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Abstract

We show that if a 1-hyperbolic structurally finite entire function of type ð p; qÞ,
pb 1, is linearizable at an irrationally indi¤erent fixed point, then its multiplier satisfies

the Brjuno condition. We also prove the generalized Mañé theorem; if an entire

function has only finitely many critical points and asymptotic values, then for every such

a non-expanding forward invariant set that is either a Cremer cycle or the boundary of a

cycle of Siegel disks, there exists an asymptotic value or a recurrent critical point such

that the derived set of its forward orbit contains this invariant set. From it, the concept

of n-subhyperbolicity naturally arises.

1. Introduction

A structurally finite entire function is constructed from finitely many
quadratic blocks and exponential blocks by Maskit surgeries which connect two
functions.

Definition 1.1 (structural finiteness). A structurally finite entire function of
type ð p; qÞ is an entire function constructed from p quadratic polynomial blocks
and q exponential function blocks. SFp;q denotes the set of all structurally finite
entire functions of type ð p; qÞ.

For the precise definition and details, see [15] or [14]. By this definition, we
have that a structurally finite entire function has in fact both the topological
characterization and the explicit representation, which are used in Section 3 and 4
respectively:

Theorem 1.1 (topological characterization [15]). Every element of SFp;q has
exactly p critical points and q transcendental singularities of its inverse. Con-
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versely, every entire function with exactly p critical points and q transcendental
singularities of its inverse belongs to SFp;q.

In the above and the whole paper, we always count critical points with
multiplicities. Hence structurally finite entire functions are of the Speiser class,
that is, have finitely many singular values. The classification theorem of Fatou
components of this class is known ([6] and [3]). In particular, there are neither
wandering nor Baker domains.

Theorem 1.2 (explicit representation [14]). For ðp; qÞ0 ð0; 0Þ, SFp;q agrees
with SFp;q, where

SFp;q :¼
ð z

0

ðcptp þ � � � þ c0Þeaqt
qþ���þa1t dtþ b; cpaq 0 0

� �
ðq0 0Þ;

and SFp;0 :¼ Polypþ1 ¼ fpolynomials of degree pþ 1g.

From now on, we assume l ¼ e2pia ða A R�QÞ.
Let us consider an irrationally indi¤erent cycle of an entire function f of

period n with multiplier l. It is called a Siegel cycle if every point of this cycle
has a neighborhood where the first return map f n is conformally conjugate to
RlðzÞ ¼ lz on the unit disk. Otherwise it is called a Cremer cycle.

The Brjuno condition for a means that

Xy
n¼0

log qnþ1

qn
< y;

where fpn=qng is the sequence of rational numbers approximating a defined by
its continued fraction expansion.

The following shows that an irrationally indi¤erent cycle is Siegel when a
satisfies this Brjuno condition:

Theorem 1.3 (Brjuno [1]). Let f ðzÞ ¼ lzþ � � � be an analytic germ at the
origin. If a satisfies the Brjuno condition, then f is (analytically) linearizable, that
is, on a neighborhood of the origin, f is conformally conjugate to RlðzÞ ¼ lz on
the unit disk.

In [16], Yoccoz gave a beautiful alternative proof of this Brjuno theorem
and also showed the following theorem in the case of period one. Later we
generalized it in the case of arbitrary period:

Theorem 1.4 (Yoccoz [16], Okuyama [11]). If an irrationally indi¤erent
cycle of a quadratic polynomial with multiplier l is a Siegel cycle, then a satisfies
the Brjuno condition.

Even in the cubic polynomial case, it is not known whether Theorem 1.4 can
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be generalized. In the transcendental entire function case, Lukas Geyer showed
the following:

Theorem 1.5 (Geyer [5]). If the origin is a Siegel fixed point of
l
Ð z

0 ð1þ tÞet dt, then a satisfies the Brjuno condition.

Clearly Geyer’s example belongs to SF1;1, quadratic polynomials to SF1;0,
and both of them naturally satisfy the 1-hyperbolicity defined in Section 2 (see
also [11]). In this paper, we shall extend Geyer’s result to 1-hyperbolic struc-
turally finite entire functions by more general and synthetic method:

Main Theorem 1. If a 1-hyperbolic structurally finite entire function of type
ðp; qÞ, pb 1, has a Siegel fixed point with multiplier l ¼ e2pia, then a satisfies the
Brjuno condition.

In the case p ¼ 0, we just have:

Main Theorem 2. If a 1-hyperbolic structurally finite entire function of type
ð0; qÞ, qb1, has a Siegel fixed point with multiplier l ¼ e2pia, then EðzÞ ¼ l

Ð z

0 e
t dt

is linearizable at the origin.

We note that EðzÞ ¼ l
Ð z

0 e
t dt A SF0;1. Hence the most fundamental case

remains open:

Problem. If the origin is a Siegel fixed point of EðzÞ ¼ l
Ð z

0 e
t dt, then a

satisfies the Brjuno condition?

In Section 2, we define the n-subhyperbolicity in the way similar to that in
[11]. The generalized Mañé theorem is crucial. In Section 3, we shall explain
the linearizability-preserving perturbation of the n-hyperbolic entire function,
which increases the number of the foliated equivalence classes of acyclic singular
values in the Fatou set. The topological characterization of SFp;q shows that
this perturbation is closed in SFp;q. In Section 4, we shall prove Main The-
orems. Using the explicit representation of SFp;q, we can apply the algebraic
quadratic perturbation, which was first applied to polynomials by Pérez-Marco
[12], to structurally finite entire functions. In Section 5, we shall give a proof
of the generalized Mañé theorem, from which we naturally derive the concept of
n-subhyperbolicity.

Acknowledgment. The author would like to express his gratitude to Prof.
Masahiko Taniguchi and Prof. Toshiyuki Sugawa for valuable discussions and
advices, and to Prof. Mitsuhiro Shishikura for commenting on the proof of the
corollary of the Mañé theorem.

The author must particularly thanks the referee. The referee read the
paper with great care, pointed out many minor mistakes, the important one of
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which was involved with the generalized Mañé theorem; the author could
correct the statement of Theorem 5.1 and refine the proof of Theorem 2.1. The
referee’s careful comments also helped the author refine the presentation of this
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2. n-subhyperbolicity

We assume that entire functions are neither constant nor linear. Let f
be an entire function and F ð f Þ and Jð f Þ the Fatou and Julia sets of f re-
spectively.

Definition 2.1 (derived set, o-limit set, and recurrence). The derived set
dðcÞ of c A C is defined by the set of all derived (or accumulation) points z A C of
f f nðcÞgn AN, i.e., z A C such that for every neighborhood U of z, ðU � fzgÞV
f f nðcÞgn AN 0j. The o-limit set oðcÞ of c A C is defined by the set of all z A C
such that limi!y f niðcÞ ¼ z for some increasing fnigHN. A point c is recurrent
if oðcÞ C c.

Remark. If c is either periodic or preperiodic, then dðcÞ ¼ j and oðcÞ
equals the cycle where c is eventually mapped. Otherwise dðcÞ ¼ oðcÞ. In par-
ticular, if c is a recurrent critical point of f in Jð f Þ, dðcÞ ¼ oðcÞ.

Definition 2.2 (correspondence). An asymptotic value or a recurrent critical
point s corresponds to an irrationally indi¤erent cycle C if dðsÞIG. Here let
G ¼ GC be, if C is Siegel, the boundary of the cycle of the Siegel disks associated
with C, otherwise the cycle C itself.

Remark. If s corresponds to an irrationally indi¤erent cycle, then dðsÞ0j,
so s is neither periodic nor preperiodic. It also holds that s A Jð f Þ.

We shall show the following in Section 5.

Theorem 2.1 (the generalized Mañé theorem). Suppose that f has only
finitely many critical points and asymptotic values. Then for every irrationally
indi¤erent cycle C, there exists an asymptotic value or a recurrent critical point
corresponding to C.

We fix the definition of the transcendental singularities of the inverse of
an entire function f . For a A C, let A :¼ fAðrÞgr>0 be a family of domains in C

such that for r > 0, AðrÞ is a component of f �1ðDrðaÞÞ and if 0 < r1 < r2, then
Aðr1ÞHAðr2Þ. Then the intersection of all the closures of AðrÞ in ĈC consists of
only one point. If this point is the infinity, A is called a transcendental sin-
gularity of f �1 over a. We note that then the a is an asymptotic value of f , and
that the number of transcendental singularities of f �1 is not less than that of
asymptotic values.
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Definition 2.3 (correspondence). The transcendental singularity A of f �1

over the asymptotic value a corresponds to G if so does a.

Convention. For a transcendental singularity A of f �1 over a, we say that
the image of A by f is a, and write f ðAÞ ¼ a. Moreover, if a A Jð f Þ, we say
that A A Jð f Þ.

Now we define the n-subhyperbolicity.

Definition 2.4 (n-subhyperbolicity). Let f be a structurally finite entire
function. For a non-negative integer n, f is n-subhyperbolic if

(i) there exist exactly n recurrent critical points of f or transcendental
singularities of f �1 each of which corresponds to some irrationally
indi¤erent cycle of f ,

(ii) every critical point of f and transcendental singularity of f �1 in Jð f Þ
other than such ones as in (i) is preperiodic, and

(iii) no orbits of singular values in Fð f Þ accumulate to Jð f Þ.
An n-subhyperbolic f is n-hyperbolic if it has no such (ideal) points as in (ii).

In the case f is a polynomial, this definition agrees with what we have
defined in [11]. For several examples of n-subhyperbolic polynomials, see
[11].

3. Linearizability preserving perturbation

From now on, we fix l ¼ e2pia, where a A R�Q.
For an entire function f , a point is said to be acyclic if it is neither periodic

nor preperiodic point of f . The grand orbit of x A C is the set

fy A C; f iðxÞ ¼ f jðyÞ for some i; jb 0g:

x; y A C are in the foliated equivalence class of f if the closure of their grand
orbits agree with each other. Let NACð f Þ be the number of the foliated equiv-
alence classes of acyclic singular values of f in Fð f Þ.

Proposition 3.1 (linearizability preserving perturbation). Let f A SFp;q be
n-hyperbolic and have a Siegel fixed point with multiplier l. Then there exists an
n-hyperbolic g A SFp;q such that

(i) g also has a Siegel fixed point with multiplier l, and
(ii) NACðgÞ ¼ pþ q� n.

In the rest of this section, we prove Proposition 3.1. Let f A SFp;q. We
use the following lemmas, the first three of which are about perturbations of
critical points, and essentially proved in Section 2 in [11]. See also Section 5 in
[15], ‘‘relaxing the relations between the singularity data’’.
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Lemma 3.1. Let c be a non-periodic critical point in Fð f Þ with multiplicity
mb 2. There exists a Jordan neighborhood U of c in F ð f Þ such that U � fcg
contains no critical point, f maps U onto some Jordan domain properly, and U V
6

nb1
f nðUÞ ¼ j. And there exist a quasiconformal automorphism F of C and

g A SFp;q such that g has exactly m distinct critical points in FðUÞ, which are
simple, and g ¼ F � f �F�1 on C�FðUÞ.

We note that the following Lemma 3.2 is the inverting Carleson and
Gamelin operation in [2].

Lemma 3.2. Let c be a periodic critical point in Fð f Þ with multiplicity mb 1
and of period p. There exists a Jordan neighborhood U of c in F ð f Þ such that
U contains no critical point of f other than c, f maps U onto some Jordan domain
properly, and f pðUÞTU . And there exist a quasiconformal automorphism F
of C and g A SFp;q such that g has exactly m distinct critical points in FðUÞ,
which are simple, FðcÞ is not a critical point of g, and g ¼ F � f �F�1 on
C�FðU � fcgÞ.

Lemma 3.3. Let c be a non-periodic and simple critical point in Fð f Þ. There
exists a Jordan neighborhood U of c in Fð f Þ such that U � fcg contains no critical
point, f maps U onto some Jordan domain properly, and U V6

nb1
f nðUÞ ¼ j.

For every y A f ðUÞ, there exist a quasiconformal automorphism F of C and
g A SFp;q such that g has only one critical point FðcÞ in FðUÞ, which is simple,
gðFðcÞÞ ¼ FðyÞ, and g ¼ F � f �F�1 on C�FðUÞ.

We need to show the following here. In the proof, the classification theorem
of Fatou components already stated in Section 1 is implicitly used.

Lemma 3.4. Let A ¼ fAðrÞgr>0 be a transcendental singularity of f �1 over
a A F ð f Þ. There exists an r1 > 0 such that U :¼ Aðr1Þ is in F ð f Þ, disjoint from
6

nb0
f nðDr1ðaÞÞ, and U contains no critical points of f . For every " A Dr1=2,

there exist quasiconformal automorphisms C and F of C and g A SFp;q such that

C is the identity outside Dr1ðaÞ, CðaÞ ¼ aþ ", and g ¼ F �C � f �F�1 on C. In
particular, g ¼ F � f �F�1 on C�FðUÞ and Fðaþ "Þ is an asymptotic value of g.

Remark. In the above Lemmas, we can assume that the diameter of U is
arbitrarily small.

Proof. Since 6
nb0

f nðDrðaÞÞ is uniformly bounded for su‰ciently small
r > 0, there exists so small r1 > 0 that Aðr1ÞV6

nb0
f nðDr1ðaÞÞ ¼ j and Aðr1Þ

contains no critical points. Let h : ½0;þyÞ ! ½0; 1� be such a smooth function
that identically equals one and zero on ½0; r1=2� and on ½r1;þyÞ respectively.
For e A Dr1=2 , we put CðwÞ :¼ wþ ehðjw� ajÞ. It is easy to see that ~ff :¼ C � f is
a quasiregular map on C, equals f þ e and f on Aðr1=2Þ and on C� Aðr1Þ
respectively, and is unbranched on Aðr1Þ � Aðr1=2Þ. Let m be the Beltrami
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coe‰cient on Aðr1Þ of ~ff and we define ~mm by the pullback ð f �Þnm on f �nðAðr1ÞÞ
ðn A NU f0gÞ and 0 on 7

nb0
ðC� f �nðAðr1ÞÞÞ, which is an ~ff -invariant Beltrami

coe‰cient on C. Let F be a quasiconformal automorphism of C whose Beltrami
di¤erential equals ~mm. Then g ¼ F � ~ff �F�1 is an entire function. Finally, since
g has the same number of critical points and transcendental singularities as f , it
follows that g is in SFp;q from Theorem 1.1, the topological characterization of
structurally finite entire functions. r

Proof of Proposition 3.1. Suppose that f is n-hyperbolic and have a Siegel
fixed point z0 with multiplier l. By applying the above perturbations to
f inductively and in finitely many times, we obtain g A SFp;q, which satisfies
NACðgÞ ¼ pþ q� n, is n-hyperbolic, and is quasiconformally conjugate to f
around z0 on a neighborhood of Fðz0Þ. Therefore g has a Siegel fixed point
Fðz0Þ with multiplier l (see p. 61–p. 62 in [16]). r

4. Proof of Main Theorems

Let f A SFp;q have an irrationally indi¤erent fixed point z0 with multiplier
l ¼ e2pia, where a A R�Q. In the case q ¼ 0, Main theorem 1 is proved in [11].
Therefore we assume qb 1.

By Theorem 1.2, that is, the explicit representation, and by an a‰ne
conjugation which maps z0 to the origin, we assume that

f ðzÞ ¼ l

ð z

0

PðtÞeQðtÞ dt;ð1Þ

where P is a polynomial of degree p with Pð0Þ ¼ 1 and Q is that of degree q with
Qð0Þ ¼ 0. Let SFp;qðlÞ be the set of all such functions, which is a ðpþ qÞ-
dimensional complex manifold with respect to coe‰cients of P and Q. Fur-
thermore, we say f1 @ f2 ð f1; f2 A SFp;qðlÞÞ if f1ðczÞ=c ¼ f2 for some c A C�.

Suppose that f is 1-hyperbolic and the origin is a Siegel fixed point. By
Proposition 3.1, we can also assume that NAC ¼ pþ q� 1, which equals the
complex dimension of SFp;qðlÞ=@. Since f is 1-hyperbolic, it has no parabolic
cycle. Therefore, by the same argument as that in Lemma 4.1 in [11] (see also
[10]), the image of the uniformization map (holomorphic injection) from the
Teichmüller space of f into SFp;qðlÞ=@ becomes a domain in SFp;qðlÞ=@. Hence
f is quasiconformally stable in SFp;qðlÞ, that is, there exists an open neigh-
borhood of f every element of which is quasiconformally conjugate to f .

Proof of Main Theorem 1. Suppose that pb 1. Since f is quasiconfor-
mally stable in SFp;qðlÞ, there exists a B > 0 such that for any jbjbB,

f ½b�ðzÞ :¼ f ðzÞ þ 1

b

ð z

0

teQðtÞ dt A SFp;qðlÞ

is quasiconformally conjugate to f . For any b A C, we write
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FbðzÞ :¼
1

b
f ½b�ðbzÞ ¼ lz 1þ z

2l

� �
þ 1

b
hðbzÞ;

where h is an entire function with hð0Þ ¼ h 0ð0Þ ¼ 0.

Proposition 4.1. If f is linearizable at the origin, then

F0ðzÞ ¼ lz 1þ z

2l

� �

is also linearizable at the origin.

Proof. We note that for jbjbB, Fb is linearizable at the origin. As in
the case of rational maps (cf. [8] or [9]), we can show that the quasiconformal
stability implies the J-stability. Hence in fact there exists an Mb 0 such that
for Ba jbja 2B, the Siegel disk of Fb at the origin contains fjzjaMg. Then
the proposition follows by the same argument as in [12], which is also explained
in [11]. For completeness, we write the proof.

Suppose that JðF0Þ intersects fjzj < Mg. Then there exists a z1 A C with
0 < jz1j < M and n > 0 such that F n

0 ðz1Þ ¼ z1 since JðF0Þ is the closure of the set
of all repelling periodic points of F0, which is true not only for rational functions
but also entire functions. We set:

Hðb; zÞ :¼ z

F n
b ðzÞ � z

: fjbj < 2Bg � fjzj < Mg ! ĈC;

which depends meromorphically on each variables and is uniformly continuous
on fjbja 2Bg � fjzjaMg.

For B < jbj < 2B, since fjzjaMg is contained in the Siegel disk of Fb at
the origin, Fb has no periodic point there. Hence Hðb; zÞ is holomorphic on
fB < jbj < 2Bg � fjzj < Mg. On the other hand, since Hðb; 0Þ ¼ 1=ðln � 1Þ is
the constant independent of jbja 2B, there exists 0 < m < M such that Hðb; zÞ
is also holomorphic on fjbj < 2Bg � fjzj < mg.

By the Hartogs continuation theorem, Hðb; zÞ is actually holomorphic on
fjbj < 2Bg � fjzj < Mg. This contradicts the assumption F n

0 ðz1Þ ¼ z1 and 0 <
jz1j < M. r

Hence F0 is linearizable at the origin. It follows from this and Theorem 1.4
that a satisfies the Brjuno condition. r

Proof of Main Theorem 2. We assume that f ðzÞ ¼ l
Ð z

0 e
QðtÞ dt, Qð0Þ ¼ 0.

Since f is quasiconformally stable in SF0;qðlÞ, there exists B > 0 such that for
any jbjbB,

f ½b�ðzÞ :¼ l

ð z

0

eQðtÞþt=b dt A SF0;qðlÞ

is quasiconformally conjugate to f . For any b A C, we have
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FbðzÞ :¼
1

b
f ½b�ðbzÞ ¼ l

ð z

0

et dtþ hðb; zÞ;

where h is a holomorphic function on C� C with hð0; �Þ ¼ 0.

Proposition 4.2. If f is linearizable at the origin, then

F0ðzÞ ¼ l

ð z

0

et dt

is also linearizable at the origin.

This can be proved by the same argument as in Proposition 4.1. r

5. Proof of the generalized Mañé theorem

In this section, we show the generalized Mañé theorem for every entire
function with only finitely many critical points and asymptotic values. In [7], he
showed it for rational functions (see also [13]). Throughout this section, let f be
an entire function with only finitely many critical points and asymptotic values.

Theorem 5.1. Let Mf be the set of all asymptotic values and recurrent
critical points of f , and put dðMf Þ :¼ 6

s AMf
dðsÞ.

Then there exists an N A N such that for every x A Jð f Þ � dðMf Þ which is not
a parabolic periodic point and for every e > 0, there exists a connected neigh-
borhood U of x such that for every nb 0 and every connected component V 0 of
f �nðUÞ bounded in C,

(i) the spherical diameter of V 0 is less than e and degð f n : V 0 ! UÞaN.
(ii) For every e1 > 0, there exists an n0 A N such that for every n > n0, the

spherical diameter of V 0 is less than e1.

Theorem 5.1 can be shown by completely the same way as Theorem 1.1 in
[13]. The only di¤erence is that we should exclude not only the o-limit set of a
recurrent critical point but also the derived set of an asymptotic value.

Theorem 5.2, which is not needed to show Theorem 2.1, follows from
Theorem 5.1 and is also proved by almost the same argument as Theorem 1.2 in
[13] although some extra argument for excluding unbounded iterated preimages
of the U in Theorem 5.2 is needed.

Theorem 5.2. Let LH Jð f Þ be compact and forward invariant, i.e.,
f ðLÞHL, and contain none of critical points, parabolic periodic points and
asymptotic values. If LV dðMf Þ ¼ j, then it is expanding; i.e., there exists an
n1 > 0 such that for every nb n1, minz ALjð f nÞ0ðzÞj > 1.

Proof. Assume that L is not expanding. Then there exist nk ! y, L C zk,
and x A L such that jð f nk Þ0ðzkÞja 1 and limk!y f nk ðzkÞ ¼ x. If x A C� dðMf Þ,
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then x satisfies the condition of Theorem 5.1. For every e > 0 such that the
spherical e-neighborhood Le of L contains no critical point, let U be a neigh-
borhood of x associated to e given by Theorem 5.1. Since limk!y f nk ðzkÞ ¼ x,
there exists KðUÞ > 0 such that f nk ðzkÞ A U for every k > KðUÞ.

We show that there exists a k > KðUÞ such that the component Vk of
f �nk ðUÞ containing zk is unbounded: otherwise, f nk : Vk ! U is bijective for
every k > KðUÞ since for 0a ja nk, f jðVkÞ is a bounded connected com-
ponent of f �nkþjðUÞ intersecting L so is contained in Le by (i) in Theorem
5.1. Furthermore, every limit function f on U of the single-valued branches
f f �nk : U ! Vkgk>KðUÞ is a constant one by (ii) in Theorem 5.1. This con-

tradicts that jf 0ðxÞj ¼ limk!yjð f nk Þ0ðzkÞj�1
b 1.

For an unbounded Vk, there exists a 1a ja nk such that f jðVkÞ is bounded
but f j�1ðVkÞ is unbounded. Then f jðVkÞ contains an asymptotic value, and
is contained in Le. Consequently, if e > 0 is small enough, Le contains some
asymptotic value. Since f has only finitely many asymptotic values, it implies L
itself contains some asymptotic value. This is a contradiction. r

Now we shall prove Theorem 2.1, the generalized Mañé theorem, stated in
Section 2. For Cremer cycles, we need some careful argument for finding
bounded iterated preimages of the U in Theorem 5.2.

Proof. As in Section 2, let C be an irrationally indi¤erent cycle of period
p, and G ¼ GC the boundary of the cycle of the Siegel disks associated with C
if C is Siegel, and the cycle C itself otherwise.

(Cremer Case). Assume that G is a Cremer cycle. Theorem 5.2 implies
that if G contains no asymptotic value, then GH dðMf Þ. We shall show that the
latter always occurs.

Assume that GV dðMf Þ ¼ j. Let W be the bounded and open spherical e-
neighborhood of G. Since G is a finite set and f has only finitely many critical
or asymptotic values, there exists an e > 0 such that each connected component
of W � G is a spherical once-punctured disk whose puncture is in G and W � G
contains none of critical or asymptotic values. Then f : f �1ðW � GÞ ! W � G
is unbranched. Hence f maps each connected component Y of f �1ðW � GÞ
onto a connected component X of W � G as a covering map, which is known to
be isomorphic to that onto D� given by either the logarithm or the nth root for
some n A N (cf. [4], Theorem 5.10). f : Y ! X is a logarithmic covering if and
only if Y is simply connected. We note that f �1ðGÞ is the set of all punctures
of f �1ðW � GÞ, and GðH f �1ðGÞÞ contains no critical point. Hence if Y has its
puncture in G, then f : Y ! X is conformal, and f gives a homeomorphism
between the closures of X and Y . In particular, since X is bounded, so is Y .

By filling the punctures, we conclude that every connected component of
f �1ðWÞ that intersects G is bounded and f maps it onto W conformally. Let
W1 be the union of all these (only finitely many) connected components of
f �1ðWÞ that intersect G.
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For every x A G, which satisfies the assumption of Theorem 5.1, there exists
an open neighborhood Ux of G associated to e given by Theorem 5.1. Let
U :¼ 6

x AG Ux. For kb 0, let Vk be the union of such components of f �kðUÞ
that intersect G. By induction, we show Vk HW : for k ¼ 0, it is trivial.
Assume that it is true for k. Since Vkþ1 is the union of such components of
f �1ðVkÞ that intersect G, Vkþ1 HW1, which is bounded, so Vkþ1 HW by (i) in
Theorem 5.1.

Since W contains no critical point, f k maps Vk onto U conformally. By
(ii) in Theorem 5.1, every limit function fx on Ux of the single-valued
branches f f �kp : Ux ! Vkpgkb0 is constant. This contradicts that jf 0

xðxÞj ¼
limk!yjð f kpÞ0ðxÞj�1 ¼ 1.

Hence GH dðMf Þ, which concludes that GH dðsÞ for some s A Mf .

(Siegel Case). Next, assume that G is the boundary of a cycle of the Siegel
disks.

Let Að f Þ be the set of all asymptotic values. Assume that there exists x A
ðG�6

nb0
f nðAð f ÞÞÞ � dðMf Þ. Then if a neighborhood of x is small enough, it

does not intersect 6
nb0

f nðAð f ÞÞ. Since x satisfies the assumption of Theorem
5.1, there exists an open neighborhood U HC�6

nb0
f nðAð f ÞÞ of x associated

to some e > 0 given by Theorem 5.1. Since U intersects a Siegel disk, there
exist e1 > 0 and nk ! y such that for every k A N, the spherical diameter of
the connected component Vk of f �nk ðUÞ intersecting G is more than e1. On
the other hand, since U HC�6

nb0
f nðAð f ÞÞ, Vk is bounded for every k A N.

Hence by (ii) in Theorem 5.1, there exists n0 A N such that the spherical diameter
of Vk is less than e1 for every k > n0. This is a contradiction.

Hence G�6
nb0

f nðAð f ÞÞH dðMf Þ. Since the left hand side is dense in G

and dðMf Þ is closed, it follows that GH dðMf Þ.
The proof of that GH dðsÞ for some s A Mf is almost the same as the proof

of the original Mañé theorem, so we give its outline and omit the details.
Let D be one of the Siegel disks, ĜG the boundary of D considered in ĈC, and m

the harmonic measure on ĜG with respect to the Siegel periodic point z0 A D. The
support of m equals ĜG. In particular, mðĜG� fygÞ > 0.

The dynamical system ðĜG� fyg; f pjðĜG� fygÞ; mjðĜG� fygÞÞ has such an

ergodic property that if f pðBÞHB for a Borel subset BH ĜG� fyg, then mðBÞ
equals 0 or 1. In particular, for every s A ĈC, mððĜG� fygÞV dðsÞÞ equals 0 or 1.

Consequently, since ĜG� fygH dðMf Þ ¼ 6
s AMf

dðsÞ, there exists an s A Mf

such that mððĜG� fygÞV dðsÞÞ ¼ 1. Hence ĜGV dðsÞ is a m-full measure closed set

in ĈC, so contains supp m ¼ ĜGI qD, which is the boundary of D in C. Hence

dðsÞI qD so dðsÞI6p

n¼1
f nðqDÞ ¼ G. r
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