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A CLASSIFICATION OF POLARIZED SURFACES �X ;L�
WITH k�X�b 0, dim BsjLja 0, g�L� � q�X � �m, AND h0�L� � m� 1

Yoshiaki Fukuma

Abstract

Let �X ;L� be a polarized surface and dim BsjLja 0. In our previous paper

we have studied polarized surfaces with g�L� � q�X� �m and h0�L�b m� 2. In this

paper, we classify �X ;L� with k�X�b 0, g�L� � q�X� �m and h0�L� � m� 1.

0. Introduction

Let X be a smooth projective variety over the complex number ®eld C with
dim X � n, and let L be an ample (resp. a nef and big) line bundle on X. Then
we call the pair �X ;L� a polarized (resp. quasi-polarized) manifold. The sec-
tional genus g�L� of �X ;L� is de®ned as follows:

g�L� � 1� 1

2
�KX � �nÿ 1�L�Lnÿ1;

where KX is the canonical line bundle of X. A classi®cation of �X ;L� with small
value of sectional genus was obtained by several authors. On the other hand,
Fujita proved the following Theorem (see Theorem (II.13.1) in [Fj3]).

Theorem. Let �X ;L� be a polarized manifold. Then for any ®xed g�L� and
n � dim X , there are only ®nitely many deformation type of �X ;L� unless �X ;L� is
a scroll over a smooth curve.

(For a de®nition of the deformation type of �X ;L�, see O13 of Chapter II in
[Fj3].) By this theorem, Fujita proposed the following Conjecture;

Conjecture (Fujita). Let �X ;L� be a polarized manifold. Then g�L�b
q�X �, where q�X � � h1�OX �: the irregularity of X.

This Conjecture is very di½cult and it is unknown even for the case in which
X is a surface.
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If dim BsjLja 0, then we can prove that g�L�b q�X � (see Theorem 3.2
in [Fk3]). Furthermore the author proved that if �X ;L� is a quasi-polarized
manifold with dim X � 3 and h0�L� :� dim H 0�L�b 2, then g�L�b q�X� (see
[Fk5]). Moreover the author obtained the classi®cation of polarized 3-folds
�X ;L� with the following types;

(1) g�L� � q�X� and h0�L�b 3 ([Fk5]),
(2) g�L� � q�X� � 1 and h0�L�b 4 ([Fk2]),
(3) g�L� � q�X� � 2 and h0�L�b 5 ([Fk6]).
By considering the result of 3-dimensional case, it is natural to consider the

following problem;

Problem. Let �X ;L� be a polarized manifold with dim X � n and g�L� �
q�X � �m, where m is a nonnegative integer. Assume that h0�L�b n�m.
Then classify �X ;L� with these properties.

In [Fk7], we get a classi®cation of polarized manifolds �X ;L� with n :�
dim X b 3, g�L� � q�X � �m, dim BsjLja 0, and h0�L�b m� n.

In [Fk9], we studied polarized surfaces �X ;L� with n � 2, g�L� � q�X � �m
and h0�L�b m� 2.

Here we remark that if n b 3, then we can use the adjunction theory for
KX � �nÿ 2�L. But if n � 2, then we cannot use the theory, so we need to study
�X ;L� by the value of Kodaira dimension.

In this paper, we consider the case in which n � 2, g�L� � q�X� �m,
dim BsjLja 0, and h0�L� � m� 1. In particular we study the case where
k�X�b 0. By using this result we get a classi®cation of polarized manifolds
�X ;L� with n � dim X b 3, g�L� � q�X� �m, BsjLj � j, and h0�L� � m� nÿ 1.
We will study this in a forthcoming paper [Fk10].

We use the customary notation in algebraic geometry.
The author would like to thank the referee for giving some useful comments

and suggestions.

1. Preliminaries

Theorem 1.1. Let �X ;L� be a polarized manifold with n � dim X b 2.
Assume that jLj has a ladder and g�L�b D�L�, where D�L� is the delta genus of
�X ;L�.

(1) If Ln b 2D�L� � 1, then g�L� � D�L� and q�X � � 0.
(2) If Ln b 2D�L�, then BsjLj � j.
(3) If Ln b 2D�L� ÿ 1, then jLj has a regular ladder.

Proof. See (I.3.5) in [Fj3]. r

Theorem 1.2. Let �X ;L� be a polarized manifold with n � dim X b 2. If
dim BsjLja 0 and Ln b 2D�L� ÿ 1, then jLj has a ladder.

Proof. See (I.4.15) in [Fj3]. r
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Definition 1.3 (See De®nition 1.1 in [Fj1]). Let �X ;L� be a polarized sur-
face. Then �X ;L� is called a hyperelliptic polarized surface if BsjLj � j, the mor-
phism de®ned by jLj is of degree two onto its image W, and if D�W ;H� � 0 for
the hyperplane section H on W.

Theorem 1.4. Let �X ;L� be a polarized manifold with dim X � n such that
BsjLj � j, Ln � 2D�L�, and g�L� > D�L�. Then �X ;L� is hyperelliptic unless L is
simplely generated and �X ;L� is a Fano-K3 variety.

Proof. See Theorem 1.4 in [Fj1]. r

Theorem 1.5. Let �X ;L� be a hyperelliptic polarized surface. Then �X ;L�
is one of the following types;

Type L2 g�L� q�X�
�Ia� 2 a 0
�IVa� 8 2a� 1 0
��IIa� 4 2a 0
�P�d1; d2��a;b� 2jdj ajdj � bÿ 1 0

�P�d1; d2�0b� 2jdj bÿ 1 bÿ 1
�P�m; m��a � 4m amÿ 1 aÿ 1
�P�m� 2g; m�ÿa � 4�m� g� am� 2agÿ gÿ 1 0

Furthermore the Kodaira dimension of X is the following

Value of k�X � 2 1
�Ia� a > 2 ÿ
�IVa� a > 2 ÿ
��IIa� a > 1 ÿ
�P�d1; d2��a;b� case (5) case (4)

�P�d1; d2�0b� ÿ ÿ
�P�m; m��a � ÿ ÿ
�P�m� 2g; m�ÿa � a > 2 a � 2 and g > 2

Value of k�X � 0 ÿy
�Ia� a � 2 a < 2
�IVa� a � 2 ÿ
��IIa� ÿ a � 1
�P�d1; d2��a;b� case (3) and (6a) case (1) and (2)

�P�d1; d2�0b� ÿ any b

�P�m; m��a � ÿ any a
�P�m� 2g; m�ÿa � a � g � 2 a � 2 and g � 1

For the de®nition of the above types, see [Fj1]. In particular for the cases of the
type �P�d1; d2��a;b�, see (5.20) in [Fj1].

Proof. See [Fj1]. (Here we remark that the case (6b) of type �P�d1; d2��a;b�
is impossible because dim X � 2.) r
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Definition 1.6 (See De®nition 1.9 in [Fk1]). (1) Let �X ;L� be a quasi-
polarized surface. Then �X ;L� is called L-minimal if LE > 0 for any �ÿ1�-curve
E on X.

(2) Let �X ;L� and �Y ;A� be quasi-polarized surfaces. Then �Y ;A� is
called an L-minimalization of �X ;L� if there exists a birational morphism
m : X ! Y such that L � m��A� and �Y ;A� is A-minimal. (We remark that an
L-minimalization of �X ;L� always exists.)

(3) Let �X ;L� and �X 0;L 0� be polarized surfaces. Then �X ;L� is called a
simple blowing up of �X 0;L 0� if X is a blowing up of X 0 at x A X 0 and �E;LE�G
�P1;OP1�1�� for the exceptional divisor E.

Remark 1.6.1. Let X be a smooth projective surface and let L be an ample
line bundle on X. Then �X ;L� is L-minimal.

Theorem 1.7. Let �X ;L� be a quasi-polarized surface with h0�L�b 2 and
k�X� � 2. Assume that g�L� � q�X � �m for m b 0. Then L2 a 2m. Moreover
if L2 � 2m and �X ;L� is L-minimal, then X GC1 � C2 and L1C1 � 2C2, where
C1 and C2 are smooth curves with g�C1�b 2 and g�C2� � 2. (Here1 denotes the
numerical equivalence of divisors.)

Proof. See Theorem 3.1 in [Fk4]. r

Remark 1.7.1. Let �X ;L� be as in Theorem 1.7. Then L2 a 2m is equiv-
alent to KX L b 2q�X� ÿ 2.

Theorem 1.8. Let �X ;L� be a quasi-polarized surface with k�X� � 0 or 1.
Assume that g�L� � q�X� �m.

(1) L2 a 2m� 2 holds.
(2) If L2 � 2m� 2 and �X ;L� is L-minimal, then �X ;L� is one of the

following;
(2-1) k�X� � 0 case.

X is an Abelian surface and L is any nef and big divisor.
(2-2) k�X� � 1 case.

X GF � C and L1C � �m� 1�F , where F and C are smooth curves
with g�C�b 2 and g�F� � 1. If h0�L� > 0, then L � C �Px A I mxFx,
where Fx is a ®ber of the second projection over x A C, I is a set of a
®nite point of C, and mx is a positive integer with

P
x A I mx � m� 1.

(Here D1 � D2 denotes O�D1�GO�D2� for two divisors D1 and D2.)
(3) If �X ;L� is a polarized surface with k�X � � 1 and L2 a 2m� 1, then

L2 a 2m.

Proof. For the proof of (1), (2-1), and (2-2), see Theorem 2.1 in [Fk4].
Next we consider the case (3). Let p : X ! C be an elliptic ®bration over a
smooth curve C. Assume that L2 � 2m� 1.
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If g�C� � 0, then q�X �a 1 and g�L�a m� 1. But since L is ample and
k�X� � 1, we get that KX L b 1 and g�L�b m� 2. This is impossible. So we
may assume that g�C�b 1.

Let m : X ! S be a relative minimalization of f : X ! C and let A :� m��L�.
Then A is ample. Let h : S ! C be an elliptic ®bration such that f � h � m.

(A) The case in which g�C� � 1.
If q�X� � g�C� � 1, then this is impossible by the same argument as above.
If q�X� � g�C� � 1 � 2, then, by the canonical bundle formula, h has at least

two multiple ®bers since k�X � � 1. So we get that KX L b KSA b 2. Hence
g�L� > m� 2 and this is also impossible.

(B) The case in which g�C�b 2.
If q�X � � g�C�, then KX L b KSA b 4g�C� ÿ 4 � 4q�X � ÿ 4. Hence

g�L�b 1� 1

2
�4q�X � ÿ 4� L2�

� 1� 1

2
�4q�X� ÿ 4� 2m� 1�

� 1� 2q�X� �mÿ 3

2

� q�X� �mÿ 1

2
� q�X �

b q�X� �m� 3

2

and this is also impossible.
So we assume that q�X� � g�C� � 1.
If LF b 2, then we get that

KX L b KSA b �2g�C� ÿ 2�LF

b 4g�C� ÿ 4

� 2g�C� � 2� 2g�C� ÿ 6

� 2q�X � � 2g�C� ÿ 6:

Hence

g�L�b 1� 1

2
�2q�X� � 2g�C� ÿ 6� 2m� 1�

� 1� q�X � � g�C� ÿ 3�m� 1

2

� q�X� � g�C� ÿ 2�m� 1

2

> q�X� �m

and this is impossible. Hence we may assume that LF � 1. In particular
m � id, and f has no multiple ®ber because L is ample. Hence KX L �
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2g�C� ÿ 2. But this is impossible because L2 is odd. This completes the proof
of Theorem 1.8. r

Remark 1.8.1. Let �X ;L� be as in Theorem 1.8. Then L2 a 2m� 2 is
equivalent to KX L b 2q�X� ÿ 4.

Proposition 1.9. Let X be a smooth projective surface of general type.
Then pg�X�b 2q�X� ÿ 4. If this equality holds and X is minimal, then X G
C1 � C2 for smooth projective curves C1 and C2, where pg�X � � h0�KX � and
q�X � � h1�OX �.

Proof. See TheÂoreÁme in [Bea]. r

Proposition 1.10. Let X be a smooth projective surface of general type such
that X is minimal. Assume that q�X �b 1. Then K 2

X b 2pg�X�.

Proof. See TheÂoreÁme 6.1 and Addendum in [De]. r

Theorem 1.11. Let �X ;L� be a quasi-polarized surface with k�X�b 0.
Assume that dim BsjLja 0. Then g�L�b 2q�X� ÿ 1.

Proof. See Corollary 3.2 in [Fk0]. r

2. Main Theorem

Theorem 2.1. Let �X ;L� be a polarized surface such that dim BsjLja 0,
h0�L� � m� 1, and k�X�b 0, where m � g�L� ÿ q�X�. Assume that m b 1.
Then �X ;L� is one of the following types;

(M-1) �X ;L� is a minimal surface of general type with L2 � 1, g�L� � 3,
and q�X� � 2.

(M-2) p : X ! C is a minimal elliptic ®bration over a smooth curve C and
�X ;L� is one of the following;

(M-2-1) 3 � q�X� � g�C� � 1, w�OX � � 0, LF � 2, and p has no multiple
®ber. In this case X is a double covering of P1-bundle on C.

(M-2-2) p has just 2 multiple ®bers 2F1 and 2F2, w�OX � � 0, 2 � q�X � �
g�C� � 1, KX 1F1 � F2, LF � 2 for a general ®ber F.

(M-2-3) w�OX � � 0, q�X� � g�C�, and p has just one multiple ®ber with
mi � 2 and LFi � 1.

(M-2-4) w�OX � � 0, q�X � � g�C� � 1 � 1, KX L � 1 and p has four multiple
®bers m1F1, m2F2, m3F3, and m4F4 with one of the following (here we
assume that LF4 b LF3 b LF2 b LF1);

m1 m2 m3 m4 LF1 LF2 LF3 LF4

3 2 2 2 2 3 3 3
4 2 2 2 1 2 2 2
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(M-2-5) w�OX � � 0, q�X� � g�C� � 1 � 1, KX L � 1 and p has three multiple
®bers and one of the following lists (here we assume that LF3 b
LF2 b LF1);

m1 m2 m3 LF1 LF2 LF3

4 4 4 1 1 1
4 3 3 3 4 4
6 3 3 1 2 2
7 3 2 6 14 21
8 3 2 3 8 12
9 3 2 2 6 9

12 3 2 1 4 6
5 4 2 4 5 10
6 4 2 2 3 6
8 4 2 1 2 4
6 6 2 1 1 3
5 5 2 2 2 5

(M-2-6) w�OX � � 0, q�X� � g�C� � 1, g�C� � 1 (resp. 0), LF � 2 and the
number of its multiple ®ber is three (resp. ®ve).

(M-3-1) �X ;L� is the type (Ia) in Theorem 1.5 with a � m � 2 and k�X� � 0.
(M-3-2) �X ;L� is the type (IVa) in Theorem 1.5 with a � 2, m � 5, and

k�X� � 0.
(M-3-3) �X ;L� is the type �P�d1; d2��a;b� in Theorem 1.5, and case (3) or case

(6a) in (5.20) of [Fj1]. In this case k�X� � 0.
(M-3-4) �X ;L� is the type �P�m� 2g; m�ÿa � in Theorem 1.5 with a � g � 2,

m � 2m� 5, and k�X� � 0.
(M-3-5) X is a K3-surface with q�X� � 0 and L2 � 2mÿ 2.
(M-3-6) �X ;L� is a polarized abelian surface such that �X ;L� is not iso-

morphic to the following type: X GE1 � E2 and L � p�1 L1 � p�2 L2,
where Ei is an elliptic curve and Li is a line bundle on Ei with deg L1

� 1 and deg L2 b 1.
(N) Let X � X0 ! X1 ! � � � ! Xl � X 0 be the minimal model of X.

We put L0 :� L, mi : Xiÿ1 ! Xi, and Li :� �mi���Liÿ1�. Then Liÿ1 �
m�i Li ÿ aiEi and ai > 0 for any i, where Ei is a �ÿ1�-curve of mi. We
put L 0 :� Ll .

(N-1) �X ;L� is a simple blowing up of �X 0;L 0� and X 0 has a minimal
elliptic ®bration p 0 : X 0 ! C over a smooth curve C such that �X 0;L 0�
is one of the following;

(N-1-1) g�C� � 2, q�X 0� � 3, w�OX 0 � � 0, L 0F 0 � 2 and p 0 has no multiple
®bers, where F 0 is a general ®ber of p 0,

(N-1-2) p 0 has just two multiple ®bers, 2F1 and 2F2, w�OX 0 � � 0, g�C� � 1,
q�X 0� � 2, and L 0F 0 � 2.

(N-2) �X 0;L 0� is a polarized abelian surface and
P

i ai a 3.

Proof. Assume that L2 a 2mÿ 2. Here we put t � 2mÿ 2ÿ L2. In this
case, we calculate the delta genus D�L�;
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D�L� � 2� L2 ÿ h0�L�
� 1� L2 ÿm

� 1

2
L2 ÿ 1

2
t

a
1

2
L2:

Hence L2 b 2D�L�. So we can use the result of Fujita. Since dim BsjLja 0
and

g�L� � 1� 1

2
�KX � L�L

>
1

2
L2

� D�L�;
we get that jLj has a ladder and BsjLj � j by Theorem 1.1 and 1.2.

If L2 b 2D�L� � 1, then q�X � � 0 and g�L� � D�L� � m by Theorem 1.1.
Therefore L2 b 2D�L� � 1 � 2g�L� � 1 � 3� �KX � L�L b 3� L2 and this is im-
possible. So we get that L2 � 2D�L�, and if X is not K3-surface, then �X ;L� is a
hyperelliptic polarized surface by Theorem 1.4. Since h0�L� � m� 1, we obtain
that

L2 � 2D�L�
� 4� 2L2 ÿ 2�m� 1�:

That is, L2 � 2mÿ 2. Here we use Fujita's classi®cation of hyperelliptic polar-
ized surfaces. Since k�X�b 0, by Theorem 1.5 we ®nd that q�X � � 0 and since
L2 � 2mÿ 2 and g�L� � m, we get that KX L � 0. Since L is ample, we have
k�X� � 0. Hence �X ;L� is one of the following:

If �X ;L� is the type �Ia�, then a � m � 2 and k�X� � 0. (This is the type
(M-3-1) in Theorem 2.1.)

If �X ;L� is the type �IVa�, then a � 2, m � 5, and k�X� � 0. (This is the
type (M-3-2) in Theorem 2.1.)

If �X ;L� is the type �Pn�d1; d2��a;b�, then the case (3) or the case (6a) in
(5.20) in [Fj1] occur. (This is the type (M-3-3) in Theorem 2.1.)

If �X ;L� is the type �P�m� 2g; m�ÿa �, then a � g � 2 and m � 2m� 5. (This
is the type (M-3-4) in Theorem 2.1.)

If X is a K3-surface, then q�X � � 0 and L2 � 2mÿ 2. By Riemann-Roch
Theorem and Vanishing Theorem, we get that h0�L� � m� 1. (This is the type
(M-3-5) in Theorem 2.1.)

From now on we assume that L2 b 2mÿ 1.
(A) The case in which X is minimal.
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Here we divide the case (A) into the following:
(A.1) The case in which k�X� � 2.
(A.2) The case in which k�X� � 1.
(A.3) The case in which k�X� � 0.
(A.1) The case in which k�X� � 2.
Then L2 a 2m by Theorem 1.7. If L2 � 2m, then X GC1 � C2 and L1

C1 � 2C2, where C1 (resp. C2) is a smooth projective curve with g�C1�b 2 (resp.
g�C2� � 2). But this is impossible. Actually since dim BsjLja 0, we get that
for a general ®ber C2 of the projection C1 � C2 ! C1 BsjLC2

j � j. But since
LC2 � 1 we get that g�C2� � 0 and this is impossible. Hence we may assume
that L2 a 2mÿ 1. By the above hypothesis we may assume that L2 � 2mÿ 1.
Here we use a Beauville's result. Since X is minimal with k�X � � 2, we get that
pg�X�b 2q�X� ÿ 3 unless X GC1 � C2. But if X GC1 � C2, then KX L is even
and here since we assume that L2 � 2mÿ 1, we obtain that KX L � 2q�X � ÿ 1 is
odd. So this is impossible.

If q�X � � 0, then KX L � 2q�X � ÿ 1 � ÿ1 and this is impossible. Hence
q�X �b 1. If q�X � � 1, then KX L � 1 and L2 � 2mÿ 1. Here we remark that
pg�X�b q�X � because X is of general type. By Proposition 1.10, we get that

�K 2
X �b 2pg�X�b 2q�X� and

1 � �KX L�2 b �K 2
X ��L2�b 2L2

and this is impossible.
So we may assume that q�X�b 2. By Proposition 1.10, we get that

K 2
X b 2pg�X �b 2�2q�X� ÿ 3� � 4q�X � ÿ 6:

By Hodge index Theorem, we obtain that

�KX L�2 b �K 2
X ��L2����

b �4q�X � ÿ 6��2mÿ 1�
b 2�2q�X � ÿ 3��2q�X� ÿ 3�

because by Theorem 1.11

q�X � �m � g�L�b 2q�X � ÿ 1:

Hence KX L b
���
2
p �2q�X� ÿ 3�. On the other hand KX L � 2q�X � ÿ 1. Therefore

2q�X � ÿ 1 � KX L b
���
2
p �2q�X � ÿ 3� and we infer that �2 ���

2
p ÿ 2�q�X�a 3

���
2
p ÿ 1.

So we obtain that

q�X �a 3
���
2
p ÿ 1

2
���
2
p ÿ 2

� 3:914 � � �

Thus we have q�X�a 3.
If q�X� � 3 (resp. q�X � � 2), then KX L � 5 (resp. 3) and by using ���, we

get the following list:
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(A.1.a) q�X� � 3, KX L � 5, m a 2, and g�L�a 5,
(A.1.b) q�X� � 2, KX L � 3, m a 2, and g�L�a 4.

Here we remark that if m � 2, then L2 � 2mÿ 1 � 3, h0�L� � m� 1 � 3.
Hence D�L� � 2, that is, L2 � 2D�L� ÿ 1.

(A.1.a.1) Assume that �X ;L� is the case (A.1.a) with q�X� � 3, KX L � 5
and m � 1. Then 4 � g�L�b 2q�X� ÿ 1 � 5 and this is impossible.

(A.1.a.2) Assume that �X ;L� is the case (A.1.a) with q�X� � 3, KX L � 5
and m � 2. Then L2 � 3 and g�L� � 5. Since h0�L� � 3, we have L2 �
2D�L� ÿ 1. If dim BsjLj � 0, then q�X� � 0 by Fujita's classi®cation of �X ;L�
with D�L� � 2. (See [Fj2].) So we may assume that BsjLj � j. Then there
exists a triple covering p : S ! P2. Then by Lemma 3.2 in [Bes], we get that

w�OX � � g�g� 1�
2

� 2ÿ c2

and

K 2
X � 2g2 ÿ 4g� 11ÿ 3c2;

where c2 is the second Chern class of the Tschirnhausen bundle of p (see [Bes]).
Since g�L� � 5, we get that

1ÿ 3� pg�X � �
5�5� 1�

2
� 2ÿ c2 � 17ÿ c2

and

K 2
X � 50ÿ 20� 11ÿ 3c2 � 41ÿ 3c2:

Therefore c2 � 19ÿ pg�X � and

K 2
X � 41ÿ 3�19ÿ pg�X ��
� 3pg�X� ÿ 16:

On the other hand since K 2
X b 2pg�X�b 2q�X � � 6, we get that 6 a K 2

X �
3pg�X � ÿ 16. Hence pg�X�b 8. In particular K 2

X b 2pg�X �b 16. Since L2 �
3, we get that

�KX L�2 b �K 2
X ��L2�

b 48:

But this is a contradiction because KX L � 5. So this case cannot occur.
(A.1.b.1) Assume that �X ;L� is the case (A.1.b) with q�X� � 2, KX L � 3

and m � 1. Then g�L� � 3, h0�L� � m� 1 � 2 and L2 � 2mÿ 1 � 1. (This is
the type (M-1) in Theorem 2.1.)

(A.1.b.2) Assume that �X ;L� is the case (A.1.b) with q�X� � 2, KX L � 3
and m � 2. Then q�X � � 2 and K 2

X b 2pg�X�b 2q�X� � 4. Since L2 � 3, we
get that �KX L�2 b �K 2

X ��L2�b 12. But since KX L � 3, this is a contradiction.
(A.2) The case in which k�X� � 1.
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Then there exists an elliptic ®bration over a smooth curve C; p : X ! C.
The canonical bundle formula of p is the following:

KX 1 �2g�C� ÿ 2� w�OX ��F �
X

i

�mi ÿ 1�Fi;

where F is a general ®ber of p and miFi is a multiple ®ber of p.
If L2 b 2m� 1, then we can prove that dim BsjLj � 1 by Theorem 1.8 (2)

and (3). So we may assume that L2 a 2m. We have only to check the case
where L2 � 2m or L2 � 2mÿ 1.

(A.2.1) The case in which L2 � 2m.
Then KX L � 2q�X � ÿ 2 and q�X�b 2 because KX L > 0.
If q�X � � g�C�, then KX L b �2g�C� ÿ 2� w�OX ��LF � �2q�X� ÿ 2�

w�OX ��LF . Hence LF � 1 and w�OX � � 0. But since h0�LF �b 2 for a general
®ber F, we get that D�LF � � 0 and g�F � � 0. But this is impossible.

If q�X � � g�C� � 1, then w�OX � � 0 and

KX L � �2g�C� ÿ 2�LF �
X

i

�mi ÿ 1�LFi:

Here we remark that q�X�b 2 since 2q�X � ÿ 2 � KX L > 0. In particular
g�C�b 1.

If LF b 2, then

KX L b 4�g�C� ÿ 1� �
X

i

�mi ÿ 1�LFi

� 2�g�C� � 1� � 2g�C� ÿ 6�
X

i

�mi ÿ 1�LFi

� 2q�X� � 2g�C� ÿ 6�
X

i

�mi ÿ 1�LFi:

If g�C�b 2, then g�C� � 2 and KX L � 2q�X� ÿ 2 � 4 and p has no multiple ®ber.
If g�C� � 1, then q�X� � g�C� � 1 � 2 and KX L � 2. By the canonical

bundle formula, we get that p has just 2 multiple ®bers and
P

i�mi ÿ 1�LFi � 2,
that is, mi � 2 and LFi � 1 for i � 1; 2 and KX 1F1 � F2. In particular LF � 2
for a general ®ber F of p. Therefore the type of �X ;L� is one of the following;

(A.2.1.1) 3 � q�X� � g�C� � 1, w�OX � � 0, LF � 2, and p has no multiple
®ber. (This is the type (M-2-1) in Theorem 2.1.)

(A.2.1.2) p has just 2 multiple ®bers 2F1 and 2F2, w�OX � � 0, 2 � q�X � �
g�C� � 1, KX 1F1 � F2, LF � 2 for a general ®ber F. (This is the type (M-2-2)
in Theorem 2.1.)

We study the case (A.2.1.1). By the condition of (A.2.1.1), we get that p is
a smooth ®bration. We put p��L� � E. Then E is a locally free sheaf of rank
2. Furthermore

p� � p��L� ! L

is surjective because F is an elliptic curve with h0�LF � � 2 and BsjLF j � j. So
we get that there exists a ®nite double covering r : X ! PC�E� with L � r�OP�E�
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(1). Let BHPC�E� be the branch locus of r. Then B A j2Dj for some line
bundle D on PC�E� and B is smooth. By the canonical line bundle formula for
r, we get that KX � r��KPC�E� �D�. Since

KPC�E� � ÿ2C0 � �2g�C� ÿ 2ÿ e�F
� ÿ2C0 � �2ÿ e�F ;

where C0 is the minimal section of PC�E� ! C and e � ÿC2
0 , we have D1

2C0 � eF because KX 1 2Fp.
(A.2.2) The case in which L2 � 2mÿ 1.
Then KX L � 2q�X� ÿ 1 and q�X �b 1 because KX L > 0. By the canonical

bundle formula we get that

KX L � �2g�C� ÿ 2� w�OX ��LF �
X

i

�mi ÿ 1�LFi:

Since h0�L� � m� 1 and dim BsjLja 0, we ®nd that LF b 2 for a general ®ber F
of p : X ! C.

Here we divide the case (A.2.2) into the following cases:
(a.1) The case in which q�X� � g�C�.
(a.2) The case in which q�X� � g�C� � 1.
(a.1) The case in which q�X� � g�C�.
Then

KX L b 2�2q�X � ÿ 2�
� 2q�X � ÿ 1� 2q�X� ÿ 3:

If q�X �b 2, then this is impossible. Hence q�X � � 1 and then KX L � 2q�X � ÿ 1
� 1. If w�OX � > 0, then KX L b 2. So we get that w�OX � � 0 and

P
i�mi ÿ 1�LFi

� 1. Therefore p has just one multiple ®ber with mi � 2 and LFi � 1. (This is
the type (M-2-3) in Theorem 2.1.)

(a.2) The case in which q�X� � g�C� � 1.
Here we remark that LF b 2 and w�OX � � 0. We divide two cases by the

value of LF.
(a.2.1) The case where LF b 3.
(a.2.2) The case where LF � 2.
(a.2.1) The case where LF b 3.
Then

KX L b 3�2g�C� ÿ 2� �
X

i

�mi ÿ 1�LFi

� 2�g�C� � 1� � 4g�C� ÿ 8�
X
�mi ÿ 1�LFi

� 2q�X� � 4g�C� ÿ 8�
X

i

�mi ÿ 1�LFi:

If g�C�b 2, then this is impossible because KX L � 2q�X � ÿ 1. So we get that
g�C�a 1 and q�X�a 2. Furthermore we divide the case (a.2.1) into two cases:
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(a.2.1.1) The case where g�C� � 1.
(a.2.1.2) The case where g�C� � 0.
(a.2.1.1) The case where g�C� � 1.
Then q�X � � 2 and KX L � 2q�X� ÿ 1 � 3. By the canonical bundle formula

we get KX L �Pi�mi ÿ 1�LFi. Since g�C� � 1 and w�OX � � 0, p has a multiple
®ber because k�X� � 1. Since p has at least two multiple ®bers (see [Se2]), p has
two or three multiple ®bers.

If p has just three multiple ®bers m1F1, m2F2, and m3F3, then we get
that m1 � m2 � m3 � 2 and LF1 � LF2 � LF3 � 1. But since LF b 3, this is
impossible.

If p has just two multiple ®bers m1F1 and m2F2, we get that �m1;m2� � �2; 3�
or �2; 2�, where we assume m1 a m2.

If �m1;m2� � �2; 3�, then LF1 � 1 and 2LF2 � 2, that is, LFi � 1 for any i.
But then LF � L�m1F1� � 2 and LF � L�m2F2� � 3 and this is impossible.

If �m1;m2� � �2; 2�, then LF1 � 2 and LF2 � 1 or LF1 � 1 and LF2 � 2.
But then L�m1F1�0L�m2F2�. This is also impossible.

(a.2.1.2) The case where g�C� � 0.
Then q�X � � 1 and KX L � 1.

Claim. The number s of multiple ®bers of p is at most four.

Proof. Assume that s b 6. Let fmiFigi be a multiple ®ber of p. Here we
assume that LFi a LFi�1 for any i. Then

1 � KX L � ÿ2LF �
X

i

�mi ÿ 1�LFi

b �m1LF1 �m2LF2� ÿ 2LF � �m3 ÿ 1�LF3 ÿ LF2

� �m4 ÿ 1�LF4 ÿ LF1 � �m5 ÿ 1�LF5 � �m6 ÿ 1�LF6

b 2:

Therefore s a 5.
If s � 5, then by the same argument as above we get that m5 � 2 and

LF5 � 1. By assumption, we get that LF1 � � � � � LF5 � 1 and LF � L�m5F5� � 2
for a general ®ber F of p. But since LF b 3 in this case, this is impossible.
Therefore s a 4. r

Here we remark that s b 3 in this case because k�X� � 1. We assume that
LFi a LFi�1 for any i. We divide the case (a.2.1.2) into the following two cases:

(b.1) The case in which s � 4.
(b.2) The case in which s � 3.
(b.1) The case in which s � 4.
Then by hypothesis we get that �m3 ÿ 1�LF3 ÿ LF2 � 0 and �m4 ÿ 1�LF4ÿ

LF1 � 1. The ®rst equality implies that m3 � 2 and LF2 � LF3. By the second
equality there are two possible cases.
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(a) m4 � 2 and LF4 � LF1 � 1,
(b) m4 � 3 and LF1 � LF4 � 1.

If the case �b� occurs, then by hypothesis LF1 � LF2 � LF3 � LF4 and m1 �
m2 � m3 � m4. But since m3 � 2 and m4 � 3, this is impossible.

If the case (a) occurs, then LF3 � LF2 � LF1 or LF4 � LF3 � LF2. Since
m4 � 2 and m3 � 2, we get that LF4 � LF3 � LF2 and LF4 � LF1 � 1. Since
m1LF1 � 2LF4 � 2�LF1 � 1�, we get that

LF1 � 2

m1 ÿ 2
:

Hence m1 � 3 or 4 because LF1 is integer. If m1 � 3, then LF1 � 2 and if
m1 � 4, then LF1 � 1. Hence we get the following list;

m1 m2 m3 m4 LF1 LF2 LF3 LF4

3 2 2 2 2 3 3 3
4 2 2 2 1 2 2 2

(This is the type (M-2-4) in Theorem 2.1.)
(b.2) The case in which s � 3. (This is the type (M-2-5) in Theorem 2.5.)
Then we get that �m3 ÿ 1�LF3 ÿ LF1 ÿ LF2 � 1.

Claim. m3 a 4.

Proof. If m3 b 5, then

1 � �m3 ÿ 1�LF3 ÿ LF1 ÿ LF2

� �LF3 ÿ LF1� � �LF3 ÿ LF2� � �m3 ÿ 3�LF3

b 2LF3 b 2

and this is a contradiction. r

By the value of m3, we divide the case (b.2) into the following:
(b.2.1) The case in which m3 � 4.
(b.2.2) The case in which m3 � 3.
(b.2.3) The case in which m3 � 2.
(b.2.1) The case in which m3 � 4.
Then �LF3 ÿ LF1� � �LF3 ÿ LF2� � LF3 � 1. Therefore LF3 � 1 and LF3 �

LF2 � LF1, so we get that m1 � m2 � 4.
(b.2.2) The case in which m3 � 3.
Then �LF3 ÿ LF1� � �LF3 ÿ LF2� � 1. So LF3 � LF2 and LF3 � LF1 � 1.

Therefore m2 � 3. Since m1LF1 � 3LF3 � 3�LF1 � 1�, we get that �m1 ÿ 3�LF1

� 3. Since LF1 is an integer, we obtain that 3=�m1 ÿ 3� is integer. Therefore
we have m1 � 4; 6.

If m1 � 4 (resp. m1 � 6), then LF1 � 3 (resp. LF1 � 1). Hence we get that
(1) �m1;m2;m3� � �4; 3; 3�, LF1 � 3, LF2 � LF3 � 4
(2) �m1;m2;m3� � �6; 3; 3�, LF1 � 1, LF2 � LF3 � 2.
(b.2.3) The case in which m3 � 2.
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Then LF3 � LF2 � LF1 � 1. Hence we ®nd that
(1) m1LF1 � 2LF3 � 2LF2 � 2LF1 � 2,
(2) m2LF2 � 2LF3 � 2LF2 � 2LF1 � 2.

On the other hand, since LF1 � �2=m1�LF3 and LF2 � �2=m2�LF3, we get that
LF3 � �2=m1�LF3 � �2=m2�LF3 � 1. Therefore

1ÿ 2

m1
ÿ 2

m2

� �
LF3 � 1;

that is,

LF3 � m1m2

�m1 ÿ 2��m2 ÿ 2� ÿ 4
:

Here we remark that m2 b 3 because LF3 > LF2.
Furthermore we divide the case (b.2.3) into the following three cases:
(b.2.3.1) The case in which m2 � 3.
(b.2.3.2) The case in which m2 � 4.
(b.2.3.3) The case in which m2 b 5.
(b.2.3.1) The case in which m2 � 3.
Then

LF3 � 3m1

m1 ÿ 6
� 3� 18

m1 ÿ 6
:

Since LF3 > 0, we get that m1 b 7. Since 18=�m1 ÿ 6� is integer and LF1 �
6=�m1 ÿ 6�, the candidate of m1 is the following;

m1 LF1 LF2 LF3

7 6 14 21
8 3 8 12
9 2 6 9

12 1 4 6

(b.2.3.2) The case in which m2 � 4.
Here we remark that m1 b 4. In this case we get that

LF3 � 4m1

2�m1 ÿ 2� ÿ 4

� 2m1

m1 ÿ 4

� 2� 8

m1 ÿ 4
:

Since LF2 > 0 and LF1 � 4=�m1 ÿ 4�, we ®nd that m1 b 5 and

m1 m2 m3 LF1 LF2 LF3

5 4 2 4 5 10
6 4 2 2 3 6
8 4 2 1 2 4
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(b.2.3.3) The case in which m2 b 5.
Then m1 b 5 and since KX L � 1 and m3 � 2 we get that

LF1 � LF2 a �m1 ÿ 4�LF1 � �m2 ÿ 4�LF2 � 4:

Therefore �LF1;LF2� � �1; 1�, �1; 2�, �1; 3�, �2; 2�. Since LF3 � LF1 � LF2 � 1,
�m1 ÿ 4�LF1 � �m2 ÿ 4�LF2 � 4, and m3 � 2, we get the following;

m1 m2 m3 LF1 LF2 LF3

6 6 2 1 1 3
5 5 2 2 2 5

(a.2.2) The case where LF � 2.
Then

KX L � 2�2g�C� ÿ 2� �
X

i

�mi ÿ 1�LFi

� 4g�C� ÿ 4�
X

i

�mi ÿ 1�LFi

� 2�g�C� � 1� ÿ 6� 2g�C� �
X

i

�mi ÿ 1�LFi

� 2q�X� � 2g�C� ÿ 6�
X

i

�mi ÿ 1�LFi:

Hence g�C�a 2. Here we remark thatX
i

�mi ÿ 1�LFi � number of multiple fibers

because LF � 2. In particular mi � 2 and LFi � 1 for any i. If g�C� � 2 (resp.
1, 0), then

P
i�mi ÿ 1�LFi � 1 (resp. 3, 5). On the other hand, p has at least two

multiple ®bers. Therefore g�C�a 1 and
P

i�mi ÿ 1�LFi � 3 or 5. (This is the
type (M-2-6) in Theorem 2.1.)

(A.3) The case in which k�X� � 0.
Then g�L� � 1� �1=2�L2 � q�X � �m. Then by Riemann-Roch Theorem

and the classi®cation of projective surfaces, we get that X is an abelian surface or
K3 surface because h0�L� � m� 1. But here we assume L2 b 2mÿ 1. So we
get that X is an abelian surface. In particular L2 � 2m� 2.

Here we remark the following: Let �Y ;A� be a polarized abelian surface.
If dim BsjAj � 1, then Y GE1 � E2 and A � p�1 L1 � p�2 L2, where Ei is an elliptic
curve and Li is a line bundle on Ei with deg L1 � 1 and deg L2 b 1. (See [LB].)
Therefore if �X ;L� is not the above type, then dim BsjLja 0. (This is the type
(M-3-6) in Theorem 2.1.)

(B) The case in which X is not minimal.
Let X � X0 ! X1 ! � � � ! Xl � X 0 be the minimal model of X. We put

L0 :� L, mi : Xiÿ1 ! Xi, and Li :� �mi���Liÿ1�. Then Liÿ1 � m�i Li ÿ aiEi and
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ai > 0 for any i, where Ei is a �ÿ1�-curve of mi. We put L 0 :� Ll . Here we
remark that dim BsjLl ja 0. Then

g�L 0� � g�L� �
Xl

i�1

a2
i ÿ ai

2

and

�L 0�2 � L2 �
Xl

i�1

a2
i :

So we get that

g�L 0� � q�X� �m�
Xl

i�1

a2
i ÿ ai

2

and

�L 0�2 b 2mÿ 1�
Xl

i�1

a2
i

because L2 b 2mÿ 1 by assumption. Here we put m 0 � m�P l
i�1�a2

i ÿ ai�=2.
Then we get that

�L 0�2 b 2mÿ 1�
Xl

i�1

a2
i

� 2mÿ 1�
Xl

i�1

�a2
i ÿ ai� �

Xl

i�1

ai

� 2m 0 ÿ 1�
Xl

i�1

ai

b 2m 0:

(B.1) The case in which X is of general type.

Then since dim BsjL 0ja 0, we get that �L 0�2 a 2m 0 by Theorem 1.7. Hence
we have �L 0�2 � 2m 0. But then X 0GC � F and L1C � 2F , where C and F
are smooth projective curves with g�C�b 2 and g�F� � 2. This is impossible by
the same argument as in the case (A-1) above.

(B.2) The case in which the Kodaira dimension of X is 1.
Then X 0 has an elliptic ®bration over a smooth projective curve C; p : X 0 !

C. Then by Theorem 1.8 (2) and (3) we get that �L 0�2 a 2m 0 since dim BsjL 0j
a 0. So we get that �L 0�2 � 2m 0. In particular

P
i ai � 1 and �X ;L� is a simple

blowing up of �X 0;L 0�. Furthermore m � m 0. So we get that h0�L 0�b h0�L� �
m� 1 � m 0 � 1.

If h0�L 0�b m 0 � 2, then �L 0�2 b 2D�L 0� and we can check this case by using
Fujita Theory. First we remark that g�L 0� > m 0b D�L 0� since �L 0�2 � 2m 0. By
Theorem 1.4 and Theorem 1.5, in this case q�X � � q�X 0� � 0 because k�X� � 1.
But KX 0L

0 � 2q�X � ÿ 2 � ÿ2 and this is impossible. So we assume that h0�L� �
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m 0 � 1. Then by the same argument as in the case (A.2.1) above we get the type
of �X 0;L 0�, that is,

(B.2.1) g�C� � 2, q�X� � 3, w�OX � � 0, L 0F 0 � 2 and p has no multiple
®bers, where F 0 is a general ®ber of p (this is the type (N-1-1) in
Theorem 2.1),

(B.2.2) p has just two multiple ®bers, 2F1 and 2F2, w�OX � � 0, g�C� � 1,
q�X � � 2, and L 0F 0 � 2 (this is the type (N-1-2) in Theorem 2.1).

(B.3) The case in which k�X � � 0.
In this case X 0 is an abelian surface or bielliptic surface because KX 0L

0
a 2q�X 0� ÿ 2. But if �L 0�2 � 2m 0, then

P
i ai � 1 and g�L� � g�L 0�, that is,

m � m 0. Since h0�L 0�b h0�L�b m� 1 � m 0 � 1, we get that h0�L 0�b m 0 � 1.
But this is impossible because h0�L 0� � �L 0�2=2. Hence �L 0�2 � 2m 0 � 2. Then
g�L 0� � 2�m 0 and X 0 is an abelian surface because q�X 0� � 2 in this case.
Furthermore we have

P
i ai a 3. (This is the type (N-2) in Theorem 2.1.)

These complete the proof of Theorem 2.1. r

Remark 2.2. Here we consider the type (M-2-1) in Theorem 2.1. Let
r : X ! PC�E� be the double covering. Let BHPC�E� be the branch locus of
r. Then B A j2Dj for some divisor on PC�E�. Since X and PC�E� is smooth,
we need that B is smooth. So we check the condition that j2Dj has a smooth
member. Here we assume that E is normalized. Let C0 be the minimal section
of PC�E� ! C and let F be a ®ber of PC�E� ! C. We put e � ÿC2

0 . Then
D1 2C0 � eF by the proof of Theorem 2.1.

Assume that e b 0. Then an irreducible curve on PC�E� is one of the
following types (see [Ha]);

(1) C0,
(2) F,
(3) aC0 � bF , a > 0, and b b ae.

Assume that B A j2Dj is not irreducible. Then we remark that F is not an ir-
reducible component of B because F�Bÿ F � > 0. If C0 is an irreducible com-
ponent of B, then 0 � C0�3C0 � 2eF� � ÿ3e� 2e � ÿe. Hence e � 0. If C0 is
not an irreducible component of B, then any irreducible component of B is the
type xC0 � yF with x > 0 and y b ex. If y > xe, then xC0 � yF is ample and
this is a contradiction because B is smooth. So we have y � xe and

0 � �xC0 � yF ���4ÿ x�C0 � �2eÿ y�F �
� ÿx�4ÿ x�e� x�2eÿ y� � y�4ÿ x�
� �exÿ 2y��xÿ 2�
� ÿy�xÿ 2�:

Hence y � 0 or x � 2.
If y � 0, then e � 0 because x > 0.
If x � 2, then y � 2e and Bÿ �2C0 � 2eF� � 2C0. Since C0 is not an

irreducible component of B, we get that 2C0 is numerically equivalent to an
irreducible curve. Hence e � 0.
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In any case we have e � 0 and B � 4C0 if B is not irreducible. Since C0 is
not an irreducible component of B, we get that B � C1 � C2 where Ci is an
irreducible curve with Ci 1 2C0 for i � 1; 2.

Assume that B is irreducible and e > 0. Then by the above condition, we
have 2e b 4e > 0 and this is impossible. Hence e � 0. Therefore B1 4C0 and
e � 0 in this case.

Assume that e < 0. Then an irreducible curve on PC�E� is one of the fol-
lowing types;

(1 0) C0,
(2 0) F,
(3 0) aC0 � bF , where a � 1 and b b 0 or a b 2 and b b �1=2�ae.

Since B A j2Dj � j4C0 � 2eF j, F is not an irreducible component of B because B
is smooth.

If C0 is an irreducible component of B, then C0�3C0 � 2eF � � ÿ3e� 2e �
ÿe > 0 and this is impossible because B is smooth. Therefore C0 is not an
irreducible component of B.

Since

2D1 4C0 � 2eF �
X

i

�aiC0 � biF�

and 2e � �1=2� � 4� e, we get that ai b 2 and bi � �1=2�aie for any i. So if B is
not irreducible, then since

P
i ai � 4, we get that ai � 2 and bi � e. In this case

�2C0 � eF �2 � ÿ4e� 4e � 0. Therefore we have the following two types:
(1 00) If B is not irreducible, then B � C1 � C2, where Ci 1 2C0 � eF for

each i.
(2 00) If B is irreducible, then B1 4C0 � 2eF .

Therefore we get the following types:
(M-2-1-1) If e b 0 and B is not irreducible, then e � 0 and B � C1 � C2,

where Ci � 2C0 for i � 1 or 2.
(M-2-1-2) If e b 0 and B is irreducible, then e � 0 and B � 4C0.
(M-2-1-3) If e < 0 and B is not irreducible, then B � C1 � C2, where

Ci 1 2C0 � eF for each i.
(M-2-1-4) If e < 0 and B is irreducible, then B1 4C0 � 2eF .
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