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COMPLETE MINIMAL SURFACES LYING IN

SIMPLE SUBSETS OF R3

Sun Sook Jin

Abstract

In this paper, we prove the existence of orientable and nonorientable complete

minimal surfaces of R3 lying in a solid cylinder, a ball or a halfspace, using the Runge's

approximation theorem and the Enneper-Weierstrass representation of minimal surfaces.

From the point of global di¨erential geometry, the complete surfaces are the
interesting objects namely, those for which the geodesics are de®ned for all times.
Equivalently, every divergent path must have in®nite length. In this paper, we
study the complete minimal surfaces in R3. One of the fundamental problems in
this subject is to decide about the existence of a complete minimal surface that is
contained in a simple set of R3 such as a halfspace, a slab, a solid cylinder or a
ball. Notice that all the classical examples, the plane, the catenoid, the helicoid,
Scherk's surface, Costa's surface etc . . . , are not contained in any simple set.
Therefore it is surprising in this respect that, Jorge and Xavier [J-X] constructed a
complete minimal surface lying in a slab, which is de®ned by a minimal immer-
sion X : D ,! R3 de®ned on the unit disk in the plane. They used the Runge's
approximation theorem, which is improving the Enneper-Weierstrass represent-
ation of X to ®nd a way in D tending to the boundary, jzj � 1, but only such way
is fairly long with respect to the induced metric by X although the Euclidean
distance is short. Recently, Nadirashvili [N] used the Runge's theorem in a
more elaborate way to construct a complete minimal surface of negative Gaussian
curvature which is a subset of the unit ball. This example is also a disk type,
topologically trivial, and hence there is no period problem.

Now that we have the complete minimal surfaces in a slab and in a ball, and
it is tempting to ask whether there exists an unbounded example lying in a solid
cylinder. The ®rst goal of this paper is to answer the question in the a½rmative
by proving the following theorem:

Theorem 1. There exists a complete orientable singly-periodic minimal
surface in R3 which is contained in a solid cylinder.
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We prove this theorem in Section 2, applying the method of Nadirashvili to
a minimal surface de®ned on an annulus in the plane. There is no need to
annihilate the period in this case. Now, the example in the theorem has the
non-zero period vector and contains a fundamental region lying in a ball of R3.
Note, it has the trivial structure topologically.

After that, in Section 3, we prove Lemma 1 which is the key lemma in this
paper. In Section 4, using the z2-type holomorphic maps and the Enneper-
Weierstrass representation of a nonorientable minimal surface in R3 due to
Meeks [M], we prove that:

Theorem 2. There exists a complete nonorientable minimal surface lying in a
ball of R3. Concretely, it is a MoÈbius strip topologically.

Finally, in section 5, we consider the Enneper-Weierstrass representation of a
minimal immersion which sends the concentric circles fz A C : jzj � cg, 0 < c < 1,
into horizontal planes of R3, and we prove the following theorem:

Theorem 3. There exist orientable complete minimal surfaces of R3 lying in
a halfspace, x3 > 0, but not a slab, which are transverse to each horizontal plane.
One of them is singly-periodic.

We conclude this section by providing with some previous results in the
subject. First, using the Runge's theorem, Rosenberg and Toubiana [R-T] have
obtained a complete minimal surface, which is topologically a cylinder, transverse
to the planes x3 � constant, jx3j is bounded on the surface, and F. Lopez [L1]
constructed a MoÈbius strip type example in a slab.

By the way, Brito [B] described a new technique, together with a power
series containing Hadamard gaps, to construct disk type examples in a slab.
Afterward, using the same method Costa and SimoÄes [C-S] have constructed
examples of genus k and N ends in a slab, for every k � 1; 2; . . . and 1UN U 3.

While, using the Weierstrass' gap theory in the compact Riemann surface
theory, F. Lopez [L2] have presented an analytically clear general construction
method for hyperbolic minimal surfaces of arbitrary topology with a bounded
coordinate function, which are some deformations of the given disk type ex-
amples.

On the contrary, there are many non-existence results under the certain extra
conditions on the surface: Ho¨man and Meeks [H-M] showed that a proper
complete non-planar minimal surface in R3 can not be contained in a halfspace,
and Xavier [X] proved that the convex hull of a complete non-planar minimal
surface of bounded Gaussian curvature is R3.

1. Preliminaries

Let M be a set of connected open annuli in the plane with Jordan curve
boundaries and containing the unit curve g :� fz A C : jzj � 1g. Let
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X : M ,! R3

be a minimal immersion de®ned on M A M. Then it is a conformal harmonic
immersion, and so we can take a holomorphic map

FX � �f1; f2; f3� �: 2
qX

qz
A C 3;

such that

f2
1 � f2

2 � f2
3 1 0�1:1�

0 < kFXk2 � jf2
1 j � jf2

2 j � jf2
3 j <y:�1:2�

On the other hand, if we have a holomorphic map F on M satisfying both (1.1)
and (1.2), then we can de®ne a minimal immersion X by

X �p� � R

� p

p0

F dz� X �p0�

for some p0 A M. By the way, we can assume that f3 2 0 on M and de®ne a
holomorphic and a meromorphic function by

f � f1 ÿ if2; g � f3

f1 ÿ if2

2 0;

respectively, we call � f ; g� the Weierstrass data of X. In particular, the mer-
omorphic function g : M ! C is the stereographic projection of the Gauss map
of X with respect to the north pole of S2, just say it the Gauss map of X.

Using the Enneper-Weierstrass representation, we have

X� p� � R

� p

p0

1

2
f �1ÿ g2�; i

2
f �1� g2�; fg

� �
dz� X� p0�:

Now, we consider the several arguments:
(1) Let us denote dsX � lX jdzj the induced metric of M by X, where

l2
X :� 2kFXk2 � 1

2
j f j2�1� jgj2�2

and let ``distX '' be the distance function of M with respect to dsX . Then we can
say that X is complete if distX �g; qM� diverges.

(2) We de®ne the period vector of X by

Period�X � :� R

�
G

�f1; f2; f3� dz�1:3�

where G is a closed curve in M, which generates a translation of the image of M
in R3 by

X �e2piz� � X�z� � Period�X �:
(3) Let h be a holomorphic function on M, h0 0 in M, and set
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~f �z� � f �z�h�z�; ~g�z� � g�z�
h�z� :

Then it gives us another minimal immersion ~X : M ,! R3, de®ned by

~X �p� � R

� p

p0

1

2
~f �1ÿ ~g2�; i

2
~f �1� ~g2�; ~f ~g

� �
dz� ~X �p0�:

The period vector may vary in the deformation.
Finally, we state further notations which will be needed in later.

Notation 1. . Let M A M, then qM consists of two disjoint Jordan curves
denoted by

qI M :� qM V fjzj < 1g; qOM :� qM V fjzj > 1g:
Take a simple arc ``b�M�'' lying in M between p A qI M and q A qOM, then we
have a fundamental domain F�M� of M with the cut b�M�, that is,

b�M� � qF �M�nqM:

We call ``b�M�'' the branch cut of F�M�.
. Let ``distC '' and ``distR3 '' denote the standard Euclidean distance functions

on the plane C and R3, respectively.
. If E A C , we de®ne a subset E1ÿe HE such that

distC �E;E1ÿe� � e

. Let Br � fx A R3 : kxk < rg be a ball of R3.

2. Proof of Theorem 1 (Examples in a solid cylinder)

In this section, we prove that Theorem 1 is the consequence of the following
lemma which will be showed in the next section:

Lemma 1. Let X : M ,! R3, M A M, be a minimal immersion with X�1� � 0
and distX �g; qM� � r for some rV 1. Suppose that there is a fundamental domain
FX �M� of M with a branch cut ``bX '' such that

X �FX �M��HBr

for some rV 1. Then for every s; d > 0 with M1ÿd A M, there exists a minimal
immersion

Y : ~M ,! R3; ~M A M;

such that Y�1� � 0, M1ÿd H ~M HM and

distY �g; q ~M� � r� s

kFY ÿFXkU s2=2p on M1ÿd
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Y�FY � ~M��HBr�2s2

where FY � ~M� is a fundamental domain of ~M with a branch cut ``bY '' such that

distC �bX V ~M; bY � < 4 d:

To the ®rst, let an, n � 1; 2; . . . ; be a sequence of positive constants speci®ed
later such that

a1 < 1=5; an > 2an�1�2:1�
From the previous lemma, together with r � rn, r � rn, s � 1=�n� 1� and d � an,
we have a sequence of minimal annuli

Xn : An ,! R3; An A M;

n � 1; 2; . . . ; respectively, such that

�An�1ÿan
HAn�1 HAn

kPeriod�X1�k � 1; Xn�1� � 0

distXn
�g; qAn� � rn; rn � 1� 1=2� � � � � 1=n

Xn�Fn�An��HBrn
; rn � 2� 2=22 � 2=32 � � � � � 2=n2

kFn�1 ÿFnkU 1=�2p�n� 1�2� on �An�1ÿan

8>>>>><>>>>>:
where Fn :� 2qXn=qz is a holomorphic map and Fn�An� is a fundamental domain
of An. Let us denote ``bn'' the branch cut of Fn�An�, and let b1 �
fz A A1 : arg z � 0g. By Lemma 1, we may assume that

distC �bn VAn�1; bn�1� < 4an:�2:2�
Observe that we can take an annulus A A M as the limit of the decreasing
sequence: A1 IA2 I � � � IAn I � � � : That is,

A � Int 7
y

n�1

An

 !
:

Denote Kn � �An�1ÿ2an
, then Kn HKn�1 by (2.1). Additionally, all of Kn's, n �

1; 2; . . . ; are contained in A.
Notice that for every compact subset K of A, there is an integer N such

that K HKn for all nVN. Recall kFn�1 ÿFnkU 1=�2p�n� 1�2� on Kn, and so
fFnjKgn AN is a normal family in Montel's sense. Hence we can ®nd a sub-
sequence of fFnjKgn AN which is converging uniformly to a holomorphic map

F : A! C 3

over all compact subsets of A as n!y. Since F satis®es the conditions (1.1)
and (1.2) clearly, we have a minimal immersion

X : A ,! R3

X�1� � 0, de®ned by
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X�p� � R

� p

1

F dz:

Then the following holds:
(a) Recall gH �An�1ÿan

for all n A N . Therefore we have

kPeriod�Xn� ÿ Period�X1�k

U
Xn

i�2

kPeriod�Xi� ÿ Period�Xiÿ1�k

�
Xn

i�2

�
g

kF i ÿF iÿ1k jdzjU 1

22
� 1

32
� � � � � 1

n2
U

3

4

and hence

1

4
U kPeriod�Xn�kU 7

4

for all n A N . Hence, X is singly-periodic.
(b) Let us denote F�An� the canonical fundamental domain of An:

F�An� � fz A An : 0U arg z < 2pg
which has the branch cut ``b1 VAn � fz A An : arg z � 0g''. Together with (2.1)
and (2.2), we have

distC �bn; b1 VAn� < 4�a1 � a2 � � � � � anÿ1�

< 4a1 1� 1

2
� � � � � 1

2nÿ1

� �
< p:

It implies that F�An� is contained in the union of three fundamental domains:

Fn�An�U e2piFn�An�U eÿ2piFn�An�:
Since rn � 2� 2=22 � 2=32 � � � � � 2=n2 U 4 for all n A Z, we have

Xn�F�An��HBrn�kPeriod�Xn�kHB6:

Recall F�A�HF�An� for all n A N , and so we have shown that:

X�F�A��HB6:

Moreover, X�A� is contained in a solid cylinder of R3 with the axis line of the
direction Period�X�0 0 from (a).

(c) Recall we can choose an, n � 1; 2; . . . ; satisfying that,

distXn
�g; qKn�V 2

3
rn:�2:3�

Let dn, n � 1; 2; . . . ; be another sequence of constants, such that
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1

2
< dn < 1

kFn�1kV dnkFnk on Kn

d1d2 � � � dn ! 1

2
as n!y:

Then, together with (2.3), we have for all m > n

distXm
�g; qKn�V dmÿ1 distXmÿ1

�g; qKn�

V
1

2
distXn

�g; qKn�V 1

2

2

3
rn:

It follows that,

distX�g; qA�V distX�g; qKn�V 1

3
rn:

Recall rn � 1� 1=2� � � � � 1=n tends to in®nity as n!y.
As a result, X�A� is the complete singly-periodic minimal surface of R3 lying

in a solid cylinder. Hence the proof of the theorem is ®nished.

3. Proof of Lemma 1

In this section we prove the previous lemma in Section 2. We will use the
method of Nadirashvili in [N]. Notice that, however, the property (16) of [N] is
not induced by the condition (10). So, we will also use the argument of Collin
and Rosenberg [C-R] who ®lled the gap.

To the ®rst, denote

m � sup
M

kFXk � 1; n � inf
M
kFXk:

Let N > 10 be a su½ciently large number which will be speci®ed later with
M1ÿd HM1ÿ2=N . And let

U � UO UUI :�MnM1ÿ2=N

where UO and UI are the outer and the inner components, respectively. Let
ri � 1ÿ i=N 3, i � 0; 1; . . . ; 2N 2, and denote

Ei � UO V �Mr2i
nMr2i�1

�; ~Ei � UO V �Mr2i�1
nMr2i�2

�

E � 6
N 2ÿ1

i�0

Ei; ~E � 6
N 2ÿ1

i�0

~Ei:

If we denote S1 � qE, then it consists of �2N 2 � 1�-number of closed simple
curves. Let l1; l2; . . . ; lk1

be the transversal lines of UO for some integer k1, and
denote
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L1 � E V 6
�k1=2�

i�1

l2i; ~L1 � ~E V 6
�k1=2�

i�1

l2iÿ1

H1 � L1 U ~L1 US1:

We denote H 0
1 the open 1=8N 3-neighborhood of H1, then UOnH 0

1 consists of
2N 2k1-number of compact subsets. Let oi, i � 1; . . . ; k1, be the union of
segments U0 V li and those components which have nonempty intersection with
UO V li, respectively.

Similarly, repeat this processing on the inner component UI , together with
the k2-number of transversal lines, to take the compact subsets ok1�j HUI , j �
1; . . . ; k2. We may assume that

1

N
U diamC�o 0i �U

7

N
�3:1�

where o 0i is an open 1=8N 3-neighborhood of oi and i � 1; . . . ; k with k �
k1 � k2. (see Figure 1).

Proposition 1 ([N]). If ds � ljdzj is a metric on M such that

lV 1 on M

lVN 4 on 6
k

i�1

o 0i

8><>:
then for all smooth curves s connecting g and qM, the arc length of s with respect
to ds is larger than N.

Figure 1
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Proof. Let si be a segment of s, which meets the subset Mr2i
nMr2i�1

for
some i � 0; 1; . . . ;N 2 ÿ 1. If si transverses o 0j for some j � 1; . . . ; k, then we can
show that: �

si

dsVN 4 1

2N 3
� N

2
:

If not, that is, si does not meet every o 0j , j � 1; . . . ; k, except a very small area,
then the Euclidean length of si is more than 2=N, by (3.1). Hence the arc length
of si is at least 1=N. Therefore, since s � s0 U s1 U � � � U sN 2ÿ1, we have�

s

dsVN 2 1

N
� N: r

Proposition 2 ([N]). For all constants T > 0, where i � 1; . . . ; k, there is a
holomorphic function hi de®ned on M, hi�z�0 0 in M, such that

jhi ÿ 1j < 1

T
on Mno 0i

jhi ÿ T j < 1

T
on oi:

Proof. Denote the Riemann sphere by S2 � C U fyg. Observe that the
complement of the union of two compact subsets Mno 0i and oi in S2 is either
connected or composing of two components. By virtue of the Runge's theorem,
for every ~e > 0 there exists a holomorphic or meromorphic function ~hi on the
plane, with only one pole at zero, such that

j~hij < ~e on Mno 0i
j~hi ÿ ln T j < ~e on oi:

Let us de®ne

hi�z� :� exp�~hi�z��
then the restriction of hi on M is a holomorphic function, because that 0 B M.
Together with a su½ciently small ~e > 0, we evidently have

jhi ÿ 1j < 1

T
on Mno 0i

jhi ÿ T j < 1

T
on oi

as required. r

Now, we prove the following assertion, which plays the crucial role of this
proof of Lemma 1:
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Assertion 1. There is a sequence of minimal immersions

Y0 � X ;Y1; . . . ;Yk : M ,! R3

such that all of H1;H2; . . . ;Hk hold:

�Hi�

kF i ÿF iÿ1k < e

Nk
on Mno 0i

kF ikV n

2
�����
N
p on o 0i

kF ikV n

2
N 3:5 on oi

8>>>>>>>><>>>>>>>>:
where F i :� 2qYi=qz and e > 0 is a su½cienlty small constant.

Proof. First, we assume that F0; . . . ;F iÿ1 are already de®ned such that
H1; . . . ;Hiÿ1 are all true. Since o 0i HMn�o 01 U � � � Uo 0iÿ1�, we have

kF iÿ1 ÿF0kU
Xiÿ1

j�1

kF j ÿF jÿ1kU e

N
on o 0i :

It follows, together with large N, that

5n

8
U kF iÿ1kU m on o 0i :�3:2�

Let Giÿ1 : M ! S2 be the Gauss map of Yiÿ1. Then by (3.1) and (3.2), we can
say that

diamS 2�Giÿ1� ~o 0i ��U
7m

N
; diamR3�Yiÿ1� ~o 0i ��U

7m

N
�3:3�
where ~o 0i is a fundamental domain of o 0i such that

~o 0i VFX �M�0 f:�3:4�
Now observe that, after a rotation, we may assume the following; if
distR3�0;Yiÿ1� ~o 0i ��V 1=

�����
N
p

, then

��G~e3;Yiÿ1� ~o 0i ��U
7m�����

N
p�3:5�

and

distS 2�G~e3;Giÿ1�o 0i ��V
1�����
N
p ;�3:6�

where ~e3 � �0; 0; 1� A R3. (see Figure 2).
Let � fiÿ1; giÿ1� be the Weierstrass data of the minimal immersion Yiÿ1, and

set

fi�z� � fiÿ1�z�hi�z�; gi�z� � giÿ1�z�
hi�z�
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where hi is the holomorphic function in the Proposition 2. Now we have
another minimal surface Yi�z� � R

� z
F i�z� dz such that:

F i � 1

2
fi�1ÿ g2

i �;
�������ÿ1
p

2
fi�1� g2

i �; figi

 !
:

Observe that the following holds:
. On the domain Mno 0i , for a su½ciently large T,

kF i ÿF iÿ1k � 1

2
j fiÿ1j jhi ÿ 1j � 1

2
j fiÿ1g2

iÿ1j 1ÿ 1

hi

���� ����
U

1

2T
sup

M

j fiÿ1j �
1

2�T ÿ 1� sup
M

j fiÿ1g2
iÿ1j

U
e

Nk
:

. Recall giÿ1 : M ! C is a stereographic projection of Giÿ1 with respect to
the north pole of S2, and hence by (3.6) we have

2�����
N
p U jgiÿ1jU

�����
N
p

2

on the domain o 0i by (3.6). It follows that on o 0i , we also have

kF ik � 1

2
j fiÿ1j jhij 1� jgiÿ1j2

jhij2
 !

V j fiÿ1j jgiÿ1j

� jgiÿ1j
1� jgiÿ1j2

kF iÿ1kV 4

5
�����
N
p kF iÿ1kV n

2
�����
N
p :

Figure 2
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. Similarly, on oi

kF ikV 1

2
j fiÿ1j jhijV 1

2
j fiÿ1j�T ÿ 1�

� kF iÿ1k
1� jgiÿ1j2

�T ÿ 1�V 4

N � 4
kF iÿ1k�T ÿ 1�

V
5n

2�N � 4� �T ÿ 1�V n

2
N 3:5

for large N.
Until now, we have shown that Hi also holds. By induction, we ®nish the

proof of Assertion 1. r

Now let us de®ne a new minimal immersion by:

Y :� Yk ÿ Yk�1�
then FY :� Fk, Y�1� � 0, kY ÿ YkkU e=N. Observe that Assertion 1 leads us
that

kFk ÿF0kU
Xk

i�1

kF i ÿF iÿ1kU e

N
on M

�
6
k

i�1

o 0i :�3:7�

Additionally, for large N,

kFY ÿFXkU s2=2p on M1ÿd�3:8�
since M1ÿd HMn�o 01 U � � � Uo 0k�.

By the way, sine o 0i HMn6k

j�i�1 o 0j , we have

kFkkV kF ik ÿ kFk ÿF ikV n

2
�����
N
p ÿ e

N
on o 0i

kFkkV n

2
N 3:5 ÿ e

N
on oi:

It follows that,

kFkkV n

3
�����
N
p on M

kFkkVN 4 n

3
�����
N
p on oi U � � � Uok:

8>><>>:�3:9�

Thus, by Proposition 1, we can show that

distY �g; qM�VN
n

3
�����
N
p V r� s

for a su½ciently large N.
Now take a fundamental domain MF of M, de®ned by
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MF :� FX �M�
�

6
k

i�1

o 0i

 !
U 6

k

i�1

~o 0i

see (3.4). Then, from (3.3), we can say that

kX �z�k < r� 7m

N
for all z A MF :�3:10�

Let ~M denote a subset of M such that,

distY �g; q ~M� � r� s�3:11�
then q ~M is the union of smooth curves in M, since the Gaussian curvature of a
minimal surface is nonpositive. Observe ~M A M. Set a fundamental domain of
~M by

FY � ~M� :� ~M VMF

then

distC �bX V ~M; bY �U 7

N
< 4 d�3:12�

where ``bX '', ``bY '' are the branch cuts of FX �M� and FY � ~M�, respectively.
Now we show the following assertion. Recall, together with (3.8), (3.11)

and (3.12), it leads us to prove that the restriction of Y on ~M, denote by Y again:

Y : ~M ,! R3

is the required map. Hence we completes the analysis of the proof of Lemma 1:

Assertion 2. Y �FY � ~M��HBr�2s2 .

Proof. We consider the two cases:

Case 1. Let z A q�FY � ~M��n6k

i�1
~o 0i , then by (3.7) and (3.10),

kY�z�kU kX�z�k � 1

N
< r� 7m

N
� 1

N
< r� 2s2�3:13�

for a su½ciently large N.

Case 2. Let z A q�FY � ~M��V ~o 0i , for some i � 1; . . . ; k. Then, it is clear that

kY �z� ÿ Yi�z�kU e

N
�3:14�

for ~o 0i HMFn6j0i
~o 0j . Take a geodesic curve h in ~M connecting from z to the

curve g, such that �
h

dsY � r� s:
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Let h meet q ~o 0i at a point z A MFn6k

j�1
~o 0j , then

kYiÿ1�z�kU r� c1

N
; c1 > 0:�3:15�

Recall the Euclidean distance between g and qM1ÿ2=N is less than �3 �����
N
p

=n��r� s�
by (3.9), and hence by (3.7),

distY �g; z�V distY �g; qM1ÿ2=N�

V distX �g; qM1ÿ2=N� ÿ e

N

3
�����
N
p

n
�r� s�

V rÿ 2m

N
ÿ 3e

n
�����
N
p �r� s�:

It follows, together with (3.7) and (3.9) again, that

distY �z; z�U
�

h

dsY ÿ distY �g; z�U s� 2m

N
� 3e

n
�����
N
p �r� s�:

From (3.14), it implies that

distYi
�z; z�U s� c2

N
; c2 > 0:�3:16�

Now, suppose that distR3�0;Yiÿ1� ~o 0i ��U 1=
�����
N
p

, then

kYiÿ1�z�kU 1�����
N
p � 7m

N

by (3.3). From (3.14), (3.16), we can say that

kY �z�kU kYi�z�k � 1

N
U kYi�z�k � s� c2 � 1

N
�3:17�

U kYiÿ1�z�k � e

N
� s� c2 � 1

N

U r� 2s2:

On the other hand, if distR3�0;Yiÿ1� ~o 0i ��V 1=
�����
N
p

. Then by (3.5),

kp�Yiÿ1�z��kU 7m�����
N
p kYiÿ1�z�kU 7m�����

N
p r� c1

N

� �
where p : R3 ! R2 is the orthogonal projection along the �x1; x2�-plane. Since
Y 3

i 1Y 3
iÿ1, we have

kp�Yi�z��kU kp�Yiÿ1�z��k � kYi�z� ÿ Yiÿ1�z�kU c4�����
N
p

for some c4 > 0, as well as, by (3.16)
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kp�Yi�z��k < s� c5�����
N
p ; c5 > 0:

By the Pythagorean theorem, together with the fact:

kY 3
i �z�k � kY 3

iÿ1�z�kU r� e

N

it implies that

kYi�z�k2 U s� c5�����
N
p

� �2

� r� e

N

� �2

:

Since rV 1, by (3.14) again, we have for large N,

kY�z�kU
��������������
r2 � s2

p
� s2�3:18�

U
����������������������������
r2 � 2rs2 � s4

p
� s2 � r� 2s2:

As a result of (3.13), (3.17) and (3.18), we have shown that

Y�qFY � ~M��HBr�2s2 :

By virtue of the maximum principle of the minimal surface, it implies that

Y�FY � ~M��HBr�2s2

as desired. r

4. Proof of Theorem 2 (Nonorientable examples in a ball)

Recall, independently, Martin and Morales [M-M] have also generalized
the technique of Nadirashvili in a minimal immersion on an annulus. On the
contrary, their interest is on the construction of a bounded complete example
with non-trivial topological structure. To annihilate the period, they used the
z2-type holomorphic maps. In this section, we prove the existence of a non-
orientable bounded complete minimal surface, using the z2-type holomorphic
maps again and the Enneper-Weierstrass representation of nonorientable minimal
surface in R3 due to Meeks [M].

First, we have some notations:

Notation 2. . Let I : C ! C be the inversion de®ned by I�z� � ÿ1=z.
. Let N :� fM A M : I�M� �Mg be the set of annuli invariant under the

inversion.
. We say that a holomorphic map F : M ,! C 3, M A N, is z2-type, if there

is a holomorphic map C such that:

F�z� � C�z2� for all z A M:

If X : M ,! R3, M A N, is a minimal immersion and FX :� 2qX=qz is z2-type,
then Period�X� � 0 and X�z� � X�ÿz� is constant. We denote it by S�X� :�
X �z� � X �ÿz�.
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. Let us denote the subset E1ÿe of E HC such that

E1ÿe � I�E1ÿe�; distC �qEO; qE1ÿe
O � � e

where qEO and qE1ÿe
O denote the outer components of qE and qE1ÿe, that is,

both are contained in fjzj > 1g, respectively.

Proposition 3 ([M]). Let X : M ,! R3, M A N, be a minimal immersion
with Period�X� � 0. Then it is the double covering of a nonorientable minimal
surface if and only if

g�I�z�� � I�g�z���4:1�

�zg�z��2 � ÿ f �I�z��
f �z��4:2�

where � f ; g� is the Weierstrass data of X and I is the inversion. The nonorientable
surface is, concretely, the MoÈbius strip M=f1; Ig.

Now, using Lemma 2 in the end of this section, we have a sequence of
double coverings of minimal MoÈbius strips, Xn : An ,! R3, An A N, where n �
1; 2; . . . ; such that,

�1� A1ÿan
n HAn�1 HAn

�2� Fn :� 2
qXn

qz
is z2-type; S�Xn� � 0

�3� distXn
�g; qAn� � 1� 1

2
� � � � � 1

n

�4� Xn�An�HBrn
; rn � 2� 2

22
� � � � � 2

n2
U 4

�5� kXn�1 ÿ XnkU 1

�n� 1�2 on A1ÿan
n

where an > 0 is speci®ed later with an V 2an�1.
De®ne A � Int�7y

n�1 An�, then A A N. Notice that fXnjAg is a Cauchy
sequence on every compact subsets of A, and hence we have the minimal surface

X : A ,! R3

as n!y. Observe that X is also a double covering of a minimal MoÈbius strip,
such that

�a� Period�X� � 0

�b� X�A�HB4

�c� distX�g; qA� �y:
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Hence X de®nes a complete nonorientable minimal surface lying in a ball of R3,
and the analysis of the proof of Theorem 2 completes.

Lemma 2. Let X : M ,! R3, M A M, be a double covering of a minimal

surface such that X �1� � 0, FX is z2-type, S�X� � 0, distX �g; qM� � r and

X �M�HBr for some r; rV 1. Then for every d; s > 0 with M 1ÿ2d A N, there
exists a double covering of a nonorientable minimal immersion

Y : ~M ,! R3; ~M A N

such that Y�1� � 0, FY is z2-type, S�Y� � 0, M 1ÿd H ~M HM and

distY �g; q ~M� � r� s; Y � ~M�HBr�2s2

kY ÿ XkU s2 on M 1ÿd:

Proof. Let us denote the outer subset of M by:

MO :� fz A M : jzj > 1g:
Similar to the previous section, we can take the disjoint compact subsets

o1;o2; . . . ;o2k HMO V �MnM 1ÿ1=N�
for some k A N , which satis®es (3.1) and Proposition 1. To prove this lemma,
we assume that

o2i � ÿo2iÿ1; i � 1; 2; . . . ; k

and let

Wi :� o2iÿ1 Uo2i; W 0i :� o 02iÿ1 Uo 02i:

Now, we take a similar modi®cation of a minimal surface to that of the
previous section with respect to Wi. To precise, suppose that there are double
coverings of minimal MoÈbius strips, Y0 � X , Y1; . . . ;Yiÿ1 : M ,! R3, such that
all of ~H1; . . . ; ~Hiÿ1 hold:

� ~Hi�

F i :� 2
qYi

qz
is z2-type

kF i ÿF iÿ1kU 1

Nk
on MOnW 0i :

kF ikV n

2
�����
N
p on W 0i ; kF ikV n

2
N 3:5 on Wi

8>>>>>>><>>>>>>>:
where nU kFXkU mÿ 1 and large N. Then observe,

kS�Yiÿ1�k � kYiÿ1�1� � Yiÿ1�ÿ1�kU 1

N
:
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After the rotation, we may assume that:

if distR3�0;Yiÿ1�W 0i ��V
1�����
N
p ; then ��G~e3;Yiÿ1�W 0i ��U

8m�����
N
p�4:3�

as well as distS 2�G~e3;Giÿ1�W 0i ��V
1�����
N
p :�4:4�

Note, the similar conditions (3.6) and (3.5) of them are the crucial role of the
proof of Assertion 1 and Assertion 2 in the previous section.

By the Runge's theorem again, there is a holomorphic function Hi on M
such that

jHi�z2�j < e on Mno 0i
jHi�z2� ÿ log T j < e on oi

for all T > 0 and e > 0. Set

hi�z� � exp�Hi�z2� �Hi�ÿz2��
exp�Hi�I�z2�� �Hi�ÿI�z2���

then it is a z2-type holomorphic function on M, never vanishing and

hi�I�z�� � ÿI�hi�z��

jhi ÿ 1j < 1

T
on MOnW 0i

jhi ÿ T j < 1

T
on Wi

with the su½ciently small e. Now let � fiÿ1; giÿ1� and � fi; gi� be the Weierstrass
data of Yiÿ1 and Yi, respectively, such that fi � fiÿ1 and gi � giÿ1=hi. Then the
holomorphic map F i of Yi is also z2-type and Period�Yi� � 0. Notice that

gi�I�z�� � giÿ1�I�z��
hi�I�z�� �

I�giÿ1�z��
ÿI�hi�z�� �

ÿhi�z�
giÿ1�z�

� I�gi�z��

�zgi�z��2 � �zgiÿ1�z��2
�hi�z��2

� ÿ fiÿ1�I�z��
fiÿ1�z�

hi�I�z��
hi�z�

� ÿ fi�I�z��
fi�z�

which follows, by (4.1) and (4.2), that Yi is also a double covering of a non-
orientable minimal surface. Similar to Assertion 1 in the previous section,
together with a su½ciently large T, we can show that Hi also holds. De®ne
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Y :� Yk ÿ Yk�1� ÿ S�Yk�
2

and ~M A N such that

distY �g; q ~M� � r� s:

Then M 1ÿd H ~M, ~M A M and kY ÿ Ykk is very small. Repeat the processing
of Assertion 1 and Assertion 2, together with (4.3), (4.4), then we can show that

Y : ~M ,! R3

is the desired minimal surface. r

5. Proof of Theorem 3 (Examples in a halfspace)

In this section, we construct complete minimal surfaces of R3 lying in a
halfspace, x3 > 0, but not a slab, which are transverse to every horizontal plane,
similar to [R-T], lying in a slab.

Let D :� fz A C : jzj < 1g and D� :� Dnf0g. And let Qn be a compact
sliced annulus contained in ftnÿ1 < jzj < tng, 0 < t1 < t2 < � � � < 1, where deleting
two antipodal pieces centered at the imaginary axe when n is even, and the real
axe when n is odd. (see Figure 3). Moreover, fQng converges to the boundary
circle jzj � 1 as n!y. Denote cn � ÿln sn, n � 1; 2; . . . ; where sn is the width
of Qn. Then, by the Runge's theorem again, we can take a holomorphic
function h on D such that

jhÿ cnj < 1 on Qn�5:1�
for all n � 1; 2; . . . ; respectively.

Figure 3
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Let us de®ne a minimal surface X : D� ,! R3, X �1=2� � 0, which has the
Weierstrass data � f ; g� and sends the concentric circles fjzj � cg, 0 < c < 1, into
horizontal planes of R3. Then the third coordinate function X 3 is harmonic on

D� and X 3jfjzj�cg � constant. By the uniqueness of solutions to the Dirichlet

problem, we have X 3�z� � a logjzj � b for some real constants a; b. Let a � ÿ1

and b � 0, then g�z�f �z� � 2qX 3=qz � ÿ1=z and hence

X �p� � R

� p

1=2

ÿ1

2z

1

g
ÿ g

� �
;
ÿi

2z

1

g
� g

� �
;
ÿ1

z

� �
dz

by the Enneper-Weierstrass representation. Moreover, we de®ne the induced
metric ds of X by

ds � 1

jzj
1

jgj � jgj
� �

jdzj:

Now let us take such minimal surfaces X1 and X2, with the Gauss maps g1

and g2 de®ned by:

g1�z� � 1

z
exp h�z2�; g2�z� � exp h�z�

respectively, where h is given in (5.1). Observe that it leads us to prove Theorem
3 by following:

(a) Recall g1 and g2 are all holomorphic on D� and never vanishing, and
hence X1�D�� and X2�D�� are transverse to every horizontal plane.

(b) It is clear that X 3
1 � X 3

2 � ÿlogjzj > 0 on D�, and hence X1�D�� and
X2�D�� are contained in a halfspace x3 > 0 of R3 but not a slab.

(c) Denote Fxj :� 2qXj=qz � �fXj

1 ; f
Xj

2 ; f
Xj

3 �. Then both fX1

1 and fX1

2 are z2-
type, and fX1

3 � ÿ1=z has no real residue. It follows that:

Period�X1� � 0

and X1 is well-de®ned, not periodic. On the other hand, we compute that:

R

�
g

fX2

1 dz� iR

�
g

fX2

2 dz

�
�

g

ÿ1

2zg2
dzÿ

�
g

ÿg2

2z
dz � pi Res0

1

zg2
�Res0

g2

z

� �
� pi�exp�ÿh�0�� � exp h�0��0 0

where g � fjzj � 1g. It follows that

Period�X2�0 0

clearly, and hence X2 is singly-periodic.
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(d) Now let b A D� be a piecewise di¨erentiable curve. We call it a di-
vergent curve, if either it has in®nite Euclidean length or it has ®nite Euclidean
length but tends to the origin or the boundary curve jzj � 1. In order that X1

and X2 are complete, each divergent curve has the in®nite arc length with respect
to ds1, ds2, respectively. We consider the following three cases of the divergent
curve b:

. Let b has in®nite Euclidean length. Recall jzj < 1 on D�, and so

Lj�b� :�
�

b

dsXj
�
�

b

1

jzj
1

jgj�z�j � jgj�z�j
� �

jdzj

V 2

�
b

jdzj �y; j � 1; 2:

. If b tends to the origin of the plane, then we have

Lj�b�V 2

�
b

1

jzj jdzj �y; j � 1; 2:

. Let b tend to the boundary curve jzj � 1 with the ®nite Euclidean length,
and let ~b :� fz2jz A bg. By the hypothsis of Qn's, both b and ~b must cross all
but a ®nite number of Q2n or all but a ®nite number of Q2nÿ1. Since

jg1�z�j � 1

jzj je
cn j jeh�z2�ÿcn jV ecnÿ1 for all z2 A Qn;

the either case, we have a number N such that:

L1�b�V
�

b

1

jzj jg1�z�j jdzjV
X

n>N; even or odd

rnecnÿ1 �y:

Similarly, since

jg2�z�j � jecn j jeh�z�ÿcn jV ecnÿ1 for all z A Qn;

and hence L2�b� �y.
Therefore X1 and X2 are all complete, and we have shown Theorem 3.
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