H. MASAOKA AND S. SEGAWAKODAI MATH. J.28 (2005), 275–279

QUASICONFORMAL MAPPINGS AND MINIMAL MARTIN BOUNDARY OF *p*-SHEETED UNLIMITED COVERING SURFACES OF THE COMPLEX PLANE

HIROAKI MASAOKA AND SHIGEO SEGAWA

To the memory of Professor Nobuyuki Suita

§1. Introduction

Let W be an open Riemann surface. We denote by Δ_1^W the minimal Martin boundary of W. In [L], it was showed that there exist open Riemann surfaces F and F' quasiconformally equivalent to each other such that F' possesses nonconstant positive harmonic functions although F does not possess nonconstant positive harmonic functions. This means that $\#\Delta_1^{F'} \ge 2$ although $\#\Delta_1^F = 1$, where #A stands for the cardinal number of a set A. Needless to say, the above F and F' are of *positive boundary*, i.e. F and F' admit the Green function (cf. [SN]). However, in case open Riemann surfaces W and W' are of *null boundary* (i.e. not positive boundary), it does not seem to be known whether $\#\Delta_1^W = \#\Delta_1^{W'}$ or not if W and W' are quasiconformally equivalent to each other.

In this paper, we are concerned with *p*-sheeted unlimited covering surfaces of the complex plane **C**. Consider *p*-sheeted unlimited covering surfaces *R* and *R'* of the complex plane **C** which are quasiconformally equivalent to each other. Then, it seems to be valid that $\#\Delta_1^R = \#\Delta_1^{R'}$ (cf. [Sh], [M]). The purpose of this paper is to give a partial answer to this conjecture. Namely,

MAIN THEOREM. Let R and R' be p-sheeted unlimited covering surfaces of C which are quasiconformally equivalent to each other. If p = 2 or 3, then it holds that $\#\Delta_1^R = \#\Delta_1^{R'}$.

§2. Preliminaries

Hereafter we consider the punctured sphere $\hat{\mathbf{C}}\setminus\{0\}$ in place of the complex plane \mathbf{C} since $\hat{\mathbf{C}}\setminus\{0\}$ is conformally equivalent to \mathbf{C} . Hence we assume that Rand R' in Main Theorem are p-sheeted unlimited covering surfaces of $\hat{\mathbf{C}}\setminus\{0\}$. Let Δ^R and Δ_1^R be as in §1, and π the projection map from R onto $\hat{\mathbf{C}}\setminus\{0\}$. Set $\mathbf{D} = \{z \in \mathbf{C} \mid |z| < 1\}$, $\mathbf{D}_0 = \mathbf{D}\setminus\{0\}$ and $R_0 = \pi^{-1}(\mathbf{D}_0)$. It is well-known that Δ^{R_0} and $\Delta_1^{R_0}$ are identified with $\Delta^R \cup \pi^{-1}(\partial \mathbf{D})$ and $\Delta_1^R \cup \pi^{-1}(\partial \mathbf{D})$, respectively, where

Received March 30, 2004; revised September 6, 2004.

 $\partial \mathbf{D} = \{|z| = 1\}$. From now on we consider \mathbf{D}_0 (resp. R_0) in place of $\hat{\mathbf{C}} \setminus \{0\}$ (resp. R) since $\mathbb{C}\setminus\{0\}$ (resp. R) does not admit the Green function. Let g_0 be the Green function on **D** with pole at 0.

DEFINITION 2.1 (cf. [B], [BH]). We say that a subset E of D_0 is *thin* at 0 if ${}^{\mathbf{D}}\hat{\mathbf{R}}_{g_0}^E \neq g_0$, where ${}^{\mathbf{D}}\hat{\mathbf{R}}_{g_0}^E$ is the balayage of g_0 relative to E on \mathbf{D} . If E is a closed subset of \mathbf{D} , it is well-known that E is thin at 0 if and only if

0 is an irregular boundary point of $\mathbf{D} \setminus E$ in the sense of the Dirichlet problem.

The following lemma gives the quasiconformal invariance for thinness.

LEMMA 2.1 (cf. [M], [Sh]). Let G be a subdomain of C and φ a quasiconformal mapping from C onto C. If ζ is an irregular boundary point of G in the sense of Dirichlet problem, $\varphi(\zeta)$ is an irregular boundary point of $\varphi(G)$ in the sense of Dirichlet problem.

DEFINITION 2.2. A subset U in **D** which contains 0 is said to be a fine *neighborhood* of 0 if $\mathbf{D} \setminus U$ is thin at 0.

Let k_{ζ} be the Martin function on R_0 with pole at $\zeta \in \Delta^R$.

DEFINITION 2.3. Let ζ be a point in Δ_1^R and E a subset of R_0 . We say that E is *minimally thin* at ζ if $R_0 \hat{\mathbf{R}}_{k_{\zeta}}^E \neq k_{\zeta}$.

DEFINITION 2.4. Let ζ be a point in Δ_1^R and U a subset of R_0 . We say that $U \cup \{\zeta\}$ is a *minimal fine neighborhood* of ζ if $R_0 \setminus U$ is minimally thin at ζ .

The following proposition gives the characterization of $\#\Delta_1^R$ in terms of minimal fine topology.

PROPOSITION 2.1 ([MS]). Let \mathcal{M} be the class of subdomains M of \mathbf{D}_0 such that $M \cup \{0\}$ is a fine neighborhood of z = 0. Then, it holds that

$$#\Delta_1^R = \max_{M \in \mathscr{M}} n_R(M),$$

where $n_R(M)$ is the number of connected components of $\pi^{-1}(M)$ and π is the projection map from R onto $\hat{\mathbf{C}} \setminus \{0\}$.

§3. Proof of Main Theorem in case p = 2

Consider the case p = 2 in this section. Let R and R' be as in Main Theorem and f be a quasiconformal mapping from R onto R'. It is known that $1 \le \#\Delta_1^{R'}, \#\Delta_1^{R'} \le 2$ (cf. [H] and see also [MS]). We have only to prove that $\#\Delta_1^{R'} = 2$ if and only if $\#\Delta_1^{R} = 2$. Since f^{-1} is a quasiconformal map-ping from R' onto R, it is sufficient to prove that if $\#\Delta_1^{R} = 2$, then $\#\Delta_1^{R'} = 2$. Suppose that $\#\Delta_1^{R} = 2$. Let π (resp. π') be the projection map from R (resp. R') onto $\hat{\mathbf{C}}\setminus\{0\}$. By Proposition 2.1 there exists a subdomain U of \mathbf{D}_0 such that $\mathbf{D}_0\setminus U$ is thin at 0, $n_R(U) = 2$ and $f(\pi^{-1}(U)) \subset R'_0$ ($:= (\pi')^{-1}(\mathbf{D}_0)$). Let U_j (j = 1, 2) be components of $\pi^{-1}(U)$. Since R is a 2-sheeted unlimited covering surface of $\hat{\mathbf{C}}\setminus\{0\}$, it is easily seen that each U_j is considered as a replica of U. Let $g_z^{f(U_j)}$ (j = 1, 2) be the Green function on $f(U_j)$ with pole at z. Denote by $\mu_{f,j}$ the complex dilatation of f on U_j . Set

$$\mu_j = \begin{cases} \mu_{f,j} \circ \varphi_j & \text{on } U \\ 0 & \text{on } \mathbf{C} \setminus U, \end{cases}$$

where φ_j is the inverse of $\pi \mid U_j : U_j \to U$. It is well-known that there exists a quasiconformal mapping f_j from **C** onto **C** with the complex delatation μ_j (cf. e.g. [LV]). Set $V_j = f_j(U)$. By Lemma 2.1 we find that $f_j(0)$ is an irregular boundary point of V_j in the sense of the usual Dirichlet problem since 0 is an irregular boundary point of U in the sense of the usual Dirichlet problem. On the other hand, the function $z \mapsto g_{f \circ \varphi_j \circ (f_j)^{-1}(z)}^{f(U_j)} \circ f \circ \varphi_j \circ (f_j)^{-1}(\xi)$ ($\xi \in V_j$) is the Green function on V_j with pole at ξ since $f \circ \varphi_j \circ (f_j)^{-1}$ is conformal. Hence, by [HI, Theorem 10.16], there exists a fine limit $\mathscr{F} - \lim_{z \to f_j(0)} g_{f \circ \varphi_j \circ (f_j)^{-1}(z)}^{f(U_j)} \circ f \circ \varphi_j \circ (f_j)^{-1}$. Since $f_j(0)$ is an irregular boundary point of V_j in the sense of the usual Dirichlet problem, this limit must be positive by [HI, Theorem 8.34]. Denote this limit function on V_j by $g_0^{V_j}$ and set $g_0^{f(U_j)} = g_0^{V_j} \circ f_j \circ \pi \circ f^{-1}$. We see that each $g_0^{f(U_j)}$ is a positive harmonic function on $f(U_j)$ since each $g_0^{V_j}$ is a positive harmonic function on f_j and $f_j \circ \pi \circ f^{-1}$ is conformal. For j = 1, 2, set

$$S_j(g_0^{f(U_j)})(x) := \inf_{x \in S} s(x),$$

where s runs over the space of positive superharmonic functions s on R'_0 satisfying $s \ge g_0^{f(U_j)}$ on $f(U_j)$. By Perron-Wiener-Brelot method we find that each $S_j(g_0^{f(U_j)})$ is a positive harmonic function on R'_0 . Then, the following inequality (*) $S_j(g_0^{f(U_j)}) - {R'_0} \hat{\mathbf{R}}_{S_j(g_0^{f(U_j)})}^{R'_0 \setminus f(U_j)} \ge g_0^{f(U_j)}$

holds on $f(U_j)$. In fact, to prove the inequality (*) note that

$${}^{R_0'}\hat{\mathbf{R}}^{R_0'\setminus f(U_j)}_{S_j(g_0^{f(U_j)})}=H^{f(U_j)}_{S_j(g_0^{f(U_j)})}$$

on $f(U_j)$, where $H_{S_j(g_0^{f(U_j)})}^{f(U_j)}$ is the Dirichlet solution for $S_j(g_0^{f(U_j)})$ on $f(U_j)$ (cf. e.g. [H1], [CC]). By definition $S_j(g_0^{f(U_j)}) \ge g_0^{f(U_j)}$ on $f(U_j)$. Hence, by the definition of the Dirichlet solution in the sense of Perron-Wiener-Brelot,

$$S_j(g_0^{f(U_j)}) - g_0^{f(U_j)} \ge H_{S_j(g_0^{f(U_j)})}^{f(U_j)}$$

on $f(U_i)$. Thus (*) is proved.

We shall proceed the proof of Main Theorem in case p = 2. By the Martin representation theorem, there exist at most two minimal functions $h_{j,k}$ (k = 1, 2) on R'_0 with $S_j(g_0^{f(U_j)}) = h_{j,1} + h_{j,2}$ on R'_0 . Hence, by the above inequality (*), we have

277

HIROAKI MASAOKA AND SHIGEO SEGAWA

$$h_{j,1} + h_{j,2} = S_j(g_0^{f(U_j)}) \ge {}^{R'_0} \hat{\mathbf{R}}_{h_{j,1} + h_{j,2}}^{R'_0 \setminus f(U_j)} + g_0^{f(U_j)} > {}^{R'_0} \hat{\mathbf{R}}_{h_{j,1}}^{R'_0 \setminus f(U_j)} + {}^{R'_0} \hat{\mathbf{R}}_{h_{j,2}}^{R'_0 \setminus f(U_j)}$$

on $f(U_j)$. Therefore, we find that there exists a minimal function h_j on R'_0 such that $h_j \neq {}^{R'_0} \hat{\mathbf{R}}_{h_j}^{R'_0 \setminus f(U_j)}$. Hence, by the definition of minimal thinness, $R'_0 \setminus f(U_j)$ is minimally thin at the minimal boundary point corresponding to h_j . Since $f(U_1) \cap f(U_2) = \emptyset$, we find that $\#\Delta_1^{R'} = 2$.

§4. Proof of Main Theorem in case p = 3

Consider the case p = 3 in this section. As in §3, it is known that $1 \le \#\Delta_1^R$, $\#\Delta_1^{R'} \le 3$ (cf. [H] and see also [MS]). By the same argument as in the proof of Main Theorem in case p = 2 we find that $\#\Delta_1^R = 3$ if and only if $\#\Delta_1^{R'} = 3$. Hence, to prove the statement of Main Theorem in case p = 3, we have only to prove that $\#\Delta_1^{R'} = 2$ if and only if $\#\Delta_1^R = 2$. Since f^{-1} is a quasiconformal mapping from R' onto R, it is sufficient to prove that if $\#\Delta_1^R = 2$, then $\#\Delta_1^{R'} = 2$. Contrary to this, we suppose that $\#\Delta_1^R = 2$ and that $\#\Delta_1^{R'} \neq 2$. Then, by the above observation, we see that $\#\Delta_1^{R'} = 1$.

By Proposition 2.1 there exists a subdomain U of \mathbf{D}_0 such that $\mathbf{D}_0 \setminus U$ is thin at 0, $n_R(U) = 2$ and $f(\pi^{-1}(U)) \subset R'_0$. Hence $\pi^{-1}(U)$ consists of two connected components U_1 and U_2 . Since R is a 3-sheeted unlimited covering surface of $\hat{\mathbf{C}} \setminus \{0\}$, we assume that U_1 is a 1-sheeted unlimited covering surface of U, that is, U_1 is a replica of U and U_2 is a 2-sheeted unlimited covering surface of U. Let $g_z^{f(U_1)}$ be the Green function on $f(U_1)$ with pole at z. Denote by μ_f the complex dilatation of f on U_1 . Set

$$\mu = \begin{cases} \mu_f \circ \varphi & \text{on } U \\ 0 & \text{on } \mathbf{C} \backslash U, \end{cases}$$

where φ is the inverse of $\pi \mid U_1 : U_1 \to U$. It is well-known that there exists a quasiconformal mapping ψ from **C** onto **C** with the complex delatation μ (cf. [LV]). By the same method as in §3, there exists a positive fine limit $\mathscr{F} - \lim_{z \to \psi(0)} g_z^{f(U_1)} \circ f \circ \varphi \circ \psi^{-1}$. Denote by $g_0^{f(U_1)}$ the pull-back of this limit function on $\psi(U_1)$ by $\psi \circ \pi \circ f^{-1}$. We see that $g_0^{f(U_1)}$ is a positive harmonic function on $f(U_1)$. Set

$$S(g_0^{f(U_1)})(x) := \inf_{s} s(x),$$

where s runs over the space of positive superharmonic functions s on R'_0 satisfying $s \ge g_0^{f(U_1)}$ on $f(U_1)$. By Perron-Wiener-Brelot method we find that $S(g_0^{f(U_1)})$ is a positive harmonic function on R'_0 . By the same consideration as in the proof of Main Theorem in case p = 2, we have

$$(**) S(g_0^{f(U_1)}) - {^{R_0'}\hat{\mathbf{R}}}_{S(g_0^{f(U_1)})}^{R_0' \setminus f(U_1)} \ge g_0^{f(U_1)}$$

on $f(U_1)$. By the assumption, $S(g_0^{f(U_1)})$ is only one minimal harmonic function on R'_0 . Hence, by (**), we find that $R'_0 \setminus f(U_1)$ is minimally thin at the minimal

278

boundary point corresponding to $S(g_0^{f(U_1)})$. Take a curve γ in U such that γ reaches 0 and that $\pi^{-1}(\gamma)$ does not possess any branch points of R. Hence there exists a curve $\tilde{\gamma}$ in $U_2(\subset R_0 \setminus U_1)$ with $f(\tilde{\gamma}) \subset R'_0$ and $\pi(\tilde{\gamma}) = \gamma$ which reaches the ideal boundary since R is unlimited. Hence this implies that

i) $f(\tilde{\gamma})$ is a subset of $R'_0 \setminus f(U_1)$;

ii) $\pi'(f(\tilde{\gamma}))$ is not thin at 0 in the usual sense, where π' is the projection map from R' onto $\hat{\mathbf{C}} \setminus \{0\}$.

By the above fact i), $f(\tilde{\gamma})$ is minimally thin at the minimal boundary point corresponding to $S(g_0^{f(U_1)})$. On the other hand, by the above fact ii) and [MS, Proposition 3.1], $f(\tilde{\gamma})$ is not minimally thin at the minimal boundary point corresponding to $S(g_0^{f(U_1)})$. This is a contradiction. We have the desired result.

References

- [AS] L. V. AHLFORS AND L. SARIO, Riemann Surfaces, Princeton, 1960.
- [B] M. BRELOT, On Topologies and Boundaries in Potential Theory, Lecture Notes in Math. 175, Springer, 1971.
- [BH] J. BLIEDTNER AND W. HANSEN, Potential Theory, Springer, 1986.
- [CC] C. CONSTANTINESCU AND A. CORNEA, Ideale Ränder Riemanncher Flächen, Springer, 1969.
- [F] O. FORSTER, Lectures on Riemann Surfaces, GTM 81, Springer.
- [H] M. HEINS, Riemann surfaces of infinite genus, Ann. of Math. 55 (1952), 296-317.
- [HI] L. HELMS, Introduction to Potential Theory, Wiley-Interscience, 1969.
- T. LYONS, Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains, J. Differential Geometry 26 (1987), 33–66.
- [LV] O. LEHTO AND K. I. VIRTANEN, Quasiconformal Mappings in the Plane, Springer, 1973.
- [M] H. MASAOKA, Quasiregular mappings and d-thinness, Osaka J. Math. 34 (1997), 223-231.
- [MS] H. MASAOKA AND S. SEGAWA, Harmonic dimension of covering surfaces and minimal fine neighborhood, Osaka J. Math. 34 (1997), 659–672.
- [SN] L. SARIO AND M. NAKAI, Classification Theory of Riemann Surfaces, Springer, 1970.
- [Sh] H. SHIGA, Quasiconformal mappings and potentials, XVIth Rolf Nevanlinna Colloquium, Walter de Gruyter & Co., 1996, 215–222.

HIROAKI MASAOKA DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE KYOTO SANGYO UNIVERSITY KAMIGAMO–MOTOYAMA, KITAKU KYOTO 603-8555 JAPAN e-mail: masaoka@cc.kyoto-su.ac.jp

SHIGEO SEGAWA DEPARTMENT OF MATHEMATICS DAIDO INSTITUTE OF TECHNOLOGY NAGOYA 457-8530 JAPAN e-mail: segawa@daido-it.ac.jp