in A obtained by all sequences {¢,},., = Q
converging to {. The cardinal number of A({) is denoted by dim A({).

As for the structure of A({), the following is known (cf. [2] Satz 13. 2).

PrOPOSITION 2.2. The set A({) contains at least one minimal point. If
(€ 0Q is an irregular point of the Dirichlet problem on Q, then dim A({) = 1.

Therefore, if dim A({) = 1, then A({) consists of a single minimal point and
we only consider regular points on the boundary. For a regular point { on the
boundary, we have also a sufficient condition for dim A({) = 1. Before giving it,
we shall introduce a notion of coarseness for compact subsets of C.

DEerFINITION 2.3. Let E be a compact subset of C. A point { € E is called
annularly coarse for E if there exists a sequence {A,},—, of annuli with the
following conditions.

* Every 4, is in C— E.

+ {4,},, is nested to {, that is, 4,4 separates { from 4, for each n € N and

A, —{ as n — o0.

* infn mOd(An) > 0.

A compact set E is called annularly coarse if any point { € E is annularly coarse.

Then the following is known.

ProposITION 2.3 ([13] Lemma 3). Let { be a regular point on 0Q. If { € 0Q
is annularly coarse for 0Q, then dim A({) = 1.

2.3. Function theoretic null sets. In this section, we describe the null sets
appeared in the theorems of Sec. 1. Throughout this section, E is a totally
disconnected compact subset of C.
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DeriNnITION 2.4, A point (€ E is called weak for E if any conformal
mapping on C — F has a limit at (.

ProposiTiON 2.4 (cf. [11] VII. 5C). Let E be a compact subset of C.
Suppose that every point of E is weak for E. Then, E belongs to Nsp, that is,
C — E has no non-constant injective analytic functions with finite Dirichlet integrals.

It is known that there exists a totally disconnected compact subset £ such
that any point of E is not weak (cf. [11] XI).
From the definition, we have the following.

LeMMA 2.1. Let E be a compact subset of C. If { € E is weak for E, then
any quasiconformal mapping w on C — E has the limit at (.

Proof. There exists a measurable function x4 on C such that |jg||, <1 and
f =wtow is conformal on C — E, where w# is a quasiconformal mapping on C

with
(W):(2) = u(z)(wh).(2). (a. e.)

The existence of w# is guaranteed by the Ahlfors-Bers theory (cf. [7]). From the
weakness of {, f has a limit at {. Since w* is a homeomorphism on C, w =
(w0 f also has a limit at . O

A lot of conditions for weakness are known. Here, we note a test called
Poincaré’s metric test ([11] XI. Theorem 1E).

PropoSITION 2.5. Let E be a compact subset of C and { € E. Suppose that
there exists a sequence {c,},_, of simple closed curves in C — E such that
* Cpa1 I8 contained in a bounded domain of the complement of ¢,
(n=1,2,...),
* Cuy1 Separates { from c,
* ¢, converges to { as n — oo, and
* the hyperbolic lengths of ¢, in C—E (n=1,2,...) are bounded.
Then, { is weak for E.

Finally in this section, we shall note a recent work of Gotoh and Taniguchi
([5]) which is a generalization of a result in [6].

PropPOSITION 2.6 (Gotoh and Taniguchi). Let E be a compact subset of the
plane.  Suppose that the set E is annularly coarse. Then, the area of E is zero
and every quasiconformal mapping defined on C — E is uniquely extended to a
quasiconformal mapping on C.

3. Proofs of the theorems (limit sets)

In this section, we prove the statements of the theorems for limit sets.
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Proofs of Theorem 1.1 (A) and Theorem 1.2 (A). Let { be a parabolic fixed
point of ye . We may assume that I acts on the upper half plane, y(z) =z + 1
and { = co. It is known that for a non-elementary Fuchsian group T, the limit
set A(I') has positive capacity. Hence, our assertion for a parabolic fixed point
is immediately obtained from the following fact.

ProposiTION 3.1 ([12] Theorem 2). Let Ey be a closed subset in [0,1] with
positive capacity. Set E, = g,(Ey) and E =\ ), _\ E,U{c0}, where g,(z) =z+n
(neN). Then, for the Martin compactification of Q =C —E, A(w) contains
exactly two minimal points.

As for a conical limit point {, it suffices to show that the existence of annuli
{A4,},-, satisfying the conditions in Proposition 2.3.

We may assume that {=0. Let {y,},—, be a sequence in I' which con-
verges conically to {. Take hyperbolic geodesics ¢, ¢’ from z =i so that the
closures ¢, ¢’ are contained in Q(T") and their intersection angle at z = i is almost
n. Put C=cUc.

First, we suppose that C, = y,(C) intersects with 7 = {z =iy |0 < y < 1} for
all ne N. Then we have a domain H, bounded by C, and the real axis such
that the closure contains z = 0. Furthermore, if C,.1 NI # ¢ and C,., = H, for
all neN, then we obtain a sequence {A4,},—, of annuli in Q(T) satisfying the
desired condition. Indeed, in this case, C together with its mirror image C’ for
the real axis becomes a simple closed curve o in Q(I"). By fatting o, we have an
annulus 4 in Q(I'). Then 4, =1y,(4) (n=1,2,...) give a nested sequence of
annuli for z=0.

Since y, is a conformal mapping, mod(A4,) = mod(4). Hence, {4,},~, is
our desired sequence of annuli (Figure 1).

A modification of the above argument gives the proof for general case. To
do so, we note a result of the hyperbolic geometry.

n+1

LA

FIGURE 1
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LemMA 3.1. Let S = {ZGH'%—¢<argz<g+¢} be a cone for some
o (0 <9< g) For a constant M > 1, we set

Ay ={zeH|M ' <|z| < M}.

Then there exists a constant 0(¢, M) > 0 depending only on ¢ and M such that
the intersection angle of any two geodesic rays from any zoe SN{zeH||z| =1,
Re z > 0} is less than 0(¢, M) if they are entirely contained in Ay N{Re z > 0}.

Proof. An elementary argument of the hyperbolic geometry gives the proof

of the lemma. So, we omit it (see Figure 2). O
N
AM
9
(0] M' M
FIGURE 2

Suppose that the cone S in Lemma 3.1 contains all y,(i) (n=1,2,...). By
taking a subsequence, we may assume that

yn(l) 3
(1) > M n=1,2,...)
yn-H (l)
for some M > 0. Now, we take geodesic rays ci, ¢z, ..., 2k from z = i satisfying

the following conditions for k € N (see Figure 3 below).
* ¢ intersects ciy; at z =1 with an angle almost 7.
* ¢j (resp. cxy4;) intersects ¢j;q (resp. cx4j41) at z =i with an angle less than
0(¢, M) (here we set 1 = ¢1).
* The closures ¢; and ¢x;, are contained in Q(T').

FIGURE 3
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It is always possible if we take the number k sufficiently large because
the limit set A(I') is nowhere dense in the real axis. Then, from Lemma
3.1 some C\" = Tu(ciUckyj) (1 <ju <k) is entirely contained in an annulus
{ly,()|M~" < |z| < |y, (i)|M}. By taking a subsequence and renumbering
{cj,ckﬂ}]]-‘:l, we may assume that j, =1 for all n. Moreover, from (1)

2) d(c, V) >d>0

n n+l1

holds for some ¢ which does not depend on n, where d(-,-) is the hyperbolic
distance. Therefore, by fatting a closed curve formed by ¢; U ¢,y and the mirror
image for the real axis, we have an annulus 4, so that for A4, = y,(4o),

(1) 4,41 is contained a bounded component of C — 4,

(2) mod(4,) = mod(Ay).

(3) lim,_ A4, = {0}.

Hence, the sequence {A,},—, of annuli satisfies the conditions of Proposition
2.3. So, dim A(0) = 1. Therefore we conclude from Proposition 2.2 that A(0)
consists of a single minimal point.

As for a Schottky group, from a canonical fundamental region for the group,
we may easily obtain a sequence of annuli as above for each limit point. Thus,
every limit point is weak. The proof of Theorem 1.1 (A) is completed.

The proof of Theorem 1.2 (A) is obtained simultaneously. Indeed, the
sequence {C,Sl)}f:l of the above proof satisfies the conditions of Proposition 2.5
for { =0 because each y, is the isometry for the hyperbolic distance on Q(T).
Hence every conical limit point is weak.

If T is a Schottky group, then it is a quasiconformal deformation of a
finitely generated Fuchsian group G of the second kind with no parabolic ele-
ment. Let f be the quasiconformal mapping, that is, I' = fGf~!. It is known
that every point of A(G) is a conical limit point. Thus, for any (e A(G),
we have a sequence {C,},-, of simple closed curves in Q(G) for { as in the proof
of Theorem 1.1 (A). Since C, =g,(C;) for some g, € G, f(C,) =y, (f(C1))
(7, = fanf Y;m=1,2,...) satisfy the conditions of Proposition 2.5 for f({).
Therefore, f({) is weak and the proof of Theorem 1.2 (A) is completed.

4. Proofs of the theorems (Julia sets)

In this section, we prove the statements of the theorems for Julia sets.

4.1. Proofs of Theorem 1.1 (B) and Theorem 1.2 (B1). Let x € J,,(f) be
an arbitrary point of the conical Julia set of f. Then, the point x belongs to
Jp—con(f,r) for some r>0 and peN. We may assume that x # co.

Take a monotone decreasing sequence {sm}f,f:] of positive number ¢, with
&nm — 0 as m — co. From the definition of J, . (f,r), there exist n,, € N and a
simply connected neighbourhood U,, of x for each m such that diam U, < g,
and

S U — A(f"(x), 1)
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is a p to one analytic mapping. Therefore, the number of critical points of £
in U, is p—1.
Furthermore, we may assume that {f"=(x)},_, converges to a point

xo € J(f). We may also assume that xo # co. Hence, for sufficiently large m,

2

Since A(xo,§r> contains at most (p — 1) critical values of f™ we may find an

7 (Un) = AU (),7) 5 A(xo,lr).

1 1 . . o
annulus 4; = {2k+1r <|z—x0| < 2kr} (I <k < p) which contains no critical

values of f”». Moreover, taking a subsequence of {f"~}_, if necessary, we
may assume that A; does not contain any critical values of f™ (m=1,2,...).

Noting that J(f) is totally disconnected, we may take an annulus
A c A NF(f) so that the bounded component of 4¢ contains both f™(x) and
xo for sufficiently large m. The annulus 4 does not contain any critical value
of f™ (m=1,2,...). Thus, all components of f~"(A4) are annuli and we see

that there exists an annulus A4,, in U, such that f"» (A,) = A and the bounded
component of A,, contains x.

A( fnm ()C), r)

A fm (x), 172)

FIGURE 4

Indeed, if for any component A of f~"»(A), the bounded component of 4°
does not contain x, then there exists a curve C in U, — f " (A) such that the
curve C connects x and 0U,. Hence f"(C) is a curve in A(f"™(x),r) con-
necting /™ (x) and OA(f" (x),r) with f™(C)NA #0. Tt is absurd.

Here, we note the following.

LEMMA 4.1. Let ¢ : Ay — Ay be a k-sheeted smooth holomorphic mapping of
an annulus A; onto an annulus A,. Then

1

(3) mod(4;) = A mod(4,).

Proof. We may assume that 4; = {1 <|z| <e®}, where R; =mod(4;)
(j=1,2). We may also assume that the mapping ¢ is continuous on 4; and
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o({lz] =1}) = {|lw| =1} and ¢({|z| = e®}) = {|w| = e®2}. Hence, by using the
reflection principle repeatedly, we have a holomorphic mapping ® which is an
extension of ¢ of C onto itself with ®(0) =0 and ®(c0) = co. Therefore, we
conclude that ®(z) = z*¥ and R, = kR; which implies (3). O

The mapping f™ on A, is at most p-sheeted over 4. Hence, we have

mod(4,,) > — mod(4).

SR

Therefore, we verify that the sequence {4,,}_, of annuli satisfies the conditions
of Proposition 2.3 and A(x) consists of a single minimal point.

As we have seen in Sec. 3, the above argument proves Theorem 1.2 (Bl) as
well as Theorem 1.1 (B).

4.2. Proofs of Corollaries. In this section, we prove Corollary 1.1, 1.2 and
1.3.

Corollary 1.1 is easily verified because it is well known (cf. [4]) that any
polynomial as in the corollary is hyperbolic.

Similar consideration gives a proof of Corollary 1.2. Here, we present a
direct proof for convenience of the readers.

Proof of Corollary 1.2. Let B(z) be a finite Blaschke product of degree
d >2. It follows from Denjoy-Wolff theorem (cf. [4]) and from local dymanics
at a parabolic periodic point that B has at most one parabolic periodic point and
that it is a fixed point.

Suppose that the Blaschke product has a parabolic fixed point zy € J(B).
We denote by O_(z) the set of backward orbits of zy. For any (e J(B)—
0O_(zy), there exists a monotone sequence {np};f: , © N such that {B™(( )};’i  has a
limit {y # zp as p — oo. Indeed, it is easily seen from local dynamics of B near
the parabolic fixed point zy (cf. [4]). Since every critical point of B is attracted
to zo, there exists a neighbourhood A({y,r) ={ze C||z—{| <r} (r>0) of ¢
such that A({y,r) N Pp =@, where Pp is the post-critical set of B, that is, the set
of critical points and their forward orbits of B.

LemMA 4.2.  There exist local inverses f, of B" (n=1,2,...) in A({y,r) so
that f, ({o) — ( as p — 0.

Proof. Since A({y,r)NPp=10, any branch of of B™ exists for any
neNon A({y,r). Take a branch f, of B as f, (B"({)) ={. The map f,, is
a holomorphic map of A({y,r) to Sp=C— Pg and Pp is an infinite set.
Hence, Sp is hyperbolic as a Riemann surface and it follows from Schwartz’s
lemma that

dsy (8, Jn, (L)) = ds, (f, (B™ (D)), 11, (L0)) < dayr) (B (£), o),
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where ds(-,-) stands for the hyperbolic distance on a hyperbolic Riemann surface
S. Since B™({) — {y, we have

lim /() = L.
Hence, the proof of the lemma is completed. O

Since f,, is a holomorphic map of A({y,r) to C - Py, {/s,},—1 becomes a
normal family of univalent functions. Thus, a limit function f = lim, .. f,, is
either an univalent function or a constant. If it is not a constant, the image
f(A(Lo,r)) of A({y,r) contains an open set U 3{ with U = f(A(y,r)). Since
{n, }p , converges to f uniformly on every compact subset of A({y,r), we verify
that there exist a compact subset K of A({y,r) such that f, (K)> U for suf-
ficiently large n,. This implies K > B™(U) and it contradicts to UNJ (B) #0.
Therefore, we conclude that /"=, ie., {f,, };’; | converges to a constant function.

Since the Julia set J(B) of B is totally disconnected, we may take an annulus
A in A(¢y,r) N F(B) so that the closure 4 is contained in A(y,r) and the bounded
component of A¢ contains {,. As B"({) — (o, B"({) and {, belong to the same
component of A¢ for sufficiently large n,. Hence, the bounded component U,,
of A”ﬂ contains {. Since { fnp}p | converges to f = { uniformly on A4, we may
assume that

U,

p+1

c Ay, U, (p=12,..).

Np+1

Noting that mod(4,,) = mod(A4) for A4,, = f,,(4), we verify that the sequence

{4,,},~, of annuli satlsﬁes the conditions of Proposition 2.3 and dim A;({) = 1.
It is easily seen that the above argument also works if B does not have a

parabolic fixed point. Hence, we complete the proof of the corollary.

Proof of Corollary 1.3. From Theorem 1.2, any quasiconformal mapping w
on D is extended to a quasiconformal mapping on C. We denote it by the same
letter w.

Let { be an arbitrary point of 6D. According to the proof of Theorem 1.2,
there exists a sequence {4,},~, of annuli in D such that it satisfies the conditions
of Proposition 2.3 for { € dD and D. Since w is a quasiconformal mapping, we
have

K(w)™' mod(4,) < mod(w(4,)) < K(w) mod(4,)

for each neN, where K(w) is the maximal dilatation of w. Therefore,
{w(4,)},~, also satisfies the conditions of Proposition 2.3 and we verify that both
D* and w(D)* are homeomorphic to C. Hence, we conclude that w gives a
homeomorphism from D* onto w(D)".

4.3. Proof of Theorem 1.2 (B2). First, we note the following lemma.

LemmaA 4.3.  Let E be a compact subset of C. If E is of linear measure zero,
then it is AB-removable, that is, for any open neighbourhood U of E, any bounded
holomorphic function on U — E is extended holomorphically to whole U.
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Proof. The proof is done as an elementary application of Cauchy’s integral
formula. See [11], for example. O

Therefore, it is sufficient to show that the Julia set J(B) on the unit circle
0A(0,1) is of linear measure zero. If not, the harmonic measure w;(g) in the unit
disk A(0,1) for J(B) is a positive harmonic function in A(0, 1).

LemmA 4.4. For any ze A(0,1),
(4) wy(5)(B(2)) = wyp)(2)-
Proof. From Perron’s method for the Dirichlet problem (cf. [2]), we see that

wyp)(z) = s'i?f? 5(z) = SSBI(/)’ s(z),

where & (resp. &) is the family of superharmonic (resp. subharmonic) functions
in A(0,1) such that for

liminf $§(z) > resp. limsup s(z) < ,
min ) 59 = 200 ( P oA 5) X’(m(é))

where ;) is the characteristic function of J(B) in 0A(0,1).
Since B~!(J(B)) = J(B), we see that §o Be ¥ for any §e.%. Hence, we
have

wyp) © B(z) = wyp(2).

Similarly, we obtain
wyp) ° B(z) < wyp(2).
Thus, we have (4). O

For z e F(B), the grand orbit of z is the set of y e F(B) with
B"(z) = B"(y)

for some n,m e N.

The above equation (4) shows that the harmonic measure w,p) is regarded
as a function of the set of grand orbits of A(0,1). Since J(B) is not connected,
F(B) is either a parabolic component or an attractive component which is not
super attractive. Thus, the set of grand orbits of F(B) forms a Riemann surface
of type (1,k) or (0,2+k) for some k>1 ([10]). Noting that the Riemann
surface is a double of the space of grand orbits in A(0, 1), we see that the grand
orbits of A(0,1) forms a finite bordered Riemann surface S and w;p is con-
sidered as a bounded harmonic function u on S which vanishes identically on the
relative boundary dS. Hence, the maximal principle of harmonic functions yields
that

u = wJ(B) =0.
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We have a contradiction and the linear measure of J(B) is zero. From Lemma
4.3, we complete the proof of Theorem 1.2 (B2).

[9]
(10]

(11]
(12]

(13]
(14]

(15]

(16]
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