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1. Introduction

Let H be the upper half-plane equipped with the hyperbolic metric jdzj=Im z,
and G a Fuchsian group acting on H. A subset SHH is said to be precisely
invariant under a subgroup GS of G if gðSÞ ¼ S for all g A GS and gðSÞVS ¼ j
for all g A G� GS. Furthermore a hyperbolic element g A G is said to be simple if
the axis of g is precisely invariant under the cyclic subgroup hgi generated by g.
The hyperbolic distance on H is denoted by d. For a quasiconformal auto-
morphism f of H, the maximal dilatation of f is denoted by Kð f Þ.

Let TðGÞ be the Teichmüller space of G and ModðGÞ the Teichmüller
modular group of G. It is known that if G is finitely generated of the first kind,
then TðGÞ is finite dimensional and the action of ModðGÞ on TðGÞ is properly
discontinuous. This means that for every sequence f fngyn¼1 of quasiconformal
automorphisms of H satisfying fn � G � f �1

n ¼ G and limn!y Kð fnÞ ¼ 1, there
exist an integer N and a conformal automorphism f of H such that fn are
coincident with f on the real axis R for all nbN. On the other hand, if G is
infinitely generated, then TðGÞ is infinite dimensional and the action of ModðGÞ is
not properly discontinuous, in general. This means that there exists a sequence
f fngyn¼1 of quasiconformal automorphisms fn of H such that fn � G � f �1

n ¼ G and
limn!y Kð fnÞ ¼ 1. On the basis of this fact, in [3], we proved that if G satisfies
a certain bound condition on translation length, then ModðGÞ acts properly
discontinuously. The following proposition, which gives a lower bound of the
maximal dilatation of a quasiconformal automorphism, is crucial for the proof.

Proposition 1 ([3, Proposition 2]). Let G be a non-elementary Fuchsian
group acting on H and f a quasiconformal automorphism of H satisfying
f � G � f �1 ¼ G. Suppose that there exist three distinct axes Li ði ¼ 1; 2; 3Þ of
simple hyperbolic elements gi of G such that f ðL1Þ� ¼ L1, f ðL2Þ� ¼ L2 and
f ðL3Þ� 0L3, where f ðLiÞ� is the axis of f � gi � f �1. Let M and D be positive
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constants such that the translation lengths of gi ði ¼ 1; 2; 3Þ are less than M
and dðz1;L2ÞaD, dðz1;L3ÞaD for some z1 A L1. Then there exists a constant
A ¼ AðM;DÞ > 1 depending only on M and D such that Kð f ÞbA.

When M tends to þy even with remaining D bounded, the constant
AðM;DÞ might tend to 1 as the following example shows.

Example 2. Let G be a Fuchsian group such that

R ¼ H=G ¼ C� 6
y

n¼1

6
m AZ

m

n
þ ð2nþ 1Þ

ffiffiffiffiffiffiffi
�1

p� �
� f�1; 0; 1g;

and

f̂fnðzÞ ¼
x� ðy� 2n� 2Þ=nþ y

ffiffiffiffiffiffiffi
�1

p
ð2nþ 1a y < 2nþ 2Þ

xþ ðy� 2nÞ=nþ y
ffiffiffiffiffiffiffi
�1

p
ð2na y < 2nþ 1Þ

xþ y
ffiffiffiffiffiffiffi
�1

p
elsewhere;

8><
>:

which are quasiconformal automorphisms of R (see [3, Example 2]). Then
limn!y Kð f̂fnÞ ¼ 1. Let c1 be a simple closed geodesic on R surrounding �1 and
0, and c2 a simple closed geodesic on R surrounding 0 and 1. Furthermore for
each n, let c3;n be a simple closed geodesic on R surrounding nþ 1 points, 1 and

1þ ð2k þ 1Þ
ffiffiffiffiffiffiffi
�1

p
ðk ¼ 1; . . . ; nÞ. Then the hyperbolic lengths of c3;n tend to

þy as n ! y. Let Li ði ¼ 1; 2Þ be an axis of a hyperbolic element gi A G such
that pðLiÞ ¼ ci. Here p is the projection of H to R. We may assume that

L1 ¼ fy
ffiffiffiffiffiffiffi
�1

p
j y > 0g. Since f̂fnðciÞ ¼ ci ði ¼ 1; 2Þ and c1 V c2 0j, we can take a

lift fn of f̂fn to H so that fnðLiÞ� ¼ Li ði ¼ 1; 2Þ. Furthermore for each n, we
take an axis L3;n of a primitive hyperbolic element gn A G so that pðL3;nÞ ¼ c3;n

and that dð
ffiffiffiffiffiffiffi
�1

p
;L3;nÞa l1 for the translation length l1 of g1. Since f̂fnðc3;nÞ is

not homotopic to c3;n for each n, we have fnðL3;nÞ� 0L3;n. On the other hand,
the translation lengths of gn tend to þy.

On the other hands, when D tends to þy even with remaining M bounded,
the constant AðM;DÞ might tend to 1.

Example 3. Let G, R, c1, c2 and f̂fn be the same as in Example 2. For
each n, let c3;n be a simple closed geodesic on R surrounding two points,

1=nþ ð2nþ 1Þ
ffiffiffiffiffiffiffi
�1

p
and 2=nþ ð2nþ 1Þ

ffiffiffiffiffiffiffi
�1

p
. Then the hyperbolic lengths of c3;n

are uniformly bounded. Indeed, the lengths are all the same. Let Li ði ¼ 1; 2Þ
be an axis of a hyperbolic element of G such that pðLiÞ ¼ ci. We take a lift fn
of f̂fn to H so that fnðLiÞ� ¼ Li ði ¼ 1; 2Þ. Let L3;n be an axis of a primitive
hyperbolic element gn A G so that pðL3;nÞ ¼ c3;n. Since f̂fnðc3;nÞ is not homotopic
to c3;n, we have fnðL3;nÞ� 0L3;n, and we see that the translation lengths of gn
are the same for all n. On the other hand, since dðc1; c3;nÞ ! þy, we have
dðL1;L3;nÞ ! þy.
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In Proposition 1, the invariance of L1 and L2 under f is used to guarantee
that f fixes three points on the boundary. In this case, the condition
dðz1;L3ÞaD implies that the spherical diameter of L3 is less than some positive
constant D 0 ¼ D 0ðDÞ. Furthermore the assumption on the boundedness of the
translation lengths of gi ði ¼ 1; 2Þ is used to guarantee that the end points a and
b of L3 are not in some neighborhoods of the end points of L1 and L2, and
the radii of the neighborhoods are estimated by M and D. In particular, we
obtained the uniformity of A on M and D.

In this paper, we consider a quasiconformal automorphism f of H fixing
three points. We call such a quasiconformal automorphism normalized, and
assume that the three points are 0, 1 and y. Suppose that there exist axes L
such that f ðLÞ� 0L. Then, each axis L gives a lower bound of the maximal
dilatation of f , and we will express the lower bound explicitly (Theorem 7). In
particular, we can observe the dependence of the lower bound on the translation
length, the end points and the Euclidean diameter of L. However the uniformity
is not taken into account in our theorem.

2. Results

Our first theorem gives a lower bound of the Euclidean distance between an
end point of an axis and its image under a quasiconformal automorphism.

Theorem 4. Let G be a torsion-free Fuchsian group acting on H, and f a
quasiconformal automorphism of H such that f � G � f �1 ¼ G. Furthermore let L
be the axis of a simple hyperbolic element g of G such that f ðLÞ� 0L. Then
there exists a positive constant B such that at least one end point a of L satisfies
j f ðaÞ � ajbB, where B depends only on the translation length l of g, the
translation length l 0 of f � g � f �1 and the Euclidean diameter dEðLÞ of L. More
precisely,

B ¼ dEðLÞ � B 0;

B 0 ¼ B 0ðl; l 0Þ ¼
B 0
1ðl; l 0Þ :¼ 1

2
1� sinhðl=2Þ sinhðl 0=2Þ

coshðl=2Þ coshðl 0=2Þ þ 1

� �
ðLV f ðLÞ� ¼ jÞ

B 0
2ðl; l 0Þ :¼ d

1� d
ðLV f ðLÞ� 0jÞ;

8>>><
>>>:

d ¼ dðl; l 0Þ ¼ 1

12
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

sinh2ðl=2Þ sinh2ðl 0=2Þ

s !
:

Remark. The constant B 0
1ðl; l 0Þ tends to 1=2 as l; l 0 ! 0 and tends to 0 as

l; l 0 ! þy.

A proof of Theorem 4 is given in Section 4. In this section, assuming this
result, we give a lower bound of the maximal dilatations of the quasiconformal

222 ege fujikawa



homeomorphisms. The following two lemmas tell us a relationship between the
Euclidean distance which we considered in Theorem 4 and the maximal dilata-
tion. The first one is due to Teichmüller (see [5]).

Lemma 5. Let f be a quasiconformal automorphism of C fixing 0 and 1.
Suppose that there exists a point z0 A C� f0; 1g such that d0;1ðz0; f ðz0ÞÞ ¼ log C
for some constant C > 1, where d0;1 is the hyperbolic distance on the twice
punctures plane C� f0; 1g. Then Kð f ÞbC2.

If z0, f ðz0Þ < 0, then the exact computation of d0;1ðz0; f ðz0ÞÞ is given by
Sugawa and Vuorinen [7, Lemma 5.1].

Lemma 6. The hyperbolic distance between �x and �y in C� f0; 1g is given
by d0;1ð�x;�yÞ ¼ jFðxÞ �FðyÞj for x; y > 0. The function F : R ! R is given
by

FðxÞ ¼ 1

2
log

Kðx=ð1þ xÞÞ
Kð1=ð1þ xÞÞ ;

where

KðzÞ ¼
ð1
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� t2Þð1� zt2Þ

p :

Now we state our second theorem, which easily follows from Theorem 4
with Lemmas 5 and 6.

Theorem 7. Let G be a torsion-free Fuchsian group acting on H and f
a normalized quasiconformal automorphism of H such that f � G � f �1 ¼ G.
Suppose that there exists an axis L of a simple hyperbolic element g of G such
that f ðLÞ� 0L. Then there exists a constant A > 1 such that Kð f ÞbA, where
A depends only on the translation length l of g, the translation length l 0 of
f � g � f �1 and the end points a and b of L. More precisely, under the assumption
that j f ðbÞ � bja j f ðaÞ � aj and a < 0,

1

2
log A ¼ Fð�aþ BÞ �Fð�aÞ ð f ðaÞ < aÞ

Fð�aÞ �Fð�a� BÞ ð f ðaÞ > aÞ:

�

The constant B and the function F are the same as in Theorem 4 and Lemma 6.

Proof. Since a < 0 and f is normalized, we have f ðaÞ < 0. By Theorem 4,
the end point a satisfies j f ðaÞ � ajbB. Furthermore, by Lemma 6, the hy-
perbolic distance between f ðaÞ and a in C� f0; 1g is given by d0;1ð f ðaÞ; aÞ ¼
jFð� f ðaÞÞ �Fð�aÞj. Since the function FðxÞ is strictly increasing for x > 0,
we see that d0;1ð f ðaÞ; aÞbFð�aþ BÞ �Fð�aÞ if f ðaÞ < a and d0;1ð f ðaÞ; aÞb
Fð�aÞ �Fð�a� BÞ if f ðaÞ > a. Hence Lemma 5 yields the assertion. r
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Remark. (i) In Theorem 7, the assumption that a < 0 is not essential. Also
in the case where 0 < a < 1 or 1 < a, we have similar results by using the fact
that d0;1ðz1; z2Þb jFðjz1jÞ �Fðjz2jÞj for z1; z2 A C� f0; 1g (see [7, Lemma 5.16]).
(ii) For a Fuchsian group G and a quasiconformal automorphism f of H
satisfying f � G � f �1 ¼ G, we have Kð f Þbmaxfl=l 0; l 0=lg, where l is the
translation length of an element g A G and l 0 is the translation length of
f � g � f �1 (see [8, Lemma 3.1]). This is trivial if l ¼ l 0. However our theorem
gives a non-trivial estimate also for the case where l ¼ l 0. Indeed, in Theorem
4, we have

B 0
1ðl; lÞ ¼

2

cosh lþ 3

and

dðl; lÞ ¼ 1

12
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

cosh l� 1

� �2s0
@

1
A:

(iii) In Proposition 1, the constant A does not depend on the translation lengths
l 0
i of f � gi � f �1 ði ¼ 1; 2; 3Þ. Indeed, in the proof of the proposition, we as-
sume that Kð f Þ < 2 and use the fact that l 0

i < 2li, where li is the translation
length of gi. Also in our theorem, if we assume that l 0 < 2l, then we obtain a
constant A ¼ Aðl; a; bÞ with B 0 ¼ B 0ðl; 2lÞ.

When we can take a ¼ �1 in Theorem 7, we express a lower bound of the
maximal dilatation simply.

Corollary 8. Let G be a torsion-free Fuchsian group acting on H, and f
a normalized quasiconformal automorphism of H such that f � G � f �1 ¼ G.
Suppose that there exists a simple hyperbolic element g A G such that one end point
of the axis L of g is �1 and that f ð�1Þ < �1 and that j f ðbÞ � bja j f ð�1Þ þ 1j,
where b is another end point of g. Then

Kð f Þb 1þ logð1þ BÞ
E

;

where B is the same constant as in Theorem 4 and

E ¼ 4

p
K

1

2

� �2
A4:37688:

Proof. Since Fð1Þ ¼ 0, Theorem 7 yields that Kð f ÞbA, where
ð1=2Þ log A ¼ Fð1þ BÞ. By [7, Lemma 5.4], we have

Fð1þ BÞb 1

2
log 1þ logð1þ BÞ

E

� �
;

which implies the assertion. r
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3. Collar lemma and its application

This section is devoted to preliminaries for a proof of Theorem 4. The
following lemma is known as the collar lemma (see [2], [4] and [6]).

Lemma 9. Let G be a torsion-free Fuchsian group acting on H, and L the axis
of a simple hyperbolic element g A G with translation length l > 0. Then a collar

CðL;oðlÞÞ ¼ fz A H j dðz;LÞaoðlÞg
of L with width oðlÞ is precisely invariant under the cyclic subgroup hgi generated
by g, where

oðlÞ ¼ arcsinh
1

sinhðl=2Þ

� �
:

Furthermore, CðL;oðlÞÞVCðL 0;oðl 0ÞÞ ¼ j for every pair of two disjoint axes
L and L 0 of simple hyperbolic elements of G with translation lengths l and l 0

respectively.

Lemma 9 immediately yields the following.

Corollary 10. Let G be a torsion-free Fuchsian group acting on H, and L
and L 0 two disjoint axes of simple hyperbolic elements of G with translation lengths
l and l 0 respectively. Then the hyperbolic distance dðL;L 0Þ satisfies

dðL;L 0Þb arccosh
coshðl=2Þ coshðl 0=2Þ þ 1

sinhðl=2Þ sinhðl 0=2Þ

� �
:

Proof. By Lemma 9, we have dðL;L 0ÞboðlÞ þ oðl 0Þ. The assertion
follows from the following computation:

coshðoðlÞ þ oðl 0ÞÞ
¼ coshðoðlÞÞ coshðoðl 0ÞÞ þ sinhðoðlÞÞ sinhðoðl 0ÞÞ

¼ cosh arcsinh
1

sinhðl=2Þ

� �� �
cosh arcsinh

1

sinhðl 0=2Þ

� �� �

þ sinh arcsinh
1

sinhðl=2Þ

� �� �
sinh arcsinh

1

sinhðl 0=2Þ

� �� �

¼ 1

sinh2ðl=2Þ
þ 1

 !
1

sinh2ðl 0=2Þ
þ 1

 !( )1=2

þ 1

sinhðl=2Þ sinhðl 0=2Þ

¼ coshðl=2Þ coshðl 0=2Þ þ 1

sinhðl=2Þ sinhðl 0=2Þ : r

Next, for two axes which intersect each other, we will obtain a lower bound
of the intersection angle. Note that for two axes L and L 0 of simple hyperbolic
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elements g and g 0 of G such that LVL 0 0j, the translation lengths l and l 0 of g
and g 0 respectively satisfy

sinh
l

2

� �
sinh

l 0

2

� �
> 1:

Indeed, since L 0 passes the collar of L with width oðlÞ, we have l 0 > 2oðlÞ.

Proposition 11. Let G be a torsion-free Fuchsian group acting on H, and L
and L 0 two distinct axes of simple hyperbolic elements g and g 0 of G with transla-
tion lengths l and l 0 respectively. Suppose that LVL 0 0j. Then the intersection
angle yðL;L 0Þ between L and L 0 satisfies

yðL;L 0Þb arcsin
1

sinhðl=2Þ sinhðl 0=2Þ

� �
:

Proof. By Lemma 9, we can take a collar CðL;oðlÞÞ of L with width

oðlÞ ¼ arcsinh
1

sinhðl=2Þ

� �
:

Then, by the formula [1, Theorem 7.11.2] for right-angled triangles, the length l0
of the segment L 0 VCðL;oðlÞÞ satisfies

sinh oðlÞ ¼ sinhðl0=2Þ � sinðyðL;L 0ÞÞ:

Since the translation length of g 0 is l 0, it is clear that l0 a l 0. Then we see that

sinðyðL;L 0ÞÞ ¼ sinh oðlÞ
sinhðl0=2Þ

b
1

sinhðl=2Þ sinhðl 0=2Þ : r

In the last of this section, we mention the hyperbolic distance and the angle
between an axis and its image under a conformal automorphism.

Corollary 12. Let G be a torsion-free Fuchsian group acting on H, L the
axis of a simple hyperbolic element of G with translation length l, and f a con-
formal automorphism of H satisfying f � G � f �1 ¼ G. Suppose that f ðLÞ0L.
If f ðLÞVL ¼ j, then

dð f ðLÞ;LÞb arccosh
cosh lþ 3

cosh l� 1

� �
:

If f ðLÞVL0j, then the intersection angle yð f ðLÞ;LÞ between f ðLÞ and L
satisfies

yð f ðLÞ;LÞb arcsin
2

cosh l� 1

� �
:

Proof. We may put l ¼ l 0 in Corollary 10 and Proposition 11. r

226 ege fujikawa



4. Proof of Theorem 4

For a proof of Theorem 4, first we prove the following.

Lemma 13. Let G be a torsion-free Fuchsian group acting on H and L and L 0

two distinct axes of simple hyperbolic elements of G with translation lengths l and
l 0 respectively. Suppose that L ¼ fiy j y > 0g. Then the two end points x of L 0

satisfy jxjb d 0, where

d 0 ¼

dEðL 0Þ
2

coshðl=2Þ coshðl 0=2Þ þ 1

sinhðl=2Þ sinhðl 0=2Þ � 1

� �
ðLVL 0 ¼ jÞ

dEðL 0Þ
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

sinh2ðl=2Þ sinh2ðl 0=2Þ

s !
ðLVL 0 0jÞ:

8>>>><
>>>>:

Proof. First we suppose that LVL 0 ¼ j. Without loss of generality, we
may assume that the two end points x1 and x2 of L 0 satisfy 0 < x1 < x2. By
Corollary 10, we have

dðL;L 0Þb arccosh
coshðl=2Þ coshðl 0=2Þ þ 1

sinhðl=2Þ sinhðl 0=2Þ

� �
:¼ Dðl; l 0Þ:

Let L0 be a geodesic on H such that dðL;L0Þ ¼ Dðl; l 0Þ and dEðL0Þ ¼ dEðL 0Þ,
and x0

1 and x0
2 the end points of L0. We may assume that 0 < x0

1 < x0
2 . Then

x1 b x0
1 . Let y0 be an angle such that cos y0 ¼ fcoshðDðl; l 0ÞÞg�1. Then we see

that

x0
1 þ

dEðL 0Þ
2

� �
cos y0 ¼

dEðL 0Þ
2

(see [1, (7.20.3)]). Thus we have

x0
1 ¼ dEðL 0Þ

2

1� cos y0
cos y0

¼ dEðL 0Þ
2

fcoshðDðl; l 0ÞÞ � 1g

b
dEðL 0Þ

2

coshðl=2Þ coshðl 0=2Þ þ 1

sinhðl=2Þ sinhðl 0=2Þ � 1

� �
:

Next we suppose that LVL 0 0j, and let y be the intersection angle. Then
by Proposition 11, we have

cos ya cos arcsin
1

sinhðl=2Þ sinhðl 0=2Þ

� �� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

sinh2ðl=2Þ sinh2ðl 0=2Þ

s
:

Without loss of generality, we may assume that the two end points x1 and x2 of
L 0 satisfy x1 < 0 < x2 and jx1ja jx2j. Then x1 þ dEðL 0Þ=2b 0 and

jx1j ¼
dEðL 0Þ

2
ð1� cos yÞb dEðL 0Þ

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

sinh2ðl=2Þ sinh2ðl 0=2Þ

s !
: r
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Now we prove our theorem.

Proof of Theorem 4. We may assume that neither a nor f ðaÞ is y. First
we suppose that f ðLÞ� VL ¼ j. Let W be a simply connected domain that is
surrounded by L, f ðLÞ� and a subset of R. If W is not bounded, then it is clear
that at least one end point a satisfies

j f ðaÞ � aj > dEðLÞ:
Thus we have only to consider the case where W is bounded. By translation
along the real axis, we may assume that L is symmetrical about the imaginary
axis, and then passes through ðdEðLÞ=2Þi. By Corollary 10, we have

dð f ðLÞ�;LÞb arccosh
coshðl=2Þ coshðl 0=2Þ þ 1

sinhðl=2Þ sinhðl 0=2Þ

� �
¼: d0:

Let L0 be a geodesic on H such that it is symmetrical about the imaginary axis
and satisfies dðL0;LÞ ¼ d0 and passes through ðdEðLÞ=2Þ � e�d0 i. Then the end
point c > 0 of L and the end point c0 > 0 of L0 satisfy

jc� c0j ¼ ðdEðLÞ=2Þð1� e�d0Þ ¼: d1.

It is easily seen that at least one end point a of f ðLÞ� satisfies

j f ðaÞ � ajb d1

b
dEðLÞ
2

1� exp �arccosh
coshðl=2Þ coshðl 0=2Þ þ 1

sinhðl=2Þ sinhðl 0=2Þ

� �� �� �

b
dEðLÞ
2

1� sinhðl=2Þ sinhðl 0=2Þ
coshðl=2Þ coshðl 0=2Þ þ 1

� �
;

and we have the assertion.
Next we suppose that f ðLÞ� VL0j. Furthermore we may assume that the

Euclidean diameter dEð f ðLÞ�Þ of f ðLÞ� satisfies 2dEðLÞ > dEð f ðLÞ�Þ > dEðLÞ=2.
Indeed, if dEð f ðLÞ�Þa dEðLÞ=2, then at least one end point a of L satisfies

j f ðaÞ � aj > dEðLÞ=2:
If 2dEðLÞa dEð f ðLÞ�Þ, then at least one end point a of L satisfies

j f ðaÞ � aj > dEðLÞ:
Since d=ð1� dÞ < 1=2, in these cases, we have the assertion.

Let a and b be the two end points of L, and a 0 and b 0 be the two end
points of f ðLÞ�. We may assume that a 0 < a < b 0 < b. We have only to prove
that a� a 0 > B under the assumption that f ðaÞ ¼ a 0. Indeed, if f ðbÞ ¼ a 0,
then b � f ðbÞ ¼ b � a 0 > a� a 0 > B. We take a Möbius transformation fðzÞ ¼
ðz� aÞ=ðz� bÞ. Then fðLÞ ¼ fy

ffiffiffiffiffiffiffi
�1

p
j y > 0g. Furthermore

dEðfð f ðLÞ�ÞÞ ¼ jfða 0Þ � fðb 0Þj ¼ ðb � aÞðb 0 � a 0Þ
ðb � a 0Þðb � b 0Þ :
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Here we note that

b � a 0 < ðb 0 � a 0Þ þ ðb � aÞ ¼ dEð f ðLÞ�Þ þ dEðLÞ < 3dEðLÞ;
and

b � b 0 < b � a ¼ dEðLÞ:
Thus

dEðfð f ðLÞ�ÞÞ >
dEðLÞ � ðdEðLÞ=2Þ
3dEðLÞ � dEðLÞ

¼ 1

6
:

By Lemma 13, we see that jfða 0Þj > d. Since jfða 0Þj ¼ ða� a 0Þ=ðb � a 0Þ, we have

a� a 0 > dðb � a 0Þ ¼ dðða� a 0Þ þ ðb � aÞÞ:
Since b � a ¼ dEðLÞ and d < 1=12, the above inequality is equivalent to

a� a 0 >
d

1� d
� dEðLÞ: r
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