H. KUMURA
KODAI MATH. J.
24 (2001), 352-378

NASH INEQUALITIES FOR COMPACT MANIFOLDS WITH
BOUNDARY

HiroNori KuMURA*

Abstract

In this paper, we shall prove the Nash inequality for a compact manifold with
boundary with respect to a weighted measure, using covering arguments of Jerison [10]
and Oden-Sung-Wang [13]. We shall also state some results which are easily obtained
from that inequality.

1. Introduction

The Nash inequality is equivalent not only to the Sobolev inequality but also
to the diagonal upper bound of the heat kernel. Therefore, it is an important
factor for the study of solutions of parabolic equations ([7]). In this paper, we
shall first prove the Nash inequality for metric balls under the assumptions of the
volume doubling property and local Poincaré inequality, by using covering
arguments of Jerison [10]. We shall also point out that the Nash inequality,
conversely, implies a lower bound of the volume of balls, and hence, a family of
Nash inequalities is equivalent to the parabolic Harnack inequality. Using
covering arguments of K. Oden, C. J. Sung and J. Wang [13], we also derive the
Nash inequality for a compact manifold with boundary with respect to a
weighted measure wvy,, where w is a positive function on Int M := M — oM.

We shall make the above statements mathematically precise. Let M be a
compact, connected Riemannian manifold with boundary M. We denote by
vy the Riemannian measure of M. In order to emphasize that M contains the
boundary dM, we shall often write M in place of M. K. Oden, C. J. Sung and
J. Wang proved the Poincaré inequality of M with respect to a weighted measure;

THEOREM 1.1 (K. Oden, C. J. Sung and J. Wang [13]). Let w be a given
Sfunction on M with w>0 on Int M .= M — oM. We assume

1. M satisfies the volume doubling property, i.e., 3¢y >0 s.t. for any ball
B(x,2r) with xe M we have |B(x,2r)|/|B(x,r)| < ¢, where c| is a constant in-
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dependent of x and r, and for A = M, |A| stands for the volume of A, ie.,
|A| = jA dUM.

2. M satisfies the interior rolling R-ball condition, ie., AR >0 s.t. for all
xedM, AB(p,R) = M s.t. B(p,R)NoM = {x}.

3. M satisfies the weak Poincaré inequality on balls, ie., for any ball
B(x,2r) = M, B(x,2r)NoM =0, we have

infj |f — k| dvy < czr2J \Vf|* dvy
keR ) p(x,r) B(x,2r)

for all fe CY (M), where ¢y is a constant independent of x, r and f.
4. e3> 1 5.t w(x) < esw(p) for all x,y € M with 0 <d(x,0M) < 2d(y,0M).
Then we have the following Poincaré inequality on M:
[oy V£ 12w dvag
rec' (M) infreg [, |f — k|*w dvy

> c(c1,¢2,¢3,R,n, D),

where n is the first nonzero Neumann eigenvalue of Mg, = {x € M |d(x,0M) >
R/2} and D = diam(M), the diameter of M.

We shall consider

5. 3¢ >0 and 3p > 0 s.t. ced(x,0M)* < w(x) for all xe M — Mg, where
Mp={xeM|d(x,0M) = R}.

In this paper, we shall add this assumption 5 to the ones of Theorem 1.1,
and prove the Nash inequality,

1+(2/v) 4/v
(J |/ —f,(,,|2w de> <c- (J IVf|*w de> <J lf = filw de) ,
M M M

Vv satisfying v > 4¢ and v > 2vy := 2(log ¢1)/log 2, Vf e C* (M),

S = JMfW de/ JM w dvyg,

= 6(617627637667 v, 9, Ra Dv |M|) + C(C3»C6, v, 9, RvD) : N>

|M| stands for the volume of M, ie., |M|=|[,, dvy and N is the “Nash
constant” of Mg/, (see equation (7) in Theorem 4.1).

We should note that, actually, the assumption 4 implies the assumption
5 with ¢g = R infyx sar—r/2 w(x) and 2¢ = (log c3)/log 2, and hence the as-
sumption 5 is not required for a Nash inequality to hold (cf. Remark 4.1).
Nevertheless we assume the property 5 because it is important to choose v as
small as possible.

Let u; be the normalized first Dirichlet eigenfunction for the Laplacian on
M. K. Oden, C.J. Chen and J. Wang set w = (u1)2 and estimated the constant
c(c1,¢2,¢3,R,n, D) in Theorem 1.1 from below by the geometric constants of M.

where
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Similarly, the above constant ¢ can be estimated from above by the geometric
constants of M (see Proposition 5.1).

In section 3, we shall also point out that the Nash inequality conversely
means the lower bound of the measure in the following way: Let M be the
closure of a relatively compact domain in a complete Riemannian manifold N, w
be a function such that we C*(M) and 0 <w on Int M = M — oM. (w may
possibly takes zero-value at a point of the boundary 0M). We suppose that the
following Nash inequality holds:

N
<j =1 dﬂ")
M

4/v
< é- (diam M)* - w" (M) (JM |Vf|? dﬂw> (JM lf —fi] dﬂ”’) ,

for all fe C*(M), where fy, = [\, f du”/u*(M). Then, for each 0 < r < diam M
and xo € M, we have the lower bound of the measure

WB)NM) ) 7y
Ww(M) S 1+en (qiam 1)

From this lower bound estimate of the measure, we can easily see that the
parabolic Harnack inequality (i.e., Theorem 3.3, 2) is equivalent to a family of
Nash inequalities, i.e., there exist constants ¢ >0, rp > 0 and v > 0 such that

1+(2/v)
| =t
B(x,r)

4/v
Sé.rz-ﬂw(B(x,r))”"(L( ‘) |Vf|2dﬂ“’> (L( N —fé<x,,~>|dm> 7

Vf e C*(B(x,r)), Yxe M, 0<Vr<r.

The author would like to express his gratitude to Professor Atsushi Kasue
for his directing the author’s attention to the paper [13] of K. Oden, C. J. Sung
and J. Wang.

2. Abstract results

In this section, we shall state the equivalence between the diagonal heat
kernel upper bound, Nash inequality, and Sobolev inequality. We shall also
point out that the diagonal heat kernel upper bound implies a lower bound of the
eigenvalue of the associated operator.

Let M be a compact, connected Riemannian manifold with boundary oM
and w € C°(M) be a function Wthh is positive on Int M := M — 0M. We define a
weighted measure ", by 4" (E) = [, w dvy for E = M. We denote by H' (M, 1")
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a Hilbert space obtained by the completion of the space C°(M)N C*(Int M)
with respect to the norm

e = | (97 +1%) d”

On the Hilbert space L*(M,u"), we shall consider a closed form

S(f,h) = JM (VF,VhY dg”;  f,heDom(8) = H'(M,u")

and denote by A4 the nonpositive self-adjoint operator associated with this closed
form &. Let p,(x, y) be the heat kernel of the operator 4. Slight modifications
of the arguments in [2] and [16] enable us to show the following

THEOREM 2.1.  Let M, w, A, and p, be as above. We assume [,, w dvy =1
Sfor simplicity. Let v > 0 be given. Then the following inequalities (1) and (3) are
equivalent, and when v > 2, they are also equivalent with (2) and (4):

(1) pi(x,x) <1 +at™? (Vt>0,Yxe M).

(2) ||f||§}/ y<b-&(f.f) Ve C'(M)NC*(Int(M)) with [,, fw dvy = 0.

o) 11 e ELNIAN" ¥ e COMNC (Int(M)) with [, fiw dorr=0.

4) inf,crl|lf — oc||2‘ oy <d-E(f,f) YfeC'M)NC*(Int(M)).

Here, we write || f|, = IM f1Pw dop) P, (3) implies (1) with a = c;v*/?c"/?,
(1) implies (3) with ¢ = czaz/V (1) implies (2) with b = ¢33 (v — 2)"%a¥", (2) implies
(3) with ¢ = b, (2) implies (4) with d = b, and (4) implies (2) with b = 4d, where
c1,C2,C3 are some numerical constants.

COROLLARY 2.1. The Nash inequality (3) in Theorem 2.1 implies
VR < L R < ea(vel)? (i=1,2,..),

where 0 =1y <ly <h < --- are the eigenvalues of —A and {p;} is a complete
orthonormal system of L*(M,u") consisting of eigenfunctions with ¢; having eigen-
value ;.

Proof. Theorem 2.1 implies p,(x,x) <14 at™/? for all >0 and xe M,
where a = «(vc)"* and o is a numerical constant. Therefore for each A > 0 and

for all xe M,
Z (p)’(x) <e Z e (g,)?(x)

0<li < 0<l <7
<e{pilx,x) -1} < ear’?.
Integrating the both sides of this inequality, we get
{010 <l <2} <eal”* (4>0).
Thus, Corollary 2.1 follows. O
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3. Nash inequality and volume comparison

In this section, we shall prove the following three assertions:

1. The Nash inequality holds under the assumptions of the volume doubling
property and weak Poincaré inequality.

2. The Nash inequality implies a volume comparison.

3. The local parabolic Harnack inequality is equivalent to the family of
Nash inequalities.

Let M be a complete Riemannian manifold and g be a positive Borel
measure on M. In this section, we shall write V(x,r) = u(B(x,r)), |A| = u(A4)
and fy = ,u(A)_lj"A f du, for a bounded measurable subset 4 = M and a function
feC%A).

Lemma 3.1. Let M and u be as above. We assume the following condition
(D) and (P):

(D) V(x,2r) < 1 V(x,r) for all xe M and 0 <r < ry, where c¢| is a constant

independent of x and r;
(P) [apen [ = Toeen® dp < car? [0 V1> du for all xeM, 0<r<r
and f e C*(M), where ¢, is a constant independent of x, r and f.
Then, for each v > vy:= (logc)/log?2, we have

. . —-1/2 /20 o
1/ W 2B, < oSV N L2x 8y, + €5V (%,7) P(r/s)" /1 21 (Bx, ),

forall re (0,rg), s >0, and f € C*(B(x,8r)) with fB(x. p S du=0, where ¢4 and cs
are constants depending only on ¢, and c;. '

Proof. From the proof of Theorem 2.1 in Saloff-Coste [14], we see that
there exist constants ¢g and ¢; depending only on ¢; and ¢, such that

, 2
(1) J Frdu< c6s2J VI du+erV(x,r)"! (f) (J Vi d,u)
B(x,r) B(x,8r) s B(x,r)

for all fe C*(B(x,8r)), 0 <r<rop, 0<s<r/4, and v>vy. Since [ , fdu=0,
the assumption (P) implies '

J 1?2 d,ugcerJ |Vf]? dﬂSCészj
B(x,r) B(x,2r)

B(x,8

) \Vf|? dp

for s > /ca/cer. Hence, when we replace ¢ with max{cs, 16¢»} if necessary, the
inequality (1) holds for all s> 0. This proves Lemma 3.1. O

We shall set E := B(&y,r1) © M and consider the following conditions (VD),
and (VD),:
(VD), M satisfies the volume doubling condition, i.e.,
V(x,2r) < cV(x,r) for xe M,0 <r <r;
(VD), u(B(x,2r)NE) < cyu(B(x,r)NE) for xe E,0 <r <r.
In order to show the first assertion 1, we shall use the following covering
lemma due to Jerison [10]:
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LemMa 3.2 (Whitney decomposition [10]). We set E := B(¢y,r1) € M and
assume (VD), or (VD),. Then there exist a pairwise disjoint family F =
{B; = B(x;,r;) |i € I} of metric balls of E and a constant c¢(cy,r1/ro) such that the
following assertions hold.

(1) E =, 2B:

(2) 10%p(B;) < dist(B;, 0E) < 10°p(B;) (VieI);

(3) #{iel|ne32Bi} <c(ci,r/ro) (VnekE),
where c¢(c1,r1/ro) is a constant depending only on the constants c¢; and
max{1,r/ro}, for B= B(x,r) and a > 0, we write aB := B(x,ar), and p(B) stands
for the radius of B.

For Be #, let yg be a geodesic segment from the center of B to the center &,
of E. (This path may not be unique, but will be fixed throughout our arguments).
Denote 7 (B) ={AeF |2ANyy #0} and A(F) ={Be F |Aec F (B)} for Ae 7.
Then the following holds:

@) Ypeair uy(B)% < c(er) .1og(ﬁ>~

LemMa 3.3. Let E = B(&¢,r1) and M be as in Lemma 3.2. We assume one
of the two conditions (VD), and (VD),. Moreover, we suppose that

(V) j 1 — fon | du
B(x,r)

X, r

2
_1/r\V
sct | P esroon ! (|1 = fanlde)
B(x,8r) S. B(x,r)

for all B(x,8r) = E, s>0, fe C®(B(x,8r)) and v > vy := (log ¢;)/log 2. Then,
if 2ry <rg, or if

Vo
2) Bl = V(&,m) < 63|A< 2’1)) for all ball Ac E,

p(4
then we have the Nash inequality:

e 2 V=2 o . 4y
f = ellfs)” < eler,easesmfro,v') - (n)(es) " E IV 7o LS = Fell g,
for all fe C*(E), where v/ =2v.
Remark 3.1. We note that the inequality (2) follows from the fact that
2r) <rp. Indeed, we first observe that the property (¥D), or (VD), implies that

V(x,r) <ciV(x,s)(r/s)" for 0 <s<r<ry. We denote by o the center of a
ball 4. Since 4 < E implies E = B({(,r1) < B(og,2r;), we have

V(&) < V(oa,2r1) <c1V(o4,p(A))(2r1/p(A))",

and hence, the inequality (2) with ¢3 = ¢; holds.
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Proof. Let # be a Whitney decomposition as in Lemma 3.2 and
feC*®(E). We choose Bye Z such that 2B;>¢,. For Be %, there exist
Ay,...,A; € F(B) such that

Ay =B, A;= By, 2A,‘02A,‘+1;ﬁ® (121,2,,1—1)
By virture of (VD), (N), and Lemma 3.2 (2), we have

LA \f = faa|? du < Ly (s) (Vs> 0),

where we set

B A, v 2
= et [ der (M) ([ 4 - il ).
324, s 44y
and ¢ = ¢(c1,¢5). Hence
fan, = fane, 144k N4 A |

2
= J |f4Ak _f4/4k+l‘ d,u
44, N4AL

< 2J f = foar? + 1 = foarn | dp < 20 (sic) + 2D (Sks1)
4Ak ﬂ4Ak+1

for all sy >0 and sgyq > 0, where I := Iy,.
Since 2A4; N2Ai41 # 0, from Lemma 3.2 (2), we see that

99

o7 73/ k1) < 99p(Ak) < (107 + 3)p(Ags),

and

B(y,2 min{p(A4), p(Ak+1)}) < 44k N 44k,

where y € 24, N2A4;41. (In this proof of Lemma 3.3, integration is always with
respect to the measure u, and hence, in the following, we shall often omit ‘du’ for
simplicity.) Therefore, it is easy to see that

|f 7f4Ak|2

J4AkU4Ak1

sj \f—f4Ak|2+ZJ (1 = faaer > + o — faa]?)
44 44s1
(%) + D1 (Sk41)

1
< Te(s) + 2Lt (Skg1) + 44 Apy | =5 |44, N4Aiq |

< c(en){I(sk) + Des1 (Se1) }-
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Therefore, we get

J |faa, = fau,., |2 < c(en){k(sk) + Dev1(ses1) }-
44, U445

Hence, by (VD),

c(e1)

|f4Ak f4Ak+1 | m

Ii(si) | I (Sk+1)}
+ .

<
{T () + T (s11)} < C(“l){ A TAi]
Therefore,

2

-1
2 _ P— J—
LB \f = fa, | —LB’f ﬁwgﬁw fans,)

IA

-1
! ~ fasl? — fan|®
LB<|f fas +;\f4m f4A/<+1|>
-1
1{ (s1) + c(c1) Z('A— |A|il|1k+1(sk+1)>}

1
/-1
(e 15 1B
<c(cr) 1;‘Ak|1k(Sk)
<c(e)-47(B) Y mlA(SA)7
Ac7(B)

for all s4 > 0. Summing up all Be &, we get, by Lemma 3.2 (1),

. 2 . 2
JE |f f4-Bo| < Z J B |f f4-Bo|

Be 7

<e(e) Y 1F(B) Y %mm

Be7 Ae 7 (B)

AeF \BeA(F)

cler) > log( )IA(SA)

AeF

= ¢(c1) Z( > ag«*<3>%> Li(s4)

for all s4 > 0, where we have used Lemma 3.2 (4). In this inequality, we shall
set s4 = p(4)'7"|4| s for s>0, O R, and 5 R. Then, we have
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_ 2 ) r P(A)%zo 2 2
J 1 =nl < cteven S ton (57 ) it [ v

vetenes S toa (AN s ([ 1 -sal)

AeF

2.1 13 p(A)Z—ZH—sl 12
< c(er,cq) 577 ()" Zijz \7d
324

AeZF ‘AI ‘
) ]( )82 E | ‘61)_1 ‘f f | 2
+c(cr,¢5) -8 V(e r - J >
( 1 5) ( ’ 1 AeF p(‘1)€2 o ( 44 “

for all ¢,& > 0, where we have used the fact that (log x)/x® < (eg)”" for all x,
&> 0. Since

[ 17 = fual = 14117 foal = |4A\|4A|1j =
44 44

< | 1=l

we have

j |fff4A|sJ <|f—fE|+|frﬂA|>szj il
44 44 44

Hence, noting Lemma 3.2 (3), we get

Sour(] i —f4A|)2 < ([ If—fE|)2

AeF AeF

sceny (], —fEP)W ([, 17-11)
< c(er) (jE s —ﬁsﬁ)méj S~ 1l

44

< clerri/m) (j i/ —fE|2>l/2JE el

< c(er, /ro){uJE \f —fel? +u! (JE |f —fE)z}

for all #>0. Now, we set
(3) 0=1/2v); 0=1/4; & =1/2; e&=v/4
Then,

|A|5v—l

-1/2
/)Szfﬁv = |A| / )
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and from the assumption (2) and v > vy,

2-20—¢ 2-20—¢
p(A4) ' p(4) ' 1/v) —1/v 1-20—¢ /v —1/v
VEE 4| < (e3) /" E[ " 2rp(4) = (cs)'"[E] " 2m.

Therefore, we obtain, from Lemma 3.2 (3),
| s < | 17 = fon
E E

< cler,earifro) - e ()™ (e3) V1 E Ty j ik
E

2
+c(er, 5,11 /1r0) -sv(sz)_l(rl)ez{uJ I = fel* +u! (J |f —fb|) }
E E
for all s,u >0, and hence

(1- Csfv(ﬁz)*l(rl)m“)J |f = fel* < C7S2(81)71(’1)£'+1(C3)1/V|E|71/vJ Vf|?
E E

+ess™ (e2) " () P! (JE |f —fE|)27

for all s,u >0, where ¢; = c(c1,c4,71/r0), ¢s =c(c1,¢s5,r1/r0). Hence, setting
u=2"legls"(r1)™, we have, for all s> 0,

| 1=l < e 0 ) P |
E E

2

+2as e 200 (| 1 ).

Here, we note that, in general, when 4 and B are positive constants, a function
As®> + Bs™%

of s>0 takes the minimum value A/0+DBYO+D(1/0+1) 4 y=v/0+1))  when
s=(Bv/A)Y®*Y Hence, if we set

A= 2er(e0)” ()" () VIE] | s
E
and

B =4(cs)(e2) 2 (1) (JE |/ —ftl)z,

then we have

| 1f =t < ctmarrenpren,
E
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Thus, recalling (3), we obtain
If = ellfs)” < e(mABY”
= c(v) - es(e)(e3) "B OV i L = L7

= c(v,er,ea, 5,1 /r0) (e3) " () LEN P INA Il 1 Sl -
Hence, when we set v/ = 2v, we get
2+(4 v =2/v’ 4»
1f = Fell2280 < e en,enses.r fro) (es)” () PLEL > NS sy L — el
This completes the proof of Lemma 3.3. |:|

Putting Lemma 3.1 and 3.2 together, we have the following

THEOREM 3.1. Let M be a complete Riemannian manifold, p be a positive
measure on M, and E = B(¢\,r1) c M. We assume the following three con-

ditions:
(1) (volume doubling condition)
(VD), V(x,2r)<ciV(x,r) for VxeM, 0<Vr<r

or

(VD), wu(B(x,2r)NE) <cu(B(x,r)NE) for VxeE, 0<Vr<ry;
(2) (weak Poincaré inequality)
| twenPdusar| ena
B(x,r) B(x,2r)
for YB(x,2r) < E, 0 < Vr <ry, Vf e C*(E);
(3) 2ry <ry or
21’1

|E| =V (¢1,m) < C3|A|<m

Vo
> for all ball A < E.

Then we have the Nash inequality
2+(4 v =2/v 4/v
1 = L2380 < cler, eayvyro /) () (es) [E WV s I — Sl
for all feC¥(E) and all v=>2vy=2(logcy)/log2. In this inequality, when
2r1 < ro, c(er,¢2,v,50/r1) does not depend on ry/ry and we can take c3 = cj.

Remark 3.2. Theorem 2.1 implies that under the assumptions of Theorem
3.1, we also have the Sobolev inequality

nf 17— a2y < eler,cavro/r) () es) B VS [y (4 € C*(E)).

A Neumann eigenvalue estimate is also obtained by means of Corollary 2.1.
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Remark 3.3. After writing this paper, the author found that P. Hajtasz and
P. Koskela [9] proved the Sobolev inequality in a more general situation than
Theorem 3.1 by a different method. For this fact and other related results, see
their paper.

The Nash inequality on M implies a lower bound of the measure of the
intersection of a ball and M. Thus, it restricts the boundary behavior of the
measure from below;

THEOREM 3.2. Let M be the closure of a relatively compact domain in a
complete Riemannian manifold N, w be a function such that we C* (M) and 0 < w
on Int M =M — M (w may possibly takes zero at a point of the boundary
OM). We suppose that there exists a constant ¢ > 0 such that the following Nash
inequality holds:

5 1+(2/v’)
(j =t du”’)
M
4/v'

< ¢ (diam MY " (M) (jM vy dm') (jM Ty dﬂw) |

for all feC*(M), where fy = [,, f du"/u”(M). Then, for each 0 <r < diam M
and xo € M, we have

1 (Bu(xo, 1)) _ (V') ( r )
w(M) 1 +¢v/2 \diam M/’

where ¢(vV') is a constant depending only on v' and By(xo,r), stands for the
connected component (containing xo) of the intersection B(xo,r)NInt M of the
metric ball B(xy,r) of N and Int M.

Proof. Let p,(x, y) be the heat kernel of the operator on L?(M,u" /u"(M))
associated with the closed form

8/ h) =J (Vf.Vhydp” (f.heDom(6) = H'(M,u")).
M
Then, from Theorem 2.1, we have

px,x) < 1+ar™? (Vt>0,¥xe M),

where a = a(v'¢)"/*(diam M)" and o is some numerical constant. Take a point
xo € M and r > 0, and consider the form

E(f.h) =J CVF. VY dy*

Bar(xo,r)g
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for f,h e Dom(ép) f{fGC”(BM(Xov 7)o)s [l s oy (o), = 03 Let hu(x, )
be the heat kernel on L2(By(xo,r)g, 1" /1" (Bu(x0,7),)) associated with the
closure of &p. Then maximum principle implies that

1" (B (x0,7)o)

h(x,¥) < (M) pi(x, »)
() {14+at™V/}

for +>0 and x,ye By(xo,r),. Hence, when we set 79 = (diam M)* and
cs = (1" (Bur(x0, 1))/ (1" (M) (a+ 7. %), we have, for 0<r<t and
X,y € BM(x07 V)O;

ht(xv y) < C4t7V//2'

Therefore, Theorem 2.2 in [14] implies that

S 1+(2/v")
J Vi& o dpr
Butxor), M (Bu(xo0,7))

du” » I du”
<c¢ J VPPt 1 J I
( By (x0,7)y ©" (By(xo,1))  ° B (x0,7), 1" (Bar(x0,7))

du” 4/
u
x e
(Lr,w(xo.,r)O ﬂ"’(BM(Xo»V)o)>
2/

for all f'e C* (B (xo, r)o) With [l pnsy, (v, ), = 0 Where ¢g = acy”" and o is some
numerical constant. Hence, by the same arguments as in the proof of Lemma
2.5 in [11] (see also Akutagawa [1]), we can see that, for 0 <s<min{,/7o,r},

1" (B (xo,5)g) /2y
" (Bar o 1))

> c(v)eg" s = c(v) e s

B s” 1" (M)
a+ 1?1 (Bu(xo,7)o)

Thus, setting s =r < ,/7p = diam M, we get

:uw(BM(anr)()) > /
—— o =<0 T % . %
n" (M) c(v")ér'?2(diam M)" + ¢(v')(diam M)

P

_ ) ( r )
"1+ ¢'/2 \diam M
for 0 < r < diam M and xy e M. O
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Now, let M be a complete Riemannian manifold and w be a positive smooth
function on M. Let positive constants ¢ and ry be given, and let us assume that
M and w satisfy a family of local Nash inequalities

24(4
1 = Faterm | gy

<& () 1 (BELM)) IV 20 ry o I = Famllih,
Vf e C*(B(&,r)), Y& eM, 0<Vr <ry.

Then, by Theorem 3.2, we have the volume comparison

B(&y,m),u")’

ST c(v) (sY
4) B ) > 1T o7 <E) for 0 < Vs < Vr <ry, V¢ eM.

Moreover, we have local Poincaré inequalities

(5) 1S = a2 < € DIV 1T )0
Vf e C*(B(&,r)), 0<Vr <ry, V& €M,

because the Schwarz inequality implies that

" —2/v 4/y
w1 (B(E ) I = Lot sy S I =it a6, )0y

Now, we recall the following theorem due to Salloff-Coste (see also A. A.
Grigor’yan [8]):

THEOREM 3.3 (Salloff-Coste [14]). The following two properties 1 and 2 are
equivalent.

1. The following properties (a) and (b) hold for some constants ro > 0, ¢; > 0
and c¢; > 0:

(@) w"(B(x,2r)) < " (B(x,r), 0 <Vr<ry, Vxe M

) Spon [f —foonl? du” < e [y o NP du®, 0 <Vr<r, VxeM,
Vf e C*(M).

2. There exists r; > 0, and there exists a constant ¢ depending only on the
parameters 0 < e <n <0J <1, such that, for any xe M, any real s, and any
0 < r < ry, any nonnegative solution u of (6, + L)u=0in Q = (s —r*,s) x B(x,r)
satisfies

sup{u} < c inf{u},

0- +
where O_ = [s — (6r)%,s — (yr)*] x B(x,0r), Q1 = [s — (er)?,s5) x B(x,0r) and Lu =
—Au — {V log w,Vu).

As is shown above, a family of local Nash inequalities implies the properties
(a) and (b) in Theorem 3.3, and hence, from Theorem 3.1 and 3.3 we see that a
family of local Nash inequalities is also equivalent to local parabolic Harnack
inequalities;
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COROLLARY 3.1. The properties 1 and 2 in Theorem 3.3 are also equivalent
to the following property 3:
3. There exist constants ¢ >0, ro >0 and v > 0 such that

. 2+(4/v
Hf _fB(x,r)HLJ{((B{X?,,)#U

<éort o p(B(xn) "

2 4
|Vf||L2(B(.x,r),/4"‘)||f _fB(x,r)||L/1‘EB(X$,.)’WV)>
Vf e C*(B(x,r), Yxe M, 0 <Vr <.

4. Nash inequality with respect to weighted measure

This section is devoted to proving the following theorem:

THEOREM 4.1. Let M be a compact Riemannian manifold with C* boundary
OM and w be a positive C* function on Int M .= M — M. w possibly takes zero
value at a point of OM. We assume the following properties (D), (R), (P), (w;)
and (wy):

(D) (volume doubling property) |B(x,2r)| < c1|B(x,r)| for all xe M and
r> 0, where |B(x,r)| = jB(’w) dvyy.

(R) M satisfies the “‘interior rolling R-ball condition”, that is, AR > 0 Vx €
OM 3B(p,R) = M s.t. B(p,R)NIM = {x}.

(P) (weak Poincaré inequality)

For all B(x,2r) = M with B(x,2r)NOM =0, and all f e C*(M),

ian |f — ol doy < czrzj \Vf|* dv,
%€R ) p(x r) B(x,2r)

where ¢, is a positive constant independent of x, r and f.

(w1) ez > 1 st wx)<cw(y) for all x,yeM with 0<d(x,oM) <
2d(y,0M).

(wy) 3c6 >0 p>0 st ced(x,0M)* < w(x) for all xe M — Mg, where
Mp={xeM|d(x,0M) > R}.

Then we have the Nash inequality on M:

1+(2/v)
©) (JM =Sl de)

< (] rwrtwan ) (] 15 st de)MV

for all v satisfying v>4¢ and v>2v, and all fe C*(M), where fj, =
S dp” /' (M),

¢ = cer, 2,03, ¢6,v, @) RV M| D

+c(e3, D/Rv)eg "R ey (Mppo)|[Mppo| " diam(Mg2)*,
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cn(Mpgyy) is a constant satisfying

1+(2/v) 4/v
(7) (J |f—fMR/z|2de) sNJ |Vf|2de~<j |f—fMR/z|duM> ,
Mgy Mg/ Mg)>

N = en(Mgp) - [Mgpa) " - diam(Mg)n)?, Vf € C*(Mg)2),
Sty = IMR/ZfduM/\MR/zL and D stands for the diameter of M.

Remark 4.1. We should note that actually, the condition (w;) is not re-
quired for a Nash inequality to hold.
In fact, the condition (w;) implies, for example, the following inequality:

inf{w(x)|d(x,0M) = R/2} J
R2n

where 2¢, = (log ¢3)/log2. This can be seen as follows: Let us set f(z) =

inf{w(x) |t <d(x,0M) <R} for 0 <z<R. Then the function f is nonde-

creasing and the condition (w;) implies that f(2¢)/f(¢) < ¢ for 0 <t < R/2.

For 0 < s < R, if we take the integer k such that 2¥~! < R/s < 2K we see that

F(R/2) < f(251s) < (e3)" " f(s) < (R/s)1 882 1 (),

Hence, if we set 2¢; = (log ¢3)/log 2, then ¢, >0 and f(s) > f(R/2)R #1521,
Therefore, if d(x,0M) =s, then w(x) > f(s) > f(R/2)R d(x,0M)*".

Thus, when we set c¢g:=inf{w(x)|d(x,0M) = R/2}/R*" and ¢ :=¢,,
the property (w;) above holds. In spite of this fact, we assume the condition
(wp) because it is important to choose v > 0 as small as possible. Indeed, in
Proposition 5.1, we shall consider the weight function w = (u;)%, where u; is the
normalized first Dirichlet eigenfunction of M, and set ¢ = 1.

w(x) > (x,0M)*",

Remark 4.2. As is seen from the following proof of Theorem 4.1, in order
to get the Nash inequality (6), it suffice to assume that the doubling property (D)
and weak Poincaré inequality (P) hold only on the neighborhood M — My of the
boundary oM.

COROLLARY 4.1. Let M be a metric ball of radius R in a complete Rie-

mannian manifold and assume (D), (P), (w1), and (w2). Then the Nash inequality
(6) with R= D and cy(Mg),) =0, holds.

Remark 4.3. As is seen from Theorem 2.1, the Nash inequality (6) is
equivalent to the following Sobolev inequality:

(-2)/
inf (JM |f N OC|2v/(v72) d,u"”) < CﬂW(M)72/v JM |Vf‘2 dﬂw,

aeR

Vv satisfying v > 49 and v > 2vg, Vf e C*(M).



368 HIRONORI KUMURA

The inequality (7) is also equivalent to the following:

(-2)/v
inf J If = o2 oy,
xeR Mgy,

< en(Mpgp) - [Mgjo| ™" diam(MR/z)ZJ \Vf|* doy, Vf € C*(Mgp2).
Mg,
In order to prove Theorem 4.1, we shall use the following covering lemma
due to Oden, Sung and Wang:

Lemma 4.1 (Whitney decomposition [13]). Let M be a compact Riemannian
manifold with boundary which satisfies the doubling property (D). Then, there
exists a pairwise disjoint family F = {B; = B(x;,r;)|i€ I} of geodesic balls in
Int M satisfying the following:

(1) ., 2B; = Int M;

(2) dist(B(x;,1:),0M) = 10°r;;

(3) There exists a constant c(c¢y) depending only on ¢ such that, for all
nelnt M, {B; e 7 |n € 32B;} < c(c1).

Denote Mp:={xe M |d(x,0M) >R} and ¥ :={B;eF |x;¢ Mg}. For
B; = B(x;,r;) € &, the interior rolling R-ball condition implies that there exist
yi € M and B(q;, R) < Int(M) such that d(x;,y;) = d(x;,0M) and B(q;, R)N M =
{yi}. Let qiy; be the minimal geodesic segment from gq;€ 0Mg to y;. Then
X; € qiyi. Denote by I; the segment q;x; of qy;. For Bie ¥, we then define
F(B)={AeF 24N, #0}. Let # ={AeF |Aec F(B;) for some B; e £}.

(4) A e F(B) implies p(4) = (103/(10% + 3))p(B).

(5) For AeH, let A(¥)={Be¥|AeF(B)}. Then

VRIS W<dqmg<ﬁg.

BeA(Y)

In the following, for A< M, we denote fy=|A|" jAfde, fi=
([ wdvs)™" [ fivdoy, and |A| = fAde

LemMmA 4.2. Let M be a compact manifold with C* boundary oM. We
assume that M satisfies the following family of inequalities:

(8) j()v<mmwmwsﬁﬂﬂj V712 do
B(x,r

B(x,8r)

2
+ C5l7V|B(X, V)‘_l (J ) |f _ﬁB(x,r)| dUM) ’
B(x,r

VB(x,8r) < Int M, Vf e C*(B(x,8r)), Vt>0, Vv >

Moreover, we suppose that the pair (M, w) satisfies properties (D), (wy), and (wy).
Then, the Nash inequality (6) holds.
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Proof. Let # be a Whitney decomposition as in Lemma 4.1 and let
feC®(M). By Lemma 4.1 (1), for Be ¥, we can take Ai,...,A; € F(B)
satisfying

A1 =B, qe2d;, 24;N24;1#0 (i=1,2,...,1—-1).
Let /' be the integer such that
ISZ/SI, 4A]$MR/2 (j:1,2,...,l'—1), 4A]/CMR/2.
Denote fy = fyy,, = JMR/Z Swdvy/ JMR/2 W dvy.
Since [y, |f —faa| <2 [y, |f —fi4]s we have

©) |, 17 =patw e[ 1 -sigbw
44; 44;

We note that for each A;,

(10) X,y €324; = w(x) < caw(y).

By (8), (9) and (10), we can see that

[ 17 =t < clenes)n(an? | puru

44, 324;

-1 2
+ c(es, )t (J w) (J lf _ﬂA,W) , V>0, Vv=w.
44; 44;

For simplicity, we denote by J,(f) = J;(¢) the right hand side of the above
inequality;

_ c(C3,cs)t2p(A,-)2J 19/

324;

+elenes)t™ <LA,- w)_l (J4A,~ 4 _f‘(A"lw>2‘

Then,
B B[ w)s2f 1 -gaPera] 1 g, P
44,044, 44, 445
<2i(t:) + 2Jia (tir),  (6>0,i=1,2,....1—1).
Since

103 103
(11) d(Ai, M) = 10°p(A)) 2 10° 15— p(B) = 1533

we see, by the assumption (w),

Jag W
I4A,- w

d(B,0M),

< c¢(e1,¢3)

|4;|
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Therefore, since 44, = Mg,

/ n2 __ J w g2
<LB w) Var, ol = Lj/ W (LAI’ ey W)

w
szfﬁij TR TR
a4, W \J44, Mg

< 6(01,03)% (J,(z,,) + JM |/ —f0’2w> (Ve > 0).
R/2

Hence,

I'=1

) [ 17 -sipw sz |f—m+2<m,—m,ﬂ>|2w+2(j )f i
4B 4B = 4B
I'—1
=1 |f—ﬁ(32w+21(j ) i — i I
4B 4B i=1

+2(j w) i~ i
4B

-1
w
<2l (h) +4 E g {Ji(t:) + Jip1 (ti1) }
1 j4A,ﬂ4A[+1 w

+C(61,C3)%/|{Jﬁ(lw)+JM |f—fo’|2w}.
R/2

We note here that

Jip 45| (18 |B
(13) 0 < c(63) = < c(c1,¢3) min ,
‘[4Aiﬂ4Ai+l W |4A’ ﬂ4A,~+1| |AI| |Ai+1|
and
(14) |4;/| = c(e1, R/D)| M.

Indeed, the first inequality of (13) is due to (11).
When we take a point ye24;N2A4;,,, we have

(15) B(y7 2 m1n{p(A,),p(A,+1)}) c 4A, N 4A,‘+] .

Since  103p(4;) —103p(A;41) = d(A;,0M) — d(A;y1,0M) < p(A;) + p(Air1), we
have also

(16) (10° = Dp(A,) < (10° + 1)p(Ar1).

The second inequality of (13) follows from (15), (16) and the doubling property
(D).
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The inequality (14) is due to (D) and the fact that 44, = Mg/,. Indeed, by
(D), we have

A"
(17) |4;] = ¢! (%) M|, vy = (logc;)/log 2.
And, since the fact that 44, < Mg, implies p(A;) > R/2(10° —3), we have

R Vo R Vo
- K~ _ £
01> " (si757p) 1M1=t (5 ) 11

and (14) follows.
By (12), (13) and (14), we obtain

!’ B )
J4B |f _f01|2W < C(C],C3)ﬂ=97(3) ZWJ(I,) + C(C1763)< ) ||]M||JMR/2 |f _fol|2w.

It is not hard to see that Lemma 4.1 (2) implies A4;, A>,..., Ay € . Summing
over all Be ¥, we get, by Lemma 4.1 (1), (3) and (5),

|
BEY’4B
B D\"
clenes) 47 (B) e +etenen(B) | 1r-sipw
Mgy,

Bey AeF(B)NZL Al

< c(c1,¢3) Al Z 17 (B)|B| | Ja(t4)
Aeylﬂj

BeA(Y)

e ( )J £
MR/"
R D\"
< c(e1, ¢3) <10g )>JA ty +c(c1,C3)( > J |f—f0’|2w
Ae NS p(A) R Mgy

R
< c(ey,c3,05)
Ae }’/ﬂj

&) atoare? | oy

< Gt) oo (o) ([ sy
teer, o) (%)JM o fPw (>0, ¥e >0 (i=1,2))

For simplicity, we shall set

L= (,ﬁl))&]eﬁp(/lf(u)z; = (/}54))"2821(,/1)( LA w>-'/2
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and put 14 = p(A4) | 4| s, where s,0 and 6 > 0 are positive constants. Then, we
have

Li= &y R p(A) 2|4
< gflR“p(A)z_”‘_29_2é”c12‘5\M|_2‘5D2‘5"s2,
where we have used the inequality (17) and the assumption v > vy. We also have
Iy < c(cr, ¢3)e; ' R2p(A4)" 2 1412 yp(0,0) s
< cler,e3,¢6)ey REp(A) ™04 s,

where we have used Lemma 4.1 (2) and the assumption (w;). For v > vy with
v > 2¢p, we set

1 1 —¢g v—2¢ v—2¢
S=—: 0= D e = P ,
2 2 T 2Ty
Then we obtain
|
BEZ’4B
< c(c1,e3,¢5,v) (v = 20) " RO2/@) pg 7 pg? Vf|w
AE//ﬂl[’szA

~1)2 2
+e(er,e3,¢5,¢6,v) (v = 20) RO N <J W) (J f =i |W)
Aeang \J44 44

D Vo )
+C(01703)(E) J If =fol"w.
Mgy

Since [, |f —fislw <2, |f —alw for all «eR, and since [, [/ —fjlw <
(yu lf =S Pw) 2 ([, )"/, we have

L) ()
= 4AE;)Z<J4A w>_l/2 (LA f f0'|w> (LA d f,(4IW>
< 4;/“ i _fo,|2W>1/2 ([, 17 =)

< c(er) (JU

< c(cr) SJ

1/2
f—f'o’|2W> j — fllw
A

AeAnNy Aelfﬂf4A

44 44

2
= fw e (J f—fW)

AeANL AeANY
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for all ¢ >0. Hence

j S Pw
4B

Be?

< c(er,e3,05,v)(v — 2(p)71R("'_2")/(2")|M|71/"Ds2 |Vf|2w

senny 324

+ cer, e3, 65,6, v) (v — 20) " RO A

2
x eJ = folPw e (J f—f}&IW>
U 44 UAef4A

Ae?

D " 12
+c(e1,63) R If = fol"w.
Mg,

Therefore,
{1 —c(er, ¢3,¢5,¢6,v, (0)R("72¢)/437"8}J \f = foPw
AE!/’4A
< cler, ez, 5, v, ) RO/ ag| Y ”DSZJ v/ P

AE.Wﬂy’32A
2
+ c(c1, €3, 5, 6, v, p) RV 4570 (J lf —fA'4|‘/V>

Ae?

wetene(q) [ 1w
R/2

In the above inequality, we shall choose ¢ > 0 so that
1/2 = ¢(cy, c3, ¢5, C6, v, (p)R(V_z’/’)/4s_"£.
Then, we have

I IR N VA R I

pey 4B Mgy

< c(er, ez, ¢5,v, ) RV 71/ pg? VS |*w

AenNys 324

2
+ ¢(er, e3¢5, C6, v, @) RV 2572 (J |f _f]l//[|W>

4cg B4

+ (6(6176‘3) (%) 0—|—1> JM ‘f _fO/|2W,
R/

for all v satisfying v > vy and v > 2¢, and all f e C*(M).
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In the following, we shall set ¢ = 2v in the inequality (18), and prove the
Nash inequality (6) with v replaced by . Now, we shall consider the following
Nash inequality on Mpg/:

14+(2/0) 4/c
<J |f_fMR/Z|2> = NJ ‘Vflz (J |f_fMR/2|> )
Mg Mg Mg

N = en(Mgp) - |Mpp| 7 - diam(Mg2)?, Wf € C* (Mpgyn).
Since the assumption (w;) implies
w(x) < c(es, D/R)w(y)  Vx,Vy € Mgy,

it is not hard to see that

a/(0+2)
VfPw
Mg

4/(c+2) —2/(6+42)
X (J |f—fA’4R/2|w> (sup w) .
Mp), Mgy

For xo € Mg/, (w1) and (w;) imply

(19) |17 = figPw < les DR N ( |
Mgy

c6(R/2)* < w(xo) < c(e3, D/R)w(y) (Vye Mg)).

Hence, we have

~2/(0+2)
(20) (Elp W> < cgz/(ngz)c(Q,D/R,J)R"‘"/(”*z).
R/2
We also have
@) |V =Fubw<z| 17 =fiw
Mg Mg

From (19), (20) and (21), we obtain

a/(542) 4/(0+2)
@ | S Pese (j |Vf|2w> (j 1 —f,.;|w> ,
Mg Mg, M)

¢’ = c(cs, D/R, o.)66*2/(‘7+2)R74<p/(r7+2)Na/(<7+2).
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Optimizing over s > 0 in the inequality (18) with v =¢/2, and using (22), we
obtain

J ‘f*fﬂld,g/fw < ¢(e1, ¢35, ¢6,0, ¢)R<gi4q))/(a+2)|M|72/<J+2)Da/(ﬁ2)
M

o/(0+2) 4/(o+2)
x (j |Vf|2w> (j I fm‘/v)
UAGJ/QE/‘32A UAG.S”4A

a/(0+2)
+ ¢(cs, DJR, a)cg 2T+ R40l(o42) ol (+2) (J |Vf|2w>

Mg
4/(c+2)
x (j s —fmvv)
Mgy

a/(6+2) 4/(0+2)
o[ wrew) ([ r-si)
M M

€ = C(Cl, c3,Cs,C6, T, (p)R(fT—4(ﬂ)/(U+2) |M|_2/(<7+2)D6/((i+2)

where we set

+ ¢(c3, D/R, a)cgz/(am R%0/(0+2) \jo/(a+2)

Therefore, for all ¢ > 49 with ¢ > 2vy and all f e C*(M), we have

1+(2/0) 1+(2/0)
(J If—fAQIZW) < (j f—f;@/fw)
M M

< @1+2/o) (JM |Vf|2w> <JM I/ —f]{4|w>4/g.

Here, in general, since (4 + B)" < 2*(4* + B¥) for positive constants x, 4 and B,
we have

€7 < (e, e3¢5, ¢6,0,0) RO/ M| D
+c(e3, D/R,0)cg /" R™/%cry (Mp)2)|Mpys| > diam(Mp))°
Thus, we have the Nash inequality (6) with v replaced by . O

Theorem 4.1 follows from Lemma 3.1 and 4.2.

Remark 4.4. We note that the dumbbell-like example in R. Chen [4] shows
that the interior rolling R-ball condition is necessary for the ‘Nash constant’ to be
bounded from above.
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5. An application

In this section, as an application of Theorem 4.1, we shall derive the Sobolev
inequality with respect to the measure (ul) dvy, where uy is the normalized first
Dirichlet eigenfunction.

Let M be a compact, connected Riemannian manifold with C* boundary
oM. Denote by vy, the Riemannian measure of M. We shall consider the
following Dirichlet eigenvalue problem:

Au= —Ju

ulyy, = 0.
Let {u;}, be a complete orthonormal system of L*(M,vy) consisting of
Dirichlet eigenfunctions with #; having eigenvalue —4;. We shall take the sign of

u; to be positive: u; > 0 on Int M. When we set ¢; = u;/u;, a direct computa-
tion shows that ¢, satisfies the following equation:

Ap; +2V log uy - Vo, + (4 — A1)¢; =0
Moreover, it is known that

O(Af a¢1 _
¢i € C (M)7 aﬁ - 07

where 7 stands for the outward unit normal vector field on dM (for this result,
see [I. Singer-B. Wong-S. T. Yau-S. S. T. Yau [15]]). We shall define the closed
form &, on the Hilbert space L?(M, (u1)*vy) in the following way:

ll] fg <Vf Vg> U]) dUMa

M
f.geDom(&,) = H' (M, (u;)*vy),

where H'(M, (u 1)?var) is the Hilbert space constructed by the completlon of the
space C* (M) with respect to the norm || f||* := &, (f.f) + [y 2 () )2 dvy. Let
A,, be the nonpositive self-adjoint operator on L?(M, (u1)*vpr) associated with Sy .-
Then, we see that {¢,};, is a complete orthonormal system of L2(M, (u;)*vy)
con51st1n of eigenfunctions of 4,, with ¢; having eigenvalue —(/1 —A1).  Setting
w = (u1)” and applying Theorem 1.3 in [13] and Theorem 3.7 in [J. Wang [17]],
we have the following

PropoSITION 5.1.  We assume that Int M = M — OM is a relatively compact
domain in a complete Riemannian manifold L with its Ricci curvature Ricp
bounded from below by —K for some constant K > 0. Moreover, we suppose that
M satisfies the interior rolling R-ball condition (R) and that the second fundamental
Jorm Tlgp of OM with respect to the outward unit normal 7 is bounded from above
by H for some constant H > a’' > 0, that is, (X, X) := —<(Vx(0/00),X)> <
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H|X|?, where —(a')? is a lower bound of the sectional curvature on M — Mpg)>.
Then, we have, for any v satisfying v=2vy and v > 4, there exists a constant
c¢(v,K,H,R,D,dim M,Vol(M)) such that the following Sobolev inequality holds:

(—-2)v
(23) inﬁ(J |f = a0 (1) de> < C/J VI 1> (1) dvyy,  fe CP(M),
oe M M

where D stands for the intrinsic diameter of M, vy = vo(K, R) = (log ¢;)/log 2 and
c1 is a volume doubling constant on M — Mg as before.

Proof. The property (P) is satisfied by the fact Ricy > —K (see ex-
ample 1 in [14]). In the similar way to the one in [13], we can prove that
for w=(u)>, M satisfies the conditions (w;) and (w;) with p=1, ¢3=
¢(K,H,R,D,dim M,Vol (M)) and c¢s=c(K,H,R,D,dim M,Vol (M)). We
note that, by the comparison theorem and by the argument about the interval of
the existance of solution, we can see that the second fundamental form of Mg/,
satisfies —c(R, H,dim M) < Iy, < max{H,a'} = H. Therefore, we also have

en(Mpp)|[Mgp| " diam (M) < c(v,dim M, H, R, K, |Mg»|, diam(Mpg)2)),

by Theorem 3.7 in [17] and by [4], where diam(Mp/,) is the intrinsic diameter of
Mpg)>. Hence, Proposition 5.1 easily follows from Theorem 4.1. O

Corollary 2.1 immediately implies the following

COROLLARY 5.1.  The inequality (23) implies the following estimate:
o (ev) < dp — .
Moreover, (23) implies the decay of eigenfunctions:
ui(x) < a(ve(ii — ) *u(x) (i=2,3,...),

where o is some numerical constant.

Remark 5.1. Actually, the optimal value of the constant v in Proposition
5.1 is dim M + 2. This fact and other results will be proved in H. Kumura [12].
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