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§1. Introduction

Let W be an open Riemann surface. We denote by ATV the minimal Martin
boundary of W. In [L], it was showed that there exist open Riemann surfaces
F and F' quasiconformally equivalent to each other such that F’ possesses
nonconstant positive harmonic functions although F does not possess non-
constant positive harmonic functions. This means that #AF > 2 although
#Af =1, where #4 stands for the cardinal number of a set A. Needless to say,
the above F and F’ are of positive boundary, i.e. F and F' admit the Green
function (cf. [SN]). However, in case open Riemann surfaces W and W’ are of
null boundary (i.e. not positive boundary), it does not seem to be known whether
#A?/ = #AIW/ or not if W and W' are quasiconformally equivalent to each other.

In this paper, we are concerned with p-sheeted unlimited covering surfaces of
the complex plane C. Consider p-sheeted unlimited covering surfaces R and R’
of the complex plane C which are quaswonformally equivalent to each other.
Then, it seems to be valid that #AF = #AR (cf. [Sh], [M]). The purpose of this
paper is to give a partial answer to this conjecture. Namely,

MAaIN THEOREM. Let R and R’ be p-sheeted unlimited covering surfaces of C
which are quaszconformally equivalent to each other. If p =2 or 3, then it holds
that #AF = #AY

§2. Preliminaries

Hereafter we consider the punctured sphere C\{0} in place of the complex
plane C since C\{0} is conformally equivalent to C. Hence we assume that R
and R’ in Main Theorem are p-sheeted unlimited covering surfaces of C\{0}.
Let AR and AR be as in §1, and 7 the prOJectlon map from R onto C\{0}. Set

={zeC| |z| <1}, Dy =D\{0} and Ry = 7' (Dy). It is well-known that A%
and A are identified with A®RUz~!(dD) and ARU7~1(D), respectively, where
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0D = {|z| =1}. From now on we consider Dy (resp. Ro) in place of C\{0}
(resp. R) since C\{0} (resp. R) does not admit the Green function. Let gy be the
Green function on D with pole at 0.

DeriNiTION 2.1 (cf. [B], [BH]). We say that a subset E of Dy is thin at 0 if
DRE # go, where DRE is the balayage of g relative to E on D.

If E is a closed subset of D, it is well-known that E is thin at 0 if and only if
0 is an irregular boundary point of D\E in the sense of the Dirichlet problem.

The following lemma gives the quasiconformal invariance for thinness.

Lemma 2.1 (cf. [M], [Sh]). Let G be a subdomain of C and ¢ a quasiconformal
mapping from C onto C. If { is an irregular boundary point of G in the sense of
Dirichlet problem, ¢({) is an irregular boundary point of ¢(G) in the sense of
Dirichlet problem.

DerFmITION 2.2. A subset U in D which contains O is said to be a fine
neighborhood of 0 if D\U is thin at 0.

Let k; be the Martin function on R, with pole at (e AR,

DEFINITION 2.3, Let { be a point in AX and E a subset of Ry. We say that
E is minimally thin at { if ®RRE # k.

DEFINITION 2.4.  Let { be a point in AX and U a subset of Ry. We say that
UU{{} is a minimal fine neighborhood of { if Ry\U is minimally thin at (.

The following proposition gives the characterization of #AX in terms of
minimal fine topology.

ProprosITION 2.1 ([MS)]). Let # be the class of subdomains M of Dy such
that M U{0} is a fine neighborhood of z=0. Then, it holds that

#AR = max ng(M),
Mel

where ng(M) is the number of connected components of n~'(M) and n is the
projection map from R onto C\{0}.

§3. Proof of Main Theorem in case p =2

Consider the case p =2 in this section. Let R and R’ be as in Main
Theorem and f be a quasiconformal mapping from R onto R’. It is known
that 1 < #AR, #AR <2 (cf. [H] and see also [MS]) We have only to prove
that #A =2 if and only if #A =2. Since f~! is a quasiconformal map-
ping from R’ onto R, it is sufﬁcwnt to prove that if #AR =2, then #AF =2.
Suppose that #AX =2. Let n (resp. n') be the projection map from R (resp.
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R’) onto C\{O} By Proposition 2.1 there ex1sts a subdomain U of Dy such
that Do\U is thin at 0, ng(U) =2 and f(z '(U)) = R (:= (n')" '(Dy)). Let
U (j=1,2) be components of n7'(U). Since R is a 2- sheeted unlimited cover-
ing surface of C\{0}, it is easily seen that each U; is considered as a replica of
U. Let g-( o (j =1,2) be the Green function on f (U;) with pole at z.  Denote
by gy ; the complex dilatation of f on U;. Set

_#pjo0 onU
Hy = {0 on C\U,
where ¢; is the inverse of 7| U;: U; — U. It is well-known that there exists a
quaswonformal mapping f; from C onto C with the complex delatation g, (cf.
g. [LV]). Set V;= f;(U). By Lemma 2.1 we find that f;(0) is an 1rregu1ar
boundary point of V; in the sense of the usual Dirichlet problem since 0 is an
irregular boundary point of U in the sense of the usual Dirichlet problem. On

the other hand, the function ZHgf;sz),l() fogo,o(fj)_l(é) (£e V) is the
Green function on V; with pole at & since /f o ¢, ( f»)_1 is confor]mdl Hence, by

[Hl, Theorem 10. 16] there exists a fine limit 7 — lim._ ) gf{) ; ;(/ ofogpo
( ];-)_1. Since f;(0) is an irregular boundary point of ¥} in the sense of the usual

Dirichlet problem, this limit must be positive by [Hl Theorem 8.34]. Denote
this limit function on ¥} by % and set g0< D = qo ofijomo f~ 1. We see that
each qf ) is a positive harmomc functron on f(U;) since each qo is a positive
harmonic function on ¥; and fiomo f~! is conformal. For j=1,2, set

Si(g0"")(x) :=inf s(x),

where s runs over the space of positive superharmonic functions s on R{ sat-
isfying s > g; ") on f(U;). By Perron-Wiener-Brelot method we find that each

S; (gg (U’>) is a positive harmonic function on Rj. Then, the following inequality
U o\ (T)) 1Y
(*) S_/(g({( ')) Rsi f(b>> = 90< /
holds on f(U;). In fact, to prove the inequality (+) note that
RIRRIN(U) _ (U

Iy, /()
Si(ge ) Silgy )

on f(U;), where Hé( 19 is the Dlrlchlet solutron for S; (g0 ) on f(Uj) (cf. e.g.

)
[H1], [CC]). By definition Si(g, /(Y ) > g Y on f(Uj). Hence, by the definition
of the Dirichlet solution in the sense of Perron- Wlener—Brelot,
(U U (U
Sitgs ") =90 = H;fg/gw)
on f(U;). Thus (x) is proved. o
We shall proceed the proof of Main Theorem in case p = 2. By the Martin
representation thegrem, there exist at most two minimal functions /; . (k =1,2)
on Rj with S,(gg ( ’)) = hj1 + hj» on Rj. Hence, by the above inequality (x), we
have
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U)) (U 1~ R\ £(U; (Uy)
/’l] | +h] ) = (g({( )) OthOl\l’/(y J _’_g({(ljj) > ROR o\f( /) thoz\f /i)

on f(U;). Therefore, we find that there exists a mlmmal function s; on R, such
that h; # R’R 0\ ) Hence, by the definition of minimal thinness, R \ f(U)

is minimally thm at the minimal boundary point corresponding to /. Since
FUNNf(Uy) =0, we find that #AR =2

§4. Proof of Main Theorem in case p =3

Consider the case p = 3 in this section. As in §3, it is known that 1 < #A
#AR <3 (cf. [H ] H] and see also [MS]). By the same argument as in the proof of
Main Theorem in case p =2 we find that #AR =3 if and only if #A’f =3.
Hence, to prove the statement of Main Theorem in case p = 3 we have only
to prove that #Alf =2 if and only if #AR=2. Since f~! is a quasicon-
formal mapping from R’ onto R, it is sufﬁc1ent to prove that if #A = 2, then
#AR = 2. Contrary to this, we suppose that #AR =2 and that #AR # 2.
Then, by the above observation, we see that #AR =1.

By Proposition 2.1 there exists a subdomain U of Dy such that Do\ U is thin
at 0, ng(U) =2 and f(n'(U)) = R. Hence n~!(U) consists of two connected
components U; and U,. Since R is a 3-sheeted unlimited covering surface of
C\{0}, we assume that U is a 1-sheeted unlimited covering surface of U, that is,
U, is a replica of U and U, is a 2-sheeted unlimited covering surface of U. Let

/% be the Green function on f(Up) with pole at z.  Denote by u, the complex
dilatation of f on U;. Set '

Ugogp onU
ﬂ:
0 on C\U,

where ¢ is the inverse of n|U; : Uy — U. It is well-known that there exists
a quasiconformal mapping {y from C onto C with the complex delatation u
(cf. [LV]). By the same method as in §3, there exists a positive fine limit
F —lim__y ) gz S o fopoy !, Denote by g U the pull-back of this limit
function on lp(Ul) by yomo f~!. We see that go( U s a positive harmonic
function on f(U;). Set

S(gg ) (x) = inf (),

where s runs over the space of positive superharmonic functions s on R|
satisfying s > gf @) on f(Up). By Perron-Wiener-Brelot method we find that
S(go( )) is a positive harmonic function on Rj,. By the same consideration as in
the proof of Main Theorem in case p =2, we have

1
(%) S(gy' ™) - BR 0) <Ll>l>) > gy

on f(U;). By the assumption, S(go l)) is only one minimal harmonic function
on Rj. Hence, by (xx), we find that R}\ f(U;) is minimally thin at the minimal
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boundary point corresponding to S(g{; <Ul)). Take a curve y in U such that y
reaches 0 and that 7~'(y) does not possess any branch points of R. Hence there
exists a curve j in U>(< Ro\U;) with f(7) = R and n(7) = y which reaches the
ideal boundary since R is unlimited. Hence this implies that

i) f(7) is a subset of Ry\f(U1);

ii) 7'(f (7)) is not thin at 0 in the usual sense, where 7’ is the projection map
from R’ onto C\{0}.

By the above fact i), f(7) is minimally thin at the minimal boundary point

corresponding to S(g'({(u‘)). On the other hand, by the above fact ii) and
[MS, Proposition 3.1], f(7) is not minimally thin at the minimal boundary point
)

U
(g.of( 1)

corresponding to S . This is a contradiction. We have the desired result.
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