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ON TWO POINT DISTORTION THEOREMS FOR BOUNDED

UNIVALENT REGULAR FUNCTIONS

James A. Jenkins

1. Let f �z� be a bounded univalent regular function mapping the unit disc
D into the unit disc E. We de®ne

D1 f �z� � �1ÿ jzj2�
�1ÿ j f �z�j2� f

0�z�:

The expression jD1 f �z�j is invariant under linear transformations of D and of E.
For z1; z2 A D distinct let r be the hyperbolic distance between z1 and z2 and s
the hyperbolic distance between f �z1� and f �z2�. These are of course invariant
under linear transformations of D and E. A two point distortion theorem for f
is an inequality between jD1 f �z1�j, jD1 f �z2�j, r and s. To prove such a result it
is then su½cient to prove it for a suitable normalization for z1, z2, f �z1� and
f �z2�.

Many years ago Blatter [1] gave a similar result for univalent functions in D
(not satisfying a boundedness condition) namely

j f �z1� ÿ f �z2�j2 b
sinh 2r

8 cosh 4r

X2

j�1

�1ÿ jzj j2�2j f 0�zj�j2:�1�

Kim and Minda [5] pointed out that the ®rst factor on the right is incorrect and
extended the result to obtain

j f �z1� ÿ f �z2�jb sinh 2r

2�2 cosh 2pr�1=p
�jD1 f �z1�jp � jD1 f �z2�jp�1=p�2�

where D1 f �z� � �1ÿ jzj2� f 0�z� valid for p b P with some P; 1 < P a 3=2. In
each case there was an appropriate equality statement.

Recently the author [4] has proved that [2] is valid for all p b 1 and also has
given an inequality in the opposite direction.

Ma and Minda [6] have given for bounded univalent regular functions upper
and lower bounds for s in terms of jD1 f �z1�j, jD1 f �z2�j and r depending on a
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parameter p conditioned by p b 3=2. Their proof is based on estimates for
length in the hyperbolic metric and results in extremely complicated expressions
in jD1 f �z1�j, jD1 f �z2�j and r.

In this paper we will obtain two point distortion theorems for bounded
univalent regular functions more analogous to those in [4] which are more truly
distortion theorems.

2. The proof in [4] was carried out by studying the family F of functions f
regular and univalent in D satisfying, for 0 < r < 1, f �ÿr� � ÿ1, f �r� � 1. Of
course F depends on r but this is kept ®xed. The treatment consists of proving
two theorems stated here as Theorem T and Theorem F.

Theorem T. If f A F and p b 1

�j f 0�ÿr�jp � j f 0�r�jp�1=p a
4�cosh 2pr�1=p

�1ÿ r2� sinh 2r
:

Equality occurs only for functions mapping D on the plane slit along a ray on the
positive or negative real axis.

Theorem F. If f A F and p > 0

�j f 0�ÿr�jp � j f 0�r�jp�1=p b
21=p cosh�r=2�

cosh r
:

Equality occurs only for a function l0 mapping D onto the plane slit along the real
axis symmetrically through the point at in®nity.

In the proof of Theorem T there is constructed a one-parameter family of
functions fb A F which map D onto an admissible domain [2] with respect to the
quadratic di¨erential

k1
�wÿ b�

�w� 1�2�wÿ 1�2 dw2

where k1 real has the same sign as b or exceptionally for b �y

k2
dw2

�w� 1�2�wÿ 1�2

with k2 < 0. The functions are determined explicitly and the proof is carried out
by direct calculation. Incidentally the formula on p. 156 l.4 in [4] should read

d

db
logj f 0b �r�j � ÿ

1

bÿ 1

1

�b2 ÿ 1�1=2
log

1� r2

2r

�b� 1�1=2 ÿ �bÿ 1�1=2

�b� 1�1=2 � �bÿ 1�1=2

 !
but the correct formula is used in the remainder of the proof.
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To treat the case of bounded univalent regular functions we construct
functions analogous to the fb. We ®x r; 0 < r < 1, and a; 0 < a < r, and
denote by G the family of functions regular and univalent in D with values in E
such that g�ÿr� � ÿa, g�r� � a.

There are three types of special functions in G. In the ®rst instance for c,
0 < c < p the quadratic di¨erential

Q��w;c� dw2 � ÿ �wÿ eÿic�2�wÿ eic�2
�wÿ a�2�w� a�2�wÿ aÿ1�2�w� aÿ1�2 dw2�3�

is positive in E and has the following trajectory structure. The open arcs on
jwj � 1 joining eic and eÿic are trajectories and there is a further trajectory g in E
joining eic and eÿic which divides E into two circle domains for Q��w;c� dw2

containing respectively the double poles ÿa; a. If we make two appropriate
symmetric incisions from eÿic, eic along g into E we obtain a domain Ec which
can be mapped conformally onto D so that ÿa; a go to ÿr; r. This induces on D
a quadratic di¨erential

Q�z; f� dz2 � ÿKÿ1 �zÿ eÿif�2�zÿ eif�2
�zÿ r�2�z� r�2�zÿ rÿ1�2�z� rÿ1�2 dz2�4�

with a positive constant K. We denote the corresponding mapping from D to Ec

by h0. The values of f ®ll an open arc 0 < f0 < f < pÿ f0, 0 < f0 < p.
A second type of special function is obtained by mapping E into the z-plane

by the function

l�w� � �1ÿ a2�2
a�1� a2�

w

�1� w�2 �
2a

1� a2
�5�

l�E� is the plane slit on the positive real axis from �1� 6a� 4a4�=�4a�1� a2�� to
y and l�ÿa� � ÿ1, l�a� � 1. Thus for g A G, lg A F. For

b� � 1� 6r2 � r4

4r�1� r2� a b a
1� 6a2 � a4

4a�1� a2� � b̂

the function lÿ1fb is in G and the quadratic di¨erential

l
�zÿ b�

�z� 1�2�zÿ 1�2 dz2

for a suitable l > 0 induces on E a quadratic di¨erential

ÿ �wÿ c��wÿ cÿ1��wÿ 1�2
�wÿ a�2�w� a�2�wÿ aÿ1�2�w� aÿ1�2 dw2�6�

where c � lÿ1�b�.
The third type of special function can be obtained by a similar construction
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with the function

~l�w� � �1ÿ a2�2
a�1� a2�

w

�1ÿ w�2 ÿ
2a

1� a2

to obtain a function ~lÿ1fb and a quadratic di¨erential

ÿ �wÿ ĉ��wÿ ĉÿ1��w� 1�2
�wÿ a�2�w� a�2�wÿ aÿ1�2�w� aÿ1�2 dw2�7�

with ĉ � ~lÿ1b.
Combining these we have quadratic di¨erentials Q̂�w; t� dw2 where

Q̂�w; t� � ÿ �w2 ÿ 2tw� 1��wÿ 1�2
�wÿ a�2�w� a�2�wÿ aÿ1�2�w� aÿ1�2 ; t�b t b 1;

Q̂�w; t� � ÿ �wÿ 2tw� 1�2
�wÿ a�2�w� a�2�wÿ aÿ1�2�w� aÿ1�2 ; 1 b t bÿ1;

Q̂�w; t� � ÿ �w2 ÿ 2tw� 1�2
�wÿ a�2�w� a�2�wÿ aÿ1�2�w� aÿ1�2 ; ÿ1 b t bÿt�

with t� � �1=2��lÿ1b� � �lÿ1b��ÿ1�. Note that the de®nitions agree at t � 1;ÿ1.
We denote the corresponding functions in G by gt, t�b t bÿt�.

Lemma 1. For g A G, jg 0�ÿr�j is maximized uniquely for gt � , minimized
uniquely for gÿt � , jg 0�r�j is maximized uniquely for gÿt � , minimized uniquely for gt � .

gt � �D� is an admissible domain for the quadratic di¨erential

ÿ ÿ�wÿ 1�2 dw2

�w� a�2�w� aÿ1�2�wÿ a��wÿ aÿ1� ;

ggÿ1
t� is an admissible function for it. Applying the General Coe½cient Theorem

[2, 3] with ÿa as P1, we have the coe½cients

a�1� � ÿ a2

2�1ÿ a�2�1� a2� ; a�1� � �g 0�ÿr��ÿ1g 0t � �ÿr�:

The fundamental inequality gives

ÿ a2

2�1ÿ a�2�1� a2� log
g 0t � �ÿr�
g 0�ÿr�
���� ����a 0

or

jg 0�ÿr�ja jg 0t � �ÿr�j:
The equality statement follows from that in the General Coe½cient Theorem.
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gÿt � �D� is an admissible domain for the quadratic di¨erential

�w� 1�2 dw2

�w� a�2�w� aÿ1�2�wÿ a��wÿ aÿ1� ;

ggÿ1
ÿt � is an admissible function for it. Applying the General Coe½cient Theorem

with ÿa as P1 we have the coe½cients

a�1� � a2

2�1� a�2�1� a2� ; a�1� � �g 0�ÿr��ÿ1g 0ÿt � �ÿr�:

The fundamental inequality gives

a2

2�1� a�2�1� a2� log
g 0t � �ÿr�
g 0�ÿr�
���� ����a 0

or

g 0�ÿr�b jg 0ÿt � �ÿr�j:
The equality statement follows from that in the General Coe½cient Theorem.

The remaining statements follow by symmetry.

Lemma 2. The quantity jg 0�ÿr�jp � jg 0�r�jp; p > 0, is maximized for a
function gt, uniquely up to translation along trajectories.

It is readily seen that jg 0t�ÿr�j, jg 0t�r�j vary continuously with t on �ÿt�; t��
either by domain convergence or by the explicit expressions given below. For
any g A G there exists a t A �ÿt�; t�� with jg 0�ÿr�j � jg 0t � �ÿr�j. We apply the

General Coe½cient Theorem with the quadratic di¨erential Q̂�w; t� dw2 for
this value of t, the admissible domain gt�D� and the admissible function ggÿ1

t .
Taking ÿr as P1, r as P2 for t A �1; t�� the corresponding coe½cients are

a�1� � ÿ a2�a2 � 2ta� 1�
4�1ÿ a�2�1� a2�2 ; a�1� � �g 0�ÿrÿ1��ÿ1g 0t�ÿr�;

a�2� � ÿ a2�a2 ÿ 2ta� 1�
4�1� a�2�1� a2�2 ; a�2� � �g 0�r��ÿ1g 0t�r�:

The fundamental inequality gives

ÿ a2�a2 � 2ta� 1�
4�1ÿ a�2�1� a2�2 log

g 0t�ÿr�
g 0�ÿr�
���� ����ÿ a2�a2 ÿ 2ta� 1�

4�1� a�2�1� a2�2 log
g 0t�r�
g 0�r�
���� ����a 0

thus jg 0�r�ja jg 0t�r�j. Equality can occur only if g is obtained from gt by
translation along trajectories.

The other cases for t are treated similarly.
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Lemma 3. jg 0t�ÿr�j decreases strictly monotonically as t goes from t� to ÿt�.
jg 0t�r�j increases strictly monotonically as t goes from t� to ÿt�.

This follows at once by applying the preceding argument for two values of t
and Lemma 1.

3. In order to ®nd the maximum of jg 0t�ÿr�jp � jg 0t�r�jp for reasons of
symmetry it is su½cient to consider t in the interval �0; t��.

Lemma 4. For t in the range of values �0; 1�, p > 0, jg 0t�ÿr�jp � jg 0t�r�jp
decreases strictly monotonically as t goes from 1 to 0.

From (3) and (4) we have for corresponding values z, w, t, c, f and K > 0

�zÿ eif�2�zÿ eÿif�2
�z� r�2�zÿ r�2�z� rÿ1�2�zÿ rÿ1�2

� K
�wÿ eic�2�wÿ eÿic�2

�w� a�2�wÿ a�2�w� aÿ1�2�wÿ aÿ1�2
dw

dz

� �2

:

Letting z! ÿr, w! ÿa; z! r, w! a respectively we have

r2�r2 � 2r cos f� 1�2
4�1ÿ r2�2�1� r2�2 � K

a2�a2 � 2a cos c� 1�2
4�1ÿ a2�2�1� a2�2

r2�r2 ÿ 2r cos f� 1�2
4�1ÿ r2�2�1� r2�2 � K

a2�a2 ÿ 2a cos c� 1�2
4�1ÿ a2�2�1� a2�2

and dividing

�r2 � 2r cos f� 1�
�r2 ÿ 2r cos f� 1� �

�a2 � 2a cos c� 1�
�a2 ÿ 2a cos c� 1� :

Integrating explicitly
� �ÿQ�z; f��1=2

dz and
� �ÿQ��w;c��2 dw with suitable

normalizations we get

1

2

r�1� 2r cos f� r2�
�1ÿ r2��1� r2� log

z� r

1� rz
ÿ 1

2

r�1ÿ 2r cos f� r2�
�1ÿ r2��1� r2� log

rÿ z

1ÿ rz
;

and

1

2

a�1� 2a cos c� a2�
�1ÿ a2��1� a2� log

w� a

1� aw
ÿ 1

2

a�1ÿ 2a cos c� a2�
�1ÿ a2��1� a2� log

aÿ w

1ÿ aw
:
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Comparing expansions about ÿr, ÿa we ®nd

log�w� a� � log�z� r� ÿ log�1� rz� � log�1� aw�

ÿ �1ÿ 2r cos f� r2�
�1� 2r cos f� r2� log

rÿ z

1ÿ rz
� �1ÿ 2a cos c� a2�
�1� 2a cos c� a2� log

aÿ w

1ÿ aw

so

log g 0t�ÿr� � �1ÿ 2r cos f� r2�
�1� 2r cos f� r2� ÿlog

2r

1� r2
� log

2a

1� a2

� �
ÿ log�1ÿ r2� � log�1ÿ a2�:

Similarly

log g 0t�r� �
�1� 2r cos f� r2�
�1ÿ 2r cos f� r2� ÿlog

2r

1� r
� log

2a

1� a2

� �
ÿ log�1ÿ r2� � log�1ÿ a2�:

Thus

�g 0t�ÿr��p � �g 0t�r��p �
1ÿ a2

1ÿ r2

� �p
2a

1� a2

1� r2

2r

� �p
1ÿ2r cos f�r 2

1�2r cos f�r 2

� 1ÿ a2

1ÿ r2

� �p
2a

1� a2

1� r2

2r

� �p
1�2r cos f�r 2

1ÿ2r cos f�r 2

:

A straightforward calculation shows that this decreases strictly monotonically
as t goes from 1 to 0.

Corollary 1. To ®nd the maximum of jg 0t�ÿr�jp � jg 0t�r�jp, p > 0, it is
enough to consider the values t A �1; t��.

For t A �1; t�� the function g 0t�z� is given by g 0t�z� � �d=dz��lÿ1fb�z�� where t,
b are corresponding values. Thus

g 0t�r� �
a�1� a��1� a2�
�1ÿ a�3 f 0b �r�

g 0t�ÿr� � a�1ÿ a��1� a2�
�1� a�3 f 0b �ÿr�

and to ®nd the maximum of jg 0t�ÿr�jp � jg 0t�r�jp we ®nd the maximum of

a�1ÿ a��1� a2�
�1� a�3

 !p

� f 0b �ÿr��p � a�1� a��1� a2�
�1ÿ a�3

 !
� f 0b �r��p�8�
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on the appropriate interval for b. We consider its derivative

p
a�1ÿ a��1� a2�
�1� a�3

 !p

� f 0b �ÿr��pÿ1 df 0b �ÿr�
db

�9�

� p
a�1� a��1� a2�
�1ÿ a�3

 !
� f 0b �r��pÿ1 df 0b �r�

db
:

The ®rst term is negative the second positive.

Lemma 5. The ratio of the terms in (9) decreases as b increases. Thus (8)
has a unique maximum on �b�; b̂�. If

p b log
1� r

1ÿ r
log

1ÿ a

1� a

1� r

1ÿ r

� �� �ÿ1

�10�

the maximum occurs for b�. Otherwise it occurs for b A �b�b̂�. Thus if (10) holds
the maximum of jg 0t�ÿr�jp � jg 0t�r�jp occurs for t � t�.

A direct calculation shows that

d

db

� f 0b �ÿr��p�d=db�f 0b �ÿr�
� f 0b �r��pÿ1�d=db�f 0b �r�

� f 0b �ÿr�
f 0b �r�

� �
2

�b� 1�2
 !

p

�b2 ÿ 1�1=2

 !
log

1� r2

2r

�b� 1�1=2 ÿ �bÿ 1�1=2

�b� 1�1=2 � �bÿ 1�1=2

 !
ÿ 1

which is negative (see [4], p. 156).
Therefore if (8) is decreasing at b� the maximal value occurs there. This

requires the condition

p > log
1� r

1ÿ r
log

1ÿ a

1� a

1� r

1ÿ r

� �� �ÿ1

and the equality follows by a passage to the limit.
Using the invariance properties jD1 f �z�j, r and s and the expression for r

and s in terms of r and a

r � log
1� r

1ÿ r
; s � log

1� a

1ÿ a

we have the following theorem.

Theorem 1. If f is regular and univalent in D and maps D into E and if z1; z2

are distinct points in D and

p b
r

rÿ s
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where r; s are the hyperbolic distances between z1 and z2, f �z1� and f �z2� re-
spectively then

jD1 f �z1�jp � jD1 f �z2�jp a tanh
s

2

e2s�1

�es�1�2 tanh
r

2

e2r � 1

�er � 1�2
 !ÿ1

24 35p

� er�es � 1�
es�er � 1�
� �4p

� es � 1

er � 1

� �4p
" #

Equality occurs if and only if f maps D onto E slit along a ray on the
hyperbolic line determined by f �z1� and f �z2�.

If p < r=�rÿ s� this result does not obtain.

4. A bound in the opposite sense can be obtained immediately from
Theorem F. Let m0 be the function in G mapping D onto E with equal rectilinear
slits proceeding from G1. l0 is the function ��1� r2�=r��z=�1� z2�� and if
t�w� � ��1� a2�=a��w=�1� w2�� m0 is tÿ1l0. For any g A G, tg A F. Thus by
Theorem F for p > 0

j�tg�0�ÿr�jp � j�tg�0�r�jp b �l 00�ÿr��p � �l 00�r��p � 2
1ÿ r2

r�1� r2�
� �p

and

jg 0�ÿr�jp � jg 0�r�jp b 2
a�1� a2�

1ÿ a2
� 1ÿ r2

r�1� r2�
� �p

:

Moreover

jD1g�ÿr�jp � jD1g�r�jp b 2
a�1� a2�
�1ÿ a2�2

�1ÿ r2�2
r�1� r2�

 !p

:

Equality occurs only for m0.
Using the invariance properties we have proved the following theorem.

Theorem 2. If f is regular and univalent in D mapping D into E and z1; z2

are distinct points of D, we have for p > 0

�jD1 f �z1�jp � jD1 f �z2�jp�1=p b
e2s � 1

e2r � 1

er � 1

es � 1

� �3 cosh�s=2�
cosh�r=2�
� �4

where r is the hyperbolic distance between z1 and z2, s is the hyperbolic distance
between f �z1� and f �z2�. Equality occurs only for the function mapping D onto E
slit along symmetric rays on the hyperbolic line determined by f �z1� and f �z2�.
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