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CLASSIFICATION OF SINGULARITIES ON TORUS CURVES OF

TYPE �2; 3�

Duc Tai Pho

Abstract

We classify the local and global singularities of sextics which are tame torus

curves of type �2; 3� and we also show the degenerations among these classes. As an

application, two Zariski pairs are found.

Introduction

The classi®cation of complex algebraic plane curves is a classical problem.
For a survey for the classi®cation of curves of degree less than 6, see [N]. The
classi®cation of curves of degree 6 is still not completed, though there are some
partial answers for instance in a series papers by Urabe on sextics which has only
simple singularities (see [U] and its references), and then by Yang extended
Urabe's result in [Y].

According to [Li], singular plane curves of interest are given by
(a) a curve which appears as a branch of generic projections of surfaces,
(b) generic plane sections of discriminants of linear systems on projective

space P2 (this includes dual curves),
(c) a curve de®ned by explicit equation.
Deformation theory is also useful to prove the existence of curves which can

be degenerated into curves of type (a), (b), (c). For a survey about the above
techniques, we recommend [GS, Lo].

In this paper, we mainly use the method (c) for a special class of sextics,
which is so called torus curves of type �2; 3�, and actually these curves have also
non-simple singularities, by that reason we can not use the methods of Urabe or
of Yang.

Let C � f�X ; Y ; Z� A P2; F�X ; Y ; Z� � 0g be a complex projective plane
curve and let �x; y� be the a½ne coordinates given by x � X=Z, y � Y=Z on
C 2 :� P2 ÿ fZ � 0g. For simplicity we also keep the notation C in the a½ne
chart C 2, where its de®ning equation f �x; y� is given by f �x; y� :� F �x; y; 1�.
Then C is called torus curve of type �p; q� (or �p; q�-torus curve for shortly) if
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we can write f � f q
p � f p

q for some polynomials fp; fq of degree p and q respec-

tively in C �x; y�. In this paper, we consider reduced �2; 3�-torus curve. A sextic

C � f f 2
3 � f 3

2 � 0g of type �2; 3� is called tame if its singularities are sitting only
at the intersection of conic C2 and cubic C3, where C2 and C3 are respectively
de®ned by f2 � 0 and f3 � 0.

In the ®rst section, we assume that conic and cubic pass through the origin
of the a½ne chart C 2, and �C;O� is an isolated singularity. We will classify all
the local singularities at the origin (in the sense of topological equivalence) by
considering the geometrical relation of conic and cubic. For that purpose the
intersection number i � I�C2;C3; O� plays an important role. The result is con-
tained in Theorem 1.

In the second section, we study the possible con®gurations of singularities on
tame torus curves of type �2; 3� using the local result obtained in the ®rst section.
The main result is Theorem 2.

In the third section we study the spaces with ®xed con®gurations and the
possible degenerations among them. Actually these degenerations will be used
in the investigation of topological problem, namely, the computation of the fun-
damental group of the complement P2nC, where C is a tame torus curve of type
�2; 3�. The details will be given in [OP].

Finally in the last section, we give two new examples of weak Zariski pairs.
In each pair, both curves are torus curves of type �2; 3�.

Acknowledgement. The author expresses his deepest appreciation to Pro-
fessor Mutsuo Oka for generous help and inspiring guidance. The author also
wishes to thank other members in Oka seminar, for helpful comments and
friendship.

1. Local classi®cation problem

1.1. Some classes of singularities
We use the following standard notations for ``simple'' singularities, which

have the normal form:

An : x2 � yn�1 � 0 �n b 1�
Dn : x2 y� ynÿ1 � 0 �n b 4�
E6 : x3 � y4 � 0;E7 : x3 � xy3 � 0;E8 : x3 � y5 � 0

8<:
Furthermore we de®ne notations of some other (topological equivalence classes
of ) singularities which we use later.

Bp;q : xp � yq � 0 �Brieskorn-Pham type�
Cp;q : xp � yq � x2 y2 � 0

D4;7 : y4 � x3 y2 � x7 � 0

Sp1 : �y2 ÿ x3�2 � �xy�3 � 0

Sp2 : �y2 ÿ x3�2 ÿ y6 � 0

8>>>>><>>>>>:
�1:1�
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Note the symmetry Bp;q � Bq;p, Cp;q � Cq;p and the identities B2;p � Apÿ1, B3;4 �
E6. Suppose we have a germ �C;O� of a plane curve. Recall three local
invariants: m�C;O� is the Milnor number at O, d�C;O� is the d-invariant which
is the maximal number of nodes in a generic deformation of C, and r�C;O� is
the number of the analytic branches. It is well-known that d � �m� rÿ 1�=2
(see [M]). The invariant triple �m; r; d� will be used for the later arguments.

Definition 1.1. Suppose that we have two germs of plane curve singu-
larities �C; p� and �C 0; p 0�. We say that �C; p� and �C 0; p 0� are topologically
equivalent if there exists a local homeomorphism f of the respective ambient
neighborhoods U ;U 0 such that f�p� � p 0 and f�C VU� � C 0 VU 0. We denote
this equivalence relation as �C; p�@ �C 0; p 0�. When p � p 0 � O, let f and f 0 be
de®ning polynomials of C and C 0, then we also write f @ f 0.

For a reduced plane curve germ �C; p�, the topological equivalence type (or
shortly topological type) of the germ �C; p� is determined by the following dis-
crete characteristics (for instance [Z2, LeÃ1, BK]): the Puiseux pairs of its irredu-
cible components and their linking numbers. Alternatively, it is known that the
embedded resolution graph of �C; p� and the multiplicities of the total transforms
of �C; p� at in®nitely near points (including p) determine the topological type.

1.2. Setting
Hereafter, �x; y� is the a½ne coordinates of C 2 and f2�x; y�, f3�x; y� are the

a½ne de®ning polynomial of C2 and C3. The sextic C is de®ned by f2�x; y�3�
f3�x; y�2 � 0. We assume that the origin O is an intersection point of C2 and C3

and it is an isolated singularity of C. This implies, in particular, that the conic
C2 and the cubic C3 have no common component (such a line or the conic itself ).
We will classify the topological types of the germ �C;O�, using the geometry of
the respective singularities of the conic C2 and the cubic C3 and their mutual
position.

Before starting to classify, we prepare some basic facts.

1.3. Intersection number
We brie¯y recall the necessary properties of the intersection number of plane

algebraic curves. For further details see [F, Chapter 3]. Suppose that we have
two plane algebraic curves D1 and D2 of degree m and n.

Assume that G�X ;Y ;Z� and H�X ;Y ;Z� are the respective de®ning homo-
geneous polynomials and let g�x; y� :� G�x; y; 1� and h�x; y� :� H�x; y; 1� be the
a½ne de®ning polynomials of D1 and D2. The intersection number �D1;D2; O�,
denoted by I�g; h; O�, of two algebraic curves D1 and D2 at O is de®ned by
dimC Cfx; yg=�g; h�. We list here some useful properties:

(i) If D1 and D2 have a common component which passes through O, then
I�g; h; O� �y by de®nition. The intersection number satis®es I�g; h; O�b 1 if
O A D1;D2 and the equality takes place if and only if D1 and D2 are smooth
at O and intersect transversely at O.

classification of singularities on torus curves of type �2; 3� 261



(ii) Intersection number is symmetric in D1 and D2, and invariant under an
analytic change of coordinates.

An alternate de®nition of intersection number can be given from following
property.

(iii) If D1 is irreducible and D1 is locally parametrized as x � x�t�, y � y�t�
then

I�D1;D2; O� � valt�0 h�x�t�; y�t��:
The resultant of G�X ;Y ;Z� and H�X ;Y ;Z� in Y-variable (respectively of g�x; y�
and h�x; y� in y) is denoted as Result�G;H; Y� (respectively Result� f ; g; y�)
(cf., for instance, [La]). Assume that G�0;Y ; 0�0 0, H�0;Y ; 0�0 0, then
Result�G;H; Y� is a homogeneous polynomial in X ;Z of degree mn if G;H
do not have a common factor and Result�g; h; y� is a polynomial of in x of
degree less than or equal to mn. The degree of Result�g; h; y� is mn if D1 V
D2 V fZ � 0g � j. Now we have the multiplicity of �xÿ a� in Result�g; h; y� is
equal to

P
P��a;b� AD1VD2

I�g; h; P� (cf. [O4]).

Remark 1.2. The multiplicity of D1 at the origin O is de®ned by the
minimum of the intersection number I�D1;L; O� for lines L passing through
the origin.

In our situation, because the conic C2 and the cubic C3 have no common
component, the intersection number is ®nite. We put i :� I� f2; f3; O�. Then by
Bezout theorem (cf. [F]), we have

1 a i a 6:

Proposition 1.3. (i) An irreducible conic is smooth and isomorphic to yÿ
x2 � 0 up to a projective automorphism. If it is not irreducible, it is a union of
two lines, including a line of multiplicity two.

(ii) An irreducible cubic can have at most one singularity, either a node or a
cusp. A non-irreducible cubic is either a union of a conic and a line or three lines.

Proof. (i) Any non-degenerate quadratic form is equivalent to Y 2 � Z2ÿ
X 2 which is also equivalent to YZ ÿ X 2.

(ii) The second assertion follows from the modi®ed PluÈcker formula as the
genus of the normalization of C3 is equal to 1ÿPP d�P�, where the sum is taken
for singular points P A C3 (cf. [N]). r

From now on, throughout the paper we denote the multiplicity of fi at O
by mi.

Proposition 1.4. The intersection number i satis®es i b m2m3, and the
equality takes place if and only if C2 and C3 have no common tangent cone.

Proof. See, for instance [F, 3.3.5]. r
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1.4. Strategy of classi®cation
We frequently use the fact that the topological type of a non-degenerate

germ depends only on its Newton boundary. See [K, O3] for more details. In
our classi®cation, most of the cases can be transformed into non-degenerate forms
after several changes of coordinates, and then the Newton principal part (NPP
for short) gives us a normal form. However there are two special cases, namely
Sp1 and Sp2 which can not be transformed into non-degenerate form. For these
cases, the topological type can be read o¨ from the explicit resolution of the
respective singularity.

From now on, we use �u; v� for local coordinates (i.e., in the sense that we use
an analytic change of coordinates), and �x; y� for global coordinates (i.e., a½ne
coordinates). To determine the local type of singularities, it is convenient to use
suitable changes of local analytic coordinates. However to see the existence of a
sextic of �2; 3�-torus type, it is usually better to keep the a½ne coordinates.

We recall a following lemma [O4, Lemma 4.3].

Lemma 1.5. Assume that Cf � f�u; v� A C 2; f �u; v� � 0g is a germ of a
smooth curve at the origin. Let Cg � f�u; v� A C 2; g�u; v� � 0g be another germ of
a curve at the origin. Let d be the multiplicity of g at the origin and let gd�u; v�
be the homogeneous polynomial of degree d, which de®nes the tangent cone of
Cg. Let p; q be positive integers such that p < dq. Consider the germ of a plane
curve C � f�u; v� A C 2; f �u; v�p ÿ g�u; v�q � 0g. Assume that each irreducible
component of gd�u; v� � 0 intersects transversely with Cf at the origin. Then
topological type of �C;O� is Bp;dq and the tangential direction at the origin
coincides with that of f � 0, where Bp;dq is the Brieskorn-Pham singularity intro-
duced in (1.1).

For �2; 3�-torus curve, we apply the above lemma with �p; q� � �2; 3� or
� p; q� � �3; 2� and obtain the following result:

Corollary 1.6. With the transverse intersection condition as above, we have:
(i) If �C3;O� is smooth, then �C;O� is of type A3iÿ1 for i � 1; 2; . . . ; 6.
(ii) If �C3;O� is singular and �C2;O� is smooth, then �C;O� is of type B3;2i,

for i � 2; 3; . . . ; 6.

1.5. Classi®cation steps
We will divide the situation into 3 cases by the multiplicity m3 of the cubic

C3 at the origin. The simplest case is the case when �C3;O� is smooth.

Case A. m3 � 1. In the corollary 1.6 (i), we have to assume that the
irreducible components of the tangent cone of C2 intersects transversely with C3.
The claim is also true without this condition.

Proposition 1.7. If �C3;O� is smooth, and it intersects the conic C2 with
multiplicity i, then �C;O� is of type A3iÿ1.
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Proof. Up to an analytic change of coordinates, we may assume that f3 �
u and the conic has the following form f2 � cv i � uh, where h A Cfu; vg, c A
Cfvg and c�0�0 0. Putting weights w�u� � 3i and w�v� � 2, we can see f �
u2 � �cv i � uh�3 � u3 � c�0�3v3i � higher terms. This implies �C;O�@A3iÿ1, for
i � 1; . . . ; 6. r

We recall here that the invariant triple �m; r; d� is �k; �k mod 2� � 1; �k=2��
for Ak singularity, where �a� is the greatest integer less than or equal to a.

Proposition 1.8. For any 1 a i a 6 there exists a smooth cubic C3 and a
conic C2, such that the �C;O� is of type A3iÿ1. Furthermore we have a degener-
ation family: A2 ! A5 ! A8 ! A11 ! A14 ! A17.

Proof. Consider the conic f2 � yÿ x2 and a family of smooth cubics

f3�x; y; t1; t2; t3; t4; t5� � �t1x� �t2 ÿ 1�x2 � t3x3� � �1� t4x2�y� t5xy2 � y3

For generic t 0i s we have NPP� f �@ x2 � y3, hence �C; 0�@A2. By taking t1 �
� � � � ti � 0, ti�1 0 0 for i � 1; . . . ; 5, we obtain respectively A5;A8;A11;A14;A17.
This shows the asserted degenerations. r

Remark 1.9. An alternative term for ``degeneration'' in the above prop-
osition is ``specialization'' (see [D]). It is ``dual'' to the usual terminology
``adjacency'' in [AGV].

Remark 1.10. One can compute the Newton principal part by hand, but
usually it is a boring computation. We make a Maple package SCURVE1, it
can be used for compute invariants of singular plane curves, such that intersec-
tion number, Milnor number, NPP, toric modi®cation, etc.

The case m3 � 1 is done by Proposition 1.8.

Case B. m3 � 2. We divide Case B into two subcases by m2.
(B-I) �C2;O� is smooth �m2 � 1�: there are 8 cases, indicated in the follow-

ing ®gures, where the dotted lines denote the cubic C3, and the straight lines are
a½ne lines. We remark here that C2 may not irreducible globally, however in
the cases I-4 and I-8 it must be irreducible (because C2 has a tangent line which is
a component of C3). In the pictures I-3 and I-4, the fat dotted line denotes a
line with multiplicity 2.

In the above ®gure, the cases I-1, I-3, I-5, I-7 satisfy the conditions of the
lemma 1.5, and d � 2, so that we obtain �C;O� is of B3;4 type. In these cases,
i � 2.

1You can get SCURVE by a request e-mail to the author or download from the web-page:

http://vkampen.math.metro-u.ac.jp/@pdtai/scurve/
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The next case I-2 is the most interesting case in this classi®cation, and we
consider it at the end of this part.

I-4. We assume f2 � yÿ x2 and f3 � y2h, where h is a linear term and c :�
h�0; 0�0 0. We have i � 4. Putting y1 � yÿ x2, in the new coordinates �x; y1�,
we have NPP� f � � y3

1 � c2x8. Thus �C;O�@B3;8.
I-6. As C2 is smooth at O, we can take a local system of coordinates

�u; v� so that f2 � v, and NPP� f3� � av2 ÿ bu3, where a; b 0 0. Putting weights
w�u� � 1 and w�v� � 2, we obtain i � 3 and NPP� f � � v3 � b2u6. We can easily
see that this polynomial is non-degenerate for any b 0 0. Thus �C;O�@B3;6.
This computation applies also for the case of C2 being two lines.

I-8. The cubic C3 consists of a line l and a conic C 02. We may assume that
f2 � yÿ x2 and f3 � y�y� ax2 � bxy� cy2�, where a or b is non-zero. Putting
t1 � a� 1, t2 � b, t3 � c, and substitute y � x2 we get f3�x; x2� � t3x6 � t2x5�
t1x4. Hence i is equal to 4, 5 or 6 (respectively I�C 02;C2; O� � 2; 3 or 4). By
this setting we have:

Proposition 1.11. Under the above situation the germ �C;O� can be of
type B3;2i, for i � 4; 5; 6. Furthermore there is a degeneration family: B3;8 !
B3;10 ! B3;12.

Proof. We divide 3 cases: (a) i � 4: it is equivalent to t1 0 0. Putting
y1 � y� x2, in the new coordinates �x; y1�, NPP� f � � y3

1 � t2
1x8. Thus �C;O�@

B3;8.
(b) i � 5: it is equivalent to t1 � 0 and t2 0 0. Similarly, we have NPP� f � �

y3
1 � t2

2x10. Thus �C;O�@B3;10.

(c) i � 6: it is equivalent to t1 � t2 � 0 and t3 0 0. Same as the above, we

have NPP� f � � t2
3x12 � 2t3x8 y� x4 y2 � y3. The discriminant of NPP� f � in x

is cy33�27t3 ÿ 4�4, thus f is degenerate if and only if t3 � 4=27. But when t3 �
4=27, f has a factor �9x2 ÿ 9yÿ 4y2�2, it contradicts to the condition �C;O� is
an isolated singularity. Therefore NPP� f �@ x12 � y3. Thus �C;O�@B3;12.

From (a), (b) and (c) we also obtain the degeneration family. r

Figure 1. Case B-I (m3 � 2, m2 � 1).
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Now we come back to the case I-2.
We may assume that conic C2 is de®ned by f2 � b01 y� b20x2 � b11xy�

b02 y2 and the cubic C3 is de®ned by f3�x; y� � y�a11x� a02 y� � a30x3 � a21x2 y�
a12xy2 � a03 y3, where b01 0 0 and a11 0 0. Because C2 V fy � 0g � C3 V fy � 0g
� fOg, therefore i � valx�0 Resy� f �.

We have Resy� f � � x3j�x� and

j�0� � b01�b01a30 ÿ a11b20��b02a02 ÿ a03b01��1:2�
Thus i � 3 i¨ none of these factors is zero.

First we consider the case i � 3. Putting weights w�x� � 1, w�y� � 2, by
computation we have NPP� f ; �x; y�� is a weighted homogeneous polynomial of
degree 6. So that f �x; y� is non-degenerate if and only if

�27a30b3
01 ÿ 27a11b2

01b20 ÿ 4a3
11��a30b01 ÿ a11b20�0 0

Thus f @B3;6 for a generic case. Note that the term �a30b01 ÿ a11b20� is non-
zero by (1.2). Thus to see further degeneration, we solve

�27a30b3
01 ÿ 27a11b2

01b20 ÿ 4a3
11� � 0

in a30 and then NPP� f ; �x; y�� gets a multiply factor. Namely, �9b3
01 y�

9b2
01b20x2 � 4a2

11x2�2. Thus we need to take the new coordinates �x; y1� with

y1 � yÿ �9b2
01b20 � 4a2

11�x2=�9b3
01�. In this case we get C3;7 as long as the

coe½cient of x7 is non-zero. In fact, this coe½cient is given by

c�4a2
11 � 9b20b2

01��9a02b20b2
01 ÿ 9a21b3

01 � 9a11b11b2
01 � 4a02a2

11�
where c is a non-zero constant.

Thus there are two exceptional cases:

(i3-1) 4a2
11 � 9b20b2

01 � 0 or
(i3-2) 9a02b20b2

01 ÿ 9a21b3
01 � 9a11b11b2

01 � 4a02a2
11 � 0.

It turns out that the two cases give completely di¨erent geometries.
In the ®rst case (i3-1), putting b20 � ÿc2

20, the equivalence condition is a11 �
G3b01c20=2. Let assume a11 � 3b01c20=2, we get NPP� f ; �x; y1�� � c1x5 y1�
c2x2 y2

1 � c3 y3
1 with c1; c2; c3 are non-zero constants. One can check that this

form is topological equivalent to x8 � x2 y2
1 � y3

1 (see Case B-II-5 for a detail
explanation). Thus �C;O�@C3;8. We also obtain same result for the case
a11 � ÿ3b01c20=2. An important observation is that the generic member of this
family is not irreducible but it is a union of a line and a quintic.

Next we consider the case (i3-2), i.e. a21 � �9b2
01b20a02 � 9b2

01a11b11 � 4a02a2
11�=�9b3

01�. We look at the Newton principal part of f with respect to the coor-
dinates �x; y1�. It has two faces, AB and BC where A � �0; 3�, B � �2; 2� and
C � �8; 0�. The face function with respect to AB is non-degenerate, while the
discriminant in y1 of the face function with respect to BC is
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d � cx10�4a2
11 � 9b2

01b20�2�ÿ9b2
11b2

01 ÿ 16a11a12b01 � 16b02a2
11�; �c0 0�

Since the factor 4a2
11 � 9b2

01b20 is already considered in the case (i3-1), so the
generic case take place if the last factor of d, say d2, is non-zero. In that case
we have �C;O�@C3;8. In comparison with the previous class of C3;8 in case
(i3-1) a generic member of this class is irreducible. Finally if d2 � 0, it turns out
that �C;O�@C3;9. And it does not degenerate any further (as long as �C2;O�
is smooth and �C3;O� is A1).

Summary: In the case i � 3 there are 4 possibilities B3;6;C3;7;C3;8 and C3;9.
We remark that in this case, the intersection multiplity is not enough to determine
the topology.

Next we consider the case i b 4. By Bezout theorem, C2 is necessarily
a smooth conic. Thus we can assume that f2�x; y� � yÿ x2. We have a30 �
ÿa11 and

i �
4 iff a02 � a21 0 0

5 iff a02 � a21 � 0, a12 0 0

6 iff a02 � a21 � a12 � 0, a03 0 0

8<:
Let consider the case i � 4. We take the coordinate change �x; y1� with y1 �
yÿ x2. The Newton principal part is given by

NPP� f ; �x; y1�� � �a02 � a21�2x8 � 2a11�a02 � a21�x5 y1 � a2
11x2 y2

1 � y3
1

It is degenerate for the weight P � t�1; 3�, where fP � x2�x3a21 � x3a02 � a11 y1�2.

Taking the coordinate change �x; y2� with y2 � x3a21 � x3a02 � a11 y1. We have

NPP� f ; �x; y2�� � ÿ�a02 � a21�3x9=a3
11 � x2 y2

2 � y3
2=a3

11

Hence for generic a 0ij s (i.e. a02 � a21 0 0) we have �C;O�@C3;9. Continuing by
the same method, we get C3;12 and C3;15 for i � 5 and 6 respectively.

Proposition 1.12. There exists a cubic C3 and a conic C2, such that the
�C;O� is of type B3;6, C3;k ( for k � 7; 8; 9) and C3;3k ( for k � 3; 4; 5).
Furthermore there are the following degeneration families:

(i) B3;6 ! C3;7 ! C3;8 ! C3;9, with the same i � 3.
(ii) B3;6 ! C3;9 ! C3;12 ! C3;15, with i : 3! 4! 5! 6.

Proof. (i) Consider the conic f2 � yÿ x2 and a family of nodal cubics f3 �
y2 � y3 � xy� �t1 ÿ 23=27�x3 � �t2 ÿ 5=9�x2 y� �t3 � 4=9�xy2. For generic t 0i s,
we have �C;O�@B3;6. By taking t1 � � � � � ti � 0, ti�1 0 0 for i � 1; 2; 3, we
obtain respectively C3;7;C3;8 and C3;9.

(ii) Consider the conic f2 � yÿ x2 and a family of nodal cubics f3 �
y3 � xy� �t1 ÿ 1�x3 � t2x2 y� t3xy2. For generic t 0i s, we have �C;O�@B3;6.
By taking t1 � � � � � ti � 0, ti�1 0 0 for i � 1; 2; 3, we obtain respectively C3;9;
C3;12;C3;15. r
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Remark 1.13. (a) There are two moduli components for the singularity
classes C3;8 with i � 3. The generic curve in the component corresponding to
the case (i3-1) decomposes into a line and a quintic, later we will use the notation
C
]
3;8 for the singularity in this moduli.

(b) There are two components for the moduli space of the class C3;9, with
di¨erent intersection numbers. Later we will distinguish by the new notation
C
\
3;9 for the case i � 4.

(c) There are more degenerations for the singularities if we admit i to
increase or if we admit the degenerations for the singularities of C2 and C3.
For example, we can degenerate C3;7 ! B3;8 ! B3;10 ! B3;12, C3;8 ! B3;10 and
C3;9 ! B3;12 by increasing the intersection number i. B3;8 degenerates also into
B4;6. For the explicit construction, see O3.

(B-II) �C2;O� is singular �m2 � 2�. There are 9 cases, indicated in Figure 2,
where the straight lines are again a½ne lines.

Attention. In the cases II-1,5,8,9 though in the pictures of C2 are 2 distinct
lines, but 2 lines may also coincide.

II-1. Up to an analytic change of coordinates we may assume f3 � uv,
and f2 � �a1u� b1v� h1��a2u� b2v� h2�, where ai; bi are non-zero constants,
and hi A m2 for i � 1; 2. Here m is the maximal ideal in Cfu; vg. We have
i � 4. Putting weights w�u� � w�v� � 1, we get f @ u6 � v6 � u2v2. Thus
�C;O�@C6;6.

II-2. Since conic consists of 2 distinct lines, say l1 and l2, where l1 intersects
C3 transversely and l2 is a tangent cone direction of C3, hence I�l1;C3; O� � 2
and I�l2;C3; O� � 3. Therefore we may assume f3 � uv, and f2 � �a1u�b1v�h1� �
�a2u2 � b2v� h2� so that i � 5. And we obtain �C;O�@C6;9.

II-3,4. In these cases, the intersection number i � 6. By the same way, we
get respectively C9;9;C6;12.

Figure 2. Case B-II (m3 � m2 � 2).
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Proposition 1.14. Under the situations II-1@ II-4, the type of �C;O� can
be C6;6;C6;9;C9;9 and C6;12. Furthermore there are the following degeneration
families:

C6;6 ! C6;9 ! C9;9 C6;9 ! C6;12

Proof. Consider the cubic f3 � y2 ÿ x2�x� 1� and a family of conics
f2�x; y; t1; t2� � �xÿ t1 y��xÿ t2 y�. For generic t 0i s (i.e. ti 0 G 1), we have
�C;O�@C6;6. By taking t1 ! 1 we get �C;O�@C6;9. And then by taking
t1 ! 1 or ÿ1 we get respectively �C;O�@C6;12 or C9;9. r

In the next three cases II-5@ II-7, the cubic C3 has a cusp, and by a linear
change of coordinates we may assume that NPP� f3� � y2 ÿ x3, i.e. f3 � y2ÿ
x3 � h where h is the higher term, and f2 � �a1x� b1 y��a2x� b2 y�.

II-5. This case a1; a2 0 0, the intersection number i � 4, we may assume
a1 � 1. We have NPP� f � � �1� a3

2�x6 ÿ 2x3 y2 � y4, and its discriminant in x
is ÿ46656�1� a3

2�2a9
2 y20. Hence if 1� a3

2 0 0, we have �C;O�@B4;6.

If 1� a3
2 � 0, then NPP� f � � 3a2

1�a1b2 � b1�x5 yÿ 2x3 y2 � y4, the isolated
singularity condition requires the term 3a2

1�a1b2 � b1�x5 y does not vanish. Thus
f @ x5 y� x3 y2 � y4. So we get �C;O�@D4;7, by the following lemma.

Lemma 1.15. x5 y� x3 y2 � y4 @ x7 � x3 y2 � y4.

Proof. Consider the family ht � x5�y� tx2� � x3�y� tx2�2 � �y� tx2�4,
where h0 � x5 y� x3 y2 � y4 and we have NPP�ht�@ x7 � x3 y2 � y4 for t0 0.
And we can check that this family is a m-constant family then we get the
equivalence (ref. [O1]). r

We remark that the intersection multiplity is not enough to determine the
topology of �C;O� like in Case B-I-2.

II-6. On branch of the conic is tangent to �C3;O�, we may assume that

f2�x; y� � axy; f3�x; y� � y2 ÿ x3 � b1 yx2 � b2xy2 � b3 y3

In this case i � 5. This is a degenerate singularity, since NPP� f � � �y2 ÿ x3�2.
Taking a canonical toric modi®cation p1 : X1 ! C 2, we ®nd that p�1 f � 0 has
again a �2; 3�-cusp and it has a simultaneous resolution by one more toric mod-
i®cation for any bi A C , i � 1; 2; 3. The tower of the weight vectors in the sense
of [AO] is given by f t�2; 3�; t�2; 3�g. Thus the topology of �C;O� does not
depend on the parameters a0 0 and b1; b2; b3. Moreover �C;O� is locally irre-
ducible and its Puiseux pairs is P�C;O� � f�2; 3�; �2; 9�g by [O2]. By taking a �
1, b1 � b2 � b3 � 0, we get f � �y2 ÿ x3�2 � �xy�3. Thus �C;O�@Sp1. The
resolution diagram of Sp1 is given in Figure 3. The Milnor number is 18 by
[A2] or [AO].
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II-7. The conic is a double line and it coincides with the tangent direction
of �C3;O�. We assume that f2�x; y� � ÿa2 y2, a0 0 and f3�x; y� is as above.
The intersection number i � 6. By the same method as Sp1 case, we obtain this
singularity is equivalent to Sp2 and the resolution graph is given in Figure 4.
We see that Sp2 has 2 irreducible components f3 G a3 y3 � 0, they have same
Puiseux pair f�2; 3�g and their linking number is 9. Thus m�Sp2� � 21 and
d�Sp2� � 11.

Proposition 1.16. There are following degeneration families:
(i) B4;6 ! D4;7 in Case II-5.
(ii) B4;6 ! Sp1 ! Sp2 corresponding to II-5! II-6! II-7.

Proof. The proof is obvious from the explanations in Cases II-5,6,7. r

II-8. Assuming f3 � y�yÿ x2� and f2 � a�x� by��x� cy�, where a is non-
zero, we have NPP� f � � y4 � a3x6. Thus �C;O�@B4;6.

II-9. Assuming f3 � x2�ax� by� k� and f2 � �cx� y��dx� y�, where k is
non-zero. We have NPP� f � � y6 � k2x4. Thus �C;O�@B4;6.

Finally we consider singular cubic with multiplicity 3 �m3 � 3�.
Case C. m3 � 3. Similarly, we also divide 2 cases by the multiplicity of

the conic.
(C-I) Conic C2 is smooth at O. Obviously we have i b 3.
C-I-1. i � 3, applying the corollary 1.6, we get �C;O�@B3;6.
Now we consider the case i b 4. Then C2 is irreducible, as �C2;O� is

assumed to be smooth. Therefore we may assume that f2 � yÿ x2 and f3 �

Figure 3. Resolution graph of Sp1.

Figure 4. Resolution graph of Sp2.
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�a1x� b1 y��a2x� b2 y��a3x� b3 y�. We have i is equal to the lowest degree in x
of f3�x; x2� � x3�a1 � b1x��a2 � b2x��a3 � b3x�.

C-I-2. i � 4, by symmetry of a 0i s we may assume a1 � 0 and a2; a3 are non-
zero. Putting y1 � yÿ x2, then f �x; y1� � y3

1 � b2
1a2

2a2
3x8 � higher terms @y3

1 �
b2

1a2
2a2

3x8. Since a1 � 0 then b1 must be non-zero. Thus �C;O�@B3;8.
Similarly, we obtain
C-I-3. i � 5 if a1 � a2 � 0 and a3 0 0: result is �C;O�@B3;10.
C-I-4. i � 6 if a1 � a2 � a3 � 0: result is �C;O�@B3;12.
(C-II) Conic C2 is singular. We have i � 6. Since both conic and cubic

are products of linear terms, then f is a homogeneous polynomial of degree 6.
Since O is an isolated singularity, then f should be non-degenerate and it is a
product of linear terms. Thus �C;O�@B6;6.

1.6. Statement of the result on the local classi®cation
Now we can state the result in the local classi®cation:

Theorem 1 (Local Classi®cation). Let C � f f � f 3
2 � f 2

3 � 0g is a tame
�2; 3�-torus curve. Put Ci � f fi � 0g for i � 2; 3. The topological type of the
germ �C;O� can be read o¨ from C2 and C3 as follows:

1. Cubic �C3;O� is smooth: A3iÿ1 �i � 1; . . . ; 6�.
2. Cubic is not smooth at O (i.e., m3 b 2).

(a) Conic �C2;O� is smooth.
(i) �C3;O� is A1 and i � 2 : E6 � B3;4.
(ii) �C3;O� is A1 and �C2;O� is tangent to one of the branch: B3;6,

C3;7, C3;8, C3;9 for i � 3, and C3;3iÿ3 for i � 4; 5; 6.
(iii) �C3;O� is not A1 : B3;2i, i � 2; . . . ; 6.

(b) Conic �C2;O� is A1:
(i) �C3;O� is A1: C6;6 for i � 4, no common tangential cone, C6;9

for i � 5, one common tangential cone, C9;9 for i � 6, two common
tangential cones.

(ii) �C3;O� is either A2 or A3: B4;6 or D4;7, for i � 4, no common
tangential cone, Sp1 if i � 5 and �C3;O� � A2 and the tangential
cones coincide.

(c) C2 is a line with multiplicity 2:
(i) �C3;O� is a A1: B4;6 for i � 4, no common tangential cone, C6;12

if i � 6, a common tangential cone.
(ii) �C3;O� is either A2 or A3: B4;6, D4;7 for i � 4, no common tan-

gential cone, Sp2 for i � 6, �C3;O� is A2, the same tangential cone.
(d) Cubic C3 consists of three lines passing through O, and C2 consists of

two lines passing through O : B6;6 �i � 6�.

Remark 1.17. When �C3;O� is a node (i.e., A1), C3 can be reduced (either a
line and a conic meeting transversely at O or three lines where two of them are
passing through O). �C3;O� is A3 if and only if C3 consists of a line and a conic
which are tangent at O. �C2;O� has a node if it consists of two lines.
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Theorem 1-D (Local Degenerations). Under the notation in Theorem 1, we
have following degenerations:

1. �C3;O� is smooth: A2 ! A5 ! A8 ! A11 ! A14 ! A18

2. �C3;O� is A1 and �C2;O� is smooth:
(a) B3;4 ! B3;6 ! C3;7 ! C3;8 ! C3;9

(b) B3;4 ! B3;6 ! C
\
3;9 ! C3;12 ! C3;15

3. �C3;O� is A2 or A3, �C2;O� is smooth: B3;4 ! B3;8 ! B3;10 ! B3;12

4. �C3;O� is A1, �C2;O� is A1 : B4;6 ! D4;7, B4;6 ! Sp1 ! Sp2.
5. �C3;O� is A2 or A3, �C2;O� is A1: C6;6 ! C6;9 ! C9;9, C6;9 ! C6;12.

The following is well known.

Proposition 1.18. Let C be a reduced curve of degree d in P2 de®ned by
F �X ;Y ;Z�. Then there is a family Ct for 0 a t a 1 of curves of degree d such
that Ct GC for t0 0 and C0 GBd;d where Bd;d is the class of d lines meeting at O.

Proof. We follow the method in [OS]. We may assume that the line at
in®nity Z � 0 meets C transversely. Take F�X ;Y ;Z; t� :� F �X=t;Y=t;Z�td and
de®ne the family Ct � fF �X ;Y ;Z; t� � 0g. r

Remark 1.19. For the sake of the global study of sextics, we distinguish

C3;8 and C
]
3;8, and also C3;9 and C

\
3;9 though they are locally topologically

equivalent.

Remark 1.20. For brevity's sake, we have used di¨erent notations from
those of [AGV] for certain class of singularities. The following is the com-
parison between our notations and those in [AGV].

Ours: B3;6 B3;8 B3;10 B3;12 C3;7 C3;8 C3;9 C3;12 C3;15

[AGV]: J�2; 0� E14 E18 J�4; 0� J�2; 1� J�2; 2� J�2; 3� J�2; 6� J�2; 9�
Ours: C6;6 C6;9 C9;9 C6;12 B4;6 D4;7 Sp1 Sp2 B6;6

[AGV]: Y 1
2;2 Y 1

2;5 Y 1
5;5 Y 1

2;8 W �1; 0� W �1; 1� W ]�1; 4� W �1; 6� none

i Singularity type T and the invariant triple �m; r; d� of �C;O�

1 A2�2; 1; 1�

2 A5�5; 2; 3�, E6�6; 1; 3�

3 A8�8; 1; 4�, B3; 6�10; 3; 6�, C3; 7�11; 2; 6�, C3; 8�12; 3; 7�, C
]
3; 8�12; 3; 7�, C3; 9�13; 2; 7�

4 A11�11; 2; 6�, C
\
3; 9�13; 2; 7�, B3; 8�14; 1; 7�, C6; 6�13; 4; 8�, B4; 6�15; 2; 8�, D4; 7�16; 3; 9�

5 A14�14; 1; 7�, C3; 12�16; 3; 9�, B3; 10�18; 1; 9�, C6; 9�16; 3; 9�, Sp1�18; 1; 9�

6
A17�17; 2; 9�, C3; 15�19; 2; 10�, C9; 9�19; 2; 10�, B3; 12�22; 3; 12�, C6; 12�19; 3; 11�, Sp2�21; 2; 11�,
B6; 6�25; 6; 15�

Table A. Local classi®cation.
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2. Global classi®cation

In this section, we consider the possible combination of the local singular-
ities of reduced tame �2; 3�-torus curves, using the local classi®cation obtained in
Section 1.

Assume that C is an irreducible curve of degree d and denote the set of
singularities of C by S�C�. We recall the genus formula

g � �d ÿ 1��d ÿ 2�
2

ÿ
X

P AS�C�
d�C;P�b 0�2:1�

or

w�C 0� � 3d ÿ d 2 �
X

P AS�C�
m 0�C;P�a 2�2:2�

where C 0 is the normalization of C, w�C 0� is the topological Euler characteristic,
m 0�C;P� :� m�C;P� � r�C;P� ÿ 1 and r�C;P� is the number of analytic branches
at P (see [BK]). We call m 0�C;P� the normalized Milnor defect of C at P.
When C is a tame �2; 3�-torus curve, then its singularities set S�C� is given by
C2 VC3 �: fP1;P2; . . . ;Png. Therefore (2.1) is equivalent to the followingXn

i�1

d�C;Pi�a �6ÿ 1��6ÿ 2�=2 � 10:�2:3�

Table A 0. Local degeneration series.
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Denote ik :� I� f2; f3; Pk�, we call �i1; . . . ; in� is an i-vector and n the length of i-
vector. By Bezout theorem, we have

Xn

i�1

ik � 6:�2:4�

When C is reducible curve with r�C� irreducible components, the inequality (2.1)
does not hold and (2.2) has to be replaced by the following.

w�C 0� � 3d ÿ d 2 �
X

P AS�C�
m 0�C;P�a 2r�C�:�2:5�

Our strategy for the global classi®cation is the following steps:
Step 1. Consider every possible i-vector, which satis®es (2.4).
Step 2. List up every possible combination of the local singularities having

prescribed i-vector.
Step 3. Prove or disprove the existence of a reduced tame �2; 3�-torus curve

with the con®gurations. In this stage, if the inequality (2.2) is not satis®ed, we
have to look for the reduced curves with the given con®guration.

For the later discussion, we recall

Lemma 2.1. The possible topological types of a singularity on an irreducible
quartic curve are A1; . . . ;A6;D4;D5 and E6.

Proof. See for instance in [W] r

From the above strategy we can enumerate singularities as follows:

Theorem 2 (Global Classi®cation). The con®guration of singularities of a
tame torus curves C of type �2; 3� is given by Table B, where the notation fS�C�g?
is for the cases of reducible C.

Proof. We will prove the assertion by three steps (corresponds to 3 steps in
the strategy) as follows.

Step 1� Step 2. The i-vector of length 6 �1; 1; 1; 1; 1; 1� is obviously given
under the generic situation where C2 and C3 intersect transversely.

The i-vector with n � 5 is given by �1; 1; 1; 1; 2� and the possible con®g-
urations are fA5; 4A2g and fE6; 4A2g.

The i-vectors with n � 4 is either �1; 1; 1; 3� or �1; 1; 2; 2�. The possible
con®gurations are

�1; 1; 1; 3�: f3A2; sg, where s � A8;B3;6;C3;7;C3;8;C
]
3;8;C3;9

�1; 1; 2; 2�: f2A2; 2A5g, f2A2;A5;E6g, f2A2; 2E6g
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The i-vectors with n � 3 are �1; 1; 4�, �1; 2; 3�, �2; 2; 2� and the possible con-
®gurations are

�1; 1; 4�: f2A2; sg, where s � A11, C
\
3;9;B3;8;C6;6;B4;6;D4;7

�1; 2; 3�: fA2;A5; sg, fA2;E6; sg, where s � A8;B3;6;C3;7;C3;8;C
]
3;8;C3;9

�2; 2; 2�: f3A5g, f3E6g, f2A5;E6g, fA5; 2E6g
The i-vectors with n � 2 are �1; 5�, �2; 4�, �3; 3� and the possible con®gura-

tions are
�1; 5�: fA2; sg, where s � A14;C3;12;B3;10;C6;9;Sp1

�2; 4�: ft; sg where t � A5;E6 s � A11;C
\
3;9;B3;8;C6;6;B4;6;D4;7

�3; 3�: ft; xg where t; x � A8;B3;6;C3;7;C3;8;C
]
3;8;C3;9

For the case n � 1, we have the following obvious possibility.
(6): fA17g, fC3;15g, fC9;9g, fB3;12g, fC6;12g, fSp2g, fB6;6g

Step 3. Existence and Non-existence.
n � 6: The con®guration f6A2g is given by generic conic and cubic which

intersect transversely and this case was ®rst studied by Zariski, [Z1].
n � 5: The con®guration f4A2; sg, s � A5 or E6 is given by the generic

member of the moduli of the singularity A5 or E6 discussed in O1.

n
i-vector

�i1; i2; . . . ; in�
Con®guration of singularities S�C�

1 (6)
fA17g, fC3; 15g, fC9; 9g
fB3; 12g?, fC6; 12g?, fSp2g?, fB6; 6g?

�1; 5� fA2; sg, s � A14, C3; 12, B3; 10, C6; 9, Sp1

2 �2; 4� fA5; sg, fE6; sg, s � A11, C
\
3; 9, B3; 8

fA5; s
0g?, s 0 � C6; 6, B4; 6, D4; 7

�3; 3� f2A8g, fA8;B3; 6g, fA8;C3; 7g, fA8;C
]
3; 8g?, f2B3; 6g?

�1; 1; 4� f2A2; sg, s � A11, C
\
3; 9, B3; 8, C6; 6, B4; 6; f2A2;D4; 7g?

3 �1; 2; 3� fA2;A5; sg, fA2;E6; sg, s � A8, B3; 6, C3; 7

fA2;A5;C3; 8g?, fA2;A5;C
]
3; 8g?, fA2;E6;C

]
3; 8g?

�2; 2; 2� f3A5g, f2A5;E6g, fA5; 2E6g, f3E6g

4
�1; 1; 1; 3� f3A2; sg, s � A8, B3; 6, C3; 7, C3; 8, C3; 9; f3A2;C

]
3; 8g?

�1; 1; 2; 2� f2A2; 2A5g, f2A2;A5;E6g, f2A2; 2E6g

5 �1; 1; 1; 1; 2� f4A2;A5g, f4A2;E6g

6 �1; 1; 1; 1; 1; 1� f6A2g

Table B. Global classi®cation.
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n � 4: Any con®gurations f3A2; sg where s � A8;B3;6;C3;7;C3;8;C3;9 are
obtained by a generic curve in the moduli of singularity s at the origin. This
holds also for f3A2;C

]
3;8g?, but we notice that a generic member of this class

consists of a line and a quintic, though it satis®es the inequality (2.2).
The con®guration f2A2; 2A5g is given by a smooth conic C2 and a smooth

cubic C3 which are tangent at two points and have two other transverse inter-
sections. The con®gurations f2A2;A5;E6g and f2A2; 2E6g are obtained by the
similar device. The existence of these con®gurations also shown by explicit
equations, in Proposition 3.1 of Section 3.

n � 3: For �1; 1; 4�, the existence of the con®gurations f2A2; sg where
s � A11;C

\
3;9;B3;8;C6;6;B4;6 is proved as the above. Similarly the con®gur-

ation f2A2;D4;7g? exists and an example is given by f2 � �x� y��ÿx� 2y�,
f3 � y2 ÿ x3. In this case C has two irreducible components, a line G1 and
a quintic G5. Note that G1 VG5 � fOg, G5 has a singularity E7 at O and 2A2

singularities.
Now we consider the con®guration with i-vector �2; 2; 2�.
The con®guration f3A5g is given for instance by f2 � �xÿ 1�2 � y2 ÿ 1

and f3 � x�y2 ÿ 1�. Note that C2 VC3 consists of three simple tangent points.
The con®guration f3E6g is given by f2 � �xÿ 1�2 � y2 ÿ 1 and f3 � �xÿ 1� �
�x2 ÿ y2�. This case was studied by Oka [O5]. The existence of the con®g-
urations f2A2;E6g, fA5; 2E6g is shown in Proposition 3.1.

Now we consider the con®gurations with i-vector �1; 2; 3�. Examples of the
con®gurations fA2;A5; sg and fA2;E6; sg with s � A8;B3;6;C3;7 are given in
Proposition 3.1.

The con®guration fA2;A5;C3;8g? exists and an example is given by f2 �
yÿ x2, f3 � �ÿ23x3 ÿ 15yx2 � 27xyÿ 16y3 � 27y2�=27. In this case, C has two
irreducible components, a conic G2 which is de®ned by 5x2 ÿ 16xyÿ 16y2ÿ
9y � 0 and a quartic G4 which de®ned by 40x4 ÿ 10yx3 ÿ 117yx2 � 51y2x2�
18y2xÿ 16xy3 � 81y2 � 16y4 ÿ 63y3 � 0. Note that G2 VG4 � fO;Ag where
�C;O� is C3;8, �C;A� is A5 and G4 has two singularities, A3 at O and A2 at
B � �1; 1�.

The con®guration fA2;A5;C
]
3;8g? exists, by taking f2 � yÿ x2, f3 � 2y3�

�3=2�yxÿ �7=2�xy2 � yx2 ÿ x3. In this case, C is also has two irreducible
components: they are a line G1 � fy � 0g and a quintic G5. The line G1 is a tangent
direction of G5 with multiplicity 5 at O, and they have no other intersection point
except O. Moreover, G5 has 3 singularities, an A3 at O, an A5 at �1; 1� and an
A2 at �ÿ1=4; 1=16�.

The con®guration fA2;E6;C
]
3;8g? exists, by taking f2 � y2 � y�xÿ1=4� ÿ x2,

f3 � y�ÿ�3=8�x � �9=16�y�ÿx3 � �19=8�x2 y ÿ �63=32�y3. Again C is a union
of a line and a quintic.

n � 2: The con®gurations with respect to i-vector �1; 5� do exist by similar
reason as the cases �1; 1; 4�, �1; 1; 1; 3� or �1; 1; 1; 1; 2�.

Now we consider the con®guration with i-vector �2; 4�. Examples of the
con®gurations fA5; sg and fE6; sg with s � A11;C

\
3;9;B3;8 are given in Propo-

sition 3.1.
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There are 3 more con®gurations for i-vector is �2; 4�, in these cases the conic
is a line with multiplicity 2. Hence at least f has two factors. Explicit examples
are given as follows.

fA5;B4;6g?: f2�x; y� � x2 and f3�x; y� � y2 ÿ x3. C has two cubic com-

ponents, de®ned by y2 ÿ �1G �������ÿ1
p �x3 � 0. The singularities of C are a B4;6

at O and an A5 at �0; 1�.
fA5;D4;7g?: f2 � ÿ�xÿ y�2 and f3 � y2 ÿ x3. In this case, C has 3 irre-

ducible components, a line G1, a conic G2 and a cuspidal cubic G3. The singu-
larities of C are a D4;7 at O and an A5 at �1; 1�. G2 intersects G3 at O and �1; 1�
with respective intersection multiplicity 3 and 1, while G1 is tangent to both G2

and G3 at O.
fA5;C6;6g?: f2 � ÿx2 and f3 � �yÿ 1��x2 ÿ y2�. In this case, C has 2 irre-

ducible components, both of them are nodal cubics. The singularities of C are
a C6;6 at O and an A5 at �0; 1�.

i-vector is �3; 3�: Examples of the con®gurations f2A8g, fA8;B3;6g and
fA8;C3;7g are given in Proposition 3.1.

An example of fA8;C
a
3;8g? is given by f2 � yÿ x2, f3 � ÿx3 � x2 y�

�9y� 16y2�x=6� y2 � 32y3=27. In this case, C is a union of a line G1 and a
quintic G5, where G1 is a tangent direction of G5 at O, and S�G5� � fA8;A3g.
The singularities of C are a Ca

3;8 at O and an A8 at �1; 1�.
An example of f2B3;6g? is given by f3 � x�xÿ 2�y, f2 � y2 � x2 ÿ 2x. In

this case, C is a union of three smooth conics G
�i�
2 , and they intersect each other

other at two points O and A � �2; 0� with multiplicity 2.
n � 1: The existence in these cases is obvious from the local classi®cation.

The explicit equations for irreducible curves are given in Proposition 3.1. Explicit
examples for the reducible cases are given as following.

fB3;12g?: Let f2 � yÿ x2, f3 � y3. In this case, C consists of three smooth

conics G
�i�
2 , which are tangent to each other at O with multiplicity 4.

fC6;12g?: Let f2 � ÿy2, f3 � x�yÿ x2�. In this case, f � �x3 ÿ xyÿ y3� �
�x3 ÿ xy� y3�, thus C is a union of two nodal cubics.

fSp2g?: Let f2 � ÿy2, f3 � y2 ÿ x3. In this case, f � �x3 ÿ y2 ÿ y3� �
�x3 ÿ y2 � y3�, thus C is a union of two cuspidal cubics.

fB6;6g?: Let f2 � y2, f3 � x3. Thus C consists of 6 concurrent lines.
To complete the proof of Theorem 2, it su½ces to show the nonexistence of

the remaining con®gurations. r

Lemma 2.2. There are no tame �2; 3�-torus curves having a con®guration of
singularities in the following list.

(1) fA2;E6;C3;8g?, fA2;E6;C3;9g? and fA2;A5;C3;9g?,
(2) fC3;k;C3; lg? for any 6 a k, l a 9, �k; l�0 �6; 6�. Here we use the

notation C3;6 for B3;6 for notation's consistency, and C
]
3;8 is also included in

these pairs.
(3) fE6; sg? where s � C6;6;B4;6;D4;7.
(4) fA8;C3;8g?, fA8;C3;9g?.
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Proof. (1) For a singular point P A C, recall that m 0�P� :� m�P� � r�C;P�ÿ
1. We ®rst consider the case fA2;E6;C3;8g?, fA2;E6;C3;9g? and fA2;A5;C3;9g?.
Note that w�C 0� � 4 for each of them. Thus r�C�b 2. In fact, we have
observed before any generic member of the moduli of fA2;A5;C3;8g? consists
of a conic and a quartic. Each of the above three con®gurations should be
a degeneration of a family of fA2;A5;C3;8g?. In the case of fA2;E6;C3;8g? and
fA2;E6;C3;9g? (respectively in the case of fA2;A5;C3;9g?), a quartic can not
contain singularities A2 and E6 simultaneously (resp. A2 and A6) by the inequality
(2.2), which proves the non-existence of the case (1).

(2) Now we consider the con®gurations fC3;k;C3; lg? for any 6 a k, l a
9. Note that m 0�C3;l� � 12; 12; 14; 14 respectively and the tangent cones are
irreducible. Thus if C has any two of them simultaneously, we need to have
r�C�b 3. Furthermore if C3;8 or C3;9 is included, r�C�b 4, in which case, C
has at least two line components. If C has two line components, we have an
obvious contradiction by the number of the tangential cone argument. Thus the
remaining cases are fC3;k;C3; lg; k; l � 6; 7 and C has either 3 conics or one line
and two other components of degree 2 and 3 respectively. Observe that C3;7

has irreducible singularity A4, which can not exist on a cubic or a conic. Thus
the non-existence is proved except fC3;6;C3;6g? � fB3;6;B3;6g?. This exceptional
case exists as we have seen before.

(3) Assume that the singularity at O is C6;6, B4;6 or D4;7. Then the conic
C2 consists of two di¨erent lines l1; l2 or a line with multiplicity two by the local
classi®cation argument in O2. Note that in any case, the intersection multiplicity
of a line (or the reduced line) in C2 and C3 at O is 2. Thus there exists a simple
intersection outside of O. In the ®rst case, the other partner singularities are two
A2, which is not the case (3). If C2 is a double line, the other partner singularity
is A5 as we have seen in Corollary 1.6, which is also not in case (3).

(4) Assume that C has a con®guration fA8;C3;8g? or fA8;C3;9g?. Then
they must be a degeneration of the con®guration of type fA2;A5;C3;8g? whose
generic member consists of a conic and a quartic. Thus by the same argument
as above, this is impossible. r

I am grateful to Professor Oka for pointing out some missing cases in Table
B and showing the above non-computational proof of Lemma 2.2.

3. The global degeneration

3.1. A certain degenerations
In this section we consider the degenerations of irreducible tame torus curves

of type �2; 3�, our aim is ®nding the list of all maximal curves. Here an irre-
ducible sextic C of a torus type is called maximal if C does not have any
degeneration in the space of irreducible sextics of torus type.

The degenerations between the curves in the table B may come from the
con®gurations in the same level of i-vectors in the table B, and also from di¨erent
levels of i-vectors. We ®rst show the following.
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Proposition 3.1. In the same i-vectors level, the degeneration families are
given in Table B 0.

Proof. We can obtain the degenerations �kA2; s� ! �kA2; s
0� for k is 1, 2, 3

or 4 from the local degeneration s! s 0. For other degenerations we give the
explicit equations as follows.

The degeneration fA17g ! fC3;15g can be obtained by taking f2 � yÿ x2,

f3 � y3 � �x� t�yÿ tx2 ÿ x3 and t! 0. In this case the smooth conic C2 is
®xed, the degeneration of C3 is from a smooth cubic to a nodal cubic when
t! 0.

The degeneration fA17g ! fC9;9g can be obtained by taking f2 � ty� y2ÿ
x2, f3 � ÿt�3ÿ t�yÿ 3y2 � y3 ÿ txyÿ xy2 � �3ÿ t�x2 � x2 y� x3 and t! 0.

The degenerations in ��� are given by f2 � yÿ x2 and f3 � t1 y�
�s ÿ t2 ÿ t1�y2 � �s ÿ t2 ÿ t1 � 1�y3 � t2xy � �ÿ2s � 2t2 � 2t1 ÿ 2�xy2 ÿ t1x2�
yx2 ÿ t2x3. Assume sÿ t1 ÿ t2 0ÿ1, the vertical degenerations take place when
s! 0, while the horizontal degenerations take place when t1 ! 0, or t1 � 0,
t2 ! 0 respectively.

fA17g ! fC3; 15g fA17g ! fC9; 9g
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
fA2;A14g ! fA2;C3; 12g ! fA2;B3; 10g
fA2;A14g ! fA2;C6; 9g ! fA2;Sp1g

fA5;A11g ! fA5;C
\
3; 9g ! fA5;B3; 8g

# # # ���
fE6;A11g ! fE6;C

\
3; 9g ! fE6;B3; 8g

f2A8g ! fA8;B3; 6g ! fA8;C3; 7g
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
f2A2;A11g ! f2A2;C

\
3; 9g ! f2A2;B3; 8g

#
f2A2;C6; 6g ! f2A2;B4; 6g

fA2;A5;A8g ! fA2;A5;B3; 6g ! fA2;A5;C3; 7g
# # # ����

fA2;E6;A8g ! fA2;E6;B3; 6g ! fA2;E6;C3; 7g

f3A5g ! f2A5;E6g ! fA5; 2E6g ! f3E6g
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
f3A2;A8g ! f3A2;B3; 6g ! f3A2;C3; 7g ! f3A2;C3; 8g ! f3A2;C3; 9g
f2A2; 2A5g ! f2A2;A5;E6g ! f2A2; 2E6g
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
f4A2;A5g ! f4A2;E6g

Table B 0. Global degenerations (with same i-vector).

 �
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The degeneration f2A8g ! fA8;B3;6g ! fA8;C3;7g can be obtained by taking
f2 � y ÿ x2, f3 � �ÿt2 ÿ 1�x3 � �ÿt1 � 3yt2�x2 � �y ÿ 3t2 y2�x � t1 y � t2 y3 and
t1 ! 0, or t1 � 0, t2 ! ÿ4=27 respectively.

The degenerations in ���� are given by f2 � yÿ x2 and f3 � �ÿt2 ÿ 23=27�
x3� �ÿt1� �t1� t2�23=27ÿ s�y�x2��y��t2ÿ4=27�y2�x� t1 y��ÿt1ÿ1� s�y2ÿ
�t2 ÿ 4=27�y3, the vertical degenerations take place when s! 0, while the hori-
zontal degenerations take place when t1 ! 0, or t1 � 0, t2 ! 0 respectively.

The degeneration family f3A5g ! f2A5;E6g ! fA5; 2E6g ! f3E6g can be

obtained by taking f2 � yÿ x2, f3 � ÿt3x3 � �yÿ t1 ÿ t2=2� t3 ÿ 1�x2 � t3 yxÿ
�1=2�t2 y3 ÿ y3 � t3 y3 � y2t2 � y2 ÿ 2y2t3 � yt1 and t1 ! 0 or t1 � 0, t2 ! 0
or t1 � t2 � 0, t3 ! 0 respectively.

The degeneration family f2A2; 2A5g ! f2A2;A5;E6g ! f2A2; 2E6g are given
by f2 � yÿ x2 and f3 � 3x3 � �ÿt1 ÿ 2� �t1 ÿ 1ÿ t2�y�x2 ÿ 3xy2� t1 y� �ÿt1�
2� t2�y2 � y3 when t1 ! 0 or t1 � 0, t2 ! 0 respectively. r

A con®guration at the end of each degeneration family in the above prop-
osition is called semi-maximal. Next we consider degenerations between the semi-
maximal curves. For later purpose, we ®rst give the following degenerations,
which will be used to prove Theorem 3.4.

Proposition 3.2. Among the semi-maximal curves and together f6A2g, there
are following degeneration families:

(1) f6A2g ! f4A2;E6g ! f2A2; 2E6g ! f3E6g ! fE6;B3;8g
(2) fA2;E6;C3;7g ! fE6;B3;8g
(3) f2A2;B4;6g ! fA2;Sp1g
Proof. (1) We can image these degenerations by Figure 5, where we ®x the

circle C2 and consider the degenerations of 3 lines whose are the components of
C3.

The last degeneration, when t! 0, we have Nt ! P, then C3 becomes a
union of a line MP with multiple 2 and a single line which tangents to C2 at P.

(2) Let us consider f2�x; y� � yÿ x2 and a family f3�x; y; t� � �4t3 ÿ 3t�x3�
x2 y� ��6tÿ 2ÿ 12t3�y2 � 3ty�xÿ 3y2t� �ÿ3t� 8t3 � 1�y3.

By taking t! 0, we have the degeneration fA2;E6;C3;7g ! fE6;B3;8g.
(3) Let f2�x; y; t� � x�yÿ tx� and f3�x; y� � y2 ÿ x3. By taking t! 0 we

have the degeneration f2A2;B4;6g ! fA2;Sp1g. r

Figure 5. Degenerations in (1).
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3.2. Maximal sextics
First we remark the following.

Lemma 3.3. Assume that we have an analytic family of plane curves �jtja e�
such that Ct has only isolated singularities in a ®xed open neighborhood U
of the origin for any t and O is the unique singularity of C0. We assume that
Pt;1; . . . ;Pt; n are the singular points of Ct VU which converges to O for t � 0.

Then we have
(1) If n b 2,

Pn
i�1 m�Ct;Pt; i� > m�C0;O�.

(2) If n � 1, m�C0;O�b m�Ct;Pt;1� for t0 0 and the equality holds if and only
if �C0;O� is equivalent to �Ct;Pt;1� for t0 0.

Proof. The ®rst assertions follows from the vanishing theorem of Lefschetz
number of the monodromy ([A1], [LeÃ2]) and the second assertion is due to ([LeÃ2],
[LR]). r

Using Propositions 3.1 and 3.2 we obtain the following theorem.

Theorem 3.4. The maximal sextics of torus type has the following con®g-
urations.

(1) n � 1 : fC3;15g, fC9;9g.
(2) n � 2 : fA2;B3;10g, fA2;Sp1g, fE6;B3;8g, fA8;C3;7g.
(3) n � 4 : f3A2;C3;9g.

Proof. Assume that there is a family of degeneration Ct ! C0 for t! 0.
By Lemma 3.3, the sum of Milnor numbers is strictly increasing for t! 0. For
fC3;15g, fC9;9g, the assertion is obvious as they have m � 19 and no other place
to degenerate. Now we consider the con®gurations fA2;B3;10g, fA2;Sp1g,
fE6;B3;8g. The total Milnor numbers are 20 for each of them and they are
obviously maximal. For fA8;C3;7g, the total Milnor number is 19 and the
possibility of the degeneration is to one of fA2;B3;10g, fA2;Sp1g, fE6;B3;8g.
If this is the case, there must be degenerations of each of the two singularities
to the corresponding singularities in the above con®gurations. Then C3;7 has to
degenerate into either Sp1 or B3;10 or B3;8, and then A8 has no partner to
degenerate.

It remains to show that the con®guration f3A2;C3;9g can not degenerate
to any con®guration in (1) or (2). By the total Milnor number argument, the
possibility is to fA2;B3;10g, fA2;Sp1g or fE6;B3;8g. Assume that f3A2;C3;9g !
fE6;B3;8g. As 2A2 ! E6 but 3A2nE6, we need to have a degeneration A2�
C3;9 ! B3;8 which is ridiculous as the Milnor number is decreasing. The impos-
sibly of the degeneration f3A2;C3;9g ! fA2;B3;10g follows from that of C3;9 !
B3;10. Now we consider the degeneration f3A2;C3;9g ! fA2;Sp1g. In the com-
putation of the moduli of C3;9, we start from the generic forms of C2 and C3

as following.
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f2 � y2b20 � y�b10 � b11x� � b02x2

f3 � y�a11x� a02 y� � a30x3 � a21x2 y� a12xy2 � a03 y3

�
According to the computation, the generic form of C3;9 takes place when

a11 � c11b10

a30 � c11�27b2
10b02 � 4a2

11�=�27b3
10�

a21 � �4a02c2
11 � 9b11b10c11 � 9a02b02�=�9b10�

a12 � �9b2
10b20c11 � 9b10b11a02 � 4c11a2

02�=�9b2
10�

b10 0 0; c11 0 0

8>>>>><>>>>>:
Since the resultant of f2 and f3 in x is of the form

Resx� f2; f3� � �4=27�b2
10c3

11�b20a02 ÿ a03b10�y3 � higer terms

As we known that C3;9 degenerate makes i increase, thus b10c11�b20a02 ÿ a03b10�
� 0. By computation, this makes i � 6 and either C3;9 ! B3;12 or B6;6. Thus
the degeneration f3A2;C3;9g ! fA2;Sp1g is impossible. r

Remark 3.5. The impossibility of the above degeneration can be shown by
looking the dual curves. Suppose that we have a degenerating family Ct with Ct

has f3A2;C3;9g for t0 0 and C0 has the con®guration fA2;Sp1g. We assume
also that the singularities C3;9 and Sp1 are at the origin, with y � 0 as the
tangent cone. Then we ®rst notice that the dual curve of Ct and C0 has degree 6
([O5]). This implies that the corresponding dual curve can be considered as an
analytic family of sextics. Secondly we can see that the dual singularity of C3;9

is again C3;9 at �0; 1; 0� and C �t has further three A2 singularities also. On the
other hand, the dual singularity of Sp1 is A8 by Theorem 14, [O5]. Let L be the
line supporting the tangent cone of C0 at the singularity Sp1. Then LVC0 �
fOg. This implies that in the dual curve C �0 , it has A8 singularity at �0; 1; 0�.
Then in the family C �t ! C �0 , we have the degeneration C3;9 ! A8. This is
impossible as the Milnor number is decreasing. The detail will be studied in our
next paper [OP].

4. New Zariski pairs

We ®rst modify the de®nition of a Zariski pair given in [Ar]. Our de®nition
is weaker than the original one.

Definition 4.1. A pair of plane curves �C;C 0� is called a weak Zariski
pair if they have same degree and S�C�@S�C 0�, but P2 ÿ C is not homeo-
morphic to P2 ÿ C 0.

We do not ask the respective tubular neighborhood of C and C 0 are home-
omorphic. The notation S�C�@S�C 0� means that there is a bijection f :
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S�C� ! S�C 0� such that �C; x� is topological equivalent to �C 0; f�x�� for any
x A S�C�.

As a corollary of Theorem 2 we have two new Zariski pairs with respect to
the following con®gurations

a) fA2;A5;C3;8g? and fA2;A5;C
a
3;8g?.

b) f3A2;C3;8g and f3A2;C
a
3;8g?.

In the ®rst pair, fA2;A5;C3;8g? is a union of a conic and a quartic, while
fA2;A5;C

a
3;8g? is a union of a line and a quintic.

In the second pair, f3A2;C3;8g is irreducible, while f3A2;C
a
3;8g? is reducible,

a union of a line and a quintic.
The explicit equations of the above pairs and the discussions about geometry

of these curves are given in the previous section.
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