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NULL 2-TYPE SUBMANIFOLDS OF THE EUCLIDEAN SPACE E’
WITH PARALLEL NORMALIZED MEAN CURVATURE VECTOR

UGUR DURSUN

Abstract

We classify 3-dimensional null 2-type submanifolds of the Euclidean space E° with
parallel normalized mean curvature vector under certain hypothesis.

1. Introduction

The theory of finite type was introduced by B. Y. Chen in 1983 ([2]) and since
then it has become a useful tool in the study of submanifolds. That concept is
the natural extension of minimal submanifolds, to which many mathematicians
have devoted themselves in the last decades.

The problem of the classification of null 2-type hypersurfaces or, in general,
submanifolds are quite interesting in the theory of finite type. In [3], B. Y. Chen
has given a classification of null 2-type surfaces in the Euclidean space E* and
proved that they are circular cylinders. Later, in [4], he proved that a surface
M in the Euclidean space E* is of null 2-type with parallel normalized mean
curvature vector if and only if M is an open portion of a circular cylinder in a
hyperplane of E4, and that the helical cylinders are the only surfaces of null 2-
type and constant mean curvature of the Euclidean space E*.

Also in [5], S. J. LI showed that a surface M in E™ with parallel normalized
mean curvature vector is of null 2-type if and only if M is an open portion of a
circular cylinder.

In [1], A. Ferrandez and P. Lucas have shown that Euclidean hypersurfaces
of null 2-type and having at most two distinct principal curvatures are locally
isometric to a generalized cylinder.

In this paper we investigate the classification of 3-dimensional null 2-type
submanifolds of the Euclidean space E> with parallel normalized mean curvature
vector. We prove that a 3-dimensional submanifold M of the Euclidean space E>
having two distinct principal curvatures in the parallel mean curvature direction
and having a second fundamental form of a constant square length is of null
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2-type if and only if M is locally isometric to one of E x S> c E* c EJ,
E*x S' c E* < E® or E x S'(a) x S'(a).

2. Preliminaries

Let M be an n-dimensional submanifold in an (n + 2)-dimensional Euclidean
space E"t2. We denote by h, A, H, V and V*, the second fundamental form,
the Weingarten map, the mean curvature vector, the Riemannian connection and
the normal connection of the submanifold M in E"+?, respectively. We choose
an orthonormal local frame {ej,...,e, 2} on M such that ey,...,e, are tangent
to M and e, is the direction of H, i.e., the normalized mean curvature vector.
Denote by {w!,...,w""?} the dual frame and {w#}, 4,B=1,...,n+2, the
connection forms associated to {ei,...,e,2}. We use the following convention
on the range of indices: 1 < A,B,C,...<n+2, 1 <i jk,...<n, n+1<p,v,
7,...<n+2. Denoting by D the Riemannian connection of E""2 we put
Dy.ei =3 ol (ex)ej + 3 h(er,ex)ep and Doy = 3 wf(ex)e; + 3 f (ex)ep. By
Cartan’s Lemma, we have

n
ol =3 hlol, W =],
Jj=1
where hg are the coefficients of the second fundamental form in the direction eg.
The mean curvature vector H is given by

1 n+2 P
(1) H=- > tr(hf)ey
p=n+1

and the square length of the second fundamental form is defined by

(2) o= tr(hf)* =>"(nf).
B

i.j,p
Using the connection equations:

n
Ve = Zw}((ei)ek
k=1

we can obtain the Gauss and Codazzi equations for n = 3, respectively, as

6((60‘!(3/()) - e/c(wij(e/))

{wf(er)oo](ex) — o (er)of (er) + o] (e wp(er) — wj(ex)]}

I
M-

.

(3) + ) (hyhi, —hyhy), 1<i<j<3,1</<k<3,

v=4
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and
ej(hy) — ex(hy)

3
= Z{h};[wi(ej) — wj(ex)] + hyoi(e)) — hjoi(ex)}
(4) Z loj(er) — Miope)), v=4,5i=1231<j<k<3,

If M is a null 2-type submanifold of E"*2, then we have the following
decomposition of the position vector x of M in E":

(5) x=x0+x1, Axo=0, Ax; =cxy,

for some non-constant vectors xo and x; on M, where ¢ is a non-zero constant.
Since we have Ax = —nH, then (5) implies

(6) AH = cH.

3. Null 2-type submanifolds
To achieve our goal we need the following lemmas.
LemMa 3.1 [4]. Let M be a n-dimensional submanifold of a Euclidean space

E™.  If there is a constant ¢ # 0 such that AH = cH, then M is either of 1-type or
of null 2-type.

Let U={ue M|H #0 at u}. We choose an orthonormal local frame field
€ut1, €nro normal to U = M in E> so that e, is parallel to H. Then the allied
mean curvature vector .o/ (H) is defined by

(7) A (H) = tr(ApAni2)ensz = [|H|| tr(Api1Aniz)ensa,

where 4, = 4,,. If H =0 at the point u in M, then .«/(H) is defined to be zero.
In [2, p. 271] we have the formula

(8) AH = A H + || Ay ||PH + </ (H) + tr(VAy),

where AV H is the Laplacian of H with respect to the normal connection V=,
[Ani1]1* = tr(Ay14,11) and

(9) VAy =VAy + Ay,

LemMa 3.2 [2, 3]. Let M be a n-dimensional submanifold of a Euclidean
space E™. Then we have

(10) tr(VAy) = ng F2tr(Aysy),

where o> = (H,H) and Va? is the gradient of o?.
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LemmA 3.3 [4]. Let M be a n-dimensional submanifold of a Euclidean space
E™ such that M is not of 1-type. Then M is of null 2-type if and only if we have

(11) tr(VAy) =0
and
(12) A H + || Ay |PH + o/ (H) = cH

for some constant c.

LemMA 3.4 [4]. Let M be a n-dimensional submanifold of a Euclidean space
E™. Then we have
A H = {Ao+ 2V enir, VVEenard eus

m

+ Z {adV¥eni1, Ve, = 20) (Vo) — a tr(Va), ) ter (13)
r=n+2

Let M be a 3-dimensional submanifold of a Euclidean space E°, (n =3,
m =5), then we have

LeMMA 3.5. Let M be a 3-dimensional submanifold of the Euclidean space E’
such that M is not of 1-type. Then M is of null 2-type if and only if we have

3
(14) 244(Va) = —3aVa — 2ocwa(e,-)A5(e,~),
=1
(15) Ao+ aljeo]||* + o) Aal|* = ca,
(16) a tr(A4ds) = 2w, (Va) + o tr(Vay).

Considering (7) the proof of the lemma follows from Lemma 3.2, Lemma
3.3, and Lemma 3.4.

ProposiTION 3.1. Let M be a 3-dimensional submanifold of the Euclidean
space E> with parallel normalized mean curvature vector such that M is not of 1-
type. If M is of null 2-type with the Weingarten map in the direction of the mean
curvature vector H has two distinct eigenvalues, then the mean curvature o is
constant on M.

Proof. As the codimension is 2 and the normalized mean curvature vector,
es = H/a, is parallel, then the other unit normal vector es in the basis is also
parallel. Therefore the normal space is flat. Hence we can have the diagon-
alized Weingarten maps in the direction e; and es, and w; =0 on M. Since
Ay has two distinct eigenvalues, say, 4 = hj, # h3y, = hi; = p and hj, = v, h3, = p,
h3; =7, we can write

A4 = diag(A,u, ) and As = diag(v,p,7) with v+p+7=0.
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However, from (16) we get
(17) tr(Asds) = v+ u(t +p) = (= 2)(z +p) = 0.

As u— 2 #0 we have 1+ p =0, that is, v=0 and 7= —p.

Assume that a is not constant. Let V' ={pe M :Va#0 at p} which is
open in M. From (14) it is seen that the vector Vo is an eigenvector of A4
corresponding to the eigenvalue —3o. Then we may say that Vo is parallel to e
or e; (the same as e;). For the last case it could also be proved that the mean
curvature o is constant by using the same way as in the first case. So 4 = —%oc

and u = %oc because of 3¢ = A+ 2u. Then we have

9 9
(18) w?:—zocw , wé:‘—‘awz, w3 =0’
Also, by (15), we obtain
(19) Aoc—&—%oc3 = co.

8
Since Vo is parallel to e; we can have ex(o) = e3(a) = 0, that is, e2(1) = e3(A) =
ex(pu) = e3(u) =0 and
(20) do.= ey (a)w'.
By using the Codazzi equations for the normal direction e4 we have the

followings: wi(e;) =0fori=1, j=1, k=2 wi(e)=0fori=1, j=1,k=3;
wlle3)=0for i=2, j=1, k=3; wl(ea) =0 for i=1, j=2, k=3;

(21) e (o) :gawzl(ez), fori=2,j=1k=2;
and

5 4 . .
(22) el(a) = goca)3(e3), for i=3,j=1k=3.

Applying the structure equations, it can be shown that dw' = 0. Hence we have
locally

(23) o' = du,
where u is a local coordinate on U.

From (20) and (23) we have dooAdu = 0. This shows that o is a function of
u, ie., o =o(u) and do = o'(u) du. Thus, by (21) and (22) we have

(24) o(er) = ol (es) = X

So
Considering wi(er) = wi(e1) = wi(e3) = wl(ez) =0, from the Gauss equa-

tions for i=1, j=2, /=1, k=2 we get
(25) ai(@y(e2)) = (@3(e2)* + 2t
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Using (24) and the last statement we obtain
(26) 12000 — 192(a')* + 6750* = 0.

Let y = («/)%. Then it is easy to see that the equation (26) can be reduced to the
following first order differential equation:
(27) 60uy’ — 192y + 675¢* = 0,
where y’ denotes the first derivative of y with respect to «. For this equation we
obtain the solution

~ 225
(28) (a/)z — COC16/5 _¥a47

where C is a constant.
On the other hand, by a straight forward calculation we obtain
6(a')?
29 Ao = —ao”.
(29) o=—c—-u
The equations (19) and (29) show that
(30) 4000 — 48(at’)? — 4950* + 40ca® = 0.

By (26) and (30) we obtain

(31) (') = 450* — gcocz.

As a result, comparing (28) and (31) we deduce that « is locally constant on
V, and (26) implies « = 0 which contradicts to our assumption that M is not of
I-type. Therefore, V' is empty and M has constant mean curvature o. O

For later use we need the connection forms w? of E x S'(a) x S'(a) = E>.
By a suitable choice of the Euclidean coordinates, its equation takes the following
form

x(uy,up, uz) = (u1,a cos uy,a sin uy, a cos uz, a sin u3),

where a is a nonzero constant. If we put

e = a—il =(1,0,0,0,0), e = é ai;z = (0, —sin uy, cos u,0,0),
1 0 .
e =" o = (0,0,0, —sin us, cos u3),
ey = 1 (0, cos uy, sin uy, cos us, sin u3),
V2
1 . .
es = ﬁ (0, cos uy, sin up, —cos uz, —sin us3),
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then, by a straight forward calculation we obtain

o'=du, ©*=adu, ©=adu, ©0)=0)=0]=0!=0]=0!=0,
1 1 1 1
(32) wi=———0’, 0i=———0’ 0 =—0’ 0,=——o0’
2 ’ 3 ’ 2 ) 3
av'2 av2 av2 av2

THEOREM 3.1. Let M be a 3-dimensional submanifold of the Euclidean space
E> with parallel normalized mean curvature vector such that M is not of 1-
type. Then M is of null 2-type having two distinct principal curvatures in the mean
curvature direction and having a second fundamental form o of a constant square
length if and only if M is locally isometric to one of E x S*>c E*c E’,
E*x S' c E* < E® or E x S'(a) x S'(a).

Proof. Let M be of null 2-type and let the Weingarten map in the direction
H has two distinct principal curvatures. Then the mean curvature o on M is
constant by Proposition 3.1. However, as in the proof of Proposition 3.1 we can
have

A4 = diag(A,u, ) and As = diag(0, p, —p).

By using (15) we have |A4]® = /%4 24® = ¢ which is constant. Hence,
remembering that « is constant, it is easily seen that the eigenvalues 1 and u of
Ay are constant. Since the square length of the second fundamental form is
constant, then, by using (2) we obtain p = const.

As h{; = A, h}, =h}; =u and hi, =0, h3, = —h3; = p, from the Codazzi
equations (4), for v =4 we obtain a)j' (e))(A—p)=0, i=1,2,3, j=2,3 which
imply that

(33) W, (1) = w3(er) = w(e2) = wy(e3) = w3 (e2) = w3(e3) = 0.
Therefore, from the Codazzi equations (4), for v=15 we get
(34) pe3(er) = pw3(er) = pw3(es) =0,

for i=2, j=1, k=3, i=2, j=2, k=3 and i=3, j=2, k=3, respec-
tively. However, by using the Gauss equations (3), fori=1, j=2, /=1 k=2
and for i=2, j=3, /=2, k=3, we obtain, respectively,

(35) Jp=0,
(36)  elwie) - e@e) = @) + (@) + 1> - p

Since A4 has two distinct eigenvalues, one of A and y is different from zero.
Therefore we have the followings:

Caste 1. 4A#0 and u=0. Then, by (34) we get p=0 or wi(er)=
w3(e;) = wi(es) = 0. Using the second part, (36) implies that p = 0. Therefore
As vanishes. Since the normal space is flat and As = 0, then M is contained in a
hyperplane of E°.

A classical result of B. Segre [6] states that the isoparametric hypersurfaces
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in E" are E", S"*! and SP x E" P, where S? is the p-sphere of radius r in
the Euclidean space E?*! perpendicular to E”7. From this results, as A4 has
constant eigenvalues M is locally isometric to S' x E> ¢ E* < E°.

CasE 2. u#0, A=0 and p = const. #0. From (34) we have

(37) w3(e2) = w3(er) = w3(es) = 0.

Considering (33) and (37) it is seen that M is flat. However, from (36) we get
p=TFu. Also, we can write

ol =0, of =uw’ of=p, 0 =0, 0 =+, o;=Fuw’
Considering that M has a flat normal connection it is seen that the connection
forms w3 coincide with the connection forms of E x S'(a) x S'(a) given in (32).
Therefore, as a result of the fundamental theorem of submanifolds, M is in fact
isometric to E x S'(a) x S'(a) < E°.

Case3. u#0,A=0and p=0. Then A5 =0. Thatis, M is contained in
a hyperplane of E*. M is therefore isometric to E x S*(a) = E* because of [6)].

The converses of all these cases are trivial. O

I would like to express my hearty thanks to Prof. Dr. Abdiilkadir Ozdeger
for his valuable suggestions about this work.
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