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A CHARACTERIZATION OF SEMIAMPLENESS AND
CONTRACTIONS OF RELATIVE CURVES

STEFAN SCHROER

Abstract

I give a cohomological characterization of semiample line bundles. The result is
a generalization of both the Fujita—Zariski Theorem on semiampleness and the
Grothendieck—Serre Criterion for ampleness. As an application of the Fujita—Zariski
Theorem I characterize contractible curves in 1-dimensional families.

Introduction

The Fujita—Zariski Theorem asserts that a line bundle ¥ that is ample on
its base locus is semiample. Semiampleness means that a multiple #®" n > 0 is
globally generated. For discrete base locus the result goes back to Zariski ([17],
Theorem 6.2), and the general form is due to Fujita (3], Theorem 1.10). This
note contains two applications of the Fujita—Zariski Theorem.

The first section contains a generalization of both the Fujita—Zariski The-
orem and the cohomological criterion for ampleness due to Grothendieck—Serre.
The result is the following characterization: A line bundle ¥ is semiample if
and only if the modules H'(X,.# ® Sym %) are finitely generated over the ring
I'(X,Sym %) for every coherent ideal .# — (ls. Here B < X is the stable base
locus of . This gives a positive answer to Fujita’s question ([3], 1.16) whether
it is possible to weaken the assumption in the Fujita—Zariski Theorem.

In the second section I generalize results of Piene [14] and Emsalem [2].
They used the Fujita—Zariski Theorem to obtain sufficient conditions for con-
tractions in normal arithmetic surfaces. Our result is a characterization of con-
tractible curves in 1-dimensional families over local noetherian rings in terms of
complementary closed subsets. This also sheds some light on the noncontractible
curve constructed by Bosch, Liitkebohmert, and Raynaud ([1], Chapitre 6.7).
For proper normal algebraic surfaces, similar results appear in [15].

1. Characterization of semiampleness

Throughout this section, R is a noetherian ring, X is a proper R-scheme, and
£ is an invertible Oy-module. According to the Grothendieck—Serre Criterion
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([5], Proposition 2.6.1) & is ample if and only if for each coherent Ox-module #
there is an integer ny >0 so that H'(X,# @ £®") =0 for all n>ny. Let
me reformulate this in terms of graded modules. For a coherent (y-module
Z, set

H)'F,%)=H"(X,7F ® Sym ¥) = P H(X,F ® L").
n>0

This is a graded module over the graded ring I.(¥)=T(X,Sym %#). The
Grothendieck—Serre Criterion takes the form: . is ample if and only if the
modules H!(#,%) are finitely generated over the ring I'o(Z) = I'(Ox) for all
coherent (Oy-modules #. In this form it generalizes to the semiample case.
Following Fujita [3], we define the stable base locus B< X of & to be the
intersection of the base loci of £®" for all n > 0. We regard it as a closed
subscheme with reduced scheme structure.

THEOREM 1.1. Let B < X be the stable base locus of ¥. Then the following
are equivalent:

(i) The invertible sheaf & is semiample.

(i) The modules HI(F,¥) are finitely generated over the ring T.(&) for
each coherent Oy-module F and all integers p > 0.

(iii) The modules H}(.#, %) are finitely generated over the ring T.,(ZL) for
each coherent ideal ¥ < Op.

Proof. The implication (i) = (ii) is well known, and (ii) = (iii) is trivial.
To prove (iii) = (i) we assume that % is not semiample. According to the
Fujita—Zariski Theorem the restriction %3 is not ample. By the Grothendieck—
Serre Criterion there is a coherent ideal .# = Op with H!(X,.# ® #®") 0 for
infinitely many n > 0. Thus H!(#,%) is not finitely generated over I'o(Z).
Since B < X is the stable base locus, the maps ['(X, #®") — ['(B, ") vanish
for all n>0. Consequently, the irrelevant ideal I'y (%) < I.(%) annihilates
H! (7, %), which is therefore not finitely generated over I,(Z). O

Sommese [16] introduced a quantitative version of semiampleness: Let k >
0 be an integer; a semiample invertible sheaf % is called k-ample if the fibers of
the canonical morphism f : X — Proj I.(¥) have dimension < k. For example,
0-ampleness means ampleness.

THEOREM 1.2. Let ¥ be a semiample invertible Ox-module. Then ¥ is k-
ample if and only if the modules H*"''(F, %) are finitely generated over the
ground ring R for all coherent Ox-modules 7.

Proof. Set Y =ProjI.(¥) and let f:X — Y be the corresponding
contraction. Suppose # is k-ample. Choose 1y >0 so that L®" = f*(.#)
for some ample invertible (y-module .#. Put 9= Q@ (¥ @ 9@ ...
® £®m). Choose my>0 with H?(Y,RIf (%)@ .#4®") =0 for p>0, q<
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k+1, and m > my. Consequently, the edge map H*'(X,4® £®")
HO(Y, R f.(49) ® 4®™) in the spectral sequence

HP(Y, qu*(%) @ <ﬂ®m) = [_Il”rfj(A/7 @4 ® g@mno)

is injective for m > my. The fibers of f: X — Y are at most k-dimensional, so
R f(9)=0. Thus H**Y(X, 7 ® ") =0 for all n > nymy.

Conversely, assume that the condition holds. Seeking a contradiction we
suppose that some fiber of f: X — Y has dimension > k. Using [13] we find
a coherent Uy-module # with R¥*!f (#)#0. Replacing £ by a suitable
multiple, we have ¥ = f*(.#) for some ample invertible Oy-module /.
Passing to a higher multiple if necessary, H?(Y,RIf.(F)® .4®") =0 holds
for p>0, g<k, and n>0. Then the edge map H'(X,7 ® £®") —
HO(Y, R f(F)® 4®") is surjective for n > 0. Choose a global section s e
C(Y,.#®") for some n >0 so that the open subset Y, = Y contains the set of
associated points for R¥*!f (#). Then seT.(.#) is not a zero divisor for
HY(R¥Vf(F), ). 1t follows that HO(R*f.(F),.#) is nonzero for infinitely
many degrees. Consequently, the same holds for H*!(#, %), which is there-
fore not finitely generated over R. O

Remark 1.3. For a vector bundle &, it might happen that Op.s)(1) is
semiample, whereas Sym”" (&) fails to be globally generated for all » > 0. For
example, let k be an algebraically closed field of characteristic p > 0, and X
be a smooth proper curve of genus g > p — 1 so that the absolute Frobenius
Fry : H'(Oy) — H'(Oy) is zero. For an example see [11], p. 385, Exercise 2.15.
Let D = X be a divisor of degree 1. According to the commutative diagram

H(Oy) —— H%0p) —— H'(Ox(-D)) —— H'(Oy)

Fry J{ Fry J{ Fry l J{Fr;_()

HY(Oy) —— HCp) —— H'(Ox(-pD)) —— H'(0y),

the p-linear map Fry : H!(Ox(—D)) — H'(Ox(—pD)) is not injective. Hence
there is a nontrivial extension

0—- 0y —&— Ox(D)—0

whose Frobenius pull back Fry (&) splits. The surjection & — Ox(D) gives a
section 4 < P(&) representing Opis)(1) with 4% =1 ([11], Proposition 2.6,
p. 371). The Fujita—Zariski Theorem implies that Op(s)(1) is semiample, and we
obtain a birational contraction P(&) — Y. Tt is easy to see that the exceptional
set is an integral curve R < P(&) which has degree p on the ruling. Hence
P(&) — Y does not restrict to closed embeddings on the fibers of P(&) — X.
Consequently, Sym”"(&) is not globally generated at any point x € X.
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2. Contractions of relative curves

Throughout this section, R is a local noetherian ring, and X is a proper R-
scheme with 1-dimensional closed fiber X; = X. Then all fibers of the structure
morphism X — Spec(R) are at most 1-dimensional. For example, X could be a
flat family of curves.

A Stein factor of X is a proper R-scheme Y together with a proper morphism
f:X — Y so that Oy — f,(Ox) is bijective (compare [12], Section 5). Our
objective is to describe the set of all Stein factors for a given X.

Let C;, i € I be the finite collection of all 1-dimensional integral components
of the closed fiber Xj. A subset J < [ yields a subcurve C = Uie ; Ci. We call
such a curve C = X contractible if there is a Stein factor ' : X — Y so that f(C;)
is a closed point if and only if i e J. According to [5], Theorem 5.4.1, a Stein
factor is determined up to isomorphism by its restriction f,: Xo — Yo. The task
now is to determine the contractible curves C — X. It follows from [14] and
[2] that all curves C = X are contractible provided that the ground ring R is
henselian. In particular this holds if R is complete. On the other hand, a non-
contractible curve is discussed in [1], chapter 6.7.

We seek to describe contractible curves C < X in terms of complementary
closed subsets D < X. We need a definition: Suppose D < X is a closed
subset of codimension < 1. Let R< R” be the completion with respect to
the maximal ideal, X’ the normalization of X ®; R", and C/, C', D' c X'
the preimages of C;, C, D = X, respectively. Let 2: X' — Z’ be the contrac-
tion of all C] c X disjoint from C’. We call D persistent it h(D') c Z' has
codimension < 1.

Example 2.1. Suppose R is a discrete valuation ring with residue field &
and fraction field K. Let X be the proper R-scheme obtained from X' = PR1 by
identifying the closed points 0, oo ePk]. Then the closure D = X of the point
0 e P} is not persistent.

THEOREM 2.2. Suppose J = I is a subset so that the curve C = Uie] C; is
connected. Then C < Xy is contractible if and only if there is a persistent closed
subset D = X of codimension < 1 disjoint from C and intersecting each irreducible
component C; < Xy with i¢J.

Proof. Assume that C is contractible. The corresponding contraction f :
X — Y maps C to a single point. Let V' < Y be an affine open neighborhood
of f(C). Set U= f"'(V)and D=X —U. Clearly DNC =¢. Furthermore,
DNC; # 0 for i ¢ J; otherwise f(C;) would be a proper curve contained in the
affine scheme V, which is absurd. Let X', Y’ be the normalizations of X ®p
R”, Y ®g R", respectively. The induced morphism f’: X’ — Y’ is the con-
traction of the preimage C' = X’ of C. The preimage V' = Y’ of V is affine, so
Y — V is of codimension < 1 ([10] II, 2.2.6). Hence the preimage D' = X’ of
D is of codimension < 1. Obviously, the same holds if we contract the pre-
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images C/ — X’ of C; disjoint from C’. Thus D < X is of codimension < 1 and
persistent.

Conversely, assume the existence of such a subset D = X. Set U =X — D.
We claim that the affine hull U = Spec I'(U, Oy) is of finite type over R and
that the canonical morphism U — U is proper.

Suppose this for a moment. Then U — U*T contracts C and is a local
isomorphism near each xe Uy— C. Choose for each xe Xy — C an affine
open neighborhood U, c X of x disjoint to the exceptional set of U — U,
Then U,NU — U™ is an open embedding. It is easy to see that the schemes
U,Up.ny U, xe Xy — C and U* form an open cover of a proper R-scheme
Y. The induced morphism f : X — Y is the desired contraction.

It remains to verify the claim. Let R < R" be the completion. According
to [9], VIII Corollary 3.4, the scheme U is of finite type if and only if
UM @z R” is of finite type. Furthermore, U — U*T is proper if and only if it
is proper after tensoring with R" ([9], VIII Corollaire 4.8). Since U ®z R" =
(U ®z R")™™ by [8], Proposition 21.12.2, it suffices to prove the claim under the
additional assumption that R is complete.

Now each curve in X; is contractible. Observe that the contraction of
C does not change U so we can as well assume that C is empty. Now our
goal is to prove that U is affine. Since R is complete, hence universally japanese,
the normalization X’ — X is finite. Using Chevalley’s Theorem ([4], Théoréme
6.7.1), we reduce the problem to the case that X is normal. Now the irre-
ducible components of X are the connected components. Treating them sep-
arately we may assume that X is connected. Contracting the curves C; contained
in D we can assume that Dy is finite and intersects each C;. If D=X or D=0
there is nothing to prove. Assume that D < X is of codimension 1, in other
words a Weil divisor. The problem is that it might not be Cartier. To
overcome this, consider the graded quasicoherent (@y-algebra % = @n>0
Ox(nD). The graded subalgebra #' — # generated by % = Ox(D) is of finite
type over Oy. Set X' =Proj(#’) and let g: X’ — X be the structure morphism.
Then g is projective and Oy (1) is a g-very ample invertible Ox.-module. The
canonical maps D : Oxy(nD) — Ox((n+1)D) induce a homomorphism %' —
R’ of degree one, hence a section s: Oxs — Ox/(1). Tt follows from the defi-
nition of homogeneous spectra that s is bijective over U and vanishes on g~ !(D).
Thus the corresponding Cartier divisor D’ = X’ representing Oy (1) has sup-
port g~'(D).

Let 4 = X be a closed integral subscheme of dimension n > 0. If g(4) <
Xy is a curve, then A4 is not contained in D’ but intersects D’. Hence D' - A4 >
0. If g(4) = X is a point, then (4(1) is ample, so (D’)" - A4 > 0. By the Nakai
criterion for ampleness we conclude that (y.(1) is ample on its base locus.
Now the Fujita—Zariski Theorem tells us that Oy (1) is semiample. It follows
that U ~ X' — D’ is affine. This finishes the proof. O

Let us consider the special case that the total space X is a normal surface.
Replacing R by I'(X, Ox), we are in the following situation: Either R is a discrete
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valuation ring, such that X — Spec(R) is a flat deformation of X;. Or R is a
local normal 2-dimensional ring, hence X — Spec(R) is the birational contraction
of Xp. In either case we call a Weil divisor H € Z!(X) horizontal if it is a sum
of prime divisors not supported by Xj.

Suppose J < [ is a subset with C = ()
union of all C; disjoint from C.

i) C; connected. Let V' < X, be the

COROLLARY 2.3. Notation as above. Then C < X, is contractible if and
only if there is a horizontal Weil divisor H < X disjoint from C with the following
property. For each C;, i ¢ J, either H intersects C;, or H intersects a connected
component V' = V with V'NC; # 0.

Proof. Suppose C < Xj is contractible. Let D < X be a persistent Weil
divisor as in Theorem 2.2. Then its horizontal part H — D satisfies the above
conditions. Conversely, assume there is a horizontal Weil divisor H < X as
above. It follows that D = H + V' is a persistent Weil divisor disjoint from C
intersecting each C; with i¢J. Thus C < X is contractible. O
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