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NULL 2-TYPE SUBMANIFOLDS OF THE EUCLIDEAN SPACE E5

WITH PARALLEL NORMALIZED MEAN CURVATURE VECTOR

Uǧur Dursun

Abstract

We classify 3-dimensional null 2-type submanifolds of the Euclidean space E 5 with

parallel normalized mean curvature vector under certain hypothesis.

1. Introduction

The theory of finite type was introduced by B. Y. Chen in 1983 ([2]) and since
then it has become a useful tool in the study of submanifolds. That concept is
the natural extension of minimal submanifolds, to which many mathematicians
have devoted themselves in the last decades.

The problem of the classification of null 2-type hypersurfaces or, in general,
submanifolds are quite interesting in the theory of finite type. In [3], B. Y. Chen
has given a classification of null 2-type surfaces in the Euclidean space E3 and
proved that they are circular cylinders. Later, in [4], he proved that a surface
M in the Euclidean space E4 is of null 2-type with parallel normalized mean
curvature vector if and only if M is an open portion of a circular cylinder in a
hyperplane of E 4, and that the helical cylinders are the only surfaces of null 2-
type and constant mean curvature of the Euclidean space E4.

Also in [5], S. J. LI showed that a surface M in Em with parallel normalized
mean curvature vector is of null 2-type if and only if M is an open portion of a
circular cylinder.

In [1], A. Ferrandez and P. Lucas have shown that Euclidean hypersurfaces
of null 2-type and having at most two distinct principal curvatures are locally
isometric to a generalized cylinder.

In this paper we investigate the classification of 3-dimensional null 2-type
submanifolds of the Euclidean space E5 with parallel normalized mean curvature
vector. We prove that a 3-dimensional submanifold M of the Euclidean space E5

having two distinct principal curvatures in the parallel mean curvature direction
and having a second fundamental form of a constant square length is of null
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2-type if and only if M is locally isometric to one of E � S2 HE4 HE5,
E2 � S1 HE4 HE5 or E � S1ðaÞ � S1ðaÞ.

2. Preliminaries

Let M be an n-dimensional submanifold in an ðnþ 2Þ-dimensional Euclidean
space Enþ2. We denote by h, A, H, ‘ and ‘?, the second fundamental form,
the Weingarten map, the mean curvature vector, the Riemannian connection and
the normal connection of the submanifold M in Enþ2, respectively. We choose
an orthonormal local frame fe1; . . . ; enþ2g on M such that e1; . . . ; en are tangent
to M and enþ1 is the direction of H, i.e., the normalized mean curvature vector.
Denote by fo1; . . . ;onþ2g the dual frame and foA

B g, A;B ¼ 1; . . . ; nþ 2, the
connection forms associated to fe1; . . . ; enþ2g. We use the following convention
on the range of indices: 1aA;B;C; . . .a nþ 2, 1a i; j; k; . . .a n, nþ 1a b; n;
g; . . .a nþ 2. Denoting by D the Riemannian connection of Enþ2, we put
Dekei ¼

P
o

j
i ðekÞej þ

P
hbðei; ekÞeb and Deken ¼

P
o j

nðekÞej þ
P

ob
n ðekÞeb. By

Cartan’s Lemma, we have

o
b
i ¼

Xn

j¼1

h
b
ijo

j; h
b
ij ¼ h

b
ji ;

where h
b
ij are the coe‰cients of the second fundamental form in the direction eb.

The mean curvature vector H is given by

H ¼ 1

n

Xnþ2

b¼nþ1

trðhbÞebð1Þ

and the square length of the second fundamental form is defined by

s ¼
X

b

trðhbÞ2 ¼
X

i; j;b

ðhb
ij Þ

2:ð2Þ

Using the connection equations:

‘ei ej ¼
Xn

k¼1

ok
j ðeiÞek

we can obtain the Gauss and Codazzi equations for n ¼ 3, respectively, as

elðo j
i ðekÞÞ � ekðo j

i ðelÞÞ

¼
X3

r¼1

for
i ðelÞo j

r ðekÞ � or
i ðekÞo j

r ðelÞ þ o
j
i ðerÞ½or

kðelÞ � or
lðekÞ�g

þ
X5

n¼4

ðhn
ikh

n
jl � hn

jkh
n
ilÞ; 1a i < ja 3; 1a l < ka 3;ð3Þ
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and

ejðhn
ikÞ � ekðhn

ijÞ

¼
X3

r¼1

fhn
ir½or

kðejÞ � or
j ðekÞ� þ hn

rko
r
i ðejÞ � hn

rjo
r
i ðekÞg

þ
X5

b¼4

ðhb
ijo

n
bðekÞ � h

b
iko

n
bðejÞÞ; n ¼ 4; 5; i ¼ 1; 2; 3; 1a j < ka 3:ð4Þ

If M is a null 2-type submanifold of Enþ2, then we have the following
decomposition of the position vector x of M in Enþ2:

x ¼ x0 þ x1; Dx0 ¼ 0; Dx1 ¼ cx1;ð5Þ
for some non-constant vectors x0 and x1 on M, where c is a non-zero constant.
Since we have Dx ¼ �nH, then (5) implies

DH ¼ cH:ð6Þ

3. Null 2-type submanifolds

To achieve our goal we need the following lemmas.

Lemma 3.1 [4]. Let M be a n-dimensional submanifold of a Euclidean space
Em. If there is a constant c0 0 such that DH ¼ cH, then M is either of 1-type or
of null 2-type.

Let U ¼ fu A M jH0 0 at ug. We choose an orthonormal local frame field

enþ1, enþ2 normal to U HM in E5 so that enþ1 is parallel to H. Then the allied
mean curvature vector AðHÞ is defined by

AðHÞ ¼ trðAHAnþ2Þenþ2 ¼ kHk trðAnþ1Anþ2Þenþ2;ð7Þ
where An ¼ Aen . If H ¼ 0 at the point u in M, then AðHÞ is defined to be zero.
In [2, p. 271] we have the formula

DH ¼ D‘?
H þ kAnþ1k2

H þAðHÞ þ trð‘AHÞ;ð8Þ
where D‘?

H is the Laplacian of H with respect to the normal connection ‘?,
kAnþ1k2 ¼ trðAnþ1Anþ1Þ and

‘AH ¼ ‘AH þ A‘?H :ð9Þ

Lemma 3.2 [2, 3]. Let M be a n-dimensional submanifold of a Euclidean
space Em. Then we have

trð‘AHÞ ¼
n

2
‘a2 þ 2 trðA‘?HÞ;ð10Þ

where a2 ¼ hH;Hi and ‘a2 is the gradient of a2.
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Lemma 3.3 [4]. Let M be a n-dimensional submanifold of a Euclidean space
Em such that M is not of 1-type. Then M is of null 2-type if and only if we have

trð‘AHÞ ¼ 0ð11Þ
and

D‘?
H þ kAnþ1k2

H þAðHÞ ¼ cHð12Þ
for some constant c.

Lemma 3.4 [4]. Let M be a n-dimensional submanifold of a Euclidean space
Em. Then we have

D‘?
H ¼ fDaþ ah‘?enþ1;‘

?enþ1igenþ1

þ
Xm

r¼nþ2

fah‘?enþ1;‘
?eri� 2or

nþ1ð‘aÞ � a trð‘or
nþ1Þger ð13Þ

Let M be a 3-dimensional submanifold of a Euclidean space E5, (n ¼ 3,
m ¼ 5), then we have

Lemma 3.5. Let M be a 3-dimensional submanifold of the Euclidean space E5

such that M is not of 1-type. Then M is of null 2-type if and only if we have

2A4ð‘aÞ ¼ �3a‘a� 2a
X3

i¼1

o5
4ðeiÞA5ðeiÞ;ð14Þ

Daþ ako5
4k

2 þ akA4k2 ¼ ca;ð15Þ
a trðA4A5Þ ¼ 2o5

4ð‘aÞ þ a trð‘o5
4Þ:ð16Þ

Considering (7) the proof of the lemma follows from Lemma 3.2, Lemma
3.3, and Lemma 3.4.

Proposition 3.1. Let M be a 3-dimensional submanifold of the Euclidean
space E 5 with parallel normalized mean curvature vector such that M is not of 1-
type. If M is of null 2-type with the Weingarten map in the direction of the mean
curvature vector H has two distinct eigenvalues, then the mean curvature a is
constant on M.

Proof. As the codimension is 2 and the normalized mean curvature vector,
e4 ¼ H=a, is parallel, then the other unit normal vector e5 in the basis is also
parallel. Therefore the normal space is flat. Hence we can have the diagon-
alized Weingarten maps in the direction e4 and e5, and o5

4 1 0 on M. Since
A4 has two distinct eigenvalues, say, l ¼ h4

11 0 h4
22 ¼ h4

33 ¼ m and h5
11 ¼ n, h5

22 ¼ r,
h5

33 ¼ t, we can write

A4 ¼ diagðl; m; mÞ and A5 ¼ diagðn; r; tÞ with nþ rþ t ¼ 0:
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However, from (16) we get

trðA4A5Þ ¼ lnþ mðtþ rÞ ¼ ðm� lÞðtþ rÞ ¼ 0:ð17Þ
As m� l0 0 we have tþ r ¼ 0, that is, n ¼ 0 and t ¼ �r.

Assume that a is not constant. Let V ¼ fp A M : ‘a0 0 at pg which is
open in M. From (14) it is seen that the vector ‘a is an eigenvector of A4

corresponding to the eigenvalue � 3
2 a. Then we may say that ‘a is parallel to e1

or e3 (the same as e2). For the last case it could also be proved that the mean
curvature a is constant by using the same way as in the first case. So l ¼ � 3

2 a
and m ¼ 9

4 a because of 3a ¼ lþ 2m. Then we have

o4
1 ¼ � 3

2
ao1; o4

2 ¼ 9

4
ao2; o4

3 ¼ 9

4
ao3:ð18Þ

Also, by (15), we obtain

Daþ 99

8
a3 ¼ ca:ð19Þ

Since ‘a is parallel to e1 we can have e2ðaÞ ¼ e3ðaÞ ¼ 0, that is, e2ðlÞ ¼ e3ðlÞ ¼
e2ðmÞ ¼ e3ðmÞ ¼ 0 and

da ¼ e1ðaÞo1:ð20Þ
By using the Codazzi equations for the normal direction e4 we have the

followings: o1
2ðe1Þ ¼ 0 for i ¼ 1, j ¼ 1, k ¼ 2; o1

3ðe1Þ ¼ 0 for i ¼ 1, j ¼ 1, k ¼ 3;
o1

2ðe3Þ ¼ 0 for i ¼ 2, j ¼ 1, k ¼ 3; o1
3ðe2Þ ¼ 0 for i ¼ 1, j ¼ 2, k ¼ 3;

e1ðaÞ ¼
5

3
ao1

2ðe2Þ; for i ¼ 2; j ¼ 1; k ¼ 2;ð21Þ

and

e1ðaÞ ¼
5

3
ao1

3ðe3Þ; for i ¼ 3; j ¼ 1; k ¼ 3:ð22Þ

Applying the structure equations, it can be shown that do1 ¼ 0. Hence we have
locally

o1 ¼ du;ð23Þ
where u is a local coordinate on U .

From (20) and (23) we have da5du ¼ 0. This shows that a is a function of
u, i.e., a ¼ aðuÞ and da ¼ a 0ðuÞ du. Thus, by (21) and (22) we have

o1
2ðe2Þ ¼ o1

3ðe3Þ ¼
3a 0

5a
:ð24Þ

Considering o1
2ðe1Þ ¼ o1

3ðe1Þ ¼ o1
2ðe3Þ ¼ o1

3ðe2Þ ¼ 0, from the Gauss equa-
tions for i ¼ 1, j ¼ 2, l ¼ 1, k ¼ 2 we get

e1ðo1
2ðe2ÞÞ ¼ ðo1

2ðe2ÞÞ2 þ lm:ð25Þ
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Using (24) and the last statement we obtain

120aa 00 � 192ða 0Þ2 þ 675a4 ¼ 0:ð26Þ
Let y ¼ ða 0Þ2. Then it is easy to see that the equation (26) can be reduced to the
following first order di¤erential equation:

60ay 0 � 192yþ 675a4 ¼ 0;ð27Þ
where y 0 denotes the first derivative of y with respect to a. For this equation we
obtain the solution

ða 0Þ2 ¼ ~CCa16=5 � 225

16
a4;ð28Þ

where ~CC is a constant.
On the other hand, by a straight forward calculation we obtain

Da ¼ 6ða 0Þ2

5a
� a 00:ð29Þ

The equations (19) and (29) show that

40aa 00 � 48ða 0Þ2 � 495a4 þ 40ca2 ¼ 0:ð30Þ
By (26) and (30) we obtain

ða 0Þ2 ¼ 45a4 � 5

2
ca2:ð31Þ

As a result, comparing (28) and (31) we deduce that a is locally constant on
V , and (26) implies a ¼ 0 which contradicts to our assumption that M is not of
1-type. Therefore, V is empty and M has constant mean curvature a. r

For later use we need the connection forms oB
A of E � S1ðaÞ � S1ðaÞHE5.

By a suitable choice of the Euclidean coordinates, its equation takes the following
form

xðu1; u2; u3Þ ¼ ðu1; a cos u2; a sin u2; a cos u3; a sin u3Þ;
where a is a nonzero constant. If we put

e1 ¼ q

qu1
¼ ð1; 0; 0; 0; 0Þ; e2 ¼ 1

a

q

qu2
¼ ð0;�sin u2; cos u2; 0; 0Þ;

e3 ¼ 1

a

q

qu3
¼ ð0; 0; 0;�sin u3; cos u3Þ;

e4 ¼ 1ffiffiffi
2

p ð0; cos u2; sin u2; cos u3; sin u3Þ;

e5 ¼ 1ffiffiffi
2

p ð0; cos u2; sin u2;�cos u3;�sin u3Þ;
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then, by a straight forward calculation we obtain

o1 ¼ du1; o2 ¼ a du2; o3 ¼ a du3; o1
2 ¼ o1

3 ¼ o2
3 ¼ o4

1 ¼ o5
1 ¼ o4

5 ¼ 0;

o4
2 ¼ � 1

a
ffiffiffi
2

p o2; o4
3 ¼ � 1

a
ffiffiffi
2

p o3; o5
2 ¼ 1

a
ffiffiffi
2

p o2; o5
3 ¼ � 1

a
ffiffiffi
2

p o3:ð32Þ

Theorem 3.1. Let M be a 3-dimensional submanifold of the Euclidean space
E5 with parallel normalized mean curvature vector such that M is not of 1-
type. Then M is of null 2-type having two distinct principal curvatures in the mean
curvature direction and having a second fundamental form s of a constant square
length if and only if M is locally isometric to one of E � S2 HE4 HE5,
E2 � S1 HE4 HE5 or E � S1ðaÞ � S1ðaÞ.

Proof. Let M be of null 2-type and let the Weingarten map in the direction
H has two distinct principal curvatures. Then the mean curvature a on M is
constant by Proposition 3.1. However, as in the proof of Proposition 3.1 we can
have

A4 ¼ diagðl; m; mÞ and A5 ¼ diagð0; r;�rÞ:
By using (15) we have kA4k2 ¼ l2 þ 2m2 ¼ c which is constant. Hence,

remembering that a is constant, it is easily seen that the eigenvalues l and m of
A4 are constant. Since the square length of the second fundamental form is
constant, then, by using (2) we obtain r ¼ const.

As h4
11 ¼ l, h4

22 ¼ h4
33 ¼ m and h5

11 ¼ 0, h5
22 ¼ �h5

33 ¼ r, from the Codazzi

equations (4), for n ¼ 4 we obtain o1
j ðeiÞðl� mÞ ¼ 0, i ¼ 1; 2; 3, j ¼ 2; 3 which

imply that

o1
2ðe1Þ ¼ o1

3ðe1Þ ¼ o1
2ðe2Þ ¼ o1

2ðe3Þ ¼ o1
3ðe2Þ ¼ o1

3ðe3Þ ¼ 0:ð33Þ
Therefore, from the Codazzi equations (4), for n ¼ 5 we get

ro2
3ðe1Þ ¼ ro2

3ðe2Þ ¼ ro2
3ðe3Þ ¼ 0;ð34Þ

for i ¼ 2, j ¼ 1, k ¼ 3; i ¼ 2, j ¼ 2, k ¼ 3 and i ¼ 3, j ¼ 2, k ¼ 3, respec-
tively. However, by using the Gauss equations (3), for i ¼ 1, j ¼ 2, l ¼ 1, k ¼ 2
and for i ¼ 2, j ¼ 3, l ¼ 2, k ¼ 3, we obtain, respectively,

lm ¼ 0;ð35Þ
e2ðo2

3ðe3ÞÞ � e3ðo2
3ðe2ÞÞ ¼ ðo2

3ðe2ÞÞ2 þ ðo2
3ðe3ÞÞ2 þ m2 � r2:ð36Þ

Since A4 has two distinct eigenvalues, one of l and m is di¤erent from zero.
Therefore we have the followings:

Case 1. l0 0 and m ¼ 0. Then, by (34) we get r ¼ 0 or o2
3ðe2Þ ¼

o2
3ðe1Þ ¼ o2

3ðe3Þ ¼ 0. Using the second part, (36) implies that r ¼ 0. Therefore
A5 vanishes. Since the normal space is flat and A5 1 0, then M is contained in a
hyperplane of E5.

A classical result of B. Segre [6] states that the isoparametric hypersurfaces
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in Enþ1 are En;Snþ1 and Sp � En�p, where Sp is the p-sphere of radius r in
the Euclidean space Epþ1 perpendicular to En�p. From this results, as A4 has
constant eigenvalues M is locally isometric to S1 � E2 HE4 HE5.

Case 2. m0 0, l ¼ 0 and r ¼ const:0 0. From (34) we have

o2
3ðe2Þ ¼ o2

3ðe1Þ ¼ o2
3ðe3Þ ¼ 0:ð37Þ

Considering (33) and (37) it is seen that M is flat. However, from (36) we get
r ¼Hm. Also, we can write

o4
1 ¼ 0; o4

2 ¼ mo2; o4
3 ¼ mo3; o5

1 ¼ 0; o5
2 ¼Gmo2; o5

3 ¼Hmo3

Considering that M has a flat normal connection it is seen that the connection
forms oA

B coincide with the connection forms of E � S1ðaÞ � S1ðaÞ given in (32).
Therefore, as a result of the fundamental theorem of submanifolds, M is in fact
isometric to E � S1ðaÞ � S1ðaÞHE5.

Case 3. m0 0, l ¼ 0 and r ¼ 0. Then A5 ¼ 0. That is, M is contained in
a hyperplane of E4. M is therefore isometric to E � S2ðaÞHE4 because of [6].

The converses of all these cases are trivial. r

I would like to express my hearty thanks to Prof. Dr. Abdülkadir Özdeǧer
for his valuable suggestions about this work.
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