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A CLASSIFICATION OF POLARIZED SURFACES (X,L)
WITH «(X) >0, dim Bs|L| <0, g(L) = q(X)+m, AND h°(L) =m+ 1

YosHiakl Fukuma

Abstract

Let (X,L) be a polarized surface and dim Bs|L| <0. In our previous paper
we have studied polarized surfaces with g(L) = ¢(X) +m and h°(L) > m+2. In this
paper, we classify (X,L) with x(X) >0, g(L) = ¢(X)+m and h°(L) =m+ 1.

0. Introduction

Let X be a smooth projective variety over the complex number field C with
dim X = n, and let L be an ample (resp. a nef and big) line bundle on X. Then
we call the pair (X,L) a polarized (resp. quasi-polarized) manifold. The sec-
tional genus g(L) of (X,L) is defined as follows:

1
g(L) =1+5(Ky + (n—L)L",
where Ky is the canonical line bundle of X. A classification of (X, L) with small

value of sectional genus was obtained by several authors. On the other hand,
Fujita proved the following Theorem (see Theorem (II.13.1) in [Fj3]).

THEOREM. Let (X, L) be a polarized manifold. Then for any fixed g(L) and
n = dim X, there are only finitely many deformation type of (X, L) unless (X,L) is
a scroll over a smooth curve.

(For a definition of the deformation type of (X, L), see §13 of Chapter II in
[Fj3].) By this theorem, Fujita proposed the following Conjecture;

ConsecTURE (Fujita). Ler (X, L) be a polarized manifold. Then g(L) >
q(X), where q(X)=h'(Oy): the irregularity of X.

This Conjecture is very difficult and it is unknown even for the case in which
X is a surface.
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If dim Bs|L| <0, then we can prove that g(L) > ¢g(X) (see Theorem 3.2
n [Fk3]). Furthermore the author proved that if (X,L) is a quasi-polarized
manifold with dim X =3 and A°(L) :=dim H°(L) > 2, then g(L) > g(X) (see
[Fk5]). Moreover the author obtained the classification of polarized 3-folds
(X, L) with the following types;
(1) g(L) = g(X) and A(L) > 3 ([FkS))
(2) 9(L) = g(X)+1 and K'(L) > 4 ([FK2)),
(3) g(L) = ¢(X) +2 and H(L) > 5 ([Fk6)).

By considering the result of 3-dimensional case, it is natural to consider the
following problem;

ProBLEM. Let (X,L) be a polarized manifold with dim X =n» and g(L) =
g(X)+m, where m is a nonnegative integer. Assume that A°(L) >n+m.
Then classify (X, L) with these properties.

n [Fk7], we get a classification of polarized manifolds (X,L) with n:=
dim X >3, g(L) = ¢(X) +m, dim Bs|L| <0, and h°(L) = m +n.

In [Fk9], we studied polarized surfaces (X, L) with n =2, g(L) = ¢(X) + m
and h°(L) > m+ 2.

Here we remark that if n > 3, then we can use the adjunction theory for
Ky + (n—2)L. Butif n =2, then we cannot use the theory, so we need to study
(X,L) by the value of Kodaira dimension.

In this paper, we consider the case in which n=2, g(L) = ¢q(X)+m,
dim Bs|L| <0, and h°(L) =m+ 1. In particular we study the case where
k(X) = 0. By using this result we get a classification of polarized manifolds
(X,L) with n=dim X >3, g(L) = g(X) +m, Bs|L| =0, and h°(L) =m +n— 1.
We will study this in a forthcoming paper [Fk10].

We use the customary notation in algebraic geometry.

The author would like to thank the referee for giving some useful comments
and suggestions.

1. Preliminaries

THEOREM 1.1. Let (X,L) be a polarized manifold with n=dim X > 2.
Assume that |L| has a ladder and g(L) > A(L), where A(L) is the delta genus of
(X, L).

(1) If L" = 2A(L) + 1, then g(L ) A(L) and q(X) =0.

(2) If L" = 2A(L), then Bs|L| =

(3) If L" = 2A(L) — 1, then |L| has a regular ladder.

Proof. See (I1.3.5) in [Fj3]. ]

THEOREM 1.2. Let (X,L) be a polarized manifold with n =dim X > 2. If
dim Bs|L| <0 and L" > 2A(L) — 1, then |L| has a ladder.

Proof. See (1.4.15) in [Fj3]. ]
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DEerNiTION 1.3 (See Definition 1.1 in [Fjl]). Let (X, L) be a polarized sur-
face. Then (X, L) is called a hyperelliptic polarized surface if Bs|L| = ), the mor-
phism defined by |L| is of degree two onto its image W, and if A(W,H) =0 for
the hyperplane section H on W.

THEOREM 1.4. Let (X,L) be a polarized manifold with dim X = n such that
Bs|L| =0, L" =2A(L), and g(L) > A(L). Then (X, L) is hyperelliptic unless L is
simplely generated and (X, L) is a Fano-K3 variety.

Proof.  See Theorem 1.4 in [Fjl]. O

THEOREM 1.5. Let (X,L) be a hyperelliptic polarized surface. Then (X, L)
is one of the following types;

Type L? g(L) q(X)
(Ia) 2 a 0
(Iv,) 8 2a+ 1 0
(*11,) 4 2a 0
(>2(61,62), 1) 20| ald|+b -1 0
(32(01,02);) 216 b1 b1
(X 1),) du au—1 a—1
O (u+2y,1),) 4(pu+7y) ap+2ay —y—1 0
Furthermore the Kodaira dimension of X is the following

Value of k(X) 2 1

(1a) a>?2 _

(Vo) a>?2 _

(*Ha) a>1 _

(X©1,02), 5) case (5) case (4)

(2(5175222) - —

(Z(ﬂ,ﬂ);) B - -

(e +2y,0),) a>?2 a=2 and y>?2

Value of k(X) 0 — 0

Ia) a=2 a<?2

(IVa) a=2 _

(*I11,) - a=1

(2(51752)1,)) case (3) and (6a) case (1) and (2)

(2(51752)2) - any b

(s 0),) - any a

o(u+2y,0),) a=y=2 a=2 and y=1

For the definition of the above types, see [Fjl|. In particular for the cases of the
type (2(51752)11,), see (5.20) in [Fjl].

Proof. See [Fjl]. (Here we remark that the case (6b) of type (3°(51,62), ;)
is impossible because dim X = 2.) O
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DerFNITION 1.6 (See Definition 1.9 in [Fkl1]). (1) Let (X,L) be a quasi-
polarized surface. Then (X, L) is called L-minimal if LE > 0 for any (—1)-curve
E on X.

(2) Let (X,L) and (Y,A4) be quasi-polarized surfaces. Then (Y,A4) is
called an L-minimalization of (X, L) if there exists a birational morphism
t:X — Y such that L = u*(A4) and (Y, A) is A-minimal. (We remark that an
L-minimalization of (X, L) always exists.)

(3) Let (X,L) and (X',L’) be polarized surfaces. Then (X, L) is called a
simple blowing up of (X', L’) if X is a blowing up of X’ at xe X' and (E,Lg) =
(P',0pi(1)) for the exceptional divisor E.

Remark 1.6.1. Let X be a smooth projective surface and let L be an ample
line bundle on X. Then (X, L) is L-minimal.

TueoREM 1.7. Let (X,L) be a quasi-polarized surface with h°(L) > 2 and
k(X)=2. Assume that g(L) = q(X) +m for m >0. Then L* <2m. Moreover
if L> =2m and (X,L) is L-minimal, then X =~ C; x Cy and L = C{ + 2C,, where
C\ and Cy are smooth curves with g(Cy) > 2 and g(Cy) = 2. (Here = denotes the
numerical equivalence of divisors.)

Proof. See Theorem 3.1 in [Fk4]. O

Remark 1.7.1. Let (X,L) be as in Theorem 1.7. Then L? < 2m is equiv-
alent to KyL > 2¢q(X) — 2.

THEOREM 1.8. Let (X,L) be a quasi-polarized surface with k(X) =0 or 1.
Assume that g(L) = q(X) + m.
(1) L*><2m+2 holds.
(2) If L>=2m+2 and (X,L) is L-minimal, then (X,L) is one of the
following;
(2-1) k(X) =0 case.
X is an Abelian surface and L is any nef and big divisor.
(2-2) k(X) =1 case.
X=2FxCand L= C+ (m+ 1)F, where F and C are smooth curves
with g(C) =2 and g(F) =1. If h°(L) >0, then L= C+ Y. _; mF,,
where F, is a fiber of the second projection over x € C, I is a set of a
Sinite point of C, and m, is a positive integer with Y ._;my=m+ 1.
(Here Dy = D, denotes O(D;) = O(Ds) for two divisors D\ and D,.)
(3) If (X,L) is a polarized surface with (X) =1 and L* <2m+ 1, then
L? <2m.

Proof. For the proof of (1), (2-1), and (2-2), see Theorem 2.1 in [Fk4].
Next we consider the case (3). Let n:X — C be an elliptic fibration over a
smooth curve C. Assume that L? =2m+ 1.
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If g(C) =0, then ¢(X) <1 and g(L) <m+ 1. But since L is ample and
k(X) =1, we get that KyL > 1 and g(L) > m+ 2. This is impossible. So we
may assume that g(C) > 1.

Let u: X — S be a relative minimalization of f : X — C and let 4 := u,(L).
Then A4 is ample. Let &:S — C be an elliptic fibration such that f =/hopu.

(A) The case in which g(C) =1.

If ¢(X) =g(C) =1, then this is impossible by the same argument as above.

If ¢(X) = ¢g(C) + 1 = 2, then, by the canonical bundle formula, . has at least
two multiple fibers since x(X)=1. So we get that KyL > Ks4 > 2. Hence
g(L) >m+2 and this is also impossible.

(B) The case in which g(C) > 2.

If ¢(X)=g¢(C), then KyL > KsA > 4g(C) —4 =4q(X)—4. Hence

g(L) =1 +%(4q(X) —4+1L7%
= 143 (g(X) ~ 4 2m 4 )

3
=1+29(X)+m—=

2
1
= 4(X) +m—3+q()
3
ZQ(X)'FI’I’!'FE

and this is also impossible.
So we assume that ¢(X) = g(C) + 1.
If LF > 2, then we get that

KxL > KsA > (29(C) —2)LF

> 4g(C) — 4
=29(C) +2+29(C) — 6
=2q(X) +29(C) -6

Hence

g(L) = 1+=-29(X)+29(C)—6+2m+1)

1
=1+4q(X) +9(C) =3 +m+5

:q(X)+g(C)—2+m+%

>q(X)+m

and this is impossible. Hence we may assume that LF =1. In particular
=1id, and f has no multiple fiber because L is ample. Hence KyL =
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2g(C) —2. But this is impossible because L? is odd. This completes the proof
of Theorem 1.8. O

Remark 1.8.1. Let (X,L) be as in Theorem 1.8. Then L?> <2m+2 is
equivalent to KyL > 2¢g(X) — 4.

PropPOSITION 1.9. Let X be a smooth projective surface of general type.
Then p,(X)=2q(X)—4. If this equality holds and X is minimal, then X =
Cy x Cy for smooth projective curves Cy and C,, where pg(X) =h%(Ky) and
q(X) = h'(Ox).

Proof. See Théoréme in [Bea]. O

ProproSITION 1.10. Let X be a smooth projective surface of general type such
that X is minimal. Assume that q(X) > 1. Then Kg >2p, (X).

Proof. See Théoréme 6.1 and Addendum in [De]. O

THeOREM 1.11. Let (X,L) be a quasi-polarized surface with 1(X) > 0.
Assume that dim Bs|L| <0. Then g(L) = 2q(X) — 1.

Proof. See Corollary 3.2 in [FkO]. O

2. Main Theorem

THEOREM 2.1. Let (X,L) be a polarized surface such that dim Bs|L| <0,
(L) =m+1, and x(X) >0, where m=g(L)—q(X). Assume that m > 1.
Then (X,L) is one of the following types;

(M-1)  (X,L) is a minimal surface of general type with L*> =1, g(L) =3,

and q(X) =2.
(M-2) 7:X — C is a minimal elliptic fibration over a smooth curve C and
(X, L) is one of the following,

(M-2-1) 3=¢q(X)=9(C)+ 1, x(Ox) =0, LF =2, and n has no multiple
fiber. In this case X is a double covering of P'-bundle on C.

(M-2-2) 7 has just 2 multiple fibers 2F, and 2F,, y(Ox) =0, 2=¢q(X) =
g(C)+ 1, Ky = Fy + F,, LF =2 for a general fiber F.

(M-2-3) x(Ox) =0, q(X)=g(C), and © has just one multiple fiber with
m; =2 and LF; = 1.

(M-2-4) y(Ox) =0, q(X)=¢(C)+1=1, KxL=1 and © has four multiple
fibers my Fy, myF>, m3Fs, and myFy with one of the following (here we
assume that LFy > LF; > LF, > LF));

nmy noy ms my LF] LF2 LF3 LF4
3 2 2 2 2 3 3 3
4 2 2 2 1 2 2 2
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(M-2-5) x(0Ox) =0, ¢(X)=9g(C)+1=1, KxL =1 and © has three multiple
fibers and one of the following lists (here we assume that LFs >

LF, > LF));
np my ms LFl LFZ LF3
4 4 4 1 1 1
4 3 3 3 4 4
6 3 3 1 2 2
7 3 2 6 14 21
8 3 2 3 8 12
9 3 2 2 6 9
12 3 2 1 4 6
5 4 2 4 5 10
6 4 2 2 3 6
8 4 2 1 2 4
6 6 2 1 | 3
5 5 2 2 2 5
(M-2-6) x(Ox) =0, g(X)=9¢g(C)+1, g(C)=1 (resp. 0), LF =2 and the
number of its multiple fiber is three (resp. five).
(M-3-1) (X, L) is the type (1,) in Theorem 1.5 with a =m =2 and 1(X) = 0.
(M-3-2) (X,L) is the type (IV,) in Theorem 1.5 with a=2, m=35, and
k(X)=0

(M-3-3) (X, L) is the type (2(51752)(1 p) i Theorem 1.5, and case (3) or case
(6a) in (5.20) of [Fjl|. In this case (X )—O

(M-3-4) (X,L) is the type (Z(,u—f—Zy, ), ) in Theorem 1.5 with a =y =2,
m=2u+5, and k(X) =

(M-3-5) X is a K3-surface with q( )=0 and L*> =2m — 2.

(M-3-6) (X, L) is a polarized abelian surface such that (X,L) is not iso-
morphic to the following type: X = Ey x E; and L = p{L; + p;Lo,
where E; is an elliptic curve and L; is a line bundle on E; with deg L,
=1 and deg L, > 1.

(N) Let X=Xy— X1 — - — X;=X' be the minimal model of X.
We put Ly := L, y; : Xi—1 — X;, and L; := (i;),(Li—1). Then L;_; =
uiLi — o,E; and o; > 0 for any i, where E; is a (—1)-curve of u;. We
put L' :=L;.

(N-1) (X,L) is a simple blowing up of (X',L") and X' has a minimal
elliptic fibration 7' : X' — C over a smooth curve C such that (X', L")
is one of the following,

(N-1-1) ¢g(C)=2, q(X') =3, x(Ox)) =0, L'F' =2 and n' has no multiple
fibers, where F' is a general fiber of 7,

(N-1-2) =’ has just two multiple fibers, 2F, and 2F,, y(0Ox/) =0, g(C) =1,
q(X') =2, and L'F' = 2.

(N-2)  (X',L") is a polarized abelian surface and ), o0; < 3.

Proof. Assume that L? <2m —2. Here we put t =2m —2 — L>. In this
case, we calculate the delta genus A(L);
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A(L) =2+ L*-n°(L)
=1+L>-m

1 1
S R
2 2
1
< -I%
-2
Hence L?> >2A(L). So we can use the result of Fujita. Since dim Bs|L| <0
and

1
g(L) =1 +§(K)( +L)L
1 2
>§L
:A(L)7

we get that |L| has a ladder and Bs|L| =0 by Theorem 1.1 and 1.2.

If L2 >2A(L) +1, then ¢(X) =0 and g(L) = A(L) = m by Theorem 1.1.
Therefore L2 > 2A(L) +1 =2g(L) + 1 =3+ (Ky + L)L > 3 + L? and this is im-
possible. So we get that L? = 2A(L), and if X is not K3-surface, then (X, L) is a
hyperelliptic polarized surface by Theorem 1.4. Since h°(L) = m + 1, we obtain
that

L? =2A(L)
=442L7 -2(m+1).

That is, L?> =2m — 2. Here we use Fujita’s classification of hyperelliptic polar-
ized surfaces. Since x(X) > 0, by Theorem 1.5 we find that ¢(X) = 0 and since
L?>=2m—2 and g(L) =m, we get that KyL =0. Since L is ample, we have
k(X)=0. Hence (X,L) is one of the following:

If (X,L) is the type (I,), then a =m =2 and x(X) =0. (This is the type
(M-3-1) in Theorem 2.1.)

If (X,L) is the type (IV,), then a =2, m =15, and x(X) =0. (This is the
type (M-3-2) in Theorem 2.1.)

If (X,L) is the type (3."(d1,02)),), then the case (3) or the case (6a) in
(5.20) in [Fjl] occur. (This is the type (M-3-3) in Theorem 2.1.)

If (X,L) is the type (> (u+2p,u),), thena=y=2and m =2u+5. (This
is the type (M-3-4) in Theorem 2.1.)

If X is a K3-surface, then ¢(X) =0 and L? = 2m —2. By Riemann-Roch
Theorem and Vanishing Theorem, we get that A°(L) =m + 1. (This is the type
(M-3-5) in Theorem 2.1.)

From now on we assume that L?> >2m — 1.

(A) The case in which X is minimal.
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Here we divide the case (A) into the following:

(A.1) The case in which x(X) =

(A.2) The case in which x(X) =1

(A.3) The case in which x(X) =

(A.1) The case in which x(X) =

Then L?> <2m by Theorem 1.7. If L?> =2m, then X ~ C; x C, and L =
C| +2C,, where C; (resp. () is a smooth projective curve with g(Cy) > 2 (resp.
g(Cy) =2). But this is impossible. Actually since dim Bs|L| <0, we get that
for a general fiber C, of the projection C; x C; — C; Bs|L¢,| =0. But since
LC, =1 we get that g(C,) =0 and this is impossible. Hence we may assume
that L? <2m — 1. By the above hypothesis we may assume that L> = 2m — 1.
Here we use a Beauville’s result. Since X is minimal with x(X) = 2, we get that
pq( ) > 2q( )—3 unless X =~ C; x C;. But if X = C; x C;, then KyL is even
and here since we assume that L? = 2m — 1, we obtain that KyL = 2g(X) — 1 is
odd. So this is impossible.

If g(X)=0, then KyL =2¢g(X)—1=—1 and this is impossible. Hence
g(X)=1. If g(X)=1, then KyL =1 and L?> =2m — 1. Here we remark that
p,(X) = q(X) because X is of general type. By Proposition 1.10, we get that
(K3) = 2p,(X) > 2¢(X) and

1 = (KxL)* = (K2)(L?) = 2L?

and this is impossible.
So we may assume that g(X) > 2. By Proposition 1.10, we get that

K3 >2p,(X) >2(29(X) — 3) = 4¢(X) — 6.
By Hodge index Theorem, we obtain that
K3)(L?)
q(X) = 6)(2m —1)
(2¢(X) —3)(2¢(X) - 3)

(*) (KyL)* >

Y

(
(4
2

\%

because by Theorem 1.11

q(X)+m=g(L) >2q(X) - 1.

Hence KyL > v/2(2¢(X) — 3). On the other hand KyL = 2¢(X) — 1. Therefore
2¢(X) —1=KyL > \/_( q(X) —3) and we infer that (2v2 —2)g(X) <3v2 — 1.
So we obtain that

3V2 -

2f2

q(X) < =3914- .
Thus we have g(X) < 3.

If g(X) =3 (resp. ¢(X) =2), then KyL =5 (resp. 3) and by using (x), we
get the following list:
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(A.l.a) ¢(X) =3, KxyL=5, m<2, and g(L) <5,

(Alp) q(X)=2, KxyL=3, m<2, and g(L) < 4.

Here we remark that if m=2, then L>=2m—1=3, h°(L)=m+1=3.
Hence A(L) =2, that is, L? =2A(L) — 1.

(A.l.0.1) Assume that (X,L) is the case (A.l.x) with ¢(X) =3, KxyL=>5
and m=1. Then 4=g¢g(L) >2¢g(X)—1=25 and this is impossible.

(A.l.o.2) Assume that (X, L) is the case (A.l.x) with g(X) =3, KyL=5
and m=2. Then L?>=3 and ¢g(L)=5. Since h°(L)=3, we have L?>=
2A(L) — 1. If dim Bs|L| =0, then ¢(X) =0 by Fujita’s classification of (X, L)
with A(L) =2. (See [Fj2].) So we may assume that Bs|L| = 0. Then there
exists a triple covering 7 : S — P>. Then by Lemma 3.2 in [Bes], we get that

1

and

K3 =2g> —4g+ 11 — 3¢,
where ¢, is the second Chern class of the Tschirnhausen bundle of 7 (see [Bes]).
Since g(L) =5, we get that

5(5+1
1—3+pg(X): (2 )+2—02:17—(32

and
K} =50 —20+11 -3¢, = 41 — 30,
Therefore ¢; =19 — p,(X) and
Ky =41-3(19 — p,(X))
=3p,(X) — 16.

On the other hand since K§ >2p,(X)>2¢(X) =6, we get that 6 < Kj =
3py(X) —16. Hence p,(X)>8. In particular K3 >2p,(X)>16. Since L*> =
3, we get that

(KxL)* = (K3)(L?)
> 48.

But this is a contradiction because KyL = 5. So this case cannot occur.

(A.1.6.1) Assume that (X,L) is the case (A.1.f) with ¢(X) =2, KxyL=3
and m=1. Then g(L)=3, i®(L)=m+1=2and L>=2m—1=1. (This is
the type (M-1) in Theorem 2.1.)

(A.1..2) Assume that (X,L) is the case (A.1.f) with ¢(X) =2, KxyL=3
and m = 2. Then q(X) =2 and K} > 2p,(X) >2q(X) =4. Since L? =3, we
get that (KyL)* > (Kz)(Lz) > 12. But since KyL =3, this is a contradiction.

(A.2) The case in which x(X) = 1.
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Then there exists an elliptic fibration over a smooth curve C; n: X — C.
The canonical bundle formula of 7 is the following:

Ky = (29(C) =2+ x(Ox))F + Z(mi — 1)F,

where F is a general fiber of = and m;F; is a multiple fiber of .

If L?> >2m+ 1, then we can prove that dim Bs|L| = 1 by Theorem 1.8 (2)
and (3). So we may assume that L? <2m. We have only to check the case
where L?> =2m or L*> =2m — 1.

(A.2.1) The case in which L? = 2m.

Then KyL =2¢(X)—2 and ¢(X) =2 because KyL > 0.

If ¢(X)=g(C), then KyL > (29(C)—2+ x(Ox))LF = (2q(X) -2+
72(Ox))LF. Hence LF =1 and y(0x) =0. But since 1°(Lr) > 2 for a general
fiber F, we get that A(Lr) =0 and g(F) =0. But this is impossible.

If g(X)=9¢(C)+1, then y(Ox) =0 and

KyL = (2g(C) —2)LF + (m; — 1)LF;.

Here we remark that ¢(X)=>2 since 2¢(X)—2=KyL >0. In particular
g(C) = 1.
If LF > 2, then

KyL>4(g(C)— 1)+ (m; — 1)LF,
=2(g(C)+ 1) +29(C) — 6 + Z(m,» — 1)LF,

=29(X) +29(C) 6+ ) (m; — 1)LF;.

If g(C) = 2, then ¢(C) =2 and KxyL = 2¢(X) — 2 = 4 and = has no multiple fiber.
If g(C)=1, then ¢(X)=¢(C)+1=2 and KyL=2. By the canonical
bundle formula, we get that = has just 2 multiple fibers and > ,(m; — 1)LF; = 2,
thatis, m; =2 and LF; =1 for i =1,2 and Ky = F; + F,. In particular LF =2
for a general fiber F of 7. Therefore the type of (X, L) is one of the following;
(A2.1.1) 3=¢g(X)=9¢(C)+ 1, y(0x) =0, LF =2, and = has no multiple
fiber. (This is the type (M-2-1) in Theorem 2.1.)

(A.2.1.2) 7 has just 2 multiple fibers 2F; and 2F,, y(Ox) =0, 2 =¢(X) =
g(C)+1, Ky = Fi + F», LF =2 for a general fiber F. (This is the type (M-2-2)
in Theorem 2.1.)

We study the case (A.2.1.1). By the condition of (A.2.1.1), we get that 7 is
a smooth fibration. We put n.(L) = &. Then & is a locally free sheaf of rank
2. Furthermore

n*om (L) — L

is surjective because F is an elliptic curve with h°(Lz) =2 and Bs|Lp| = 0. So
we get that there exists a finite double covering p: X — Pc(&) with L = p*Op(s)
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(1). Let Bc< Pc(&) be the branch locus of p. Then Be |2D| for some line
bundle D on Pc(&) and B is smooth. By the canonical line bundle formula for
p, we get that Ky = p*(Kp.(s) + D). Since

KPC(é”) =-2Cy)+ (Zq(C) -2 e)F
— 2C+ (2 —e)F,

where C, is the minimal section of Pc(&) — C and e = —C3, we have D =
2Cy + eF because Ky = 2F;.

(A.2.2) The case in which L? =2m — 1.

Then KyL =2¢g(X)—1 and ¢(X) > 1 because KyL > 0. By the canonical
bundle formula we get that

KyL=(29(C) = 2+ z(Ox))LF + ) (mi — )LF;

Since 4°(L) = m + 1 and dim Bs|L| < 0, we find that LF > 2 for a general fiber F
of m: X — C.

Here we divide the case (A.2.2) into the following cases:

(a.1) The case in which ¢(X) = g(C).

(a.2) The case in which ¢(X) =g(C) + 1.

(a.1) The case in which ¢(X) = g(C).

Then

KyL >2(2q(X)—-2)
=2¢g(X) - 1+429(X) - 3.

If g(X) > 2, then this is impossible. Hence ¢(X) =1 and then KyL = 2¢g(X) — 1
=1. If y(Ox) >0, then KyL >2. So we get that y(Ox) =0 and )_,(m; — 1)LF;
= 1. Therefore = has just one multiple fiber with m; =2 and LF; = 1. (This is
the type (M-2-3) in Theorem 2.1.)

(a.2) The case in which ¢(X) =g(C) + 1.

Here we remark that LF > 2 and y(0x) =0. We divide two cases by the
value of LF.

(a.2.1) The case where LF > 3.

(a.2.2) The case where LF = 2.

(a.2.1) The case where LF > 3.

Then

KyL>3(2g(C) —2)+ > (m; — 1)LF,

=2(g(C) + 1) +49(C) =8+ (m; — 1)LF;
=2¢(X) +4g(C) — 8 + Z(m,- —1)LF,.

If g(C) = 2, then this is impossible because KyL =2¢(X)—1. So we get that
g(C) <1 and ¢(X) < 2. Furthermore we divide the case (a.2.1) into two cases:
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(a.2.1.1) The case where g(C) = 1.

(a.2.1.2) The case where g(C) = 0.

(a.2.1.1) The case where g(C) =1

Then ¢(X) =2 and KyL =2¢(X) — 1 =3. By the canonical bundle formula
we get KyL =3 ,(m; —1)LF;. Since g(C) =1 and x(0x) =0, 7 has a multiple
fiber because x(X) = 1. Since 7 has at least two multiple fibers (see [Se2]), 7 has
two or three multiple fibers.

If = has just three multiple fibers mF), myF,, and ms3F3, then we get
that my =mp, =m3; =2 and LF, = LF, = LF;=1. But since LF > 3, this is
impossible.

If 7 has just two multiple fibers m; Fy and m,F>, we get that (my,my) = (2,3)
or (2,2), where we assume m; < m,.

If (my,my) = (2,3), then LF; =1 and 2LF, =2, that is, LF; =1 for any i.
But then LF = L(mFy) =2 and LF = L(myF,) =3 and this is impossible.

If (my,my) =(2,2), then LFy =2 and LF, =1 or LFi =1 and LF, =2.
But then L(mF) # L(myF,). This is also impossible.

(a.2.1.2) The case where g(C) = 0.

Then ¢(X) =1 and KyL=1.

CramM. The number s of multiple fibers of © is at most four.

Proof. Assume that s > 6. Let {m;F;}, be a multiple fiber of . Here we
assume that LF; < LF;,; for any i. Then

1 =KyL=—-2LF + Z(mi —1)LF,
> (mLF| + myLF,) — 2LF + (m3 — 1)LF; — LF,

+ (H’Z4 — 1)LF4 — LF) + (Wls - 1)LF5 + (m6 — 1)LF6

>2.

Therefore s < 5.
If s=5, then by the same argument as above we get that ms =2 and

LFs =1. Byassumption, we getthat LF} =--- = LFs = l and LF = L(msFs) =2
for a general fiber F of #. But since LF >3 in this case, this is impossible.
Therefore s < 4. O

Here we remark that s > 3 in this case because x(X) = 1. We assume that
LF; < LF;;, for any i. We divide the case (a.2.1.2) into the following two cases:

(b.1) The case in which s =4.

(b.2) The case in which s = 3.

(b.1) The case in which s = 4.

Then by hypothesis we get that (m3 — 1)LF; — LF, =0 and (m4 — 1)LFy —
LF) =1. The first equality implies that m3 =2 and LF, = LF;. By the second
equality there are two possible cases.
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(O() my = 2 and LF4 = LF] + l,

(ﬁ) my = 3 and LF1 = LF4 =1.
If the case (ff) occurs, then by hypothesis LF, = LF, = LF3; = LF, and m; =
my = m3 = my. But since m3 =2 and my = 3, this is impossible.

If the case (x) occurs, then LF3; = LF, = LF, or LFy = LF; = LF,. Since
my =2 and m3 =2, we get that LFy = LF; = LF, and LF; = LF; +1. Since
mLF) =2LF, = 2(LF1 + 1), we get that

2

LF, = .
! m1—2

Hence m; =3 or 4 because LF; is integer. If m; =3, then LF; =2 and if
m; =4, then LF; = 1. Hence we get the following list;

n 115) ms my LF1 LFZ LF3 LF4
3 2 2 2 2 3 3 3
4 2 2 2 1 2 2 2

(This is the type (M-2-4) in Theorem 2.1.)
(b.2) The case in which s =3. (This is the type (M-2-5) in Theorem 2.5.)
Then we get that (m3 — 1)LF; — LF; — LF, = 1.

CLAIM. m3 < 4.

Proof. If m3 > 5, then
1 =(m3—1)LF; — LF, — LF,
= (LFs — LF\)+ (LF5 — LF,) + (m3 — 3)LF3
>2LF;>2

and this is a contradiction. O

By the value of mjs, we divide the case (b.2) into the following:

(b.2.1) The case in which ms3 = 4.

(b.2.2) The case in which ms3 = 3.

(b.2.3) The case in which mj3 = 2.

(b.2.1) The case in which m3 = 4.

Then (LF3 — LFy) + (LFs — LF,) + LF; = 1. Therefore LF; =1 and LF; =
LF, = LF|, so we get that m; =m; = 4.

(b.2.2) The case in which mj3 = 3.

Then (LF3— LF)+ (LFs — LF,)=1. So LF;=LF, and LF; = LF, + 1.
Therefore m, = 3. Since mLF, = 3LF; = 3(LF; + 1), we get that (m; — 3)LF;
=3. Since LF) is an integer, we obtain that 3/(m; — 3) is integer. Therefore
we have m; = 4,6.

If m; =4 (resp. m; = 6), then LF; =3 (resp. LF; =1). Hence we get that

(1) (n’l17r}12,}’}13) = (4, 3, 3), LF1 = 3, LF2 = LF3 =4

(2) (mi1,my,m3) = (6,3,3), LFy =1, LF, = LF3 =2.

(b.2.3) The case in which m3 = 2.
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Then LF; = LF, + LF; + 1. Hence we find that

(1) mLF, =2LF; =2LF, +2LF| + 2,

(2) myLF>, =2LF3; =2LF, +2LF) + 2.
On the other hand, since LF, = (2/m;)LF; and LF, = (2/my)LF5, we get that
LF; = (2/m)LFs + (2/my)LF3; + 1. Therefore

(1 _i_i)m _1,
ny ny

minmy
(I’Vl] — 2)(7/1/12 — 2) — 4
Here we remark that m, > 3 because LF; > LF>.
Furthermore we divide the case (b.2.3) into the following three cases:
(b.2.3.1) The case in which m, = 3.
(b.2.3.2) The case in which m, = 4.
(b.2.3.3) The case in which m; > 5.
(b.2.3.1) The case in which m, = 3.
Then

that is,

LF; =

3m1 —3 18
mp — 6 a my — 6.
Since LF; >0, we get that m; > 7. Since 18/(m; — 6) is integer and LF; =
6/(m; — 6), the candidate of m; is the following;

LF; =

mi LF] LF2 LF3
7 6 14 21
8 3 8 12
9 2 6 9

12 1 4 6

(b.2.3.2) The case in which m, = 4.
Here we remark that m; > 4. In this case we get that

4]’}’11
LFy=—1
T 2(m —2)—4
o 2]’}’11
N my —4
8
=2 )
erl —4
Since LF, >0 and LF, =4/(m; —4), we find that m; > 5 and
ny my m3 LF, LF, LF;
5 4 2 4 5 10
6 4 2 2 3 6
8 4 2 1 2 4
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(b.2.3.3) The case in which my, > 5.
Then m; > 5 and since KyL =1 and m3; =2 we get that

LF,+ LF, < (m1 — 4)LF1 + (mz — 4)LF2 =4.

Therefore (LF,LF,) = (1,1), (1,2), (1,3), (2,2). Since LF; = LF, +LF, + 1,
(my —4)LF, + (my —4)LF, =4, and m3 =2, we get the following;

mi my ms LF1 LF2 LF3
6 6 2 1 1 3
5 5 2 2 2 5

(a.2.2) The case where LF = 2.
Then

KyL =2(2g(C) —2) + Z(mi —1)LF,
=44(C) _4‘1'2(””1‘ — 1)LF;
=2(g(C) +1) —16 +2¢(C) + Z(m,- — 1)LF,
=2¢(X) +29(C) — 6+ Z(mil— 1)LF;.

Hence g(C) <2. Here we remark that

Z(mi — 1)LF; = number of multiple fibers

i

because LF = 2. In particular m; =2 and LF; =1 for any i. If g(C) =2 (resp.
1, 0), then Y ,(m; — 1)LF; =1 (resp. 3, 5). On the other hand, = has at least two
multiple fibers. Therefore g(C) <1 and ) ;(m; —1)LF; =3 or 5. (This is the
type (M-2-6) in Theorem 2.1.)

(A.3) The case in which x(X) =0.

Then g(L) =1+ (1/2)L?> = ¢(X) +m. Then by Riemann-Roch Theorem
and the classification of projective surfaces, we get that X is an abelian surface or
K3 surface because h°(L) =m+ 1. But here we assume L? >2m —1. So we
get that X is an abelian surface. In particular L? = 2m + 2.

Here we remark the following: Let (Y, 4) be a polarized abelian surface.
If dim Bs|4| =1, then Y = E; x E; and 4 = p{ L, + p;L,, where E; is an elliptic
curve and L; is a line bundle on E; with deg L; =1 and deg L, > 1. (See [LB].)
Therefore if (X, L) is not the above type, then dim Bs|L| < 0. (This is the type
(M-3-6) in Theorem 2.1.)

(B) The case in which X is not minimal.

Let X =Xy — X; — -+ — X; = X’ be the minimal model of X. We put
Ly:=L, p: Xi1 — X;, and L;:= (1;),(Li-1). Then L; = L;—o;E; and
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o; > 0 for any i, where E; is a (—1)-curve of . We put L' :=L;,. Here we
remark that dim Bs|Z;| <0. Then

and

So we get that

and
/
(L) =z2m—1+) o}
i=1

because L? >2m — 1 by assumption. Here we put m' =m+ > (a2 — a;)/2.
Then we get that

!
(L") =2m—1 +ZO€I~2
i=1
/ !
:2m—1+Z(ocl»2—oci)+Zoci
i=1 =1

I
:2m’—1+Zoci
=1

>2m'.

(B.1) The case in which X is of general type.

Then since dim Bs|L/| < 0, we get that (L')? < 2m’ by Theorem 1.7. Hence
we have (L')> =2m’. But then X' = C x F and L = C +2F, where C and F
are smooth projective curves with g(C) > 2 and ¢g(F) = 2. This is impossible by
the same argument as in the case (A-1) above.

(B.2) The case in which the Kodaira dimension of X is 1.

Then X' has an elliptic fibration over a smooth projective curve C; 7 : X' —
C. Then by Theorem 1.8 (2) and (3) we get that (L')> < 2m’ since dim Bs|L'|
<0. So we get that (L')> =2m’. In particular >0 =1and (X,L) is a simple
blowing up of (X', L’). Furthermore m = m’. So we get that h°(L") > h°(L) =
m+1=m'+1.

If h%(L') > m’ + 2, then (L')* > 2A(L’) and we can check this case by using
Fujita Theory. First we remark that g(L') > m’ > A(L’) since (L')* = 2m’. By
Theorem 1.4 and Theorem 1.5, in this case ¢(X) = g(X') = 0 because x(X) = I.
But Ky/L' = 2g(X) — 2 = —2 and this is impossible. So we assume that #°(L) =
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m’ + 1. Then by the same argument as in the case (A.2.1) above we get the type
of (X',L"), that is,
(B.2.1) g(C) =2, g(X)=3, x(Ox)=0, L'F'=2 and = has no multiple
fibers, where F’ is a general fiber of 7 (this is the type (N-1-1) in
Theorem 2.1),

(B.2.2) 7 has just two multiple fibers, 2F; and 2F>, x(Ox) =0, g(C) =1,
q(X)=2, and L'F' =2 (this is the type (N-1-2) in Theorem 2.1).

(B.3) The case in which x(X) = 0.

In this case X' is an abelian surface or bielliptic surface because Ky L'
<2¢(X')—2. But if (L')>=2m’, then 3o, =1 and g(L) = g(L'), that is,
m=m'. Since h°(L") > h"(L)>m+1=m'+1, we get that hi°(L") >m' + 1.
But this is impossible because 4°(L’) = (L')*/2. Hence (L')* =2m’ 4+ 2. Then
g(L"y=2+m' and X' is an abelian surface because ¢(X’) =2 in this case.
Furthermore we have ) ;o; <3. (This is the type (N-2) in Theorem 2.1.)
These complete the proof of Theorem 2.1. O

Remark 2.2. Here we consider the type (M-2-1) in Theorem 2.1. Let
p: X — Pc(&) be the double covering. Let B = Po(&) be the branch locus of
p. Then Be|2D| for some divisor on Pc(&). Since X and Pr(&) is smooth,
we need that B is smooth. So we check the condition that |2D| has a smooth
member. Here we assume that & is normalized. Let Cy be the minimal section
of Pc(6) — C and let F be a fiber of Pc(6) — C. We put e=—C3. Then
D =2Cy + eF by the proof of Theorem 2.1.

Assume that e >0. Then an irreducible curve on Pc(&) is one of the
following types (see [Hal);

(1) Co,

(2) F’

(3) aCo+bF, a>0, and b > ae.
Assume that B e |2D| is not irreducible. Then we remark that F is not an ir-
reducible component of B because F(B—F) > 0. If Cp is an irreducible com-
ponent of B, then 0 = Cy(3Cy + 2¢F) = —3e+2¢ = —e. Hence e=0. If Cp is
not an irreducible component of B, then any irreducible component of B is the
type xCy + yF with x >0 and y >ex. If y > xe, then xCy + yF is ample and
this is a contradiction because B is smooth. So we have y = xe and

0= (xCo+yF)((4—x)Cy+ (2e — y)F)
=—x(4—-x)e+x(2e—y)+ y(4—x)
= (ex—2y)(x—2)

=—y(x—2).
Hence y =0 or x=2.
If y=0, then e =0 because x > 0.
If x=2, then y=2¢ and B— (2Cy+2¢F) =2Cy. Since Cj is not an
irreducible component of B, we get that 2C, is numerically equivalent to an
irreducible curve. Hence e = 0.
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In any case we have ¢ = 0 and B = 4Cj if B is not irreducible. Since Cj is
not an irreducible component of B, we get that B= C; + C, where C; is an
irreducible curve with C; =2C, for i =1,2.

Assume that B is irreducible and e > 0. Then by the above condition, we
have 2e¢ > 4e > 0 and this is impossible. Hence ¢ = 0. Therefore B = 4Cy and
e =0 in this case.

Assume that e < 0. Then an irreducible curve on P¢(&) is one of the fol-
lowing types;

(1/) Co,

(3") aCy+bF, where a=1 and b >0 or a >2 and b > (1/2)ae.

Since B € |2D| = |4Cy + 2¢F|, F is not an irreducible component of B because B
is smooth.

If Cy is an irreducible component of B, then Cy(3Cy+ 2¢F) = —3e + 2e =
—e >0 and this is impossible because B is smooth. Therefore Cj is not an
irreducible component of B.

Since

2D = 4Cy + 2¢F =Y (a;Co + biF)

1

and 2e = (1/2) x 4 x e, we get that a; > 2 and b; = (1/2)a;e for any i. So if B is
not irreducible, then since ), a; =4, we get that ¢; =2 and b; = e. In this case
(2Cy + eF )2 = —4e+4e=0. Therefore we have the following two types:
(1”) If B is not irreducible, then B = C; + C,, where C;=2C, + eF for
each 7.
(2”) If B is irreducible, then B = 4Cy + 2¢F.
Therefore we get the following types:
(M-2-1-1) If e >0 and B is not irreducible, then e =0 and B= C; + C,
where C; =2C, for i=1 or 2.
(M-2-1-2) If e >0 and B is irreducible, then ¢ =0 and B = 4C(,.
(M-2-1-3) If e<0 and B is not irreducible, then B = C;+ C,, where
C; =2Cy + eF for each i.
(M-2-1-4) If e <0 and B is irreducible, then B =4Cj + 2¢F.
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