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§1. Introduction

Let W be an open Riemann surface. We denote by DW
1 the minimal Martin

boundary of W . In [L], it was showed that there exist open Riemann surfaces
F and F 0 quasiconformally equivalent to each other such that F 0 possesses
nonconstant positive harmonic functions although F does not possess non-
constant positive harmonic functions. This means that aDF 0

1 b 2 although
aDF

1 ¼ 1, where aA stands for the cardinal number of a set A. Needless to say,
the above F and F 0 are of positive boundary, i.e. F and F 0 admit the Green
function (cf. [SN]). However, in case open Riemann surfaces W and W 0 are of
null boundary (i.e. not positive boundary), it does not seem to be known whether

aDW
1 ¼aDW 0

1 or not if W and W 0 are quasiconformally equivalent to each other.
In this paper, we are concerned with p-sheeted unlimited covering surfaces of

the complex plane C. Consider p-sheeted unlimited covering surfaces R and R 0

of the complex plane C which are quasiconformally equivalent to each other.
Then, it seems to be valid that aDR

1 ¼aDR 0

1 (cf. [Sh], [M]). The purpose of this
paper is to give a partial answer to this conjecture. Namely,

Main Theorem. Let R and R 0 be p-sheeted unlimited covering surfaces of C
which are quasiconformally equivalent to each other. If p ¼ 2 or 3, then it holds
that aDR

1 ¼aDR 0

1 .

§2. Preliminaries

Hereafter we consider the punctured sphere ĈCnf0g in place of the complex
plane C since ĈCnf0g is conformally equivalent to C. Hence we assume that R
and R 0 in Main Theorem are p-sheeted unlimited covering surfaces of ĈCnf0g.
Let DR and DR

1 be as in §1, and p the projection map from R onto ĈCnf0g. Set
D ¼ fz A C j jzj < 1g, D0 ¼ Dnf0g and R0 ¼ p�1ðD0Þ. It is well-known that DR0

and DR0

1 are identified with DR U p�1ðqDÞ and DR
1 U p�1ðqDÞ, respectively, where
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qD ¼ fjzj ¼ 1g. From now on we consider D0 (resp. R0) in place of ĈCnf0g
(resp. R) since ĈCnf0g (resp. R) does not admit the Green function. Let g0 be the
Green function on D with pole at 0.

Definition 2.1 (cf. [B], [BH]). We say that a subset E of D0 is thin at 0 if
DR̂RE

g0
0 g0, where DR̂RE

g0
is the balayage of g0 relative to E on D.

If E is a closed subset of D, it is well-known that E is thin at 0 if and only if
0 is an irregular boundary point of DnE in the sense of the Dirichlet problem.

The following lemma gives the quasiconformal invariance for thinness.

Lemma 2.1 (cf. [M], [Sh]). Let G be a subdomain of C and j a quasiconformal
mapping from C onto C. If z is an irregular boundary point of G in the sense of
Dirichlet problem, jðzÞ is an irregular boundary point of jðGÞ in the sense of
Dirichlet problem.

Definition 2.2. A subset U in D which contains 0 is said to be a fine
neighborhood of 0 if DnU is thin at 0.

Let kz be the Martin function on R0 with pole at z A DR.

Definition 2.3. Let z be a point in DR
1 and E a subset of R0. We say that

E is minimally thin at z if R0 R̂RE
kz
0 kz.

Definition 2.4. Let z be a point in DR
1 and U a subset of R0. We say that

U U fzg is a minimal fine neighborhood of z if R0nU is minimally thin at z.

The following proposition gives the characterization of aDR
1 in terms of

minimal fine topology.

Proposition 2.1 ([MS]). Let M be the class of subdomains M of D0 such
that M U f0g is a fine neighborhood of z ¼ 0. Then, it holds that

aDR
1 ¼ max

M AM
nRðMÞ;

where nRðMÞ is the number of connected components of p�1ðMÞ and p is the

projection map from R onto ĈCnf0g.

§3. Proof of Main Theorem in case p ¼ 2

Consider the case p ¼ 2 in this section. Let R and R 0 be as in Main
Theorem and f be a quasiconformal mapping from R onto R 0. It is known
that 1aaDR

1 , aDR 0

1 a 2 (cf. [H] and see also [MS]). We have only to prove

that aDR 0

1 ¼ 2 if and only if aDR
1 ¼ 2. Since f �1 is a quasiconformal map-

ping from R 0 onto R, it is su‰cient to prove that if aDR
1 ¼ 2, then aDR 0

1 ¼ 2.
Suppose that aDR

1 ¼ 2. Let p (resp. p 0) be the projection map from R (resp.
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R 0) onto ĈCnf0g. By Proposition 2.1 there exists a subdomain U of D0 such
that D0nU is thin at 0, nRðUÞ ¼ 2 and f ðp�1ðUÞÞHR 0

0 ð:¼ ðp 0Þ�1ðD0ÞÞ. Let
Uj ð j ¼ 1; 2Þ be components of p�1ðUÞ. Since R is a 2-sheeted unlimited cover-
ing surface of ĈCnf0g, it is easily seen that each Uj is considered as a replica of

U . Let g
f ðUjÞ
z ð j ¼ 1; 2Þ be the Green function on f ðUjÞ with pole at z. Denote

by mf ; j the complex dilatation of f on Uj . Set

mj ¼
mf ; j � jj on U

0 on CnU ;

�

where jj is the inverse of p jUj : Uj ! U . It is well-known that there exists a

quasiconformal mapping fj from C onto C with the complex delatation mj (cf.

e.g. [LV]). Set Vj ¼ fjðUÞ. By Lemma 2.1 we find that fjð0Þ is an irregular
boundary point of Vj in the sense of the usual Dirichlet problem since 0 is an
irregular boundary point of U in the sense of the usual Dirichlet problem. On

the other hand, the function z 7! g
f ðUjÞ
f �jj�ð fjÞ�1ðzÞ � f � jj � ð fjÞ

�1ðxÞ ðx A VjÞ is the

Green function on Vj with pole at x since f � jj � ð fjÞ
�1 is conformal. Hence, by

[Hl, Theorem 10.16], there exists a fine limit F� limz!fjð0Þ g
f ðUjÞ
f �jj�ð fjÞ�1ðzÞ � f � jj �

ð fjÞ�1. Since fjð0Þ is an irregular boundary point of Vj in the sense of the usual
Dirichlet problem, this limit must be positive by [Hl, Theorem 8.34]. Denote

this limit function on Vj by g
Vj

0 and set g
f ðUjÞ
0 ¼ g

Vj

0 � fj � p � f �1. We see that

each g
f ðUjÞ
0 is a positive harmonic function on f ðUjÞ since each g

Vj

0 is a positive
harmonic function on Vj and fj � p � f �1 is conformal. For j ¼ 1; 2, set

Sjðg f ðUjÞ
0 ÞðxÞ :¼ inf

s
sðxÞ;

where s runs over the space of positive superharmonic functions s on R 0
0 sat-

isfying sb g
f ðUjÞ
0 on f ðUjÞ. By Perron-Wiener-Brelot method we find that each

Sjðg f ðUjÞ
0 Þ is a positive harmonic function on R 0

0. Then, the following inequality

Sjðg f ðUjÞ
0 Þ � R 0

0 R̂R
R 0

0
n f ðUjÞ

Sjðg
f ðUj Þ
0

Þ
b g

f ðUjÞ
0ð*Þ

holds on f ðUjÞ. In fact, to prove the inequality (*) note that

R 0
0 R̂R

R 0
0
n f ðUjÞ

Sjðg
f ðUj Þ
0

Þ
¼ H

f ðUjÞ
Sjðg

f ðUj Þ
0

Þ

on f ðUjÞ, where H
f ðUjÞ
Sjðg

f ðUj Þ
0

Þ
is the Dirichlet solution for Sjðg f ðUjÞ

0 Þ on f ðUjÞ (cf. e.g.
[Hl], [CC]). By definition Sjðg f ðUjÞ

0 Þb g
f ðUjÞ
0 on f ðUjÞ. Hence, by the definition

of the Dirichlet solution in the sense of Perron-Wiener-Brelot,

Sjðg f ðUjÞ
0 Þ � g

f ðUjÞ
0 bH

f ðUjÞ
Sjðg

f ðUj Þ
0

Þ
on f ðUjÞ. Thus (*) is proved.

We shall proceed the proof of Main Theorem in case p ¼ 2. By the Martin
representation theorem, there exist at most two minimal functions hj;k ðk ¼ 1; 2Þ
on R 0

0 with Sjðg f ðUjÞ
0 Þ ¼ hj;1 þ hj;2 on R 0

0. Hence, by the above inequality (*), we
have
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hj;1 þ hj;2 ¼ Sjðg f ðUjÞ
0 Þb R 0

0 R̂R
R 0

0
n f ðUjÞ

hj; 1þhj; 2
þ g

f ðUjÞ
0 > R 0

0 R̂R
R 0

0
n f ðUjÞ

hj; 1
þ R 0

0 R̂R
R 0

0
n f ðUjÞ

hj; 2

on f ðUjÞ. Therefore, we find that there exists a minimal function hj on R 0
0 such

that hj 0 R 0
0 R̂R

R 0
0
n f ðUjÞ

hj
. Hence, by the definition of minimal thinness, R 0

0n f ðUjÞ
is minimally thin at the minimal boundary point corresponding to hj. Since
f ðU1ÞV f ðU2Þ ¼ j, we find that aDR 0

1 ¼ 2.

§4. Proof of Main Theorem in case p ¼ 3

Consider the case p ¼ 3 in this section. As in §3, it is known that 1aaDR
1 ,

aDR 0

1 a 3 (cf. [H] and see also [MS]). By the same argument as in the proof of
Main Theorem in case p ¼ 2 we find that aDR

1 ¼ 3 if and only if aDR 0

1 ¼ 3.
Hence, to prove the statement of Main Theorem in case p ¼ 3, we have only
to prove that aDR 0

1 ¼ 2 if and only if aDR
1 ¼ 2. Since f �1 is a quasicon-

formal mapping from R 0 onto R, it is su‰cient to prove that if aDR
1 ¼ 2, then

aDR 0

1 ¼ 2. Contrary to this, we suppose that aDR
1 ¼ 2 and that aDR 0

1 0 2.

Then, by the above observation, we see that aDR 0

1 ¼ 1.
By Proposition 2.1 there exists a subdomain U of D0 such that D0nU is thin

at 0, nRðUÞ ¼ 2 and f ðp�1ðUÞÞHR 0
0. Hence p�1ðUÞ consists of two connected

components U1 and U2. Since R is a 3-sheeted unlimited covering surface of
ĈCnf0g, we assume that U1 is a 1-sheeted unlimited covering surface of U , that is,
U1 is a replica of U and U2 is a 2-sheeted unlimited covering surface of U . Let

g
f ðU1Þ
z be the Green function on f ðU1Þ with pole at z. Denote by mf the complex

dilatation of f on U1. Set

m ¼
mf � j on U

0 on CnU ;

�

where j is the inverse of p jU1 : U1 ! U . It is well-known that there exists
a quasiconformal mapping c from C onto C with the complex delatation m
(cf. [LV]). By the same method as in §3, there exists a positive fine limit

F� limz!cð0Þ g
f ðU1Þ
z � f � j � c�1. Denote by g

f ðU1Þ
0 the pull-back of this limit

function on cðU1Þ by c � p � f �1. We see that g
f ðU1Þ
0 is a positive harmonic

function on f ðU1Þ. Set

Sðg f ðU1Þ
0 ÞðxÞ :¼ inf

s
sðxÞ;

where s runs over the space of positive superharmonic functions s on R 0
0

satisfying sb g
f ðU1Þ
0 on f ðU1Þ. By Perron-Wiener-Brelot method we find that

Sðg f ðU1Þ
0 Þ is a positive harmonic function on R 0

0. By the same consideration as in
the proof of Main Theorem in case p ¼ 2, we have

Sðg f ðU1Þ
0 Þ � R 0

0 R̂R
R 0

0
n f ðU1Þ

Sðg f ðU1Þ
0

Þ
b g

f ðU1Þ
0ð**Þ

on f ðU1Þ. By the assumption, Sðg f ðU1Þ
0 Þ is only one minimal harmonic function

on R 0
0. Hence, by (**), we find that R 0

0n f ðU1Þ is minimally thin at the minimal
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boundary point corresponding to Sðg f ðU1Þ
0 Þ. Take a curve g in U such that g

reaches 0 and that p�1ðgÞ does not possess any branch points of R. Hence there
exists a curve ~gg in U2ðHR0nU1Þ with f ð~ggÞHR 0

0 and pð~ggÞ ¼ g which reaches the
ideal boundary since R is unlimited. Hence this implies that

i) f ð~ggÞ is a subset of R 0
0n f ðU1Þ;

ii) p 0ð f ð~ggÞÞ is not thin at 0 in the usual sense, where p 0 is the projection map
from R 0 onto ĈCnf0g.

By the above fact i), f ð~ggÞ is minimally thin at the minimal boundary point

corresponding to Sðg f ðU1Þ
0 Þ. On the other hand, by the above fact ii) and

[MS, Proposition 3.1], f ð~ggÞ is not minimally thin at the minimal boundary point

corresponding to Sðg f ðU1Þ
0 Þ. This is a contradiction. We have the desired result.
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