A NOTE ON THE PRODUCT OF MEROMORPHIC FUNCTIONS AND ITS DERIVATIVES

Kit-Wing Yu

Abstract

It is shown that if f is an even or odd transcendental meromorphic function and if c is any even meromorphic function which does not vanish identically and satisfies $T(r, c)=o(T(r, f))$ as $r \rightarrow+\infty$, then $f f^{\prime}-c$ has infinitely many zeros.

1. Introduction and our main results

In 1959, W. K. Hayman [5] proved that
Theorem A. If n is an integer greater than or equal to 3 and f is a transcendental meromorphic function, then $f^{n} f^{\prime}$ takes every non-zero complex number infinitely many times.

Later, he conjectured [6] that this remains valid for the cases $n=1,2$. In 1979, E. Mues [7] proved the case $n=2$ and the conjecture was proven by A. Eremenko and W. Bergweiler [2] in 1995 and independently by H. H. Chen and M. L. Fang [3].

In 1994, Yik-Man Chiang asked W. Bergweiler whether $f f^{\prime}-c$ has infinitely many zeros if f is a transcendental meromorphic function and if c is a meromorphic function which does not vanish identically and satisfies $T(r, c)=o(T(r, f))$ as $r \rightarrow+\infty$. In [8], Q. D. Zhang studied the value distribution of $\varphi(z) f(z) f^{\prime}(z)$ and obtained the following theorem.

Theorem B. If f is a transcendental meromorphic function and φ is a nonzero meromorphic function such that $T(r, \varphi)=S(r, f)$ as $r \rightarrow+\infty$, then

$$
T(r, f)<\frac{9}{2} \bar{N}(r, f)+\frac{9}{2} \bar{N}\left(r, \frac{1}{\varphi f f^{\prime}-1}\right)+S(r, f)
$$

By this, we have

[^0]Corollary A. If $\delta(\infty, f)>7 / 9$, then $f f^{\prime}-c$ has infinitely many zeros.
In 1995, W. Bergweiler and A. Eremenko [2] used some results from iteration theory to show that $f f^{\prime}-c$ has infinitely many zeros if c is a non-zero constant. Later, W. Bergweiler [1] answered this question affirmatively in the case that f is of finite order and c is a polynomial. Actually, he showed that

Theorem C. If f is a transcendental meromorphic function of finite order and c is a polynomial, then $f f^{\prime}-c$ has infinitely many zeros.

In the following discussion, we assume that f is a transcendental meromorphic function. From Corollary A, we can further assume that $\delta(\infty, f) \leq 7 / 9$ and we shall show the following result.

THEOREM. Let f be a transcendental meromorphic function and c be a meromorphic function which does not vanish identically and satisfies $T(r, c)=$ $o(T(r, f))$ as $r \rightarrow+\infty$. Then $f f^{\prime}-c$ or $f f^{\prime}+c$ has infinitely many zeros.

Corollary. Suppose that f is an even or odd transcendental meromorphic function and c is an even meromorphic function. Suppose further that there exists a sequence $\left\{z_{1},-z_{1}, z_{2},-z_{2}, \ldots,\right\}$ which are zeros of $\varphi f f^{\prime}+1$ but not zeros or poles of f. Then $f f^{\prime}-c$ has infinitely many zeros.

Here, we assume that the readers are familiar with the basic concepts of the Nevanlinna value distribution theory and the notations $m(r, f), N(r, f), \bar{N}(r, f)$, $T(r, f)$ and etc., see e.g., [4].

2. A lemma

Lemma. Suppose that f is a non-constant meromorphic function and that φ is a non-vanishing meromorphic function such that $T(r, \varphi)=o(T(r, f))$ as $r \rightarrow+\infty$. Then for any finite non-zero distinct complex numbers a and b and any positive integer k such that $\varphi f^{(k)} \not \equiv$ constant, we have

$$
\begin{aligned}
T(r, f)< & N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{\varphi f^{(k)}-a}\right)+N\left(r, \frac{1}{\varphi f^{(k)}-b}\right) \\
& -N(r, f)-N\left(r, \frac{1}{\left(\varphi f^{(k)}\right)^{\prime}}\right)+S(r, f)
\end{aligned}
$$

as $r \rightarrow+\infty$.
Proof. First of all, we have

$$
\begin{equation*}
m\left(r, \frac{1}{\varphi f}\right) \leq m\left(r, \frac{1}{\varphi f^{(k)}}\right)+m\left(r, \frac{f^{(k)}}{f}\right)+O(1) \tag{1}
\end{equation*}
$$

From

$$
\begin{aligned}
m\left(r, \frac{1}{\varphi f}\right) & =T(r, \varphi f)-N\left(r, \frac{1}{\varphi f}\right)+O(1) \\
m\left(r, \frac{1}{\varphi f^{(k)}}\right) & =T\left(r, \varphi f^{(k)}\right)-N\left(r, \frac{1}{\varphi f^{(k)}}\right)+O(1)
\end{aligned}
$$

and (1), we have

$$
\begin{align*}
T(r, \varphi f) \leq & N\left(r, \frac{1}{\varphi f}\right)+T\left(r, \varphi f^{(k)}\right)-N\left(r, \frac{1}{\varphi f^{(k)}}\right) \tag{2}\\
& +m\left(r, \frac{f^{(k)}}{f}\right)+O(1)
\end{align*}
$$

By the second fundamental theorem,

$$
\begin{align*}
T\left(r, \varphi f^{(k)}\right)< & N\left(r, \frac{1}{\varphi f^{(k)}}\right)+N\left(r, \frac{1}{\varphi f^{(k)}-a}\right)+N\left(r, \frac{1}{\varphi f^{(k)}-b}\right) \tag{3}\\
& -N_{1}(r)+S\left(r, \varphi f^{(k)}\right)
\end{align*}
$$

as $r \rightarrow+\infty$, where, as usual, $N_{1}(r)$ is defined as

$$
N_{1}(r)=2 N\left(r, \varphi f^{(k)}\right)-N\left(r,\left(\varphi f^{(k)}\right)^{\prime}\right)+N\left(r, \frac{1}{\left(\varphi f^{(k)}\right)^{\prime}}\right)
$$

Let z_{0} be a pole of order $p \geq 1$ of f. Then $f^{(k)}$ and $f^{(k+1)}$ have a pole of order $k+p$ and $k+p+1$ at z_{0} respectively. Thus $2(k+p)-(k+p+1)=$ $k+p-1 \geq p$ and

$$
\begin{equation*}
N_{1}(r) \geq N(r, f)+N\left(r, \frac{1}{\left(\varphi f^{(k)}\right)^{\prime}}\right)+S(r, f) \tag{4}
\end{equation*}
$$

It is clear that $S\left(r, f^{(k)}\right)=S(r, f)$ and $m\left(r, \frac{f^{(k)}}{f}\right)=S(r, f)$. Thus by (2), (3)
(4), and (4),

$$
\begin{aligned}
T(r, \varphi f)< & N\left(r, \frac{1}{\varphi f}\right)+N\left(r, \frac{1}{\varphi f^{(k)}-a}\right)+N\left(r, \frac{1}{\varphi f^{(k)}-b}\right) \\
& -N(r, f)-N\left(r, \frac{1}{\left(\varphi f^{(k)}\right)^{\prime}}\right)+S(r, f)
\end{aligned}
$$

as $r \rightarrow+\infty$. Since $T(r, \varphi)=o(T(r, f))$ as $r \rightarrow+\infty$, we have the desired result.

3. Proofs of the theorem and the corollary

Proof of the theorem. Let $\varphi=1 / c, F=(1 / 2) f^{2}, k=1, a=1$ and $b=-1$. Then by the above lemma, we have

$$
\begin{aligned}
2 T(r, f)< & 2 N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{\varphi f f^{\prime}-1}\right)+N\left(r, \frac{1}{\varphi f f^{\prime}+1}\right) \\
& -2 N(r, f)-N\left(r, \frac{1}{\left(\varphi f f^{\prime}\right)^{\prime}}\right)+S(r, f)
\end{aligned}
$$

as $r \rightarrow+\infty$.
By the assumption that $\delta(\infty, f) \leq 7 / 9$, we have

$$
\frac{N\left(r, \frac{1}{\varphi f f^{\prime}-1}\right)+N\left(r, \frac{1}{\varphi f f^{\prime}+1}\right)}{2 T(r, f)}>0
$$

as $r \rightarrow+\infty$. Hence, the result of the theorem follows.
Proof of the corollary. If

$$
\frac{N\left(r, \frac{1}{\varphi f f^{\prime}-1}\right)}{2 T(r, f)}>0
$$

as $r \rightarrow+\infty$ outside a set of finite linear measure, then $\varphi f f^{\prime}-1$ has infinitely many zeros and thus $f f^{\prime}-c$ has infinitely many zeros.

Let $z_{0} \neq 0$ be a zero of $\varphi f f^{\prime}+1$. Since f is even or odd, f^{\prime} is odd or even. Therefore, $f f^{\prime}$ is an odd function. Now we have $\varphi\left(-z_{0}\right) f\left(-z_{0}\right) f^{\prime}\left(-z_{0}\right)-1=$ $-\varphi\left(z_{0}\right) f\left(z_{0}\right) f^{\prime}\left(z_{0}\right)-1=0$ and thus $-z_{0}$ is a zero of $\varphi f f^{\prime}-1$. Hence, the desired result follows.

4. Remarks

1. In [8], Q. D. Zhang showed that

$$
2 T(r, f)<\bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{\varphi f f^{\prime}-1}\right)+S(r, f) .
$$

From this, it is immedicate that if $\delta(0, f)+(1 / 2) \delta(\infty, f)>1 / 2$, then $f f^{\prime}-c$ has infinitely many zeros, where $c=1 / \varphi$.
2. In [9], Z. F. Zhang and G. D. Song showed that if $a(z) \not \equiv 0$ and $T(r, a)=S(r, f)$ as $r \rightarrow+\infty, n, k$ are positive integers, where $n \geq 2$, then $f\left(f^{(k)}\right)^{n}-a(z)$ has infinitely many zeros.

Acknowledgement. The author wishes to thank the referee for many valuable comments.

References

[1] W. Bergweiler, On the product of a meromorphic function and its derivative, Bull. Hong Kong Math. Soc., 1 (1996), 97-101.
[2] W. Bergweiler and A. Eremenko, On the singularities of the inverse of a meromorphic function of finite order, Rev. Mat. Iberoamericana, 11 (1995), 355-373.
[3] H. H. Chen and M. L. Fang, On the value distribution of $f^{n} f^{\prime}$, Science in China Ser. A, 25 (1995), 121-127.
[4] W. K. Hayman, Meromorphic Functions, Oxford Math. Monogr., Clarendon Press, Oxford, 1964.
[5] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math., 70 (1959), 9-42.
[6] W. K. Hayman, Research Problems in Function Theory, The Athlone Press, London, 1967.
[7] E. Mues, Über ein Problem von Hayman, Math. Z., 164 (1979), 239-259.
[8] Q. D. Zhang, On the value distribution of $\varphi(z) f(z) f^{\prime}(z)$, Acta Math. Sinica, 37 (1994), 9197 (in Chinese).
[9] Z. F. Zhang and G. D. Song, On the zeros of $f\left(f^{(k)}\right)^{n}-a(z)$, Chinese Ann. Math. Ser. A, 19 (1998), 275-282.

Department of Mathematics
The Hong Kong University of Science \& Technology Clear Water Bay, Kowloon, Hong Kong
e-mail: makwing@ust.hk
(CURRENT ADDRESS)
Rm. 205, Kwai Shun Hse., Kwai Fong Est., K.C., Hong Kong e-mail: kitwing@hotmail.com

[^0]: 2000 Mathematics Subject Classfication: Prelimary 30D35.
 Key words: derivatives, meromorphic functions, zeros.
 Received July 21, 2000; revised January 5, 2001.

