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WEIGHTED SHARING OF THREE VALUES AND UNIQUENESS OF
MEROMORPHIC FUNCTIONS

INDRAJIT LAHIRI

Abstract

Using the idea of weighted sharing we prove a result on uniqueness of meromorphic
functions sharing three values which improve some results of Ueda, Yi and Ye.

1. Introduction, definitions and results

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane 4. For he U {0} we say that f and g share the value b CM
(counting multiplicities) if f — b and g — b have the same zeros with the same
multiplicities. If we do not take multiplicities into account, we say that f and
g share the value » IM (ignoring multiplicities). For standard notations and
definitions of the value distribution theory we refer [1].

H. Ueda [6] proved the following result.

THEOREM A [6]. Let f and g be two distinct nonconstant entire functions
sharing 0,1 CM and let a (# 0,1) be a finite complex number. If a is lacunary
for f then 1 —a is lacunary for g and (f —a)(g+a—1)=a(l —a).

Improving Theorem A H. X. Yi [8] proved the following theorem.

THEOREM B [8]. Let f and g be two distinct nonconstant entire functions
sharing 0,1 CM and let a (#0,1) be a finite complex number. If é(a; f) > 1/3
then a and 1 —a are Picard exceptional values of f and g respectively and
(f—a)(g+a—-1)=a(l —a).

Extending Theorem B to meromorphic functions S. Z. Ye [7] proved the
following results.

THEOREM C [7]. Let f and g be two distinct nonconstant meromorphic func-
tions such that f and g share 0,1,00 CM. Let a (#0,1) be a finite complex
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number. If d(a; f) +0(o0; f) > 4/3 then a and 1 — a are Picard exceptional values
of f and g respectively and also oo is so and (f —a)(g+a—1) =a(l —a).

THEOREM D [7]. Let f and g be two distinct nonconstant meromorphic func-
tions sharing 0,1,00 CM. Let ai,as,...,a, be p (=1) distinct finite complex
numbers and a; # 0,1 for j=1,2,3...p. If 37 0(a;; f) +d(c0; f) > 2(p+1)/
(p+2) then there exist one and only one ay in ai,a,...,a, such that a, and
1 — ay are Picard exceptional values of f and g respectively and also oo is so and
(f—ar)(g+ax — 1) = ar(1 — a).

Improving above results H. X. Yi [10] proved the following theorem.

THEOREM E [10]. Let f and g be two distinct nonconstant meromorphic func-
tions such that f and g share 0,1,00 CM. Let a (#0,1) be a finite complex
number. If N(r,a; f) # T(r,f)+ S, f) and N(r,f) # T(r,f)+ S(r, f) then a
and 1 — a are Picard exceptional values of f and g respectively and also oo is so
and (f —a)(g+a—1)=a(l —a).

DrerFINITION 1. Let p be a positive integer and he ¥U{oo}. Then by
N(r,b; f|< p) we denote the counting function of those zeros of f — b (counted
with proper multiplicities) whose multiplicities are not greater than p. By
N(r,b; f|< p) we denote the corresponding reduced counting function.

In an analogous manner we define N(r,b; f|> p) and N(r,b; f|> p).

Hua and Fang [2] proved that if two nonconstant distinct meromorphic
functions f and g share 0,1,00 CM then N(r,a; f'|> 3) = S(r, f) for any com-
plex number a (# 0,1, 00).

Also Yi [10] proved that if two nonconstant distinct meromorphic functions
f and g share 0,1,00 CM then N(r,o0;f|=2) = S(r, f).

Therefore Theorem E of Yi can easily be improved to the following result.

THEOREM 1. Let f and g be distinct nonconstant meromorphic functions
sharing 0,1,00 CM. If a (#£0,1) is a finite complex number such that
N(roai f1<2) # T(r.f) + S(r,f) and N(r,o0: f1< 1) # T(r, f) + S(r, f) then a
and 1 — a are Picard exceptional values of f and g respectively and also oo is so
and (f —a)(g+a—1)=a(l —a).

Following examples show that Theorem 1 is sharp.

Example 1. Let f=(ef—1)/(e*+1), g=(1—¢€")/(1+¢€), ag =—1 and
ap =2. Then f,g share 0,1,00 CM. Also N(r,o0;f|<1)=T(r,f)+ S, f),
N(ra; f1<2) # T(r,f)+S(r.f) and N(r,ax; f|<2) = T(r,f)+ S(r, f).
Clearly (f —ai)(9+a;i—1) #a;(1 —a;) for i =1,2.

Example 2. let f=¢*, g=e¢“ and a=2. Then f,g share 0,1,00 CM.
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Also N(r,o0;f|<1) # T(r,f)+Srf), Nrafl<2) = T f)+Srf).
Clearly (f —a)(g+a—1)#a(l —a).

Now one may ask the following question: Is it possible to replace the hypoth-
esis N(rya; f1<2) #T(r, f) + S(r, f) of Theorem 1 by any one of the following?
() N(rai/|< 1) # T(r.f)+ S(r, /),
(i) N(r,a; f|<2) # T(r, f) + S(r, f).

We can answer this question in the negative by the following example.

Example 3. Let f=e*(1—¢%), g=e¢*(1—¢%) and a=1/4. Then f,g
share 0,1, 00 CM. Also N(r, oo;f| D#T@ f)+ S, f). Since f—a=
—(e* = 2a)*, we see the following

() N(raf|<1)=0,

(i) N(r,a;f|<2) = N(r,2a;¢?) = (1/2)T(r, f) + S(r, f) and

(i) N(r.a: /< 2) = 2N(r, 2a;¢%) = T(r, f) + S(r. /).

Also clearly (f —a)(g+a— 1) #a(l —a).

First we note that if f, g satisfy the conclusion of the theorems as stated
above then f,g must share oo CM because in this case oo becomes lacunary for
f and ¢ and so the question of sharing oo IM does not arise.

Now the following two examples show that in the above theorems the
sharing of 0 and 1 can not be relaxed from CM to IM.

Example 4. Let f=¢e"—1, g= (e — ) and a = —1. Then f,g share 0
IM and 1,00 CM. Also N(r,00; f)=0and N(r,a; f)=0but (f—a)(g+a—1) #

a(l —a).

Example 5. Let f=2—¢* g=e“(2—¢") and a=2. Then f,g share 1
IM and 0, c0 CM. Also N(r,00; f) =0and N(r,a; /) =0but (f—a)(g+a—1)#
a(l —a).

Now one may ask the following question: Is it really impossible to relax in
any way the nature of sharing of any one of 0 and 1 in the theorems stated above?
In the paper we study this problem. Though we do not know the situa-
tion for Theorem 1 we can relax the nature of sharing of 0 and 1 separately in
Theorem C and thereby we can improve Theorem A, Theorem B and Theorem C.

To this end we now explain the notion of weighted sharing as introduced in
4, 5].

DEFINITION 2 [4, 5]. Let k be a nonnegative integer or infinity. Forae U
{0} we denote by Ej(a;f) the set of all a-points of f where an a-point of
multiplicity m is counted m times if m <k and k+1 times if m > k. If
Ei(a; f) = Er(a;g), we say that f,g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z, is a
zero of f — a with multiplicity m (< k) if and only if it is a zero of g — a with
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multiplicity m (< k) and z, is a zero of f —a with multiplicity m (> k) if and
only if it is a zero of g — a with multiplicity n (> k) where m is not necessarily
equal to n.

We write f,g share (a,k) to mean that f,g share the value a with weight k.
Clearly if f,g share (a,k) then f, g share (a,p) for all integer p, 0 < p < k.
Also we note that f, g share a value « IM or CM if and only if f,g share (a,0)
or (a,o0) respectively.

DerINITION 3 [4]. For Sc@U{oo}, we define E(S,k) as E/(S,k)=
\U,cs Ex(a; f), where k is a nonnegative integer or infinity.

DErFINITION 4. For ae ¥U {0}, we put
. N(r,a; f|<
Op)(a; f) =1 —lim sup (raf|<p)

r—o0 T(I’, f) ’
where p is a positive integer.

Now we state the main results of the paper.

THEOREM 2. Let f and g be two distinct meromorphic functions sharing (0, 1),
(1,00) and (0, 0). Ifa (#0,1) is a finite complex number such that 30y (a; f) +
201)(00; f) > 3 then a and 1 — a are Picard exceptional values of f and g and also
oo is so and (f —a)(g+a—1)=a(l —a).

THEOREM 3. Let f and g be two distinct meromorphic functions sharing (0, o),
(1,1) and (0, 00). If a (#0,1) is a finite complex number such that 36,)(a; f) +
201)(c0; f) > 3 then a and 1 — a are Picard exceptional values of f and g and also
oo is so and (f —a)(g+a—1)=a(l —a).

Example 4 shows that in Theorem 2 sharing (0,1) can not be relaxed to
sharing (0,0) and Example 5 shows that in Theorem 3 sharing (1,1) can not be
relaxed to sharing (1,0).

Throughout the paper we denote by f,g two nonconstant meromorphic
functions defined in the open complex plane %.

2. Lemmas

In this section we present some lemmas which will be required in the sequel.
Lemma 1. If f and g share (0,0), (1,0) and (00,0) then

i) T(r.f)<3T(r.g)+S(r f)
and

(i) T(r,g) <3T(r,[f)+S(r,9).

Proof. Since f,g share (0,0), (1,0) and (o0, 0), by the second fundamental
theorem we get
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T(r.f) < N0 f) + N(r,1; f) + N(r, 00 f) + S(r, f)

N(r,0;9) + N(r,1;9) + N(r, 03 g) + S(r, g)
3T(r,g) + S(r,.f),

IA

which is (i).
Similarly we can prove (ii). This proves the lemma. O
LemMa 2. Let f and g share (0,1), (1,00), (c0,00) and f #g. Then
(i) N0 f[=2)+ N(r,o0: f[22) + N(r,1; f 2 2) = S(r, ),
(i) N(r,0;g|>2)+ N(r,0;9]>2)+ N(r,1;9]> 2) = S(r, f).
Proof. We prove (i) because (ii) follows from (i) since f and g share (0, 1),

(1,00), (00, 0).
First we show that N(r,0; / |> 2) = S(r, /). If N(r,0; f) = S(r, f) then there
/)

is nothing to prove. So we suppose that N(r,0; f) # S(r, f). Let
/! g’
p=7— -
f-1 g-1

If ¢ =0, we get on integration f — 1 =c¢(g — 1), where ¢ is a constant. Since
N(r,0; f) # S(r, f), there exists z, € ¢ such that f(z,) =g(z,) =0. So c¢=1
and hence f =g, which is a contradiction. Therefore ¢ # 0.

Since f and g share (0,1), a multiple zero of f is also a multiple zero of
g and so it is a zero of ¢. Therefore, by the first fundamental theorem, the
Milloux theorem {p. 55 [1]} and Lemma 1 we get

N(r,0; f|=>2) < N(r,0; §)
< N(r,¢) +m(r,¢) + O(1)
= N(r,¢) + S(r, f).

Now the possible poles of ¢ occur only at the poles of f,g and the zeros of
f—1,g9g—1. Since f,g share (1,00) and (o0, o0), it follows that ¢ has no pole
at all. So from above we get

N(r,0; f1=2) = S(r, f).

Secondly we show that N(r,1;f[>2)=S(r,f). If N(r,1;f)=S(,f),
there is nothing to prove. So we suppose that N(r,1;f) # S(r, f). Let

If y=0 then f =cg, where ¢ is a constant. Since f,g share (1,00) and
N(r, 1; 1) # S(r, f), it follows that ¢ =1 and so f =g. This is impossible and
so Yy #0.
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Since f and g share (1, o), it follows that a zero of f — 1 with multiplicity
m (>2) is also a zero of g — 1 with multiplicity m (> 2) and so it is a zero of
Y with multiplicity m — 1. So by the first fundamental theorem, the Milloux
theorem {p. 55 [1]} and Lemma 1 we get
N(r, 1 f=2) <2N(r,0;9)
< 2N(r,¥) + 2m(r, ) + O(1)
— IN(r,¥) + S(r. /)-

If f,g share (b,0), we denote by N.(r,b; f,g) the reduced counting function
of those b-points of f whose multiplicities are different from the multiplicities of
the corresponding b-points of g.

Since f, g share (0,1) and (oo, 0), it follows that poles of i occur only at
those zeros of f whose multiplicities are different from the multiplicities of the
corresponding zeros of g. Since i has only simple poles and f',g share (0, 1), it
follows from above that

N(r 1 f122) <2N(r.y) + S(r, f)
<2N.(r,0:f,9) + S(r. f)
<2N(r0;,f 2 2) + S(r, f)
= S8(r.f)-

Let F=f/(f—1) and G=g/(g—1). Then F,G share (0,1), (1,00) and
(00,00). So by above we get N(r,1; F |> 2) = S(r, F) and hence N(r,c0; f |>2) =
S(r,f). This proves the lemma. O

LemMa 3. If o is a nonconstant entire function then

T(r, oc(m) =S(r,e%),

th

where olP) is the p™ derivative of o.

Proof. Since by the Milloux theorem {p. 55 [1]} and by a result of Clunie
{p. 54 [1]} we get

T(r, oc“’)) <(p+1)T(rya)+ S(r,a)

and
T(r,) = S(r,e),
the lemma is proved. O
Lemma 4. If f and g share (0,1), (1,00), (c0,00) and f % g then
1) .

g—1
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and
2) g—n,

where o is an entire function and h is a meromorphic function with N(r,0;h) =

S(r,f) and N(r,c0;h) = S(r, f).

Proof. Since f and g share (1, ), (o0, c0), it follows that (f —1)/(g — 1)
has no zero and pole. So there exists an entire function « = «(z) such that

/=1 =e”
g—1
Now we put

h:

=

Then / is meromorphic and we show that N(r,0;h) = S(r, f) and N(r,0;h) =
S(r, f).

Since f and g share (0,1), (o0, 00), it follows that / has a zero at z, if z, is a
zero of f and g with multiplicities m and n respectively such that m < n; and A
has a pole at z, if n < m.

Since f and ¢ share (0,1), it follows by Lemma 2 that

N(r,0;h) < N(r,0;g|>2) = S(r, f)
and
N(r,c0;h) < N(r,0; f|=2) = S(r, /).
This proves the lemma. O
Lemma 5. If f and g share (0,1), (1,00), (00, 0) and f % g then for any
a (#0,1,00)
N(r,a; f1=3) =S f).

Proof. From (1) and (2) we see that

] —e*
f_l—he“

and so

. (I —a)+e*(ah—1)
f-a= 1 — he* '
First we suppose that o is nonconstant. If z, is a zero of f —a with
multiplicity > 3 then z, is a zero of

d o R N _ h_,
E[(l—aﬂ—e(ah—l)]—ae [ah 1+ao€,}
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with multiplicity > 2. So z, is a zero of o’ or z, is a zero of
h/ h/ " h/ 1 h//
4 ah—1+a—| =ah ——OC—~—+—-— .
dz of

Therefore
N(r,a; f|=3) < N(r,0;0') + N(r,0; h) + T(V, —

/ n
,%) + T(r,a") +4T(r,0) + T(r,7> +O0(1).
Since by (1), (2), Lemma 1 and Lemma 3 T(r,a') = S(r, f), T(r,a") = S(r, f),
S(r,h) = S(r, f) and by Lemma 4 N(r,0;h) = S(r, f), N(r, 0 h) =S(r, f), it
follows by the Milloux theorem {p. 55 [1]} that

< N(r,0;h) +2T(r

"

N(r,a; 1= 3) SN(r,%,) +N<r,%) + S(r, f)
< 4N(r,0;h) +4N(r,0;h) + S(r, f)
=S(r, f).

Next we suppose that o is a constant. Let e* = ¢, a constant. Since f is non-
constant, it follows that /4 is nonconstant and we get

f—a= (1 —a)+clah—1)

N 1—ch '

If z, is a zero of f — a with multiplicity > 3 then z, is a zero of
d , h'

e [(1—a)+clah—1)] =ach' = ach<z>

with multiplicity > 2. Therefore by Lemma 4 we get

7)
>

N(rya; f|=3) < N(r,0; ) +T(

N(r,0;h) + (
= 2N(r,0;h) + N(r
S(r, f).

This proves the lemma. Ul

&‘

>|®

S(r,.f)

Lemma 6 [3]. Let fi, fa, f3 be meromorphic functions such that fi + fo+
fi=1. If fi, fo, f3 are linearly independent then

3
D)< D Na(r,0;f)+  max  {Ny(r,00; fi) + N(r,00; )} + S(r),
i1

1<ij (i#)) <3
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where Ny(r,b; f;) = N(r,b; f;) + N(r,b; f;|= 2) for some be €U{c0} and S(r) =
Zl IS( )

LemMma 7 [9]. Let fi, fo, f3 be three nonconstant meromrophic functions such

that fi+ o+ fs = 1 and let gy = —f1/f3, g2 = 1/f3 and g3 = —fo/fs. If fr, fa, S5
are linearly independent then g, g,, g3 are also linearly independent.
Lemma 8. Let f and g be distinct and share (0,1), (1,00) and (c0,00). Let

fl:w’ f_ —ahe” and fy = e’ ’
—a 1—a

where a (#0,1,00) be a complex number and h and o be defined as in Lemma 4.
If fi, fo, f3 are linearly independent then

(i) N@rO;,fl<l)<N(rya; f|<2)+S(r,f)

and
(i) N 1L fl<1)<N(ra f|<2)4+ S, f).

Proof. Since (1 —a)fi =1—e*—a(l —he*), it follows by Lemma 4 that
N(r,o00; 1) = S(r, f). Also N(r,c0; f>) = S(r, f) and N(r,00; f3) =0. First we
suppose that e* is nonconstant.

Now by Lemma 4 and Lemma 6 we get

3) T(r,e*) < Na(r,0; f1) +2N(r,0; f2) + Na(r,0; f3) + S(r, f)
= No(r,0; f1) + 2N (r,0; 1) + S(r, f)
= Na(r,0; f1) + S(r, ).

We see that (1—a)fi=(f—a)(l —he”)=1—e*—a(l —he*) and f =
(1 —e*)/(1 —he*). So z, will be a possible zero of f) if either z, is a zero of
f —a or z, is a common zero of 1 —e* and 1 — he*. Therefore

No(r,0; f1) < Na(r,a; f) + N(r,0; 1 — he®) — N(r, 00; f).
So from (3) we get
(4) T(r,e*) < No(r,a; f) + N(r,0;1 — he”) — N(r,00; f) + S(r, f).

Since f = (1 —e*)/(1 — he®), it follows from Lemma 4, the first fundamental
theorem and (4) that
(5) (VOf)S (r,O,l—e“)—N(r,O,l—he“)—|—N(r,oo,f)—|—]V(r,oo,h)

= N(r,l;e*) = N(r,0; 1 — he”) + N(r,00; f) + S(r, /)
< T(r,e*) — N(r,0;1 — he*) + N(r, o0; f) + S(r, f)
< No(rya; /) + S(r, /).

Since by Lemma 2 N(r,0;f|>2)=S(r,f), by Lemma 5 N(r,a; f|>3) =
S(r, f) and Ny(r,a; f) = N(r,a; 1< 2) + 2N(r,a; f |= 3), it follows from (5) that
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N@ 0 f|<1) < N(ra; f|<2)+ S(r, f).

If ¢* is a constant, it follows that N(r,0; /) = S(r, f) because f — 1 =e*(g— 1),
f #g and f,g share (0,1). So (i) is trivially true.

If & is constant then % # 1 because f #g. So from
(1 —h)e”

f-l= 1 — he*’

it follows that N(r,1; f) = S(r, f). Hence (ii) is obvious. Therefore we suppose
that % is nonconstant.

Let g1 =—fi/si=—e*(f —a)(1 —he*), gop=1/f3=(1—a)e™™ and ¢; =
—f/fs =ah. Then g;+¢>+g¢g3 =1 and by Lemma 7 g;, ¢», g3 are linearly
independent. Applying Lemma 6 to g;, g2, g3 we get

(6) T(r,h) < Na(rya; f)+ N(r,0; 1 — he*) — N(r, 005 f) + S(r, f).
Since
: (1 —h)e”
f-1= 1 — he* ’

it follows from Lemma 4, the first fundamental theorem, Lemma 5, Lemma 2
and (6) that

N L fI< ) =N, 1 f)+ S, f)

< N(r,1;h) — N(r,0; 1 — he™) + N(r, c0; f) + S(r, f)
< No(r,a; ) + S(r, f)

=N(ra; f|<2)+ S, f).

This proves the lemma. O

LemMa 9. Let f and g be mnonconstant meromorphic functions such that
af + bg = ¢, where a, b, ¢ are nonzero constants. Then

T(r,f) < N(r,0; f) + N(r,0:9) + N(r, 003 f) + S(r, f).

Proof. By the second fundamental theorem we get
T(r,f) < N(r,0; /) + N(r,c/a; f) + N(r, 003 f) + S(r. /)
= N(r,0; /) + N(r,059) + N(r, 03 f) + S(r, ).

This proves the lemma. [

3. Proof of Theorem 2 and Theorem 3

Proof of Theorem 2. Let fi, f>, f3 be defined as in Lemma 8. Suppose, if
possible, fi, f», f3 are linearly independent. Then by the second fundamental
theorem, Lemma 2, Lemma 5 and Lemma 8 we get
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2T(r, f) < N(r,0; f) + N(r, 1; f) + N(r,a; f) + N(r, 00; ) + S(r, f)
=N@r0fI<D)+Nr LIS 1)+ N(ra f1<2)
+ N(r,o0; f|< 1)+ S(r, f)
<3N(ra; f|<2) + N(r,o0; f 1< 1) + S(r, /),
which implies
30 (a; f) + 0y (o0; ) < 2.

This contradicts the given condition. So there exist constants ci,¢;,c3, not all
zero, such that

(7) afitaf+afs=0.

If possible, let ¢; = 0. Then from (7) and the definitions of f;, f; it follows
that / is a constant. Since f # g, we see that 4 # 1 and so 1 becomes a Picard’s
exceptional value of f because f,g share (1,00) and g = hf.

Again since

1 a1
L= 0 ey

it follows that 1/h is also a Picard’s exceptional value of f. So by the second
fundamental theorem and Lemma 2 we get

T(r,f) < N(r,o0; f|< 1)+ S(r, /),

which implies dyy(o0; f) = 0. This contradicts the given condition. So ¢; # 0.
Also we see that

(8) h+hL+f=1
Eliminating f; from (7) and (8) we get
) ch+dfs =1,

where ¢, d are constants and |c¢| + |d| # 0.
Now we consider the following cases.

Case I. Let ¢#0 and d #0. Then from (9) we get

—ache*® de”

1—a l—azl'

(10)

If one of he” and e” is constant then from (10) it follows that the other is also
constant and from (1) and (2) we see that f becomes a constant, which is im-
possible. So he* and e* are nonconstant.

From (10) we get by Lemma 9 and Lemma 4 that
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(11) T(r,e”) < N(r,0;e”) + N(r,0;h) + N(r, 05 e”) + S(r,e%)
= S(r,f)+ S(r,e*).

Again from (10) we get

—da

1
d—ach =

This implies that N(r,d/ac;h) =0 and N(r,c0;h) =0. So by the second fun-
damental theorem we get in view of Lemma 4

(12) T(r,h) < N(r,0;h) + N(r,d/ac;h) + N(r,00;h) + S(r, h)
=S, f)+ S h).
Since
1 —e”
S = 1 — he*’
it follows that
(13) T(r,f)=O(T(r,e*)) + O(T(r,h)).

From (11), (12) and (13) we see that there exists a sequence of values of r tending
to infinity for which T'(r, f) = o{T(r,f)}. This is a contradiction.

Case II. Let ¢=0 but d #0. From (9) we see that e* is a constant.
Since f # g, it follows from (1) that e* # 1. So it again follows from (1) that
N(r,0; f) =0 because f,g share (0,1). Also from (1) and (2) we get
1 —e*

1— he

By the second fundamental theorem, Lemma 2 and Lemma 4 we get

f_

T(r,f) < NT0; 1)+ N(r,1 —e* )+ N(r,00; f) + S(r, f)
< N(r,0;h) + N(r,00; 1< 1) + S(r, f)
=N(r,o0; f|< 1)+ S(r, f),

which implies that dy)(o0; /) = 0. This contradicts the given condition.

Case III. Let ¢ #0 and d =0. Then from (9) we see that he” = p, a
constant, say. Then p # 1 because f #g¢g. So we get

(1—a+ap)—e*
1-p '

(14) f—a=
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From (14) we see that T(r,f) = T(r,e*) 4+ O(1). If 1 —a+ap #0, it follows
from (14) and Lemma 3 that

N(r,a;f|>2) <2N(r,0;0") < 2T (r,a') = S(r,e*).
Hence
N(ra; f|=2) = N(r,a; /) + S(r, f)
N(r,1—a+ap;e*)+ S, f)
T(r,e”) + S(r. f)
=T, f)+5S(r[)

This implies that d,)(a; /) = 0, which contradicts the given condition.
Therefore 1 —a+ap =0 ie. p=(a—1)/a. Hence from (14) we get

(15) f—a= —ae”.

Also from (2) and (15) we get
a—1

eo{

(16) g+a—1=

From (15) and (16) we obtain
(f—a)lg+a—-1)=a(l —a).
This proves the theorem. O
Proof of Theorem 3. Let F=1— fand G=1-g¢g. Then F, G are distinct

and share (0,1), (1,00), (c0,0). Also d)(1 —a; F) = dy)(a; f) and dyy(o0; F) =
o1)(o0; f).  So by Theorem 2 we get

(F=1+a)(G—a)=a(l —a)
1.e.
(f—a)(g+a—1)=a(l —a).
This proves the theorem. O

4. Application
As an application of Theorem 2 and Theorem 3 we prove the following
result.

THEOREM 4. Let a and b (#0,1) be two finite complex numbers and S =
{a+a:0"+b=0}, Ss={a+p: ﬁ +b=1}, S3={o0} where n (=3) be a
positive integer. If either

E/'(Slvl) :Eg(Slal)’ Ef'(SZ’OO) ZEq(Sz,OO), Ef(S37OO) :ELI(S3’OO)



434 INDRAJIT LAHIRI

or
Ep(S1,00) = Ey(S1,0),  Ep(S2,1) = Eg(S2, 1), Ef(S3,00) = Ey(S3, 0)
then one of the following holds:
(i) f—a=tlg—a) where t"=1
and

i) (f—a)(g—a)=s where 4s" = 1.

Proof. We suppose that E;(Si,1)=E,(S1,1), E;(S», 0) = E,(S>, 0),
Ef(S3,0) = E4(S3,00) because for the other case the theorem can be proved
similarly using Theorem 3.

Let F=(f—a)"+band G= (9 —a)"+b. If F=G then case (i) holds.
Let F# G. Clearly 05 (b;F) =1 and 6))(o0;F) = 1. Since F,G share (0,1),
(1,00), (00, 00), it follows from Theorem 2 that

(F-b)(G+b—-1)=b(1-b)
1.e.
(17) (f—a)"{(g—a)"+2b—1} =b(1 —b).

From (17) we see that oo and a + {/(1 —2b) are Picard’s exceptional values of
g where n > 3, but this is impossible unless 1 —2b =0. So from (17) we get
(f —a)(g —a) =s. This proves the theorem. O
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