A CLASSIFICATION OF POLARIZED SURFACES (X, L)

WITH $\kappa(X) \ge 0$, dim Bs $|L| \le 0$, g(L) = q(X) + m, **AND** $h^0(L) = m + 1$

Yoshiaki Fukuma

Abstract

Let (X,L) be a polarized surface and dim $\operatorname{Bs}|L| \le 0$. In our previous paper we have studied polarized surfaces with g(L) = q(X) + m and $h^0(L) \ge m + 2$. In this paper, we classify (X,L) with $\kappa(X) \ge 0$, g(L) = q(X) + m and $h^0(L) = m + 1$.

0. Introduction

Let X be a smooth projective variety over the complex number field C with dim X = n, and let L be an ample (resp. a nef and big) line bundle on X. Then we call the pair (X, L) a polarized (resp. quasi-polarized) manifold. The sectional genus g(L) of (X, L) is defined as follows:

$$g(L) = 1 + \frac{1}{2}(K_X + (n-1)L)L^{n-1},$$

where K_X is the canonical line bundle of X. A classification of (X, L) with small value of sectional genus was obtained by several authors. On the other hand, Fujita proved the following Theorem (see Theorem (II.13.1) in [Fj3]).

THEOREM. Let (X, L) be a polarized manifold. Then for any fixed g(L) and $n = \dim X$, there are only finitely many deformation type of (X, L) unless (X, L) is a scroll over a smooth curve.

(For a definition of the deformation type of (X, L), see §13 of Chapter II in [Fj3].) By this theorem, Fujita proposed the following Conjecture;

Conjecture (Fujita). Let (X, L) be a polarized manifold. Then $g(L) \ge q(X)$, where $q(X) = h^1(\mathcal{O}_X)$: the irregularity of X.

This Conjecture is very difficult and it is unknown even for the case in which *X* is a surface.

²⁰⁰⁰ Mathematics Subject Classification: 14C20.

Key words and phrases: Polarized surfaces, sectional genus, irregularity, delta genus.

Received July 28, 2000; revised February 22, 2001.

If dim Bs $|L| \le 0$, then we can prove that $g(L) \ge q(X)$ (see Theorem 3.2 in [Fk3]). Furthermore the author proved that if (X,L) is a quasi-polarized manifold with dim X=3 and $h^0(L):=\dim H^0(L)\ge 2$, then $g(L)\ge q(X)$ (see [Fk5]). Moreover the author obtained the classification of polarized 3-folds (X,L) with the following types;

- (1) g(L) = q(X) and $h^0(L) \ge 3$ ([Fk5]),
- (2) g(L) = q(X) + 1 and $h^0(L) \ge 4$ ([Fk2]),
- (3) g(L) = q(X) + 2 and $h^0(L) \ge 5$ ([Fk6]).

By considering the result of 3-dimensional case, it is natural to consider the following problem;

PROBLEM. Let (X,L) be a polarized manifold with dim X=n and g(L)=q(X)+m, where m is a nonnegative integer. Assume that $h^0(L)\geq n+m$. Then classify (X,L) with these properties.

In [Fk7], we get a classification of polarized manifolds (X, L) with $n := \dim X \ge 3$, g(L) = g(X) + m, dim Bs $|L| \le 0$, and $h^0(L) \ge m + n$.

In [Fk9], we studied polarized surfaces (X, L) with n = 2, g(L) = q(X) + m and $h^0(L) \ge m + 2$.

Here we remark that if $n \ge 3$, then we can use the adjunction theory for $K_X + (n-2)L$. But if n = 2, then we cannot use the theory, so we need to study (X, L) by the value of Kodaira dimension.

In this paper, we consider the case in which n=2, g(L)=q(X)+m, $\dim \operatorname{Bs}|L| \le 0$, and $h^0(L)=m+1$. In particular we study the case where $\kappa(X) \ge 0$. By using this result we get a classification of polarized manifolds (X,L) with $n=\dim X \ge 3$, g(L)=q(X)+m, $\operatorname{Bs}|L|=\emptyset$, and $h^0(L)=m+n-1$. We will study this in a forthcoming paper [Fk10].

We use the customary notation in algebraic geometry.

The author would like to thank the referee for giving some useful comments and suggestions.

1. Preliminaries

THEOREM 1.1. Let (X,L) be a polarized manifold with $n=\dim X\geq 2$. Assume that |L| has a ladder and $g(L)\geq \Delta(L)$, where $\Delta(L)$ is the delta genus of (X,L).

- (1) If $L^n \ge 2\Delta(L) + 1$, then $g(L) = \Delta(L)$ and q(X) = 0.
- (2) If $L^n \ge 2\Delta(L)$, then $Bs|L| = \emptyset$.
- (3) If $L^n \ge 2\Delta(L) 1$, then |L| has a regular ladder.

THEOREM 1.2. Let (X,L) be a polarized manifold with $n=\dim X \geq 2$. If $\dim \operatorname{Bs}|L| \leq 0$ and $L^n \geq 2\Delta(L) - 1$, then |L| has a ladder.

Proof. See
$$(I.4.15)$$
 in $[Fj3]$.

П

DEFINITION 1.3 (See Definition 1.1 in [Fj1]). Let (X, L) be a polarized surface. Then (X, L) is called a hyperelliptic polarized surface if $Bs|L| = \emptyset$, the morphism defined by |L| is of degree two onto its image W, and if $\Delta(W, H) = 0$ for the hyperplane section H on W.

THEOREM 1.4. Let (X, L) be a polarized manifold with dim X = n such that $Bs|L| = \emptyset$, $L^n = 2\Delta(L)$, and $g(L) > \Delta(L)$. Then (X, L) is hyperelliptic unless L is simplely generated and (X, L) is a Fano-K3 variety.

THEOREM 1.5. Let (X, L) be a hyperelliptic polarized surface. Then (X, L) is one of the following types;

Туре	L^2	g(L)	q(X)
(I_a)	2	a	0
(IV_a)	8	2a + 1	0
$(*II_a)$	4	2a	0
$(\sum (\delta_1, \delta_2)_{a,b}^+)$	$2 \delta $	$a \delta + b - 1$	0
$(\sum (\delta_1, \delta_2)_b^0)$	$2 \delta $	b - 1	b - 1
$(\sum (\mu, \mu)_a^{=})$	4μ	$a\mu-1$	a-1
$(\overline{\sum}(\mu+2\gamma,\mu)_a^-)$	$4(\mu + \gamma)$	$a\mu + 2a\gamma - \gamma - 1$	0

Furthermore the Kodaira dimension of X is the following

For the definition of the above types, see [Fj1]. In particular for the cases of the type $(\sum (\delta_1, \delta_2)_{a,b}^+)$, see (5.20) in [Fj1].

Proof. See [Fj1]. (Here we remark that the case (6b) of type $(\sum (\delta_1, \delta_2)_{a,b}^+)$ is impossible because dim X = 2.)

DEFINITION 1.6 (See Definition 1.9 in [Fk1]). (1) Let (X, L) be a quasi-polarized surface. Then (X, L) is called L-minimal if LE > 0 for any (-1)-curve E on X.

- (2) Let (X,L) and (Y,A) be quasi-polarized surfaces. Then (Y,A) is called an L-minimalization of (X,L) if there exists a birational morphism $\mu: X \to Y$ such that $L = \mu^*(A)$ and (Y,A) is A-minimal. (We remark that an L-minimalization of (X,L) always exists.)
- (3) Let (X, L) and (X', L') be polarized surfaces. Then (X, L) is called a simple blowing up of (X', L') if X is a blowing up of X' at $x \in X'$ and $(E, L_E) \cong (P^1, \mathcal{O}_{P^1}(1))$ for the exceptional divisor E.
- Remark 1.6.1. Let X be a smooth projective surface and let L be an ample line bundle on X. Then (X, L) is L-minimal.

Theorem 1.7. Let (X,L) be a quasi-polarized surface with $h^0(L) \geq 2$ and $\kappa(X) = 2$. Assume that g(L) = q(X) + m for $m \geq 0$. Then $L^2 \leq 2m$. Moreover if $L^2 = 2m$ and (X,L) is L-minimal, then $X \cong C_1 \times C_2$ and $L \equiv C_1 + 2C_2$, where C_1 and C_2 are smooth curves with $g(C_1) \geq 2$ and $g(C_2) = 2$. (Here \equiv denotes the numerical equivalence of divisors.)

Proof. See Theorem 3.1 in [Fk4].

Remark 1.7.1. Let (X,L) be as in Theorem 1.7. Then $L^2 \le 2m$ is equivalent to $K_X L \ge 2q(X) - 2$.

THEOREM 1.8. Let (X, L) be a quasi-polarized surface with $\kappa(X) = 0$ or 1. Assume that q(L) = q(X) + m.

- (1) $L^2 \leq 2m + 2$ holds.
- (2) If $L^2 = 2m + 2$ and (X, L) is L-minimal, then (X, L) is one of the following;
 - (2-1) $\kappa(X) = 0$ case. X is an Abelian surface and L is any nef and big divisor.
 - (2-2) $\kappa(X) = 1$ case. $X \cong F \times C$ and $L \equiv C + (m+1)F$, where F and C are smooth curves with $g(C) \geq 2$ and g(F) = 1. If $h^0(L) > 0$, then $L = C + \sum_{x \in I} m_x F_x$, where F_x is a fiber of the second projection over $x \in C$, I is a set of a finite point of C, and m_x is a positive integer with $\sum_{x \in I} m_x = m + 1$. (Here $D_1 = D_2$ denotes $\mathcal{O}(D_1) \cong \mathcal{O}(D_2)$ for two divisors D_1 and D_2 .)
- (3) If (X, L) is a polarized surface with $\kappa(X) = 1$ and $L^2 \le 2m + 1$, then $L^2 \le 2m$.

Proof. For the proof of (1), (2-1), and (2-2), see Theorem 2.1 in [Fk4]. Next we consider the case (3). Let $\pi: X \to C$ be an elliptic fibration over a smooth curve C. Assume that $L^2 = 2m + 1$.

If g(C) = 0, then $q(X) \le 1$ and $g(L) \le m+1$. But since L is ample and $\kappa(X) = 1$, we get that $K_X L \ge 1$ and $g(L) \ge m+2$. This is impossible. So we may assume that $g(C) \ge 1$.

Let $\mu: X \to S$ be a relative minimalization of $f: X \to C$ and let $A := \mu_*(L)$. Then A is ample. Let $h: S \to C$ be an elliptic fibration such that $f = h \circ \mu$.

(A) The case in which g(C) = 1.

If q(X) = g(C) = 1, then this is impossible by the same argument as above. If q(X) = g(C) + 1 = 2, then, by the canonical bundle formula, h has at least two multiple fibers since $\kappa(X) = 1$. So we get that $K_X L \ge K_S A \ge 2$. Hence g(L) > m + 2 and this is also impossible.

(B) The case in which $g(C) \ge 2$.

If q(X) = g(C), then $K_X L \ge K_S A \ge 4g(C) - 4 = 4g(X) - 4$. Hence

$$\begin{split} g(L) & \geq 1 + \frac{1}{2}(4q(X) - 4 + L^2) \\ & = 1 + \frac{1}{2}(4q(X) - 4 + 2m + 1) \\ & = 1 + 2q(X) + m - \frac{3}{2} \\ & = q(X) + m - \frac{1}{2} + q(X) \\ & \geq q(X) + m + \frac{3}{2} \end{split}$$

and this is also impossible.

So we assume that q(X) = g(C) + 1.

If $LF \geq 2$, then we get that

$$K_X L \ge K_S A \ge (2g(C) - 2)LF$$

 $\ge 4g(C) - 4$
 $= 2g(C) + 2 + 2g(C) - 6$
 $= 2g(X) + 2g(C) - 6$.

Hence

$$g(L) \ge 1 + \frac{1}{2}(2q(X) + 2g(C) - 6 + 2m + 1)$$

$$= 1 + q(X) + g(C) - 3 + m + \frac{1}{2}$$

$$= q(X) + g(C) - 2 + m + \frac{1}{2}$$

$$> q(X) + m$$

and this is impossible. Hence we may assume that LF = 1. In particular $\mu = \mathrm{id}$, and f has no multiple fiber because L is ample. Hence $K_X L =$

2g(C) - 2. But this is impossible because L^2 is odd. This completes the proof of Theorem 1.8.

Remark 1.8.1. Let (X, L) be as in Theorem 1.8. Then $L^2 \le 2m + 2$ is equivalent to $K_X L \ge 2q(X) - 4$.

PROPOSITION 1.9. Let X be a smooth projective surface of general type. Then $p_g(X) \ge 2q(X) - 4$. If this equality holds and X is minimal, then $X \cong C_1 \times C_2$ for smooth projective curves C_1 and C_2 , where $p_g(X) = h^0(K_X)$ and $q(X) = h^1(\mathcal{O}_X)$.

Proof. See Théorème in [Bea].

PROPOSITION 1.10. Let X be a smooth projective surface of general type such that X is minimal. Assume that $q(X) \ge 1$. Then $K_X^2 \ge 2p_a(X)$.

Proof. See Théorème 6.1 and Addendum in [De].

THEOREM 1.11. Let (X,L) be a quasi-polarized surface with $\kappa(X) \geq 0$. Assume that dim $\operatorname{Bs}|L| \leq 0$. Then $g(L) \geq 2g(X) - 1$.

Proof. See Corollary 3.2 in [Fk0].

2. Main Theorem

THEOREM 2.1. Let (X,L) be a polarized surface such that dim $Bs|L| \le 0$, $h^0(L) = m+1$, and $\kappa(X) \ge 0$, where m = g(L) - q(X). Assume that $m \ge 1$. Then (X,L) is one of the following types;

- (M-1) (X,L) is a minimal surface of general type with $L^2 = 1$, g(L) = 3, and g(X) = 2.
- (M-2) $\pi: X \to C$ is a minimal elliptic fibration over a smooth curve C and (X, L) is one of the following;
- (M-2-1) 3 = q(X) = g(C) + 1, $\chi(\mathcal{O}_X) = 0$, LF = 2, and π has no multiple fiber. In this case X is a double covering of \mathbf{P}^1 -bundle on C.
- (M-2-2) π has just 2 multiple fibers $2F_1$ and $2F_2$, $\chi(\mathcal{O}_X) = 0$, 2 = q(X) = g(C) + 1, $K_X \equiv F_1 + F_2$, LF = 2 for a general fiber F.
- (M-2-3) $\chi(\mathcal{O}_X) = 0$, q(X) = g(C), and π has just one multiple fiber with $m_i = 2$ and $LF_i = 1$.
- (M-2-4) $\chi(\mathcal{O}_X) = 0$, q(X) = g(C) + 1 = 1, $K_X L = 1$ and π has four multiple fibers $m_1 F_1$, $m_2 F_2$, $m_3 F_3$, and $m_4 F_4$ with one of the following (here we assume that $LF_4 \geq LF_3 \geq LF_2 \geq LF_1$);

m_1	m_2	m_3	m_4	LF_1	LF_2	LF_3	LF_4
3	2	2	2	2	3	3	3
4	2	2	2	1	2	2	2

(M-2-5) $\chi(\mathcal{O}_X) = 0, \ q(X) =$	$g(C) + 1 = 1, K_X L$	$L=1$ and π has	three multiple
fibers and one of	the following lists	(here we assun	ne that $LF_3 \ge$
$LF_2 \geq LF_1$);			

m_1	m_2	m_3	LF_1	LF_2	LF_3
4	4	4	1	1	1
4	3	3	3	4	4
6	3	3	1	2	2
7	3	2	6	14	21
8	3	2	3	8	12
9	3	2	2	6	9
12	3	2	1	4	6
5	4	2	4	5	10
6	4	2	2	3	6
8	4	2	1	2	4
6	6	2	1	1	3
5	5	2.	2.	2.	5

- (M-2-6) $\chi(\mathcal{O}_X) = 0$, q(X) = g(C) + 1, g(C) = 1 (resp. 0), LF = 2 and the number of its multiple fiber is three (resp. five).
- (M-3-1) (X, L) is the type (I_a) in Theorem 1.5 with a = m = 2 and $\kappa(X) = 0$.
- (M-3-2) (X, L) is the type (IV_a) in Theorem 1.5 with a = 2, m = 5, and $\kappa(X) = 0$.
- (M-3-3) (X,L) is the type $(\sum (\delta_1,\delta_2)_{a,b}^+)$ in Theorem 1.5, and case (3) or case (6a) in (5.20) of [Fj1]. In this case $\kappa(X)=0$.
- (M-3-4) (X, L) is the type $(\sum (\mu + 2\gamma, \mu)_a^-)$ in Theorem 1.5 with $a = \gamma = 2$, $m = 2\mu + 5$, and $\kappa(X) = 0$.
- (M-3-5) *X* is a K3-surface with q(X) = 0 and $L^2 = 2m 2$.
- (M-3-6) (X,L) is a polarized abelian surface such that (X,L) is not isomorphic to the following type: $X \cong E_1 \times E_2$ and $L = p_1^*L_1 + p_2^*L_2$, where E_i is an elliptic curve and L_i is a line bundle on E_i with deg $L_1 = 1$ and deg $L_2 \ge 1$.
- (N) Let $X = X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_l = X'$ be the minimal model of X. We put $L_0 := L$, $\mu_i : X_{i-1} \rightarrow X_i$, and $L_i := (\mu_i)_*(L_{i-1})$. Then $L_{i-1} = \mu_i^* L_i \alpha_i E_i$ and $\alpha_i > 0$ for any i, where E_i is a (-1)-curve of μ_i . We put $L' := L_l$.
- (N-1) (X,L) is a simple blowing up of (X',L') and X' has a minimal elliptic fibration $\pi':X'\to C$ over a smooth curve C such that (X',L') is one of the following;
- (N-1-1) g(C) = 2, q(X') = 3, $\chi(\mathcal{O}_{X'}) = 0$, L'F' = 2 and π' has no multiple fibers, where F' is a general fiber of π' ,
- (N-1-2) π' has just two multiple fibers, $2F_1$ and $2F_2$, $\chi(\mathcal{O}_{X'}) = 0$, g(C) = 1, g(X') = 2, and L'F' = 2.
- (N-2) (X', L') is a polarized abelian surface and $\sum_i \alpha_i \leq 3$.

Proof. Assume that $L^2 \le 2m-2$. Here we put $t=2m-2-L^2$. In this case, we calculate the delta genus $\Delta(L)$;

$$\Delta(L) = 2 + L^{2} - h^{0}(L)$$

$$= 1 + L^{2} - m$$

$$= \frac{1}{2}L^{2} - \frac{1}{2}t$$

$$\leq \frac{1}{2}L^{2}.$$

Hence $L^2 \ge 2\Delta(L)$. So we can use the result of Fujita. Since dim Bs $|L| \le 0$ and

$$g(L) = 1 + \frac{1}{2}(K_X + L)L$$
$$> \frac{1}{2}L^2$$
$$= \Delta(L),$$

we get that |L| has a ladder and $Bs|L| = \emptyset$ by Theorem 1.1 and 1.2.

If $L^2 \ge 2\Delta(L) + 1$, then q(X) = 0 and $g(L) = \Delta(L) = m$ by Theorem 1.1. Therefore $L^2 \ge 2\Delta(L) + 1 = 2g(L) + 1 = 3 + (K_X + L)L \ge 3 + L^2$ and this is impossible. So we get that $L^2 = 2\Delta(L)$, and if X is not K3-surface, then (X, L) is a hyperelliptic polarized surface by Theorem 1.4. Since $h^0(L) = m + 1$, we obtain that

$$L^{2} = 2\Delta(L)$$

= 4 + 2L² - 2(m + 1).

That is, $L^2 = 2m - 2$. Here we use Fujita's classification of hyperelliptic polarized surfaces. Since $\kappa(X) \geq 0$, by Theorem 1.5 we find that q(X) = 0 and since $L^2 = 2m - 2$ and g(L) = m, we get that $K_X L = 0$. Since L is ample, we have $\kappa(X) = 0$. Hence (X, L) is one of the following:

If (X, L) is the type (I_a) , then a = m = 2 and $\kappa(X) = 0$. (This is the type (M-3-1) in Theorem 2.1.)

If (X, L) is the type (IV_a) , then a = 2, m = 5, and $\kappa(X) = 0$. (This is the

type (M-3-2) in Theorem 2.1.)

If (X,L) is the type $(\sum^{n}(\delta_{1},\delta_{2})_{a,b}^{+})$, then the case (3) or the case (6a) in (5.20) in [Fj1] occur. (This is the type (M-3-3) in Theorem 2.1.)

If (X, L) is the type $(\sum (\mu + 2\gamma, \mu)_a^-)$, then $a = \gamma = 2$ and $m = 2\mu + 5$. (This is the type (M-3-4) in Theorem 2.1.)

If X is a K3-surface, then q(X) = 0 and $L^2 = 2m - 2$. By Riemann-Roch Theorem and Vanishing Theorem, we get that $h^0(L) = m + 1$. (This is the type (M-3-5) in Theorem 2.1.)

From now on we assume that $L^2 \ge 2m - 1$.

(A) The case in which X is minimal.

Here we divide the case (A) into the following:

- (A.1) The case in which $\kappa(X) = 2$.
- (A.2) The case in which $\kappa(X) = 1$.
- (A.3) The case in which $\kappa(X) = 0$.
- (A.1) The case in which $\kappa(X) = 2$.

Then $L^2 \leq 2m$ by Theorem 1.7. If $L^2 = 2m$, then $X \cong C_1 \times C_2$ and $L \equiv C_1 + 2C_2$, where C_1 (resp. C_2) is a smooth projective curve with $g(C_1) \geq 2$ (resp. $g(C_2) = 2$). But this is impossible. Actually since dim Bs $|L| \leq 0$, we get that for a general fiber C_2 of the projection $C_1 \times C_2 \to C_1$ Bs $|L_{C_2}| = \emptyset$. But since $LC_2 = 1$ we get that $g(C_2) = 0$ and this is impossible. Hence we may assume that $L^2 \leq 2m - 1$. By the above hypothesis we may assume that $L^2 = 2m - 1$. Here we use a Beauville's result. Since X is minimal with $\kappa(X) = 2$, we get that $p_g(X) \geq 2q(X) - 3$ unless $X \cong C_1 \times C_2$. But if $X \cong C_1 \times C_2$, then $K_X L$ is even and here since we assume that $L^2 = 2m - 1$, we obtain that $K_X L = 2q(X) - 1$ is odd. So this is impossible.

If q(X) = 0, then $K_X L = 2q(X) - 1 = -1$ and this is impossible. Hence $q(X) \ge 1$. If q(X) = 1, then $K_X L = 1$ and $L^2 = 2m - 1$. Here we remark that $p_g(X) \ge q(X)$ because X is of general type. By Proposition 1.10, we get that $(K_X^2) \ge 2p_q(X) \ge 2q(X)$ and

$$1 = (K_X L)^2 \ge (K_Y^2)(L^2) \ge 2L^2$$

and this is impossible.

So we may assume that $q(X) \ge 2$. By Proposition 1.10, we get that

$$K_X^2 \ge 2p_q(X) \ge 2(2q(X) - 3) = 4q(X) - 6.$$

By Hodge index Theorem, we obtain that

(*)
$$(K_X L)^2 \ge (K_X^2)(L^2)$$

$$\ge (4q(X) - 6)(2m - 1)$$

$$\ge 2(2q(X) - 3)(2q(X) - 3)$$

because by Theorem 1.11

$$q(X) + m = g(L) \ge 2q(X) - 1.$$

Hence $K_XL \ge \sqrt{2}(2q(X)-3)$. On the other hand $K_XL = 2q(X)-1$. Therefore $2q(X)-1=K_XL \ge \sqrt{2}(2q(X)-3)$ and we infer that $(2\sqrt{2}-2)q(X) \le 3\sqrt{2}-1$. So we obtain that

$$q(X) \le \frac{3\sqrt{2} - 1}{2\sqrt{2} - 2} = 3.914 \cdots$$

Thus we have $q(X) \leq 3$.

If q(X) = 3 (resp. q(X) = 2), then $K_X L = 5$ (resp. 3) and by using (*), we get the following list:

 $(A.1.\alpha)$ q(X) = 3, $K_X L = 5$, $m \le 2$, and $g(L) \le 5$,

 $(A.1.\beta) \ q(X) = 2, \ K_X L = 3, \ m \le 2, \ \text{and} \ g(L) \le 4.$

Here we remark that if m=2, then $L^2=2m-1=3$, $h^0(L)=m+1=3$. Hence $\Delta(L)=2$, that is, $L^2=2\Delta(L)-1$.

(A.1. α .1) Assume that (X, L) is the case (A.1. α) with q(X) = 3, $K_X L = 5$ and m = 1. Then $4 = g(L) \ge 2q(X) - 1 = 5$ and this is impossible.

 $(A.1.\alpha.2)$ Assume that (X, L) is the case $(A.1.\alpha)$ with q(X) = 3, $K_X L = 5$ and m = 2. Then $L^2 = 3$ and g(L) = 5. Since $h^0(L) = 3$, we have $L^2 = 2\Delta(L) - 1$. If dim Bs|L| = 0, then q(X) = 0 by Fujita's classification of (X, L) with $\Delta(L) = 2$. (See [Fj2].) So we may assume that Bs $|L| = \emptyset$. Then there exists a triple covering $\pi: S \to P^2$. Then by Lemma 3.2 in [Bes], we get that

$$\chi(\mathcal{O}_X) = \frac{g(g+1)}{2} + 2 - c_2$$

and

$$K_X^2 = 2g^2 - 4g + 11 - 3c_2,$$

where c_2 is the second Chern class of the Tschirnhausen bundle of π (see [Bes]). Since g(L) = 5, we get that

$$1 - 3 + p_g(X) = \frac{5(5+1)}{2} + 2 - c_2 = 17 - c_2$$

and

$$K_X^2 = 50 - 20 + 11 - 3c_2 = 41 - 3c_2.$$

Therefore $c_2 = 19 - p_q(X)$ and

$$K_X^2 = 41 - 3(19 - p_g(X))$$

= $3p_g(X) - 16$.

On the other hand since $K_X^2 \ge 2p_g(X) \ge 2q(X) = 6$, we get that $6 \le K_X^2 = 3p_g(X) - 16$. Hence $p_g(X) \ge 8$. In particular $K_X^2 \ge 2p_g(X) \ge 16$. Since $L^2 = 3$, we get that

$$(K_X L)^2 \ge (K_X^2)(L^2)$$

 \ge 48.

But this is a contradiction because $K_XL = 5$. So this case cannot occur.

 $(A.1.\beta.1)$ Assume that (X, L) is the case $(A.1.\beta)$ with q(X) = 2, $K_X L = 3$ and m = 1. Then g(L) = 3, $h^0(L) = m + 1 = 2$ and $L^2 = 2m - 1 = 1$. (This is the type (M-1) in Theorem 2.1.)

(A.1. β .2) Assume that (X, L) is the case (A.1. β) with q(X) = 2, $K_X L = 3$ and m = 2. Then q(X) = 2 and $K_X^2 \ge 2p_g(X) \ge 2q(X) = 4$. Since $L^2 = 3$, we get that $(K_X L)^2 \ge (K_X^2)(L^2) \ge 12$. But since $K_X L = 3$, this is a contradiction.

(A.2) The case in which $\kappa(X) = 1$.

Then there exists an elliptic fibration over a smooth curve C; $\pi: X \to C$. The canonical bundle formula of π is the following:

$$K_X \equiv (2g(C) - 2 + \chi(\mathcal{O}_X))F + \sum_i (m_i - 1)F_i,$$

where F is a general fiber of π and m_iF_i is a multiple fiber of π .

If $L^2 \ge 2m+1$, then we can prove that dim Bs|L|=1 by Theorem 1.8 (2) and (3). So we may assume that $L^2 \le 2m$. We have only to check the case where $L^2 = 2m$ or $L^2 = 2m-1$.

(A.2.1) The case in which $L^2 = 2m$.

Then $K_XL = 2q(X) - 2$ and $q(X) \ge 2$ because $K_XL > 0$.

If q(X) = g(C), then $K_X L \ge (2g(C) - 2 + \chi(\mathcal{O}_X))LF = (2q(X) - 2 + \chi(\mathcal{O}_X))LF$. Hence LF = 1 and $\chi(\mathcal{O}_X) = 0$. But since $h^0(L_F) \ge 2$ for a general fiber F, we get that $\Delta(L_F) = 0$ and g(F) = 0. But this is impossible.

If q(X) = g(C) + 1, then $\chi(\mathcal{O}_X) = 0$ and

$$K_X L = (2g(C) - 2)LF + \sum_i (m_i - 1)LF_i.$$

Here we remark that $q(X) \ge 2$ since $2q(X) - 2 = K_X L > 0$. In particular $g(C) \ge 1$.

If $LF \geq 2$, then

$$K_X L \ge 4(g(C) - 1) + \sum_i (m_i - 1)LF_i$$

= $2(g(C) + 1) + 2g(C) - 6 + \sum_i (m_i - 1)LF_i$
= $2q(X) + 2g(C) - 6 + \sum_i (m_i - 1)LF_i$.

If $g(C) \ge 2$, then g(C) = 2 and $K_X L = 2q(X) - 2 = 4$ and π has no multiple fiber.

If g(C) = 1, then q(X) = g(C) + 1 = 2 and $K_X L = 2$. By the canonical bundle formula, we get that π has just 2 multiple fibers and $\sum_i (m_i - 1)LF_i = 2$, that is, $m_i = 2$ and $LF_i = 1$ for i = 1, 2 and $K_X \equiv F_1 + F_2$. In particular LF = 2 for a general fiber F of π . Therefore the type of (X, L) is one of the following;

(A.2.1.1) 3 = q(X) = g(C) + 1, $\chi(\mathcal{O}_X) = 0$, LF = 2, and π has no multiple fiber. (This is the type (M-2-1) in Theorem 2.1.)

(A.2.1.2) π has just 2 multiple fibers $2F_1$ and $2F_2$, $\chi(\mathcal{O}_X)=0$, 2=q(X)=g(C)+1, $K_X\equiv F_1+F_2$, LF=2 for a general fiber F. (This is the type (M-2-2) in Theorem 2.1.)

We study the case (A.2.1.1). By the condition of (A.2.1.1), we get that π is a smooth fibration. We put $\pi_*(L) = \mathscr{E}$. Then \mathscr{E} is a locally free sheaf of rank 2. Furthermore

$$\pi^*\circ\pi_*(L)\to L$$

is surjective because F is an elliptic curve with $h^0(L_F)=2$ and $\operatorname{Bs}|L_F|=\emptyset$. So we get that there exists a finite double covering $\rho:X\to P_C(\mathscr{E})$ with $L=\rho^*\mathscr{O}_{P(\mathscr{E})}$

(1). Let $B \subset P_C(\mathscr{E})$ be the branch locus of ρ . Then $B \in |2D|$ for some line bundle D on $P_C(\mathscr{E})$ and B is smooth. By the canonical line bundle formula for ρ , we get that $K_X = \rho^*(K_{P_C(\mathscr{E})} + D)$. Since

$$K_{P_C(\mathscr{E})} = -2C_0 + (2g(C) - 2 - e)F$$

= $-2C_0 + (2 - e)F$,

where C_0 is the minimal section of $P_C(\mathscr{E}) \to C$ and $e = -C_0^2$, we have $D \equiv 2C_0 + eF$ because $K_X \equiv 2F_{\pi}$.

(A.2.2) The case in which $L^2 = 2m - 1$.

Then $K_XL = 2q(X) - 1$ and $q(X) \ge 1$ because $K_XL > 0$. By the canonical bundle formula we get that

$$K_X L = (2g(C) - 2 + \chi(\mathcal{O}_X))LF + \sum_i (m_i - 1)LF_i.$$

Since $h^0(L) = m+1$ and dim Bs $|L| \le 0$, we find that $LF \ge 2$ for a general fiber F of $\pi: X \to C$.

Here we divide the case (A.2.2) into the following cases:

- (a.1) The case in which q(X) = q(C).
- (a.2) The case in which q(X) = g(C) + 1.
- (a.1) The case in which q(X) = g(C).

Then

$$K_X L \ge 2(2q(X) - 2)$$

= $2q(X) - 1 + 2q(X) - 3$.

If $q(X) \ge 2$, then this is impossible. Hence q(X) = 1 and then $K_X L = 2q(X) - 1 = 1$. If $\chi(\mathcal{O}_X) > 0$, then $K_X L \ge 2$. So we get that $\chi(\mathcal{O}_X) = 0$ and $\sum_i (m_i - 1) L F_i = 1$. Therefore π has just one multiple fiber with $m_i = 2$ and $L F_i = 1$. (This is the type (M-2-3) in Theorem 2.1.)

(a.2) The case in which q(X) = g(C) + 1.

Here we remark that $LF \ge 2$ and $\chi(\mathcal{O}_X) = 0$. We divide two cases by the value of LF.

- (a.2.1) The case where $LF \geq 3$.
- (a.2.2) The case where LF = 2.
- (a.2.1) The case where $LF \geq 3$.

Then

$$K_X L \ge 3(2g(C) - 2) + \sum_i (m_i - 1)LF_i$$

$$= 2(g(C) + 1) + 4g(C) - 8 + \sum_i (m_i - 1)LF_i$$

$$= 2q(X) + 4g(C) - 8 + \sum_i (m_i - 1)LF_i.$$

If $g(C) \ge 2$, then this is impossible because $K_X L = 2q(X) - 1$. So we get that $g(C) \le 1$ and $g(X) \le 2$. Furthermore we divide the case (a.2.1) into two cases:

- (a.2.1.1) The case where g(C) = 1.
- (a.2.1.2) The case where g(C) = 0.
- (a.2.1.1) The case where g(C) = 1.

Then q(X)=2 and $K_XL=2q(X)-1=3$. By the canonical bundle formula we get $K_XL=\sum_i(m_i-1)LF_i$. Since g(C)=1 and $\chi(\mathcal{O}_X)=0$, π has a multiple fiber because $\kappa(X)=1$. Since π has at least two multiple fibers (see [Se2]), π has two or three multiple fibers.

If π has just three multiple fibers m_1F_1 , m_2F_2 , and m_3F_3 , then we get that $m_1 = m_2 = m_3 = 2$ and $LF_1 = LF_2 = LF_3 = 1$. But since $LF \ge 3$, this is impossible.

If π has just two multiple fibers m_1F_1 and m_2F_2 , we get that $(m_1, m_2) = (2, 3)$ or (2, 2), where we assume $m_1 \le m_2$.

If $(m_1, m_2) = (2, 3)$, then $LF_1 = 1$ and $2LF_2 = 2$, that is, $LF_i = 1$ for any i. But then $LF = L(m_1F_1) = 2$ and $LF = L(m_2F_2) = 3$ and this is impossible.

If $(m_1, m_2) = (2, 2)$, then $LF_1 = 2$ and $LF_2 = 1$ or $LF_1 = 1$ and $LF_2 = 2$. But then $L(m_1F_1) \neq L(m_2F_2)$. This is also impossible.

(a.2.1.2) The case where g(C) = 0.

Then q(X) = 1 and $K_X L = 1$.

CLAIM. The number s of multiple fibers of π is at most four.

Proof. Assume that $s \ge 6$. Let $\{m_i F_i\}_i$ be a multiple fiber of π . Here we assume that $LF_i \le LF_{i+1}$ for any i. Then

$$1 = K_X L = -2LF + \sum_i (m_i - 1)LF_i$$

$$\geq (m_1 LF_1 + m_2 LF_2) - 2LF + (m_3 - 1)LF_3 - LF_2$$

$$+ (m_4 - 1)LF_4 - LF_1 + (m_5 - 1)LF_5 + (m_6 - 1)LF_6$$

$$\geq 2.$$

Therefore $s \le 5$.

If s=5, then by the same argument as above we get that $m_5=2$ and $LF_5=1$. By assumption, we get that $LF_1=\cdots=LF_5=1$ and $LF=L(m_5F_5)=2$ for a general fiber F of π . But since $LF\geq 3$ in this case, this is impossible. Therefore $s\leq 4$.

Here we remark that $s \ge 3$ in this case because $\kappa(X) = 1$. We assume that $LF_i \le LF_{i+1}$ for any i. We divide the case (a.2.1.2) into the following two cases:

- (b.1) The case in which s = 4.
- (b.2) The case in which s = 3.
- (b.1) The case in which s = 4.

Then by hypothesis we get that $(m_3 - 1)LF_3 - LF_2 = 0$ and $(m_4 - 1)LF_4 - LF_1 = 1$. The first equality implies that $m_3 = 2$ and $LF_2 = LF_3$. By the second equality there are two possible cases.

- (a) $m_4 = 2$ and $LF_4 = LF_1 + 1$,
- (β) $m_4 = 3$ and $LF_1 = LF_4 = 1$.

If the case (β) occurs, then by hypothesis $LF_1 = LF_2 = LF_3 = LF_4$ and $m_1 = m_2 = m_3 = m_4$. But since $m_3 = 2$ and $m_4 = 3$, this is impossible.

If the case (α) occurs, then $LF_3 = LF_2 = LF_1$ or $LF_4 = LF_3 = LF_2$. Since $m_4 = 2$ and $m_3 = 2$, we get that $LF_4 = LF_3 = LF_2$ and $LF_4 = LF_1 + 1$. Since $m_1LF_1 = 2LF_4 = 2(LF_1 + 1)$, we get that

$$LF_1 = \frac{2}{m_1 - 2}.$$

Hence $m_1 = 3$ or 4 because LF_1 is integer. If $m_1 = 3$, then $LF_1 = 2$ and if $m_1 = 4$, then $LF_1 = 1$. Hence we get the following list;

(This is the type (M-2-4) in Theorem 2.1.)

(b.2) The case in which s=3. (This is the type (M-2-5) in Theorem 2.5.) Then we get that $(m_3-1)LF_3-LF_1-LF_2=1$.

CLAIM. $m_3 \leq 4$.

Proof. If $m_3 \ge 5$, then

$$1 = (m_3 - 1)LF_3 - LF_1 - LF_2$$

= $(LF_3 - LF_1) + (LF_3 - LF_2) + (m_3 - 3)LF_3$
 $\geq 2LF_3 \geq 2$

and this is a contradiction.

By the value of m_3 , we divide the case (b.2) into the following:

- (b.2.1) The case in which $m_3 = 4$.
- (b.2.2) The case in which $m_3 = 3$.
- (b.2.3) The case in which $m_3 = 2$.
- (b.2.1) The case in which $m_3 = 4$.

Then $(LF_3 - LF_1) + (LF_3 - LF_2) + LF_3 = 1$. Therefore $LF_3 = 1$ and $LF_3 = LF_2 = LF_1$, so we get that $m_1 = m_2 = 4$.

(b.2.2) The case in which $m_3 = 3$.

Then $(LF_3 - LF_1) + (LF_3 - LF_2) = 1$. So $LF_3 = LF_2$ and $LF_3 = LF_1 + 1$. Therefore $m_2 = 3$. Since $m_1LF_1 = 3LF_3 = 3(LF_1 + 1)$, we get that $(m_1 - 3)LF_1 = 3$. Since LF_1 is an integer, we obtain that $3/(m_1 - 3)$ is integer. Therefore we have $m_1 = 4, 6$.

If $m_1 = 4$ (resp. $m_1 = 6$), then $LF_1 = 3$ (resp. $LF_1 = 1$). Hence we get that

- (1) $(m_1, m_2, m_3) = (4, 3, 3), LF_1 = 3, LF_2 = LF_3 = 4$
- (2) $(m_1, m_2, m_3) = (6, 3, 3), LF_1 = 1, LF_2 = LF_3 = 2.$
- (b.2.3) The case in which $m_3 = 2$.

Then $LF_3 = LF_2 + LF_1 + 1$. Hence we find that

- (1) $m_1LF_1 = 2LF_3 = 2LF_2 + 2LF_1 + 2$,
- (2) $m_2LF_2 = 2LF_3 = 2LF_2 + 2LF_1 + 2$.

On the other hand, since $LF_1 = (2/m_1)LF_3$ and $LF_2 = (2/m_2)LF_3$, we get that $LF_3 = (2/m_1)LF_3 + (2/m_2)LF_3 + 1$. Therefore

$$\left(1 - \frac{2}{m_1} - \frac{2}{m_2}\right) LF_3 = 1,$$

that is,

$$LF_3 = \frac{m_1 m_2}{(m_1 - 2)(m_2 - 2) - 4}.$$

Here we remark that $m_2 \ge 3$ because $LF_3 > LF_2$.

Furthermore we divide the case (b.2.3) into the following three cases:

- (b.2.3.1) The case in which $m_2 = 3$.
- (b.2.3.2) The case in which $m_2 = 4$.
- (b.2.3.3) The case in which $m_2 \ge 5$.
- (b.2.3.1) The case in which $m_2 = 3$.

Then

$$LF_3 = \frac{3m_1}{m_1 - 6} = 3 + \frac{18}{m_1 - 6}.$$

Since $LF_3 > 0$, we get that $m_1 \ge 7$. Since $18/(m_1 - 6)$ is integer and $LF_1 = 6/(m_1 - 6)$, the candidate of m_1 is the following;

m_1	LF_1	LF_2	LF_3
7	6	14	21
8	3	8	12
9	2	6	9
12	1	4	6

(b.2.3.2) The case in which $m_2 = 4$.

Here we remark that $m_1 \ge 4$. In this case we get that

$$LF_3 = \frac{4m_1}{2(m_1 - 2) - 4}$$
$$= \frac{2m_1}{m_1 - 4}$$
$$= 2 + \frac{8}{m_1 - 4}.$$

Since $LF_2 > 0$ and $LF_1 = 4/(m_1 - 4)$, we find that $m_1 \ge 5$ and

m_1	m_2	m_3	LF_1	LF_2	LF_3
5	4	2	4	5	10
6	4	2	2	3	6
8	4	2	1	2	4

(b.2.3.3) The case in which $m_2 \ge 5$.

Then $m_1 \ge 5$ and since $K_X L = 1$ and $m_3 = 2$ we get that

$$LF_1 + LF_2 \le (m_1 - 4)LF_1 + (m_2 - 4)LF_2 = 4.$$

Therefore $(LF_1, LF_2) = (1, 1)$, (1, 2), (1, 3), (2, 2). Since $LF_3 = LF_1 + LF_2 + 1$, $(m_1 - 4)LF_1 + (m_2 - 4)LF_2 = 4$, and $m_3 = 2$, we get the following;

m_1	m_2	m_3	LF_1	LF_2	LF_3
6	6	2	1	1	3
5	5	2	2	2	5

(a.2.2) The case where LF = 2. Then

$$K_X L = 2(2g(C) - 2) + \sum_i (m_i - 1) L F_i$$

$$= 4g(C) - 4 + \sum_i (m_i - 1) L F_i$$

$$= 2(g(C) + 1) - 6 + 2g(C) + \sum_i (m_i - 1) L F_i$$

$$= 2g(X) + 2g(C) - 6 + \sum_i (m_i - 1) L F_i.$$

Hence $g(C) \le 2$. Here we remark that

$$\sum_{i} (m_i - 1) LF_i = \text{number of multiple fibers}$$

because LF = 2. In particular $m_i = 2$ and $LF_i = 1$ for any i. If g(C) = 2 (resp. 1, 0), then $\sum_i (m_i - 1) LF_i = 1$ (resp. 3, 5). On the other hand, π has at least two multiple fibers. Therefore $g(C) \le 1$ and $\sum_i (m_i - 1) LF_i = 3$ or 5. (This is the type (M-2-6) in Theorem 2.1.)

(A.3) The case in which $\kappa(X) = 0$.

Then $g(L) = 1 + (1/2)L^2 = q(X) + m$. Then by Riemann-Roch Theorem and the classification of projective surfaces, we get that X is an abelian surface or K3 surface because $h^0(L) = m + 1$. But here we assume $L^2 \ge 2m - 1$. So we get that X is an abelian surface. In particular $L^2 = 2m + 2$.

Here we remark the following: Let (Y,A) be a polarized abelian surface. If dim Bs|A|=1, then $Y\cong E_1\times E_2$ and $A=p_1^*L_1+p_2^*L_2$, where E_i is an elliptic curve and L_i is a line bundle on E_i with deg $L_1=1$ and deg $L_2\geq 1$. (See [LB].) Therefore if (X,L) is not the above type, then dim $Bs|L|\leq 0$. (This is the type (M-3-6) in Theorem 2.1.)

(B) The case in which X is not minimal.

Let $X = X_0 \to X_1 \to \cdots \to X_l = X'$ be the minimal model of X. We put $L_0 := L$, $\mu_i : X_{i-1} \to X_i$, and $L_i := (\mu_i)_* (L_{i-1})$. Then $L_{i-1} = \mu_i^* L_i - \alpha_i E_i$ and

 $\alpha_i > 0$ for any i, where E_i is a (-1)-curve of μ_i . We put $L' := L_l$. Here we remark that dim $Bs|L_l| \le 0$. Then

$$g(L') = g(L) + \sum_{i=1}^{l} \frac{\alpha_i^2 - \alpha_i}{2}$$

and

$$(L')^2 = L^2 + \sum_{i=1}^{l} \alpha_i^2.$$

So we get that

$$g(L') = q(X) + m + \sum_{i=1}^{l} \frac{\alpha_i^2 - \alpha_i}{2}$$

and

$$(L')^2 \ge 2m - 1 + \sum_{i=1}^{l} \alpha_i^2$$

because $L^2 \ge 2m-1$ by assumption. Here we put $m' = m + \sum_{i=1}^{l} (\alpha_i^2 - \alpha_i)/2$. Then we get that

$$(L')^{2} \ge 2m - 1 + \sum_{i=1}^{l} \alpha_{i}^{2}$$

$$= 2m - 1 + \sum_{i=1}^{l} (\alpha_{i}^{2} - \alpha_{i}) + \sum_{i=1}^{l} \alpha_{i}$$

$$= 2m' - 1 + \sum_{i=1}^{l} \alpha_{i}$$

$$> 2m'.$$

(B.1) The case in which X is of general type.

Then since dim Bs $|L'| \le 0$, we get that $(L')^2 \le 2m'$ by Theorem 1.7. Hence we have $(L')^2 = 2m'$. But then $X' \cong C \times F$ and $L \equiv C + 2F$, where C and F are smooth projective curves with $g(C) \ge 2$ and g(F) = 2. This is impossible by the same argument as in the case (A-1) above.

(B.2) The case in which the Kodaira dimension of X is 1.

Then X' has an elliptic fibration over a smooth projective curve C; $\pi: X' \to C$. Then by Theorem 1.8 (2) and (3) we get that $(L')^2 \le 2m'$ since dim Bs $|L'| \le 0$. So we get that $(L')^2 = 2m'$. In particular $\sum_i \alpha_i = 1$ and (X, L) is a simple blowing up of (X', L'). Furthermore m = m'. So we get that $h^0(L') \ge h^0(L) = m+1 = m'+1$.

If $h^0(L') \ge m' + 2$, then $(L')^2 \ge 2\Delta(L')$ and we can check this case by using Fujita Theory. First we remark that $g(L') > m' \ge \Delta(L')$ since $(L')^2 = 2m'$. By Theorem 1.4 and Theorem 1.5, in this case q(X) = q(X') = 0 because $\kappa(X) = 1$. But $K_{X'}L' = 2q(X) - 2 = -2$ and this is impossible. So we assume that $h^0(L) = -2$

m'+1. Then by the same argument as in the case (A.2.1) above we get the type of (X', L'), that is,

- (B.2.1) g(C) = 2, q(X) = 3, $\chi(\mathcal{O}_X) = 0$, L'F' = 2 and π has no multiple fibers, where F' is a general fiber of π (this is the type (N-1-1) in Theorem 2.1),
- (B.2.2) π has just two multiple fibers, $2F_1$ and $2F_2$, $\chi(\mathcal{O}_X)=0$, g(C)=1, q(X)=2, and L'F'=2 (this is the type (N-1-2) in Theorem 2.1). (B.3) The case in which $\kappa(X)=0$.

In this case X' is an abelian surface or bielliptic surface because $K_{X'}L' \leq 2q(X')-2$. But if $(L')^2=2m'$, then $\sum_i \alpha_i=1$ and g(L)=g(L'), that is, m=m'. Since $h^0(L')\geq h^0(L)\geq m+1=m'+1$, we get that $h^0(L')\geq m'+1$. But this is impossible because $h^0(L')=(L')^2/2$. Hence $(L')^2=2m'+2$. Then g(L')=2+m' and X' is an abelian surface because q(X')=2 in this case. Furthermore we have $\sum_i \alpha_i \leq 3$. (This is the type (N-2) in Theorem 2.1.) These complete the proof of Theorem 2.1.

Remark 2.2. Here we consider the type (M-2-1) in Theorem 2.1. Let $\rho: X \to P_C(\mathscr{E})$ be the double covering. Let $B \subset P_C(\mathscr{E})$ be the branch locus of ρ . Then $B \in |2D|$ for some divisor on $P_C(\mathscr{E})$. Since X and $P_C(\mathscr{E})$ is smooth, we need that B is smooth. So we check the condition that |2D| has a smooth member. Here we assume that \mathscr{E} is normalized. Let C_0 be the minimal section of $P_C(\mathscr{E}) \to C$ and let F be a fiber of $P_C(\mathscr{E}) \to C$. We put $e = -C_0^2$. Then $D \equiv 2C_0 + eF$ by the proof of Theorem 2.1.

Assume that $e \ge 0$. Then an irreducible curve on $P_C(\mathscr{E})$ is one of the following types (see [Ha]);

- (1) C_0 ,
- (2) F,
- (3) $aC_0 + bF$, a > 0, and $b \ge ae$.

Assume that $B \in |2D|$ is not irreducible. Then we remark that F is not an irreducible component of B because F(B-F)>0. If C_0 is an irreducible component of B, then $0=C_0(3C_0+2eF)=-3e+2e=-e$. Hence e=0. If C_0 is not an irreducible component of B, then any irreducible component of B is the type xC_0+yF with x>0 and $y\geq ex$. If y>xe, then xC_0+yF is ample and this is a contradiction because B is smooth. So we have y=xe and

$$0 = (xC_0 + yF)((4 - x)C_0 + (2e - y)F)$$

= $-x(4 - x)e + x(2e - y) + y(4 - x)$
= $(ex - 2y)(x - 2)$
= $-y(x - 2)$.

Hence y = 0 or x = 2.

If y = 0, then e = 0 because x > 0.

If x = 2, then y = 2e and $B - (2C_0 + 2eF) = 2C_0$. Since C_0 is not an irreducible component of B, we get that $2C_0$ is numerically equivalent to an irreducible curve. Hence e = 0.

In any case we have e = 0 and $B = 4C_0$ if B is not irreducible. Since C_0 is not an irreducible component of B, we get that $B = C_1 + C_2$ where C_i is an irreducible curve with $C_i \equiv 2C_0$ for i = 1, 2.

Assume that B is irreducible and e > 0. Then by the above condition, we have $2e \ge 4e > 0$ and this is impossible. Hence e = 0. Therefore $B \equiv 4C_0$ and e = 0 in this case.

Assume that e < 0. Then an irreducible curve on $P_C(\mathcal{E})$ is one of the following types;

- (1') C_0 ,
- (2') F,
- (3') $aC_0 + bF$, where a = 1 and $b \ge 0$ or $a \ge 2$ and $b \ge (1/2)ae$.

Since $B \in |2D| = |4C_0 + 2eF|$, F is not an irreducible component of B because B is smooth.

If C_0 is an irreducible component of B, then $C_0(3C_0 + 2eF) = -3e + 2e = -e > 0$ and this is impossible because B is smooth. Therefore C_0 is not an irreducible component of B.

Since

$$2D \equiv 4C_0 + 2eF = \sum_{i} (a_i C_0 + b_i F)$$

and $2e = (1/2) \times 4 \times e$, we get that $a_i \ge 2$ and $b_i = (1/2)a_ie$ for any i. So if B is not irreducible, then since $\sum_i a_i = 4$, we get that $a_i = 2$ and $b_i = e$. In this case $(2C_0 + eF)^2 = -4e + 4e = 0$. Therefore we have the following two types:

- (1") If B is not irreducible, then $B = C_1 + C_2$, where $C_i \equiv 2C_0 + eF$ for each i.
- (2") If B is irreducible, then $B \equiv 4C_0 + 2eF$.

Therefore we get the following types:

- (M-2-1-1) If $e \ge 0$ and B is not irreducible, then e = 0 and $B = C_1 + C_2$, where $C_i = 2C_0$ for i = 1 or 2.
- (M-2-1-2) If $e \ge 0$ and B is irreducible, then e = 0 and $B = 4C_0$.
- (M-2-1-3) If e < 0 and B is not irreducible, then $B = C_1 + C_2$, where $C_i \equiv 2C_0 + eF$ for each i.
- (M-2-1-4) If e < 0 and B is irreducible, then $B \equiv 4C_0 + 2eF$.

REFERENCES

- [Bea] A. BEAUVILLE, L'inégalité $p_g \ge 2q-4$ pour les surfaces de type général, Bull. Soc. Math. France, 110 (1982), 343–346.
- [BeSo] M. C. Beltrametti and A. J. Sommese, The adjunction theory of complex projective varieties, de Gruyter Expositions in Math. 16, Walter de Gruyter, Berlin, 1995.
- [Bes] G. Besana, On polarized surfaces of degree three whose adjoint bundles are not spanned, Arch. Math., 65 (1995), 161–167.
- [De] O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France, 110 (1982), 319–346; Addendum, Bull. Soc. Math. France, 111 (1983), 301–302.
- [Fj1] T. FUJITA, On hyperelliptic polarized varieties, Tôhoku Math. J., 35 (1983), 1-44.

- [Fj2] T. FUJITA, Polarized manifolds of degree three and Δ-genus two, J. Math. Soc. Japan, 41 (1989), 311–331.
- [Fj3] T. FUJITA, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Series 155, Cambridge, 1990.
- [Fk0] Y. FUKUMA, On sectional genus of quasi-polarized manifolds with non-negative Kodaira dimension, Math. Nachr., 180 (1996), 75–84.
- [Fk1] Y. FUKUMA, A lower bound for the sectional genus of quasi-polarized surfaces, Geom. Dedicata, 64 (1997), 229–251.
- [Fk2] Y. Fukuma, On polarized 3-folds (X, L) with g(L) = q(X) + 1 and $h^0(L) \ge 4$, Ark. Mat., 35 (1997), 299–311.
- [Fk3] Y. FUKUMA, On the nonemptiness of the adjoint linear system of polarized manifolds, Canad. Math. Bull., 41 (1998), 267–278.
- [Fk4] Y. FUKUMA, A lower bound for K_XL of quasi-polarized surfaces (X, L) with non-negative Kodaira dimension, Canad. J. Math., **50** (1998), 1209–1235.
- [Fk5] Y. FUKUMA, On sectional genus of quasi-polarized 3-folds, Trans. Amer. Math. Soc., 351 (1999), 363-377.
- [Fk6] Y. FUKUMA, On complex manifolds polarized by an ample line bundle of sectional genus q(X) + 2, Math. Z., **234** (2000), 573-604.
- [Fk7] Y. Fukuma, On complex *n*-folds polarized by an ample line bundle L with dim $\operatorname{Bs}|L| \le 0$, g(L) = q(X) + m, and $h^0(L) \ge n + m$, Comm. Algebra, **28** (2000), 5769–5782.
- [Fk8] Y. FUKUMA, A lower bound for $(K_X + tL)L^{n-1}$ of quasi-polarized manifolds (X, L) with $\kappa(K_X + tL) \ge 0$, J. Algebra, **239** (2001), 624–646.
- [Fk9] Y. FUKUMA, Polarized surfaces (X, L) with g(L) = q(X) + m, and $h^0(L) \ge m + 2$, preprint (2000).
- [Fk10] Y. FUKUMA, On complex *n*-folds polarized by an ample line bundle L with $Bs|L|=\emptyset$, g(L)=g(X)+m, and $h^0(L)=n+m-1$, preprint (2000).
- [Ha] R. HARTSHORNE, Algebraic Geometry, Graduate Texts in Math. 52, Springer, 1977.
- [LB] H. Lange and Ch. Birkenhake, Complex Abelian Varieties, Springer, Berlin, 1992.
- [Sel] F. Serrano, The Picard group of a quasi-bundle, Manuscripta Math., 73 (1991), 63–82.
- [Se2] F. SERRANO, Elliptic surfaces with an ample divisor of genus 2, Pacific J. Math., 152 (1992), 187–199.

Department of Mathematics College of Education Naruto University of Education, Takashima Naruto-cho, Naruto-shi 772-8502 Japan

(CURRENT ADDRESS)
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
KOCHI UNIVERSITY
AKEBONO-CHO, KOCHI 780-8520
JAPAN
E-mail: fukuma@math.kochi-u.ac.jp