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Abstract

In this paper we obtain an estimate for the Ricci curvature and a criterion for the

vanishing of the homology groups of compact submanifolds of spheres and Euclidean

spaces. This criterion depends on the results of Lawson and Simons [LS], Leung [Le2]

and Xin [X] on stable currents. As consequences we obtain a topological version of

theorems of Cheng and Nakagawa [CK], Alencar and do Carmo [AC], and Xu [Xu], on

hypersurfaces in spheres with constant mean curvature.

1. Introduction

In [LS], Lawson and Simons obtained a criterion for the vanishing of the
homology groups of compact submanifolds of spheres. Latter on and using
similar techniques, Leung [Le2] and Xin [X] were able to extend the results in [LS]
to compact submanifolds of Euclidean spaces. Leung also obtained, in [Le1], an
estimate for the Ricci curvature of minimal submanifolds of spheres and com-
bined this with the results in [LS] to obtain information on the topology of such
submanifolds.

In this paper we follow closely the approach in [Le1]. Firstly we obtain an
estimate for the Ricci curvature of submanifolds of a space form which improves
Leung's estimates in [Le1] and [Le3]. Next we obtain a criterion, based in the
results of [LS], [Le2] and [X], for the vanishing of the homology groups of
compact submanifolds of Euclidean spheres or spaces. Then we combine these
results to study the geometry and the topology of such submanifolds.

To state our results, let us ®x some notation. We will denote by f : M n !
Qn�m

c an isometric immersion of a connected n-dimensional Riemannian manifold
M n into a complete, simply connected �n�m�-dimensional manifold Qn�m

c with
constant sectional curvature c, where n b 2 and m b 1. Let ~H, H and S denote
the mean curvature vector of the immersion, its norm and the square of the length
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of the second fundamental form, respectively. As usual we will denote by TxM
the tangent space of M n and by N1�x� the ®rst normal space of the immersion
at x A M n. We will make use of the following convention: if x A M n is such that
~H�x�0 0, then l1 a l2 a � � � a ln will denote the eigenvalues of the Weingarten
operator Ax1

, in the direction x1 � �1=H�~H�x�; if ~H�x� � 0, just take li � 0;
1 a i a n, and x1 any unit vector normal to M n at x. Recall that the immersion
is quasi-umbilical at x if there exists an orthonormal frame x1; . . . ; xm in the
normal space TxM?, such that each Weingarten operator Axb

; 1 a b a m, has an
eigenvalue of multiplicity at least nÿ 1; the immersion is quasi-umbilical if it is
quasi-umbilical at every x in M n.

With this convention, we can state the mentioned estimate for the Ricci
curvature of submanifolds and also a su½cient condition for a submanifold
M n of Qn�m

c to be a conformally ¯at submanifold with normal curvature tensor
R? � 0.

Theorem 1.1. Let f : M n ! Qn�m
c be an isometric immersion. For every

x A M n and v A TxM, with kvk � 1, we have:

Ric�v�b nÿ 1

n

� �
�ncÿ S� � nH 2 � �nÿ 2�HhAx1

v; vi:�1�

(a) If n b 3 and (1) is an equality for some unit v A TxM, then:
(a1) f is quasi-umbilical at x, R?�x� � 0 and dim N1�x�a 2. Moreover, if

~H�x� � 0 then dim N1�x�a 1;
(a2) For any unit vector x A TxM? we have Axv � lv, where l has multiplicity

1 or n as an eigenvalue of Ax.
(b) Let n b 3. If for each x in M n there exits an unit vector v in TxM

such that (1) is an equality, then M n is conformally ¯at.

Simons [S], Lawson [L] and Chern, do Carmo and Kobayashi [CCK], con-
tributed for the classi®cation of the compact minimal submanifolds M n of the
unit sphere S n�1, with S a n. A still open problem is the complete classi®cation
of these submanifolds when the ambient space is the unit sphere S n�m, m b 2.
The following corollary is a partial answer to this question.

Corollary 1.2. Let M n; nb3, be a compact minimal submanifold of S n�m.
If S a n on M n and the fundamental group of M n is in®nite, then M n is a Cli¨ord
torus S1

c1
� S nÿ1

c2
in a totally geodesic submanifold S n�1 HS n�m, where c1 �

��������
1=n

p
and c2 �

���������������������nÿ 1�=n
p

.

We state now a criterion for the vanishing of the homology groups of com-
pact submanifolds and also other topological results.

Theorem 1.3. Let f : M n ! Qn�m
c be an isometric immersion, where M n is

compact and c b 0.
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(a) If for some integer p satisfying 2 a p a n=2

S <
n2H 2

nÿ p
� n�nÿ 2p�Hl1

nÿ p
� nc�2�

holds on M n, then the k-th homology group Hk�M;Z� � 0, for p a k a nÿ p.
(b) If

S <
n2H 2

nÿ 1
� n�nÿ 2�Hl1

nÿ 1
� nc�3�

holds on M n, then the fundamental group p1�M� of M n is ®nite and the universal
covering ~M n of M n is compact. Moreover,

(b1) If n � 2, then M n is di¨eomorphic either to the sphere S2 or to the real
projective space RP2, according to M 2 is orientable or not;

(b2) If n � 3 and p1�M� � f0g, then M 3 is di¨eomorphic to the sphere S3;
(b3) If n b 4 and M n is orientable when n is even, then M n is homeomorphic

to the sphere S n.

When M n is complete, we have the following version of 1.3(b). We observe
that the main theorem in [SX] is a consequence of the following result.

Corollary 1.4. Let M n be a complete submanifold of Qn�m
c ; c b 0, such

that M n is orientable when n is even. If sup�S ÿ T� < 0, where T is the right side
of (3), then M n is compact and the same conclusions of 1.3(b) are valid.

In [CN], [AC] and [Xu], the authors studied hypersurfaces M n of S n�1 with
constant mean curvature H. In [CN] it was proved that if M n is complete and
sup S < C�H�, then M n is totally umbilical; in [AC] and [Xu] it was proved that
if M n is compact and S a C�H�, then M n is umbilical or isometric to a torus
S1

c1
� S nÿ1

c2
. In our next theorem, we remove the condition H � constant and

obtain a topological-geometrical version of this statement, in any codimension.

Theorem 1.5. Let f : M n ! S n�m be an isometric immersion, where M n is
compact. Let S a C�H� on M n, where

C�H� � n� n3H 2

2�nÿ 1� ÿ
n�nÿ 2�H
2�nÿ 1�

����������������������������������
n2H 2 � 4�nÿ 1�

q
:�4�

Then the Ricci curvature of M n is nonnegative and we have only two possibilities,
(a) and (b):

(a) p1�M� is ®nite. In this case we have:
(a1) If n � 2, then M 2 is di¨eomorphic to S2 or to RP2;
(a2) If n � 3 and p1�M� � f0g, then M 3 is di¨eomorphic to S3;
(a3) Let n b 4 and assume that H 0 0 when S � C�H�. If M n is orientable

when n is even, then M n is homeomorphic to S n.

vanishing of homology groups, ricci estimate for submanifolds 315



(b) p1�M� is in®nite. In this case, S � C�H� on M n and:
(b1) If n � 2, then M 2 is ¯at;
(b2) If n b 3, and M n is orientable, then the codimension m of f can be

reduced to 1, the mean curvature H is constant and f has two constant principal
curvatures, m1 and m2, with multiplicities 1 and nÿ 1, respectivelly, such that
m1 � m2 � ÿ1. Consequentely, M n is isometric to a torus S1

c1
�S nÿ1

c2
in S n�1, where

ci � 1� m2
i , i � 1; 2.

Note that the pinching constant C�H� for S in Theorem 1.5 depends on H
(and n) and then depends of a speci®c immersion. A pinching constant depending
only on n was ®rstly obtained by Lawson and Simons in [LS]. There it is proved
that if M n is a compact submanifold of S n�m such that n b 5 and S < 2

�����������
nÿ 1
p

on M n, then M n is homeomorphic to S n. Related to this, recently Hou [Ho]
proved the following rigidity result: let M n be a compact submanifold of S n�m

with non-zero parallel mean curvature vector. If nb8 or ma2 and Sa2
����������
nÿ1
p

on M n, then the codimension can be reduced to 1 and M n is either umbilical or
isometric to S1

c1
� S nÿ1

c2
, where c1 � 1� �����������

nÿ 1
p

and c2 � 1� 1=
�����������
nÿ 1
p

. The next
corollary is an extension of the theorem in [LS] and a topological-geometrical
version of the result in [Ho].

Corollary 1.6. Let M n be a compact submanifold of S n�m such that
Sa2

����������
nÿ1
p

on M n. Then the Ricci curvature of M n is nonnegative and we have
only two possibilities (a) and (b):

(a) There exists a point x in M n such that Ric�v� > 0, for all unit vector v in
TxM. In this case M n admits a metric of positive Ricci curvature and

(a1) If n � 2, then M n is di¨eomorphic to S2 or to RP2;
(a2) If n� 3, then M 3 is orientable with H2�M;Z� � f0g and, if p�M� � f0g,

then M 3 is di¨eomorphic to S3;
(a3) If n b 4 and M n is orientable when n is even, then M n is homeomorphic

to S n.
(b) For each point x in M n, there exists an unit vector v in TxM such that

Ric�v� � 0. In this case S � 2
����������
nÿ1
p

and n2H 2 � n
����������
nÿ1
p ÿ 2�nÿ1� on M n and

(b1) If n � 2, then M 2 is ¯at and minimal. In particular, if m � 1, M 2 is
isometric to a torus S1

2 � S1
2 ;

(b2) If n b 3, then the codimension m can be reduced to 1 and, if M n is

orientable, M n is isometric to the torus S1
c1
� S nÿ1

c2
, where c1 � 1� �����������

nÿ 1
p

, c2 �
1� 1=

�����������
nÿ 1
p

.

We observe that the result in (a1) was obtained by Wei [W].

2. Notations and preliminary lemmas

Let M �M n, n b 2, be a connected n-dimensional Riemannian manifold.
We denote by h ; i and by k k the metric and norm, respectively. Let R denote
the curvature tensor of M. Then the Ricci tensor is de®ned by
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Ric�v;w� �
Xn

i�1

hR�vi; v�w; vii;

where v, w are in the tangent space TxM of M at x, and fvign
i�1 is any or-

thonormal basis of TxM. The Ricci curvature Ric�v� in the unit direction
v A TxM and the scalar curvature t of M at x are given, respectively, by

Ric�v� � hQv; vi; t � tr Q;�5�
where Q : TxM ! TxM is de®ned by

hQv;wi � Ric�v;w�:�6�
Let f : M n ! Qn�m

c , m b 1, be an isometric immersion, where Qn�m
c is a

complete, simply connected �n�m�-dimensional manifold with constant sectional
curvature c. For each x A M n, let �TxM�? denote the normal space of f at x,
and a : TxM � TxM ! �TxM�? denote the second fundamental form of f at x.

If fxbgm
b�1 is any orthonormal basis of �TxM�?, then the Weingarten opera-

tor Axb
, in the normal direction xb, is de®ned by

hAxb
v;wi � ha�v;w�; xbi; v;w A TxM:

The mean curvature vector ~H � ~H�x� at x and its norm are de®ned by

~H � 1

n

Xm

b�1

�tr Axb
�xb; H � k~Hk:�7�

The square of the length of the second fundamental form of f at x is de®ned by

S �
Xm

b�1

tr A2
xb
:�8�

We then have the following relations:Xm

b�1

A2
xb
ÿ
Xm

b�1

�tr Axb
�Axb

� ÿQ� �nÿ 1�cI ;�9�

where I : TxM ! TxM is the identity map, and

S � ÿt� n2H 2 � n�nÿ 1�c:�10�
We now present three lemmas which will be used in the next sections.

Lemma 2.1. Let V be a real vector space of dimension n b 2 with an inner
product h ; i and norm k k. Let A : V ! V be a symmetric linear map and let H
be such that tr A � nH. If l1 a l2 a � � � a ln are the eigenvalues of A, then for
any unit vector v A V we have

(a) hA2v; via ��nÿ 1�=n��tr A2 ÿ nH 2� � 2HhAv; viÿH 2. If n b 3 and the
equality occurs in (a), for some unit vector v, then Av � ljv where j satis®es
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jljÿHj �maxfjliÿHj; i� 1; . . . ; ng. Also lk � ll for all k; l0j, and Aw� lkw,
k 0 j, for any w orthogonal to v.

(b) hAv; vib l1 b H ÿ
���������������������������������������������������
��nÿ 1�=n��tr A2 ÿ nH 2�

p
. Moreover, if l1 � H ÿ�����������������������������������������������������nÿ 1�=n��tr A2 ÿ nH 2�p

, then li � l2 for i b 2.

Proof. Let fvign
i�1 be an orthonormal basis of V such that they are eigen-

vectors of A, where Avi � livi, for all i. Assume ®rst that tr A � nH � 0 and
let lj be such that l2

j � maxfl2
i ; i � 1; . . . ; ng. Since lj � ÿ

P
i0j li, then

l2
j �

X
i0j

li

 !2

a �nÿ 1�
X
i0j

l2
i�11�

and

l2
j a

nÿ 1

n

� �
tr A2:

If v is a unit vector, it is clear that

hA2v; via l2
j a

nÿ 1

n

� �
tr A2;

and then the ®rst part of (a) follows for H � 0. Now assume that n b 3 and
let v �Pn

i�1 aivi be a unit vector such that hA2v; vi � ��nÿ 1�=n�tr A2. Then
hA2v; vi � l2

j � ��nÿ 1�=n�tr A2 and (11) is an equality. Since

X
i0j

lj

 !2

� �nÿ 1�
X
i0j

l2
i ÿ

X
k; l0j
k<l

�lk ÿ ll�2

we have by (11) that lk � ll for all k; l 0 j. Also for any k 0 j we have

l2
j � hA2v; vi �

Xn

i�1

a2
i l2

i � l2
k�1ÿ aj�2 � a2

j l2
j ;

that is, l2
j �1ÿ a2

j � � l2
k�1ÿ a2

j �. If a2
j � 1, then ai � 0 for i 0 j and v �Gvj .

If a2
j 0 1, it follows that l2

i � l2
j for all i � 1; . . . ; n and by the equality in

(11), this implies that l2
j � �nÿ 1�l2

j . Since n b 3, li � 0 for all i � 1; . . . ; n.
In any case, we have Av � ljv. Now let w be orthogonal to v. If v �Gvj,
then w �Pi0j bivi and so Aw � lkw, Ek 0 j; otherwise every li � 0 and then
Aw � 0. For the part (b), note that hAv; vib l1. Since l1 a H � 0 and l2

1 a
��nÿ 1�=n�tr A2, then

l1 bÿ
����������������������������

nÿ 1

n

� �
tr A2

s
;

which is the desired result (b) for H � 0.

antonio carlos asperti and ezio de arauÂ jo costa318



Suppose now that H 0 0 and let B � AÿHI , where I : V ! V is the
identity map. Then tr B � 0, B2 � A2 ÿ 2HA�H 2I and tr B2 � tr A2 ÿ nH 2.
The result (a) follows immediately by applying the case H � 0 to B. Since
hAv; vib l1 and H b l1, choose v � v1 in (a) for B � AÿHI . Then

�l1 ÿH�2 a
nÿ 1

n

� �
�tr A2 ÿ nH 2�;

and the ®rst part of (b) follows for H 0 0. For the proof of the second part
of (b), since �nÿ 1�P�bi�2 � �

P
bi�2 holds, where bi � li ÿH and i b 2, then

we have li ÿH � l2 ÿH for all i b 2. This completes the proof.

Lemma 2.2. Let M n, n b 4, be a connected, compact n-dimensional Rie-
mannian manifold such that M n is orientable if n is even, and let ~M n be the
universal covering of M n. If p1�M� is ®nite and Hp�M;Z�FHp� ~M;Z� � f0g
for all p � 2; . . . ; nÿ 2, then M n is homeomorphic to a sphere S n.

Proof. Firstly we observe that M n is orientable if n is odd. In fact, if not,
then Hn�M;Z� � f0g, see Corollary 7.12 of [B]. But the Euler characteristic
w�M� of M n is zero and also w�M� � b0 ÿ b1 � � � � � bnÿ1 ÿ bn, where bi �
rank Hi�M;Z�. Since p1�M� is ®nite, b1 � 0 and then w�M� � 1� bnÿ1 b 1, a
contradiction. Now the torsion part of H1�M;Z� is H1�M;Z�, because it is
®nite. But by the universal coe½cient theorem, see [B, p. 282], the cohomology
group H i�M;Z� is isomorphic to Fi lTiÿ1, where Fi and Ti are the free and
torsion parts of Hi�M;Z�. By PoincareÂ duality, H1�M;Z� is isomorphic to
H nÿ1�M;Z� and so H1�M;Z� � f0g. Again by the universal coe½cient theo-
rem, H 1�M;Z� � f0g and, by PoincareÂ duality, Hnÿ1�M;Z� � f0g. Then M n is
a homology sphere and the same arguments applied to ~M n tell us that ~M n is a
homology sphere. Since p1� ~M� � f0g, by standards arguments using the Hurewicz
isomorphism theorem and Whitehead theorem, see [Sp, p. 398], we conclude

that ~M n is indeed a homotopy sphere. By the generalized PoincareÂ conjecture
for n b 4, ~M n is homeomorphic to a sphere. Then we have a homology sphere

M n which is covered by a sphere ~M n and so, by a theorem of Sjerve [Sj],
p1�M� � f0g and hence M n is also homeomorphic to a sphere. This concludes
the proof.

Lemma 2.3. Let V be a real vector space of dimension n b 2 with inner
product h ; i and let A : V ! V be a symmetric linear map with tr A � nH. Let
p be a positive integer such that p a n=2 and let fv1; . . . ; vp; vp�1; . . . ; vng be an
orthonormal basis of V. Denote by

Y �
tr A2 ÿ �n� 1�H 2 ÿ �nÿ 2�HhAv1; v1i; if p � 1;

p�nÿ p�
n

tr A2 ÿ pnH 2 ÿ �nÿ 2p�H
Xp

i�1

hAv1; v1i; if p > 1:

8><>:�12�
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Then

X
i

hAvi; vii

 !2

ÿnH
X

i

hAvi; vii� 2
X
i;k

hAvi; vki
2 a Y;�13�

where, i � 1; . . . ; p and k � p� 1; . . . ; n.

Proof. Since A is symmetric, clearly

tr A2 b
X

i

hAvi; vii
2 �

X
k

hAvk; vki
2 � 2

X
i;k

hAvi; vki
2:�14�

Assume ®rst that tr A � nH � 0. If p � 1, we have

tr A2 b hAv1; v1i
2 � 2

X
k

hAv1; vki
2

and the lemma follows for H � 0 and p � 1. If 2 a p a n=2, then p�nÿp�b n.
On the other hand, we have that

tr A2 b
1

p

X
i

hAvi; vii

" #2

� 1

nÿ p

X
k

hAvk; vki

" #2

� 2
X
i;k

hAvi; vki
2:

Since tr A �Pi hAvi; vii�
P

k hAvk; vki � 0, then from the above inequalities it
follows that

p�nÿ p�
n

tr A2 b
X

i

hAvi; vii

" #2

� 2
X
i;k

hAvi; vki
2;

which is the desired result (13) for H � 0 and p > 1. For H 0 0, let B �
AÿHI , where I : V ! V is the identity map. Then tr B � 0, B2 � A2ÿ
2HA� A2I and tr B2 � tr A2 ÿ nH 2. The result (13) follows immediately by
applying the case H � 0 to B.

3. Proofs of Theorem 1.1 and Corollary 1.2

The following theorem, which was proved by Lawson and Simons [LS] in
the case c > 0 and, independently, by Leung [Le2], Wei [W] and Xin [X] in the
case c � 0, is essential in the proof of Theorem 1.1.

Theorem 3.1. Let M n be a compact manifold isometrically immersed in
Qn�m

c , c b 0. Denote by a the second fundamental form of the immersion and let
p and q be positive integers such that p� q � n. Suppose that at each point x
of M n and for all orthonormal basis fv1; . . . ; vp; vp�1; . . . ; vng of TxM, the following
condition is valid
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F :�
Xp

i�1

Xn

k�p�1

�2ka�vi; vk�k2 ÿ ha�vi; vi�; a�vk; vk�i� < pqc:�15�

Then Hp�M;Z� � Hq�M;Z� � f0g and p1�M� � f0g if p � 1.

Proof of Theorem 1.1. Let x A M n. If ~H�x�0 0, let x1; . . . ; xm be an

orthonormal basis of TxM? such that x1 � �1=H�~H�x�. Since tr Ax1
� nH and

tr Axb
� 0 for b b 2, it follows from (9) thatXm

b�2

hA2
xb

v; vi� hAx1
v; viÿ nHhAx1

v; vi�16�

� ÿRic�v� � �nÿ 1�c:
If ~H�x� � 0, let fxbgm

b�1 be any orthonormal basis of �TxM�? and then (16) also

follows from (9). Now applying Lemma 2.1 to each Axb
in (16), we get (1).

(a) Suppose that n b 3 and that (1) is an equality for some unit vector v in
TxM. By (8) and (16) we haveXm

b�2

hA2
xb

v; viÿ nÿ 1

n

� �
tr A2

xb

� �
�17�

� hA2
x1

v; viÿ nÿ 1

n

� �
tr A2

x1
ÿ 2HhAx1

v; vi� nH 2

� �
� 0:

Also by Lemma 2.1(a), we see that in (17), the expressions between the brackets
are null. Therefore, again by 2.1(a), v is an eigenvector for all Axb

and, for any
w orthogonal to v in TxM, we have Axb

w � lbw. That is, f is quasi-umbilical
at x and also R?x � 0. Let v1 � v, v2; . . . ; vn be an orthonormal basis of TxM
such that Axb

v1 � mbv1 and Axb
vi � lbvi for all i b 2. The ®rst normal space

N1�x� is spanned by a�vi; vi�, i � 1; . . . ; n. For i b 2 we have that a�vi; vi� �Pm
b�1 lbxb � x and, for i � 1, a�v1; v1� �

Pm
b�1 mbxb � x0. This shows that the

dimension of N1�x� is at most two. In particular, if ~H�x� � 0 then �nÿ 1�x�
x0 � 0 and the dimension of N1�x� is at most one. This proves (a1). For (a2),
let x �Pb abxb be a unit vector in TxM?. Then Axv � lv, where l �Pb abmb

and the multiplicity of l is 1 or n.
(b) Let n b 3. If n b 4, then (b) follows from (a) and from a result of [CY]

on conformally ¯at submanifolds. If n � 3, by a well known characterization
of conformally ¯at manifolds, see [D, p. 108], we have to show that the ten-
sor g�X � � Q�X � ÿ tX=4 satis®es the Codazzi's equation � X̀ g��Y � � �`Y g��X �,
X ;Y A TM. Given x in M 3, since R? � 0 there exists a connected open set V
around x in M 3, where we can take a normal orthonormal frame ®eld x1; . . . ; xm

such that `?xb � 0, b b 1. By part (a), there exists an orthonormal basis
fX1;X2;X3g of TxM such that Axb

X1 � mbX1 and Axb
Xi � lbXi, b b 1, i � 2; 3.

Observe that tr Axb
� mb � 2lb and t � Ric�X1� � 2 Ric�Xi�, i � 2; 3. Then by

(9) we obtain that Ric�X1� � 2c� 2
P

b lbmb and
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Ric�Xi� � 2c�
X

b

�lbmb � l2
b�; i � 2; 3; b b 1:

Taking these to the de®nition of g, gives

g�X1� � c

2
�
X

b

lb mb ÿ
lb

2

� � !
X1; g�Xi� � c

2
� 1

2

X
b

l2
b

 !
Xi; i � 2; 3:

Therefore g � �c=2�I �Pb lb�Axb
ÿ �lb=2�I�.

Assume now that m � 1 (the case m b 2 is similar) and consider A �
fy A V : l1 � m1g and B � fy A V : l1 0 m1g (for the general m, we have to con-
sider 2m of such subsets). Clearly int�A�UB is open and dense in V and, in
particular, l1 and m1 are smooth in this set. Now using the Codazzi's equations
for each Hxb

in int�A�UB, it follows that g satis®es the Codazzi's equations
in int�A�UB and therefore in V. This proves that M 3 is conformally ¯at.

Proof of Corollary 1.2. Let M n be a compact and minimal submanifold
of S n�m such that S a n on M n and with in®nite p1�M�. By (1) we have that
M n has everywhere nonnegative Ricci curvature and we claim that for all x in
M n, there exists an unit v in TxM such that Ric�v� � 0. In fact, if there exists x
in M n such that Ric�v� > 0 for all unit vector v in TxM, then by Aubin's theorem
[A, p. 397], M n has a metric with positive Ricci curvature and by Bonnet-Myers'
theorem, p1�M� is ®nite, a contradiction which proves our claim. Then by (1)
and 1.1(a1), S � n, R? � 0 and the dimension of N1 is 1 on M n. The corollary
now follows immediately from Theorem 3 of [K].

4. Proofs of Theorem 1.3 and Corollary 1.4

Proof of Theorem 1.3. (a) Let 2 a p a n=2, x A M n and let fv1; . . . ; vng be
an orthonormal basis of TxM. Let fxbgm

b�1 be an orthonormal basis of TxM?

such that x1 � �1=H�~H�x� if ~H�x�0 0. Since tr Ax1
� nH and tr Axb

� 0, b b 2,
we have

F �
X
i;k

�2ka�vi; vk�k2 ÿ ha�vi; vi�; a�vk; vk�i��18�

�
X
i;k

X
bb1

�2hAxb
vi; vki

2 ÿ hAxb
vi; viihAxb

vk; vki�

� 2
X
i;k

X
b>1

hAxb
vi; vki

2 �
X
b>1

X
i

hAxb
vi; vii

" #2

� 2
X
i;k

hAx1
vi; vki

2 �
X

i

hAx1
vi; vii

" #2

ÿ nH
X

i

hAx1
vi; vii;
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for i � 1; . . . ; p and k � p� 1; . . . ; n. Applying Lemma 2.3 to each Axb
, we get

F a
p�nÿ p�

n
S ÿ pnH 2 ÿ �nÿ 2p�H

X
i

hAx1
vi; vii:�19�

Applying Lemma 2.1(b) to (19), we get

F a
p�nÿ p�

n
S ÿ pnH 2 ÿ p�nÿ 2p�Hl1;

and then the condition (15) of Theorem 3.1 is valid if

S <
n2H 2

nÿ p
� n�nÿ 2p�

nÿ p
Hl1 � nc

on M n. On the other hand, for p a k a nÿ p, we have that

n2H 2

nÿ p
� n�nÿ 2p�

nÿ p
Hl1 � nc a

n2H 2

nÿ k
� n�nÿ 2k�

nÿ k
Hl1 � nc�20�

and it follows from Theorem 3.1 and (20) that Hk�M;Z� � f0g, which proves
1.3(a).

(b) Let x A M n and v be a unit vector in TxM. Since hAx1
v; vib l1 when

H 0 0, by (1) we have that

Ric�v�b nÿ 1

n

� �
�ncÿ S� � �nÿ 2�Hl1 � nH 2:

If the condition in 1.3(b) holds on M n, then the Ricci curvature of M n is positive
and by Bonnet-Myers' theorem, p1�M� is ®nite. If n � 2, we obtain 1.2(b1) by the
Gauss-Bonnet's formula. If n � 3, since p1� ~M� � f0g, we have (b2) by Ham-
ilton's theorem [H]. Now let n b 4 and M n orientable when n is even. Since

n2H 2

nÿ 1
� n�nÿ 2�

nÿ 1
Hl1 � nc a

n2H 2

nÿ 2
� n�nÿ 4�

nÿ 2
Hl1 � nc;

it follows from part (a) that Hk�M;Z� � f0g for 2 a k a nÿ 2. The above

arguments applyed to the immersion f � p : ~M n ! Qn�m
c , where p : ~M n !M n is

the covering map, tell us that Hk� ~M;Z� � f0g for 2 a k a nÿ 2. Then (b2) is
a consequence of Lemma 2.2.

Proof of Corollary 1.4. Under the hypothesis of 1.4, let x A M n and let v
be a unit vector in TxM. By (1) we have that

Ric�v�b nÿ 1

n
�ncÿ S� � nH 2 � �nÿ 2�Hl1

� nÿ 1

n
ÿS � nc� n2H 2

nÿ 1
� n�nÿ 2�

nÿ 1
Hl1

� �� �
b

nÿ 1

n
�ÿsup�S� � inf�T�� � ÿ nÿ 1

n

� �
sup�S ÿ T� � d > 0:

Then M n is compact and the result follows from 1.3(b).

vanishing of homology groups, ricci estimate for submanifolds 323



5. Proofs of Theorem 1.5 and Corollary 1.6

Proof of Theorem 1.5. Let x A M n and let v be a unit vector in TxM. By
using (1) and Lemma 2.1(b), it is easy to see that

n

nÿ 1
Ric�v�b A b B b C;�21�

where

A � n2H 2

nÿ 1
� n�nÿ 2�

nÿ 1
Hl1 � nÿ S;�22�

B � nÿ S � 2nH 2 ÿ n�nÿ 2�H
nÿ 1

������������������������������������
nÿ 1

n
�SH ÿ nH 2�

r
;�23�

C � nÿ S � 2nH 2 ÿ n�nÿ 2�H
nÿ 1

���������������������������������
nÿ 1

n
�S ÿ nH 2�

r
;�24�

where SH � tr A2
x1

. We claim that S a C�H� is equivalent to C b 0 and also

S � C�H� if and only if C � 0. In fact, writing S1 � S ÿ nH 2, we have

C � n� nH 2 ÿ
�����
S1

p
� n�nÿ 2�

2�nÿ 1�

�����������
nÿ 1

n

r
H

" #2

� n�nÿ 2�2H 2

4�nÿ 1�
� �K ÿ L��K � L�;

where

K �
�������������������������
n� n3H 2

4�nÿ 1�

s
and

L �
�����
S1

p
� �nÿ 2�H

2

�����������
n

nÿ 1

r
:

Then C b 0 if and only if K b L, that is S a C�H�. By (21) we then have that
the Ricci cuvature of M n is nonnegative.

(a) Let p1�M� be ®nite. Observe that ~M n is compact, in this case.
(a1) If n � 2, it follows from the Gauss-Bonnet's formula that M 2 is dif-

feomorphic to S2 or to RP2.
(a2) If n � 3, assume ®rstly that there exists a point x in M 3 such that

Ric�v� > 0 for all unit vector v in TxM. It follows then by Aubin's theorem
that M n has a metric of positive Ricci curvature and, since p1�M� � f0g, M 3 is
di¨eomorphic to S3 by Hamilton's theorem. Suppose now that for each x in
M n, there exists a unit vector v A TxM such that Ric�v� � 0. Since C b 0, we
have by (21) that A � B � C � 0 and also, as it is easy to see, an equality occurs
in (1) of Theorem 1.1 for each x A M and some unit vector v A TxM. Then M 3
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is conformally ¯at and, since p1�M� � f0g, we have by a theorem of Kuiper, see
[D, p. 116], that M 3 is (conformally) di¨eomorphic to S3.

(a3) Let n b 4 and assume that H 0 0 when S � C�H�. Since A b B b
C b 0, see (21), we have

S a
n2H 2

nÿ 1
� n�nÿ 2�

nÿ 1
Hl� n a

n2H 2

nÿ 2
� n�nÿ 4�

nÿ 2
Hl1 � n�25�

on M n. We claim that

S <
n2H 2

nÿ 2
� n�nÿ 4�

nÿ 2
Hl1 � n�26�

on M n. In fact, if there exists a point x in M n where (26) is an equality, then it
follows from (25) that H � 0 or l1 � H at x. It also follows from the equality
in (26) that A � B � C � 0 and so S � C�H�, that is, H 0 0. Therefore l1 � H
and by A � 0, we obtain that S � n� 2nH 2 at x. On the other hand, by
S � n� 2nH 2 and C � 0, we obtain that S � nH 2 at x, a contradiction. This
proves (26) and then, by Theorem 1.3(a) we have that Hi�M;Z� � f0g for
i � 2; . . . ; nÿ 2 and the same holds for ~M n. Then (a3) follows from Lemma 2.2.

(b) If p1�M� is in®nite then, for each x in M n there exists a unit vector
v A TxM such that Ric�v� � 0. Otherwise by Aubin's theorem and Bonnet-
Myers' theorem, we would have p1�M� ®nite. By (21) and C b 0 we have

S � C�H�; A � B � C � 0�27�
on M n. Moreover, if n b 3 and H 0 0, we have on M n that

S � SH ; l1 � H ÿ
������������������������������������
nÿ 1

n
�SH ÿ nH 2�

r
:�28�

(b1) If n � 2, it is clear that M 2 is ¯at.
(b2) If n b 3, assume ®rstly that H 0 0 on M n. By (28) and Lemma 2.1(b),

we can see that Ax1
has two eigenvalues l1 and l2, where l1 has multiplicity

at least nÿ 1. Also N1 � �~H � because S � SH . Now we want to show that
l1l2 � ÿ1. For this, observe that if v is a unit vector in TxM and Ric�v� � 0,
then the equality occurs in (1) for x and v, and Ax1

v � l1v. Let v1 � v; v2; . . . ; vn

be an orthonormal basis of TxM such that Ax1
v � l1v and Ax1

vi � l2vi for
i b 2. By the Gauss' equation we have

0 � Ric�v� �
Xn

i�2

�1� ha�v1; v1�; a�vi; vi�iÿ ka�v1; vi�k2�

� �nÿ 1��l1l2 � 1�;
that is, l1l2 1ÿ1. We claim that N1 is parallel in the normal connection. Let
x1; . . . ; xm and X1; . . . ;Xn be local orthonormal frame ®elds, normal and tangent
to M n respectively, chosen in a way that x1 � ~H=H and Ax1

X1 � l1X1, Ax1
Xi �
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l2Xi, i b 2. Since l1 0 l2, they are smooth functions on M n. By the Codazzi
equations

�`?X1
a��Xi;X1� � �`?Xi

a��X1;X1�; �`?X1
a��Xi;Xi� � �`?Xi

a��X1;Xi�;
and by the fact that N1 is spanned by ~H, we obtain

l1`?Xi
x1 � ��l1 ÿ l2�h X̀1

X1;Xiiÿ Xi�l1��x1;

l2`?X1
x1 � ��l2 ÿ l1�h X̀1

Xi;X1iÿ X1�l2��x1:
�29�

But the left sides of (29) cannot be parallel to x1 unless `?Xi
x1 � 0, for i �

1; 2; . . . ; n. This proves our claim. By a well known result of Erbacher, the
codimension m of f can be reduced to 1 and f can be seen as an immersion
of M n into S n�1 where Ax1

has two eigenvalues l1 0 l2. Now by a result of
Ryan [R, p. 372], the distribution Tl2

:� fX : Ax1
X � l2Xg is di¨erentiable and

involutive, and Xi�l2� � 0 for i b 2. Since l1l2 � ÿ1, we also have that
Xi�l1� � 0 for i b 2. Taking this to (29), we see that h`X1

X1
;Xii � 0 for i b 2

and, since h`X1

X1
;Xii � 0, this shows that the orthogonal distribution T?l2

�
fx1 : Ax1

X � l1Xg is totally geodesic. We then have a compact manifold M n

with nonnegative Ricci curvature and with a codimension one foliation, de®ned
by Tl2

, whose orthogonal distribution T?l2
is totally geodesic. It follows imme-

diately from Corollary 2 of [BW] that Tl2
is also totally geodesic and then

h X̀i
Xi;X1i � 0 for i b 2. Again by (29) we conclude that X1�l2� � 0. This

proves that l1 and l2 are constant on M n. Clearly f has constant mean cur-
vature H 0 0 and S � C�H�. Now (b2) follows, in this case, from the theorem
in [AC] or [Xu] quoted in the Introduction.

Suppose now that there exists a point x0 in M n such that H�x0� � 0. Since
A � B � C � 0 on M n, (1) is an equality everywhere. By Theorem 1.1, R? � 0
and M n is conformally ¯at. On the other hand, S�x0� � n because H�x0� � 0
and then t�x0� � n�nÿ 2� by (10), that is, M n cannot be ¯at. Since p1�M� is
in®nite, we can now use the same arguments of the proof of Theorem 1 of [N,
p. 259], to conclude that ~M n � Rn � S nÿ1

c2
, for some c2 > 0. This shows that ~M n

has constant scalar curvature and so M n also, that is, t1 n�nÿ 2�. Again by
(10), S � n2H 2 � n on M n and combining this with S � C�H�, we obtain that
H 1 0, S 1 n. The result (b2) now follows from Corollary 1.2, in this case.

Proof of Corollary 1.6. Let S a 2
����������������nÿ 1�p

on M n. By (24), we have

C � D b E b 0�30�
on M n, where

D � nÿ nS

2
�����������
nÿ 1
p � a2

2
�����������
nÿ 1
p ;

a � �
�����������
nÿ 1
p

� 1� ���np H ÿ �
�����������
nÿ 1
p

ÿ 1�
������������������
S ÿ nH 2
p

;

�31�

and
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E � n 1ÿ S

2
�����������
nÿ 1
p

� �
:�32�

Since C b 0, we have that M n has nonnegative Ricci curvature and S a C�H�
on M n. We have two possibilities, (a) and (b):

(a) There exists a point x in M n such that Ric�v� > 0 for all unit v in
TxM. In this case, it follows from Aubin's theorem and Bonnet-Myers' theorem
that M n has a metric of positive Ricci curvature, M n is compact and p1�M� is
®nite. If n � 2 or n � 3, then (a1) and (a2) follows from the same arguments
as in 1.5(a1)(a2). For (a3), let n b 4 and observe that H 0 0 when S � C�H�.
In fact, if there exists x0 in M n with S � C�H� and H � 0, then C�x0� � 0 and
also D�x0� � E�x0� � 0, by (30). This shows that 0 � S � 2

�����������
nÿ 1
p

at x0, which
is a contradiction. Then (a3) follows from 1.5(a3).

(b) For the case (b), using (30) we obtain A � B � C � D � E � 0 on M n.
Then S 1 2

�����������
nÿ 1
p

and n2H 2 1 n
�����������
nÿ 1
p ÿ 2�nÿ 1�. (b1) If n � 2, then M 2 is

¯at and H � 0. In particular, if m � 1, it follows from [CCK] or [L] that M 2 is
isometric to S1

2 � S1
2 . (b2) Let n b 3. In this case, it follows from B � 0 that

S � SH on M n and therefore N1 is spanned by ~H. We now imitate the proof of
1.5(b) to show that f can be seen as an isometric immersion of M n into S n�1

with constant H 0 0 and S � 2
�����������
nÿ 1
p

on M n; (b2) is now a direct consequence
of the result in [Ho] mentioned in the Introduction.
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