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WEIGHTED SHARING OF THREE VALUES AND UNIQUENESS OF

MEROMORPHIC FUNCTIONS
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Abstract

Using the idea of weighted sharing we prove a result on uniqueness of meromorphic

functions sharing three values which improve some results of Ueda, Yi and Ye.

1. Introduction, de®nitions and results

Let f and g be two nonconstant meromorphic functions de®ned in the open
complex plane C. For b A CU fyg we say that f and g share the value b CM
(counting multiplicities) if f ÿ b and gÿ b have the same zeros with the same
multiplicities. If we do not take multiplicities into account, we say that f and
g share the value b IM (ignoring multiplicities). For standard notations and
de®nitions of the value distribution theory we refer [1].

H. Ueda [6] proved the following result.

Theorem A [6]. Let f and g be two distinct nonconstant entire functions
sharing 0; 1 CM and let a �0 0; 1� be a ®nite complex number. If a is lacunary
for f then 1ÿ a is lacunary for g and � f ÿ a��g� aÿ 1�1 a�1ÿ a�.

Improving Theorem A H. X. Yi [8] proved the following theorem.

Theorem B [8]. Let f and g be two distinct nonconstant entire functions
sharing 0; 1 CM and let a �0 0; 1� be a ®nite complex number. If d�a; f � > 1=3
then a and 1ÿ a are Picard exceptional values of f and g respectively and
� f ÿ a��g� aÿ 1�1 a�1ÿ a�.

Extending Theorem B to meromorphic functions S. Z. Ye [7] proved the
following results.

Theorem C [7]. Let f and g be two distinct nonconstant meromorphic func-
tions such that f and g share 0; 1;y CM. Let a �0 0; 1� be a ®nite complex
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number. If d�a; f � � d�y; f � > 4=3 then a and 1ÿ a are Picard exceptional values
of f and g respectively and also y is so and � f ÿ a��g� aÿ 1�1 a�1ÿ a�.

Theorem D [7]. Let f and g be two distinct nonconstant meromorphic func-
tions sharing 0; 1;y CM. Let a1; a2; . . . ; ap be p �b 1� distinct ®nite complex
numbers and aj 0 0; 1 for j � 1; 2; 3 . . . p. If

Pp
j�1 d�aj; f � � d�y; f � > 2�p� 1�=

�p� 2� then there exist one and only one ak in a1; a2; . . . ; ap such that ak and
1ÿ ak are Picard exceptional values of f and g respectively and also y is so and
� f ÿ ak��g� ak ÿ 1�1 ak�1ÿ ak�.

Improving above results H. X. Yi [10] proved the following theorem.

Theorem E [10]. Let f and g be two distinct nonconstant meromorphic func-
tions such that f and g share 0; 1;y CM. Let a �0 0; 1� be a ®nite complex
number. If N�r; a; f �0T�r; f � � S�r; f � and N�r; f �0T�r; f � � S�r; f � then a
and 1ÿ a are Picard exceptional values of f and g respectively and also y is so
and � f ÿ a��g� aÿ 1�1 a�1ÿ a�.

Definition 1. Let p be a positive integer and b A CU fyg. Then by
N�r; b; f ja p� we denote the counting function of those zeros of f ÿ b (counted
with proper multiplicities) whose multiplicities are not greater than p. By
N�r; b; f ja p� we denote the corresponding reduced counting function.

In an analogous manner we de®ne N�r; b; f jb p� and N�r; b; f jb p�.

Hua and Fang [2] proved that if two nonconstant distinct meromorphic
functions f and g share 0; 1;y CM then N�r; a; f jb 3� � S�r; f � for any com-
plex number a �0 0; 1;y�.

Also Yi [10] proved that if two nonconstant distinct meromorphic functions
f and g share 0; 1;y CM then N�r;y; f jb 2� � S�r; f �.

Therefore Theorem E of Yi can easily be improved to the following result.

Theorem 1. Let f and g be distinct nonconstant meromorphic functions
sharing 0; 1;y CM. If a �0 0; 1� is a ®nite complex number such that
N�r; a; f ja 2�0T�r; f � � S�r; f � and N�r;y; f ja 1�0T�r; f � � S�r; f � then a
and 1ÿ a are Picard exceptional values of f and g respectively and also y is so
and � f ÿ a��g� aÿ 1�1 a�1ÿ a�.

Following examples show that Theorem 1 is sharp.

Example 1. Let f � �ez ÿ 1�=�ez � 1�, g � �1ÿ ez�=�1� ez�, a1 � ÿ1 and
a2 � 2. Then f ; g share 0; 1;y CM. Also N�r;y; f ja 1� � T�r; f � � S�r; f �,
N�r; a1; f ja 2� 0 T�r; f � � S�r; f � and N�r; a2; f ja 2� � T�r; f � � S�r; f �.
Clearly � f ÿ ai��g� ai ÿ 1�2 ai�1ÿ ai� for i � 1; 2.

Example 2. Let f � ez, g � eÿz and a � 2. Then f ; g share 0; 1;y CM.
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Also N�r;y; f ja 1� 0 T�r; f � � S�r; f �, N�r; a; f ja 2� � T�r; f � � S�r; f �.
Clearly � f ÿ a��g� aÿ 1�2 a�1ÿ a�.

Now one may ask the following question: Is it possible to replace the hypoth-
esis N�r; a; f ja 2�0T�r; f � � S�r; f � of Theorem 1 by any one of the following?

(i) N�r; a; f ja 1�0T�r; f � � S�r; f �,
(ii) N�r; a; f ja 2�0T�r; f � � S�r; f �.
We can answer this question in the negative by the following example.

Example 3. Let f � ez�1ÿ ez�, g � eÿz�1ÿ eÿz� and a � 1=4. Then f ; g
share 0; 1;y CM. Also N�r;y; f ja 1�0T�r; f � � S�r; f �. Since f ÿ a �
ÿ�ez ÿ 2a�2, we see the following

(i) N�r; a; f ja 1�1 0,
(ii) N�r; a; f ja 2� � N�r; 2a; ez� � �1=2�T�r; f � � S�r; f � and
(iii) N�r; a; f ja 2� � 2N�r; 2a; ez� � T�r; f � � S�r; f �.

Also clearly � f ÿ a��g� aÿ 1�2 a�1ÿ a�.
First we note that if f ; g satisfy the conclusion of the theorems as stated

above then f ; g must share y CM because in this case y becomes lacunary for
f and g and so the question of sharing y IM does not arise.

Now the following two examples show that in the above theorems the
sharing of 0 and 1 can not be relaxed from CM to IM.

Example 4. Let f � ez ÿ 1, g � �ez ÿ 1�2 and a � ÿ1. Then f ; g share 0
IM and 1;y CM. Also N�r;y; f �10 and N�r; a; f �10 but � f ÿa��g�aÿ1�2
a�1ÿ a�.

Example 5. Let f � 2ÿ ez, g � ez�2ÿ ez� and a � 2. Then f ; g share 1
IM and 0;y CM. Also N�r;y; f �10 and N�r; a; f �10 but � f ÿa��g�aÿ1�2
a�1ÿ a�.

Now one may ask the following question: Is it really impossible to relax in
any way the nature of sharing of any one of 0 and 1 in the theorems stated above?

In the paper we study this problem. Though we do not know the situa-
tion for Theorem 1 we can relax the nature of sharing of 0 and 1 separately in
Theorem C and thereby we can improve Theorem A, Theorem B and Theorem C.

To this end we now explain the notion of weighted sharing as introduced in
[4, 5].

Definition 2 [4, 5]. Let k be a nonnegative integer or in®nity. For a A CU
fyg we denote by Ek�a; f � the set of all a-points of f where an a-point of
multiplicity m is counted m times if m a k and k � 1 times if m > k. If
Ek�a; f � � Ek�a; g�, we say that f ; g share the value a with weight k.

The de®nition implies that if f ; g share a value a with weight k then zo is a
zero of f ÿ a with multiplicity m �a k� if and only if it is a zero of gÿ a with
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multiplicity m �a k� and zo is a zero of f ÿ a with multiplicity m �> k� if and
only if it is a zero of gÿ a with multiplicity n �> k� where m is not necessarily
equal to n.

We write f ; g share �a; k� to mean that f ; g share the value a with weight k.
Clearly if f ; g share �a; k� then f ; g share �a; p� for all integer p; 0 a p < k.
Also we note that f ; g share a value a IM or CM if and only if f ; g share �a; 0�
or �a;y� respectively.

Definition 3 [4]. For S HCU fyg, we de®ne Ef �S; k� as Ef �S; k� �
6

a AS
Ek�a; f �, where k is a nonnegative integer or in®nity.

Definition 4. For a A CU fyg, we put

dp��a; f � � 1ÿ lim sup
r!y

N�r; a; f ja p�
T�r; f � ;

where p is a positive integer.

Now we state the main results of the paper.

Theorem 2. Let f and g be two distinct meromorphic functions sharing �0; 1�,
�1;y� and �y;y�. If a �0 0; 1� is a ®nite complex number such that 3d2��a; f ��
2d1��y; f � > 3 then a and 1ÿ a are Picard exceptional values of f and g and also
y is so and � f ÿ a��g� aÿ 1�1 a�1ÿ a�.

Theorem 3. Let f and g be two distinct meromorphic functions sharing �0;y�,
�1; 1� and �y;y�. If a �0 0; 1� is a ®nite complex number such that 3d2��a; f ��
2d1��y; f � > 3 then a and 1ÿ a are Picard exceptional values of f and g and also
y is so and � f ÿ a��g� aÿ 1�1 a�1ÿ a�.

Example 4 shows that in Theorem 2 sharing �0; 1� can not be relaxed to
sharing �0; 0� and Example 5 shows that in Theorem 3 sharing �1; 1� can not be
relaxed to sharing �1; 0�.

Throughout the paper we denote by f ; g two nonconstant meromorphic
functions de®ned in the open complex plane C.

2. Lemmas

In this section we present some lemmas which will be required in the sequel.

Lemma 1. If f and g share �0; 0�, �1; 0� and �y; 0� then

(i) T�r; f �a 3T�r; g� � S�r; f �
and

(ii) T�r; g�a 3T�r; f � � S�r; g�:

Proof. Since f ; g share �0; 0�, �1; 0� and �y; 0�, by the second fundamental
theorem we get
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T�r; f �a N�r; 0; f � �N�r; 1; f � �N�r;y; f � � S�r; f �
� N�r; 0; g� �N�r; 1; g� �N�r;y; g� � S�r; g�
a 3T�r; g� � S�r; f �;

which is (i).
Similarly we can prove (ii). This proves the lemma. r

Lemma 2. Let f and g share �0; 1�, �1;y�, �y;y� and f 2 g. Then

(i) N�r; 0; f jb 2� �N�r;y; f jb 2� �N�r; 1; f jb 2� � S�r; f �;
(ii) N�r; 0; g jb 2� �N�r;y; g jb 2� �N�r; 1; g jb 2� � S�r; f �:

Proof. We prove (i) because (ii) follows from (i) since f and g share �0; 1�,
�1;y�, �y;y�.

First we show that N�r; 0; f jb 2� � S�r; f �. If N�r; 0; f � � S�r; f � then there
is nothing to prove. So we suppose that N�r; 0; f �0S�r; f �. Let

f � f 0

f ÿ 1
ÿ g 0

gÿ 1
:

If f1 0, we get on integration f ÿ 1 � c�gÿ 1�, where c is a constant. Since
N�r; 0; f �0S�r; f �, there exists zo A C such that f �zo� � g�zo� � 0. So c � 1
and hence f 1 g, which is a contradiction. Therefore f2 0.

Since f and g share �0; 1�, a multiple zero of f is also a multiple zero of
g and so it is a zero of f. Therefore, by the ®rst fundamental theorem, the
Milloux theorem {p. 55 [1]} and Lemma 1 we get

N�r; 0; f jb 2�a N�r; 0; f�
a N�r; f� �m�r; f� �O�1�
� N�r; f� � S�r; f �:

Now the possible poles of f occur only at the poles of f ; g and the zeros of
f ÿ 1, gÿ 1. Since f ; g share �1;y� and �y;y�, it follows that f has no pole
at all. So from above we get

N�r; 0; f jb 2� � S�r; f �:
Secondly we show that N�r; 1; f jb 2� � S�r; f �. If N�r; 1; f � � S�r; f �,

there is nothing to prove. So we suppose that N�r; 1; f �0S�r; f �. Let

c � f 0

f
ÿ g 0

g
:

If c1 0 then f 1 cg, where c is a constant. Since f ; g share �1;y� and
N�r; 1; f �0S�r; f �, it follows that c � 1 and so f 1 g. This is impossible and
so c2 0.

weighted sharing of three values and uniqueness 425



Since f and g share �1;y�, it follows that a zero of f ÿ 1 with multiplicity
m �b 2� is also a zero of gÿ 1 with multiplicity m �b 2� and so it is a zero of
c with multiplicity mÿ 1. So by the ®rst fundamental theorem, the Milloux
theorem {p. 55 [1]} and Lemma 1 we get

N�r; 1; f jb 2�a 2N�r; 0; c�
a 2N�r;c� � 2m�r;c� �O�1�
� 2N�r;c� � S�r; f �:

If f ; g share �b; 0�, we denote by N��r; b; f ; g� the reduced counting function
of those b-points of f whose multiplicities are di¨erent from the multiplicities of
the corresponding b-points of g.

Since f ; g share �0; 1� and �y;y�, it follows that poles of c occur only at
those zeros of f whose multiplicities are di¨erent from the multiplicities of the
corresponding zeros of g. Since c has only simple poles and f ; g share �0; 1�, it
follows from above that

N�r; 1; f jb 2�a 2N�r;c� � S�r; f �
a 2N��r; 0; f ; g� � S�r; f �
a 2N�r; 0; f jb 2� � S�r; f �
� S�r; f �:

Let F � f =� f ÿ 1� and G � g=�gÿ 1�. Then F ;G share �0; 1�, �1;y� and
�y;y�. So by above we get N�r;1; F jb 2� � S�r;F � and hence N�r;y; f jb 2� �
S�r; f �. This proves the lemma. r

Lemma 3. If a is a nonconstant entire function then

T�r; a� p�� � S�r; ea�;
where a� p� is the pth derivative of a.

Proof. Since by the Milloux theorem {p. 55 [1]} and by a result of Clunie
{p. 54 [1]} we get

T�r; a� p��a �p� 1�T�r; a� � S�r; a�
and

T�r; a� � S�r; ea�;
the lemma is proved. r

Lemma 4. If f and g share �0; 1�, �1;y�, �y;y� and f 2 g then

f ÿ 1

gÿ 1
� ea�1�
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and

g

f
� h;�2�

where a is an entire function and h is a meromorphic function with N�r; 0; h� �
S�r; f � and N�r;y; h� � S�r; f �.

Proof. Since f and g share �1;y�, �y;y�, it follows that � f ÿ 1�=�gÿ 1�
has no zero and pole. So there exists an entire function a � a�z� such that

f ÿ 1

gÿ 1
� ea:

Now we put

h � g

f
:

Then h is meromorphic and we show that N�r; 0; h� � S�r; f � and N�r;y; h� �
S�r; f �.

Since f and g share �0; 1�, �y;y�, it follows that h has a zero at zo if zo is a
zero of f and g with multiplicities m and n respectively such that m < n; and h
has a pole at zo if n < m.

Since f and g share �0; 1�, it follows by Lemma 2 that

N�r; 0; h�a N�r; 0; g jb 2� � S�r; f �
and

N�r;y; h�a N�r; 0; f jb 2� � S�r; f �:
This proves the lemma. r

Lemma 5. If f and g share �0; 1�, �1;y�, �y;y� and f 2 g then for any
a �0 0; 1;y�

N�r; a; f jb 3� � S�r; f �:

Proof. From (1) and (2) we see that

f � 1ÿ ea

1ÿ hea

and so

f ÿ a � �1ÿ a� � ea�ahÿ 1�
1ÿ hea

:

First we suppose that a is nonconstant. If zo is a zero of f ÿ a with
multiplicity b 3 then zo is a zero of

d

dz
��1ÿ a� � ea�ahÿ 1�� � a 0ea ahÿ 1� a

h 0

a 0

� �
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with multiplicity b 2. So zo is a zero of a 0 or zo is a zero of

d

dz
ahÿ 1� a

h 0

a 0

� �
� ah

h 0

h
ÿ a 00

�a 0�2 �
h 0

h
� 1

a 0
� h
00

h

" #
:

Therefore

N�r; a; f jb 3�a N�r; 0; a 0� �N�r; 0; h� � T r;
h 0

h
ÿ h 0

h
� a 00

�a 0�2 �
1

a 0
� h
00

h

 !

a N�r; 0; h� � 2T r;
h 0

h

� �
� T�r; a 00� � 4T�r; a 0� � T r;

h 00

h

� �
�O�1�:

Since by (1), (2), Lemma 1 and Lemma 3 T�r; a 0� � S�r; f �, T�r; a 00� � S�r; f �,
S�r; h� � S�r; f � and by Lemma 4 N�r; 0; h� � S�r; f �, N�r;y; h� � S�r; f �, it
follows by the Milloux theorem {p. 55 [1]} that

N�r; a; f jb 3�a N r;
h 0

h

� �
�N r;

h 00

h

� �
� S�r; f �

a 4N�r; 0; h� � 4N�r;y; h� � S�r; f �
� S�r; f �:

Next we suppose that a is a constant. Let ea � c, a constant. Since f is non-
constant, it follows that h is nonconstant and we get

f ÿ a � �1ÿ a� � c�ahÿ 1�
1ÿ ch

:

If zo is a zero of f ÿ a with multiplicity b 3 then zo is a zero of

d

dz
��1ÿ a� � c�ahÿ 1�� � ach 0 � ach

h 0

h

� �
with multiplicity b 2. Therefore by Lemma 4 we get

N�r; a; f jb 3�a N�r; 0; h� � T r;
h 0

h

� �
� N�r; 0; h� �N r;

h 0

h

� �
� S�r; f �

� 2N�r; 0; h� �N�r;y; h� � S�r; f �
� S�r; f �:

This proves the lemma. r

Lemma 6 [3]. Let f1; f2; f3 be meromorphic functions such that f1 � f2�
f3 1 1. If f1; f2; f3 are linearly independent then

T�r; f1�a
X3

i�1

N2�r; 0; fi� � max
1ai; j �i0j�a3

fN2�r;y; fi� �N�r;y; fj�g � S�r�;
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where N2�r; b; fi� � N�r; b; fi� �N�r; b; fi jb 2� for some b A CU fyg and S�r� �P3
i�1 S�r; fi�.

Lemma 7 [9]. Let f1, f2, f3 be three nonconstant meromrophic functions such
that f1 � f2 � f3 1 1 and let g1 � ÿf1=f3, g2 � 1=f3 and g3 � ÿf2=f3. If f1; f2; f3

are linearly independent then g1, g2, g3 are also linearly independent.

Lemma 8. Let f and g be distinct and share �0; 1�, �1;y� and �y;y�. Let

f1 � � f ÿ a��1ÿ hea�
1ÿ a

; f2 � ÿahea

1ÿ a
and f3 � ea

1ÿ a
;

where a �0 0; 1;y� be a complex number and h and a be de®ned as in Lemma 4.
If f1, f2, f3 are linearly independent then

(i) N�r; 0; f ja 1�a N�r; a; f ja 2� � S�r; f �
and

(ii) N�r; 1; f ja 1�a N�r; a; f ja 2� � S�r; f �:

Proof. Since �1ÿ a� f1 1 1ÿ ea ÿ a�1ÿ hea�, it follows by Lemma 4 that
N�r;y; f1� � S�r; f �. Also N�r;y; f2� � S�r; f � and N�r;y; f3�1 0. First we
suppose that ea is nonconstant.

Now by Lemma 4 and Lemma 6 we get

T�r; ea�a N2�r; 0; f1� � 2N�r; 0; f2� �N2�r; 0; f3� � S�r; f ��3�
� N2�r; 0; f1� � 2N�r; 0; h� � S�r; f �
� N2�r; 0; f1� � S�r; f �:

We see that �1ÿ a� f1 1 � f ÿ a��1ÿ hea�1 1ÿ ea ÿ a�1ÿ hea� and f �
�1ÿ ea�=�1ÿ hea�. So zo will be a possible zero of f1 if either zo is a zero of
f ÿ a or zo is a common zero of 1ÿ ea and 1ÿ hea. Therefore

N2�r; 0; f1�a N2�r; a; f � �N�r; 0; 1ÿ hea� ÿN�r;y; f �:
So from (3) we get

T�r; ea�a N2�r; a; f � �N�r; 0; 1ÿ hea� ÿN�r;y; f � � S�r; f �:�4�
Since f � �1ÿ ea�=�1ÿ hea�, it follows from Lemma 4, the ®rst fundamental
theorem and (4) that

N�r; 0; f �a N�r; 0; 1ÿ ea� ÿN�r; 0; 1ÿ hea� �N�r;y; f � �N�r;y; h��5�
� N�r; 1; ea� ÿN�r; 0; 1ÿ hea� �N�r;y; f � � S�r; f �
a T�r; ea� ÿN�r; 0; 1ÿ hea� �N�r;y; f � � S�r; f �
a N2�r; a; f � � S�r; f �:

Since by Lemma 2 N�r; 0; f jb 2� � S�r; f �, by Lemma 5 N�r; a; f jb 3� �
S�r; f � and N2�r; a; f � � N�r; a; f ja 2� � 2N�r; a; f jb 3�, it follows from (5) that
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N�r; 0; f ja 1�a N�r; a; f ja 2� � S�r; f �:
If ea is a constant, it follows that N�r; 0; f � � S�r; f � because f ÿ 11 ea�gÿ 1�,
f 2 g and f ; g share �0; 1�. So (i) is trivially true.

If h is constant then h0 1 because f 2 g. So from

f ÿ 1 � �1ÿ h�ea

1ÿ hea
;

it follows that N�r; 1; f � � S�r; f �. Hence (ii) is obvious. Therefore we suppose
that h is nonconstant.

Let g1 � ÿf1=f3 � ÿeÿa� f ÿ a��1ÿ hea�, g2 � 1=f3 � �1ÿ a�eÿa and g3 �
ÿf2=f3 � ah. Then g1 � g2 � g3 1 1 and by Lemma 7 g1; g2; g3 are linearly
independent. Applying Lemma 6 to g1; g2; g3 we get

T�r; h�a N2�r; a; f � �N�r; 0; 1ÿ hea� ÿN�r;y; f � � S�r; f �:�6�
Since

f ÿ 11
�1ÿ h�ea

1ÿ hea
;

it follows from Lemma 4, the ®rst fundamental theorem, Lemma 5, Lemma 2
and (6) that

N�r; 1; f ja 1� � N�r; 1; f � � S�r; f �
a N�r; 1; h� ÿN�r; 0; 1ÿ hea� �N�r;y; f � � S�r; f �
a N2�r; a; f � � S�r; f �
� N�r; a; f ja 2� � S�r; f �:

This proves the lemma. r

Lemma 9. Let f and g be nonconstant meromorphic functions such that
af � bg1 c, where a; b; c are nonzero constants. Then

T�r; f �a N�r; 0; f � �N�r; 0; g� �N�r;y; f � � S�r; f �:

Proof. By the second fundamental theorem we get

T�r; f �a N�r; 0; f � �N�r; c=a; f � �N�r;y; f � � S�r; f �
� N�r; 0; f � �N�r; 0; g� �N�r;y; f � � S�r; f �:

This proves the lemma. r

3. Proof of Theorem 2 and Theorem 3

Proof of Theorem 2. Let f1; f2; f3 be de®ned as in Lemma 8. Suppose, if
possible, f1; f2; f3 are linearly independent. Then by the second fundamental
theorem, Lemma 2, Lemma 5 and Lemma 8 we get
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2T�r; f �a N�r; 0; f � �N�r; 1; f � �N�r; a; f � �N�r;y; f � � S�r; f �
� N�r; 0; f ja 1� �N�r; 1; f ja 1� �N�r; a; f ja 2�
�N�r;y; f ja 1� � S�r; f �

a 3N�r; a; f ja 2� �N�r;y; f ja 1� � S�r; f �;
which implies

3d2��a; f � � d1��y; f �a 2:

This contradicts the given condition. So there exist constants c1; c2; c3, not all
zero, such that

c1 f1 � c2 f2 � c3 f3 1 0:�7�
If possible, let c1 � 0. Then from (7) and the de®nitions of f2; f3 it follows

that h is a constant. Since f 2 g, we see that h0 1 and so 1 becomes a Picard's
exceptional value of f because f ; g share �1;y� and g1 hf .

Again since

f 1
1

h
� hÿ 1

h�1ÿ hea� ;

it follows that 1=h is also a Picard's exceptional value of f . So by the second
fundamental theorem and Lemma 2 we get

T�r; f �a N�r;y; f ja 1� � S�r; f �;
which implies d1��y; f � � 0. This contradicts the given condition. So c1 0 0.

Also we see that

f1 � f2 � f3 1 1:�8�
Eliminating f1 from (7) and (8) we get

cf2 � df3 1 1;�9�
where c, d are constants and jcj � jdj0 0.

Now we consider the following cases.

Case I. Let c0 0 and d 0 0. Then from (9) we get

ÿachea

1ÿ a
� dea

1ÿ a
1 1:�10�

If one of hea and ea is constant then from (10) it follows that the other is also
constant and from (1) and (2) we see that f becomes a constant, which is im-
possible. So hea and ea are nonconstant.

From (10) we get by Lemma 9 and Lemma 4 that
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T�r; ea�a N�r; 0; ea� �N�r; 0; h� �N�r;y; ea� � S�r; ea��11�
� S�r; f � � S�r; ea�:

Again from (10) we get

d ÿ ach1
1ÿ a

ea
:

This implies that N�r; d=ac; h�1 0 and N�r;y; h�1 0. So by the second fun-
damental theorem we get in view of Lemma 4

T�r; h�a N�r; 0; h� �N�r; d=ac; h� �N�r;y; h� � S�r; h��12�
� S�r; f � � S�r; h�:

Since

f 1
1ÿ ea

1ÿ hea
;

it follows that

T�r; f � � O�T�r; ea�� �O�T�r; h��:�13�
From (11), (12) and (13) we see that there exists a sequence of values of r tending
to in®nity for which T�r; f � � ofT�r; f �g. This is a contradiction.

Case II. Let c � 0 but d 0 0. From (9) we see that ea is a constant.
Since f 2 g, it follows from (1) that ea 0 1. So it again follows from (1) that
N�r; 0; f �1 0 because f ; g share �0; 1�. Also from (1) and (2) we get

f 1
1ÿ ea

1ÿ hea
:

By the second fundamental theorem, Lemma 2 and Lemma 4 we get

T�r; f �a N�r; 0; f � �N�r; 1ÿ ea; f � �N�r;y; f � � S�r; f �
a N�r; 0; h� �N�r;y; f ja 1� � S�r; f �
� N�r;y; f ja 1� � S�r; f �;

which implies that d1��y; f � � 0. This contradicts the given condition.

Case III. Let c0 0 and d � 0. Then from (9) we see that hea � p, a
constant, say. Then p0 1 because f 2 g. So we get

f ÿ a1
�1ÿ a� ap� ÿ ea

1ÿ p
:�14�
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From (14) we see that T�r; f � � T�r; ea� �O�1�. If 1ÿ a� ap0 0, it follows
from (14) and Lemma 3 that

N�r; a; f jb 2�a 2N�r; 0; a 0�a 2T�r; a 0� � S�r; ea�:
Hence

N�r; a; f ja 2� � N�r; a; f � � S�r; f �
� N�r; 1ÿ a� ap; ea� � S�r; f �
� T�r; ea� � S�r; f �
� T�r; f � � S�r; f �:

This implies that d2��a; f � � 0, which contradicts the given condition.
Therefore 1ÿ a� ap � 0 i.e. p � �aÿ 1�=a. Hence from (14) we get

f ÿ a1ÿaea:�15�
Also from (2) and (15) we get

g� aÿ 11
aÿ 1

ea
:�16�

From (15) and (16) we obtain

� f ÿ a��g� aÿ 1�1 a�1ÿ a�:
This proves the theorem. r

Proof of Theorem 3. Let F � 1ÿ f and G � 1ÿ g. Then F ; G are distinct
and share �0; 1�, �1;y�, �y;y�. Also d2��1ÿ a; F� � d2��a; f � and d1��y; F � �
d1��y; f �. So by Theorem 2 we get

�F ÿ 1� a��G ÿ a�1 a�1ÿ a�
i.e.

� f ÿ a��g� aÿ 1�1 a�1ÿ a�:
This proves the theorem. r

4. Application

As an application of Theorem 2 and Theorem 3 we prove the following
result.

Theorem 4. Let a and b �0 0; 1� be two ®nite complex numbers and S1 �
fa� a : an � b � 0g, S2 � fa� b : bn � b � 1g, S3 � fyg where n �b 3� be a
positive integer. If either

Ef �S1; 1� � Eg�S1; 1�; Ef �S2;y� � Eg�S2;y�; Ef �S3;y� � Eg�S3;y�
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or

Ef �S1;y� � Eg�S1;y�; Ef �S2; 1� � Eg�S2; 1�; Ef �S3;y� � Eg�S3;y�
then one of the following holds:

(i) f ÿ a1 t�gÿ a� where tn � 1

and

(ii) � f ÿ a��gÿ a�1 s where 4sn � 1:

Proof. We suppose that Ef �S1; 1� � Eg�S1; 1�, Ef �S2;y� � Eg�S2;y�,
Ef �S3;y� � Eg�S3;y� because for the other case the theorem can be proved
similarly using Theorem 3.

Let F � � f ÿ a�n � b and G � �gÿ a�n � b. If F 1G then case (i) holds.
Let F 2G. Clearly d2��b; F� � 1 and d1��y; F � � 1. Since F ;G share �0; 1�,
�1;y�, �y;y�, it follows from Theorem 2 that

�F ÿ b��G � bÿ 1�1 b�1ÿ b�
i.e.

� f ÿ a�nf�gÿ a�n � 2bÿ 1g1 b�1ÿ b�:�17�
From (17) we see that y and a� ������������������1ÿ 2b�n

p
are Picard's exceptional values of

g where n b 3, but this is impossible unless 1ÿ 2b � 0. So from (17) we get
� f ÿ a��gÿ a�1 s. This proves the theorem. r
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