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A CHARACTERIZATION OF SEMIAMPLENESS AND

CONTRACTIONS OF RELATIVE CURVES
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Abstract

I give a cohomological characterization of semiample line bundles. The result is

a generalization of both the Fujita±Zariski Theorem on semiampleness and the

Grothendieck±Serre Criterion for ampleness. As an application of the Fujita±Zariski

Theorem I characterize contractible curves in 1-dimensional families.

Introduction

The Fujita±Zariski Theorem asserts that a line bundle L that is ample on
its base locus is semiample. Semiampleness means that a multiple Lnn, n > 0 is
globally generated. For discrete base locus the result goes back to Zariski ([17],
Theorem 6.2), and the general form is due to Fujita ([3], Theorem 1.10). This
note contains two applications of the Fujita±Zariski Theorem.

The ®rst section contains a generalization of both the Fujita±Zariski The-
orem and the cohomological criterion for ampleness due to Grothendieck±Serre.
The result is the following characterization: A line bundle L is semiample if
and only if the modules H 1�X ;In Sym L� are ®nitely generated over the ring
G�X ; Sym L� for every coherent ideal IHOB. Here BHX is the stable base
locus of L. This gives a positive answer to Fujita's question ([3], 1.16) whether
it is possible to weaken the assumption in the Fujita±Zariski Theorem.

In the second section I generalize results of Piene [14] and Emsalem [2].
They used the Fujita±Zariski Theorem to obtain su½cient conditions for con-
tractions in normal arithmetic surfaces. Our result is a characterization of con-
tractible curves in 1-dimensional families over local noetherian rings in terms of
complementary closed subsets. This also sheds some light on the noncontractible
curve constructed by Bosch, LuÈtkebohmert, and Raynaud ([1], Chapitre 6.7).
For proper normal algebraic surfaces, similar results appear in [15].

1. Characterization of semiampleness

Throughout this section, R is a noetherian ring, X is a proper R-scheme, and
L is an invertible OX -module. According to the Grothendieck±Serre Criterion

207

1991 Mathematics Subject Classi®cation: 14A15, 14C20, 14H10,

Received November 22, 1999; revised April 2, 2001.



([5], Proposition 2.6.1) L is ample if and only if for each coherent OX -module F
there is an integer n0 > 0 so that H 1�X ;FnLnn� � 0 for all n > n0. Let
me reformulate this in terms of graded modules. For a coherent OX -module
F, set

H p
� �F;L� � H p�X ;Fn Sym L� � 0

nb0

H p�X ;FnLnn�:

This is a graded module over the graded ring G��L� � G�X ; Sym L�. The
Grothendieck±Serre Criterion takes the form: L is ample if and only if the
modules H 1

� �F;L� are ®nitely generated over the ring G0�L� � G�OX � for all
coherent OX -modules F. In this form it generalizes to the semiample case.
Following Fujita [3], we de®ne the stable base locus BHX of L to be the
intersection of the base loci of Lnn for all n > 0. We regard it as a closed
subscheme with reduced scheme structure.

Theorem 1.1. Let BHX be the stable base locus of L. Then the following
are equivalent:

(i) The invertible sheaf L is semiample.
(ii) The modules H p

� �F;L� are ®nitely generated over the ring G��L� for
each coherent OX -module F and all integers p b 0.

(iii) The modules H 1
� �I;L� are ®nitely generated over the ring G��L� for

each coherent ideal IHOB.

Proof. The implication (i)) (ii) is well known, and (ii)) (iii) is trivial.
To prove (iii)) (i) we assume that L is not semiample. According to the
Fujita±Zariski Theorem the restriction LB is not ample. By the Grothendieck±
Serre Criterion there is a coherent ideal IHOB with H 1�X ;InLnn�0 0 for
in®nitely many n > 0. Thus H 1

� �I;L� is not ®nitely generated over G0�L�.
Since BHX is the stable base locus, the maps G�X ;Lnn� ! G�B;Lnn

B � vanish
for all n > 0. Consequently, the irrelevant ideal G��L�HG��L� annihilates
H 1
� �I;L�, which is therefore not ®nitely generated over G��L�. r

Sommese [16] introduced a quantitative version of semiampleness: Let k b
0 be an integer; a semiample invertible sheaf L is called k-ample if the ®bers of
the canonical morphism f : X ! Proj G��L� have dimension a k. For example,
0-ampleness means ampleness.

Theorem 1.2. Let L be a semiample invertible OX -module. Then L is k-
ample if and only if the modules H k�1

� �F;L� are ®nitely generated over the
ground ring R for all coherent OX -modules F.

Proof. Set Y � Proj G��L� and let f : X ! Y be the corresponding
contraction. Suppose L is k-ample. Choose n0 > 0 so that Lnn0 � f ��M�
for some ample invertible OY -module M. Put G �Fn �LlLn2 l � � �
lLnn0�. Choose m0 > 0 with H p�Y ;Rq f��G�nMnm� � 0 for p > 0, q a
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k � 1, and m > m0. Consequently, the edge map H k�1�X ;GnLnmn0� !
H 0�Y ;Rk�1 f��G�nMnm� in the spectral sequence

H p�Y ;Rq f��G�nMnm� ) H p�q�X ;GnLnmn0�

is injective for m > m0. The ®bers of f : X ! Y are at most k-dimensional, so
Rk�1 f��G� � 0. Thus H k�1�X ;FnLn� � 0 for all n > n0m0.

Conversely, assume that the condition holds. Seeking a contradiction we
suppose that some ®ber of f : X ! Y has dimension > k. Using [13] we ®nd
a coherent OX -module F with Rk�1 f��F�0 0. Replacing L by a suitable
multiple, we have L � f ��M� for some ample invertible OY -module M.
Passing to a higher multiple if necessary, H p�Y ;Rq f��F�nMnn� � 0 holds

for p > 0, q a k, and n > 0. Then the edge map H k�1
� �X ;FnLnn� !

H 0
� �Y ;Rk�1 f��F�nMnn� is surjective for n > 0. Choose a global section s A

G�Y ;Mnn� for some n > 0 so that the open subset Ys HY contains the set of
associated points for Rk�1 f��F�. Then s A G��M� is not a zero divisor for
H 0
� �Rk�1 f��F�;M�. It follows that H 0

� �Rk�1 f��F�;M� is nonzero for in®nitely
many degrees. Consequently, the same holds for H k�1

� �F;L�, which is there-
fore not ®nitely generated over R. r

Remark 1.3. For a vector bundle E, it might happen that OP�E��1� is
semiample, whereas Symn�E� fails to be globally generated for all n > 0. For
example, let k be an algebraically closed ®eld of characteristic p > 0, and X
be a smooth proper curve of genus g > pÿ 1 so that the absolute Frobenius
FrX : H 1�OX � ! H 1�OX � is zero. For an example see [11], p. 385, Exercise 2.15.
Let DHX be a divisor of degree 1. According to the commutative diagram

H 0�OX � ���! H 0�OD� ���! H 1�OX �ÿD�� ���! H 1�OX �
Fr �X

???y Fr�X

???y Fr�X

???y ???yFr�X�0

H 0�OX � ���! H 0�OpD� ���! H 1�OX �ÿpD�� ���! H 1�OX �;

the p-linear map Fr�X : H 1�OX �ÿD�� ! H 1�OX �ÿpD�� is not injective. Hence
there is a nontrivial extension

0! OX ! E! OX �D� ! 0

whose Frobenius pull back Fr�X �E� splits. The surjection E! OX �D� gives a
section AHP�E� representing OP�E��1� with A2 � 1 ([11], Proposition 2.6,
p. 371). The Fujita±Zariski Theorem implies that OP�E��1� is semiample, and we
obtain a birational contraction P�E� ! Y . It is easy to see that the exceptional
set is an integral curve RHP�E� which has degree p on the ruling. Hence
P�E� ! Y does not restrict to closed embeddings on the ®bers of P�E� ! X .
Consequently, Symn�E� is not globally generated at any point x A X .
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2. Contractions of relative curves

Throughout this section, R is a local noetherian ring, and X is a proper R-
scheme with 1-dimensional closed ®ber X0 HX . Then all ®bers of the structure
morphism X ! Spec�R� are at most 1-dimensional. For example, X could be a
¯at family of curves.

A Stein factor of X is a proper R-scheme Y together with a proper morphism
f : X ! Y so that OY ! f��OX � is bijective (compare [12], Section 5). Our
objective is to describe the set of all Stein factors for a given X.

Let Ci, i A I be the ®nite collection of all 1-dimensional integral components
of the closed ®ber X0. A subset J H I yields a subcurve C �6

i A J
Ci. We call

such a curve C HX contractible if there is a Stein factor f : X ! Y so that f �Ci�
is a closed point if and only if i A J. According to [5], Theorem 5.4.1, a Stein
factor is determined up to isomorphism by its restriction f0 : X0 ! Y0. The task
now is to determine the contractible curves C HX . It follows from [14] and
[2] that all curves C HX are contractible provided that the ground ring R is
henselian. In particular this holds if R is complete. On the other hand, a non-
contractible curve is discussed in [1], chapter 6.7.

We seek to describe contractible curves C HX in terms of complementary
closed subsets DHX . We need a de®nition: Suppose DHX is a closed
subset of codimension a 1. Let RHR5 be the completion with respect to
the maximal ideal, X 0 the normalization of X nR R5, and C 0i , C 0, D 0HX 0
the preimages of Ci, C, DHX , respectively. Let h : X 0 ! Z 0 be the contrac-
tion of all C 0i HX 00 disjoint from C 0. We call D persistent if h�D 0�HZ 0 has
codimension a 1.

Example 2.1. Suppose R is a discrete valuation ring with residue ®eld k
and fraction ®eld K. Let X be the proper R-scheme obtained from X 0 � P1

R by
identifying the closed points 0, y A P1

k . Then the closure DHX of the point
0 A P1

K is not persistent.

Theorem 2.2. Suppose J H I is a subset so that the curve C �6
i A J

Ci is
connected. Then C HX0 is contractible if and only if there is a persistent closed
subset DHX of codimension a 1 disjoint from C and intersecting each irreducible
component Ci HX0 with i B J.

Proof. Assume that C is contractible. The corresponding contraction f :
X ! Y maps C to a single point. Let V HY be an a½ne open neighborhood
of f �C�. Set U � f ÿ1�V� and D � X ÿU . Clearly DVC � j. Furthermore,
DVCi 0j for i B J; otherwise f �Ci� would be a proper curve contained in the
a½ne scheme V, which is absurd. Let X 0, Y 0 be the normalizations of X nR

R5, Y nR R5, respectively. The induced morphism f 0 : X 0 ! Y 0 is the con-
traction of the preimage C 0HX 0 of C. The preimage V 0HY 0 of V is a½ne, so
Y ÿ V is of codimension a 1 ([10] II, 2.2.6). Hence the preimage D 0HX 0 of
D is of codimension a 1. Obviously, the same holds if we contract the pre-
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images C 0i HX 0 of Ci disjoint from C 0. Thus DHX is of codimension a 1 and
persistent.

Conversely, assume the existence of such a subset DHX . Set U � X ÿD.
We claim that the a½ne hull Uaff � Spec G�U ;OX � is of ®nite type over R and

that the canonical morphism U ! Uaff is proper.
Suppose this for a moment. Then U ! Uaff contracts C and is a local

isomorphism near each x A U0 ÿ C. Choose for each x A X0 ÿ C an a½ne
open neighborhood Ux HX of x disjoint to the exceptional set of U ! Uaff .
Then Ux VU ! Uaff is an open embedding. It is easy to see that the schemes
Ux UUxVU Uaff , x A X0 ÿ C and Uaff form an open cover of a proper R-scheme
Y. The induced morphism f : X ! Y is the desired contraction.

It remains to verify the claim. Let RHR5 be the completion. According
to [9], VIII Corollary 3.4, the scheme Uaff is of ®nite type if and only if

Uaff nR R5 is of ®nite type. Furthermore, U ! Uaff is proper if and only if it
is proper after tensoring with R5 ([9], VIII Corollaire 4.8). Since Uaff nR R5 �
�U nR R5�aff by [8], Proposition 21.12.2, it su½ces to prove the claim under the
additional assumption that R is complete.

Now each curve in X0 is contractible. Observe that the contraction of
C does not change Uaff , so we can as well assume that C is empty. Now our
goal is to prove that U is a½ne. Since R is complete, hence universally japanese,
the normalization X 0 ! X is ®nite. Using Chevalley's Theorem ([4], TheÂoreÁme
6.7.1), we reduce the problem to the case that X is normal. Now the irre-
ducible components of X are the connected components. Treating them sep-
arately we may assume that X is connected. Contracting the curves Ci contained
in D we can assume that D0 is ®nite and intersects each Ci. If D � X or D � j
there is nothing to prove. Assume that DHX is of codimension 1, in other
words a Weil divisor. The problem is that it might not be Cartier. To
overcome this, consider the graded quasicoherent OX -algebra R �0

nb0

OX �nD�. The graded subalgebra R 0HR generated by R1 � OX �D� is of ®nite
type over OX . Set X 0 � Proj�R 0� and let g : X 0 ! X be the structure morphism.
Then g is projective and OX 0 �1� is a g-very ample invertible OX 0 -module. The
canonical maps D : OX �nD� ! OX ��n� 1�D� induce a homomorphism R 0 !
R 0 of degree one, hence a section s : OX 0 ! OX 0 �1�. It follows from the de®-
nition of homogeneous spectra that s is bijective over U and vanishes on gÿ1�D�.
Thus the corresponding Cartier divisor D 0HX 0 representing OX 0 �1� has sup-
port gÿ1�D�.

Let AHX 00 be a closed integral subscheme of dimension n > 0. If g�A�H
X0 is a curve, then A is not contained in D 0 but intersects D 0. Hence D 0 � A >
0. If g�A�HX is a point, then OA�1� is ample, so �D 0�n � A > 0. By the Nakai
criterion for ampleness we conclude that OX 0 �1� is ample on its base locus.
Now the Fujita±Zariski Theorem tells us that OX 0 �1� is semiample. It follows
that U FX 0 ÿD 0 is a½ne. This ®nishes the proof. r

Let us consider the special case that the total space X is a normal surface.
Replacing R by G�X ;OX �, we are in the following situation: Either R is a discrete
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valuation ring, such that X ! Spec�R� is a ¯at deformation of X0. Or R is a
local normal 2-dimensional ring, hence X ! Spec�R� is the birational contraction
of X0. In either case we call a Weil divisor H A Z1�X � horizontal if it is a sum
of prime divisors not supported by X0.

Suppose J H I is a subset with C �6
i A J

Ci connected. Let V HX0 be the
union of all Ci disjoint from C.

Corollary 2.3. Notation as above. Then C HX0 is contractible if and
only if there is a horizontal Weil divisor H HX disjoint from C with the following
property: For each Ci, i B J, either H intersects Ci, or H intersects a connected
component V 0HV with V 0 VCi 0j.

Proof. Suppose C HX0 is contractible. Let DHX be a persistent Weil
divisor as in Theorem 2.2. Then its horizontal part H HD satis®es the above
conditions. Conversely, assume there is a horizontal Weil divisor H HX as
above. It follows that D � H � V is a persistent Weil divisor disjoint from C
intersecting each Ci with i B J. Thus C HX0 is contractible. r
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