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CURVATURE-ADAPTED REAL HYPERSURFACES
IN QUATERNIONIC SPACE FORMS

TOSHIAKI ADACHI AND SADAHIRO MAEDA

Abstract

In this paper we study geodesics on curvature-adapted real hypersurfaces in non-
flat quaternionic space forms. By observing the extrinsic shape of geodesics on these
hypersurfaces we characterize them in the class of real hypersurfaces. We also inves-
tigate the length spectrum of geodesic spheres, which are the simplest curvature-adapted
real hypersurfaces, in non-flat quaternionic space forms.

1. Introduction

The aim of this paper is to study curvature-adapted real hypersurfaces in
quaternionic space forms from the viewpoint of the extrinsic shape of geodesics
on these hypersurfaces. A hypersurface M of a Riemannian manifold M is
called curvature-adapted if the normal Jacobi operator K and the shape operator
A of M with respect to a unit normal vector field ./ are simultaneously di-
agonalizable; Ko A = Ao K. Here the normal Jacobi operator K : TM — TM
of M with respect to ./ is defined by K(-) = R(-,.#").4" with the curvature tensor
R of M. In his paper [B], J. B. Berndt completely classified curvature-adapted
real hypersurfaces M*~! in a quaternionic projective space HP" of quaternionic
dimension n (= 2). They are locally congruent to tubes around the canonically
embedded quaternionic projective spaces of quaternionic dimension k (0 <k <
n—1) or tubes around the canonically embedded complex projective space of
complex dimension n. He also classified curvature-adapted real hypersurfaces M
in a quaternionic hyperbolic space HH" of quaternionic dimension n (= 2) under
the additional condition that all principal curvatures of M in HH" are constant.
They are locally congruent to either a horosphere, tubes around canonically
embedded quaternionic hyperbolic spaces of quaternionic dimension k (0 <k <

2000 Mathematics Subject Classification: primary 53C22, secondary 53C40.

The first author partially supported by Grant-in-Aid for Scientific Research (C) (No. 11640073),
Ministry of Education, Science, Sports and Culture.

The second author partially supported by Grant-in-Aid for Scientific Research (C) (No.
11640079), Ministry of Education, Science, Sports and Culture.

Received April 28, 2000; revised October 25, 2000.

98



CURVATURE-ADAPTED REAL HYPERSURFACES 99

n—1) or tubes around the canonically embedded complex hyperbolic space of
complex dimension n.

In the first half of this paper we characterize these curvature-adapted real
hypersurfaces in non-flat quaternionic space forms, which are quaternionic
projective spaces and quaternionic hyperbolic spaces, by the extrinsic shape of
geodesics. It is known that non-flat quaternionic space forms do not admit real
hypersurfaces all of whose geodesics are circles in them. We consider a weaker
condition. When the ambient manifold M is a quaternionic Kéhler manifold we
have a natural orthogonal decomposition & @ &+ of the tangent bundle TM of a
real hypersurface M: The subbundle & is the maximal subbundle of 7M which
is invariant by the quaternionic structure of M. We characterize these curvature-
adapted real hypersurfaces in non-flat quaternionic space forms by the existence
of an orthonormal basis of &, at each point x such that the extrinsic shape of
geodesics of those directions are circles of positive curvature in the ambient
manifolds.

When the ambient manifold is a non-flat complex space form, curvature-
adapted real hypersurfaces are nothing but real hypersurfaces whose structure vector
field JA" is a principal curvature vector field. In preceding papers [AKM] and
[CM] these real hypersurfaces with constant principal curvatures are characterized
by a similar condition in our results Theorems 3.1 and 3.2. Our theorems in this
paper can be regarded as quaternionic versions of preceding results.

In the second half of this paper we study the extrinsic shape of all geodesics
on geodesic spheres in a non-flat quaternionic space form, which are the simplest
examples in the class of real hypersurfaces. By direct computation we can see
that each geodesic on these geodesic spheres is regarded as a helix of order 4
which lies on a totally geodesic complex space form of complex dimension 2. As
a consequence we clarify properties on lengths of all closed geodesics on these
geodesic spheres.

2. Modeled real hypersurfaces in quaternionic space forms

A quaternionic Kihler structure # on a Riemannian manifold M of real
dimension 47 is a rank 3 vector subbundle of the bundle of endmorphisms of the
tangent bundle 7M with the followmg properties:

1) For each point ¥ € M there is an open_neighborhood G of X in M and
sections Ji,J,J3 of the restriction #|z over G such that

i) each J; is an almost Hermitian structure on G, that is, J> = —id and
X, YY+<(X,J;Y>=0 for all vector fields X and Y on G, where
{ , > is the Riemannian metric of M.

ii) JiJiv1 = Jiza = —Ji1J; (imod 3) for i=1,2,3.

2) VyJ is a section of # holds for each vector ﬁeld X on M and section J
of the bundle #, where V denotes the Riemannian connection of M.

This triple {J;,J>,J3} is called a canonical local basis of 7. For each canonical
local basis of quaternionic structure, there exist three 1-forms ¢;,¢, and ¢3 on G
satisfying
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(21) 6}2.]1 = ql‘+2(X)Jj+1 —{qi+1 (A’})J,urz (l mod 3)

for each vector field X on G and i=1,2,3. ~

Let M be a real hypersurface of a quaternionic Kédhler manifold M, which is
a Riemannian manifold equipped with a quaternionic Kihler structure ¢, and A~
be a unit normal vector field of M. We denote by & the maximal subbundle of
TM which is invariant by #: At a point x € M the subspace &, is the maximal
subspace of 7. M with the property that Jve &, for each ve &, and J € /..
Let 2+ denote the orthogonal complement of & in TM. It is a rank 3 vector
subbundle of TM. By using a canonical local basis {Ji,J>,J3} of ¢ over an
open subset G of M containing x, we find that @L is the real linear subspace of
T.M spanned by J,.A, J,. A, J3./. On an open set G =GNM we set Ei=—-JiN
and define ¢;: TM — TM by ¢, = noJi|py, for i=1,2,3, where n: TM|, —
TM is the canonical projection. Then the following identities hold on G for i =
1,2,3:

¢jfi =0, ¢,‘fi+1 = §i+2> ¢ifi+2 = _fi+17
$i0@iiily = bialy = —¢i1 0 ¢il, (imod 3).

Let V denote the Riemannian connection of M and A the shape operator of M
with respect to A" It follows from (2.1) and the Weingarten formula for a real
hypersurface M that

(2.3) Vx&i = qina(X)Cint — g1 (X)Eip2 + 44X

for each vector field X on G.

We call a connected quaternionic Kihler manifold M a quaternionic space
form of quaternionic sectional curvature c¢ (€ R) if the Riemannian sectional
curvature of M is equal to ¢ for all tangent 2-planes spanned by u € TxM and Ju
with J € #; at each point ¥ € M. The standard models of quaternionic space
forms are a quaternionic projective space HP"(c) of quaternionic sectional cur-
vature ¢ (> 0), a quaternionic Euclidean space H" and a quaternionic hyperbolic
space HH"(c) of quaternionic sectional curvature ¢ (<0).

In his paper [B], Berndt characterized curvature-adapted real hypersurfaces
in quaternionic space forms. Following his results, when M is a real hyper-
surface in a non-flat quaternionic space form, the following three conditions are
equivalent each other:

(1) M is curvature-adapted.

(2) The subbundle Z is invariant by the shape operator of M.

(3) The subbundle Z* is invariant by the shape operator of M.

The above condition (3) guarantees the existence of an open and dense subset
U of a curvature-adapted real hypersurface M with the following property: For
every x € % there exists a canonical local basis {J;,J,,J3} of # on a neighbor-

(2.2)

hood G of x in a non-flat quaternionic space form M satisfying that G(= GN M)
< 9y and ¢&; is a principal curvature vector of M at each x € G. Moreover, each
of the principal curvatures o; associated with ¢&; is locally constant on G.
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THEOREM A ([B], cf. [MP]). (1) 4 comnected curvature-adapted real hyper-
surface in a quaternionic projective space HP"(4) (n = 2) is locally congruent to
one of the following real hypersurfaces:

(P1) A tube PK(r) of some radius r € (0,7/2) around the canonically (totally

geodesic) embedded HP* for some ke {0,...,n—1}.

(P2) A tube Py(r) of some radius r € (0,7/4) around the canonically (totally

geodesic) embedded complex projective space CP".

(2) A connected curvature-adapted real hypersurface with constant principal
curvatures in a quaternionic hyperbolic space HH"(—4) (n=2) is locally con-
gruent to one of the following real hypersurfaces:

(Hy) A tube HF(r) of some radius r € (0,00) around the canonically (totally

geodesic) embedded HH* for some ke {0,...,n—1}.

(Hy) A4 tube H,(r) of some radius r € (0,00) around the canonically (totally

geodesic) embedded complex hyperbolic space CH".

(Hs) A horosphere Hs in HH".

(3) Conversely, each of these modeled real hypersurfaces is a curvature-
adapted real hypersurface with constant principal curvatures in the ambient
manifold.

We here list the principal curvatures and their multiplicities of these modeled
real hypersurfaces.

P () Pa(r) Hi) | M) | H
M cotr cotr coth r coth r 1
Ay —tan r —tan r tanh r tanh r —
i 2 cot 2r 2 cot 2r 2 coth 2r 2 coth 2r 2
U — —2 tan 2r — 2 tanh 2r —
m(i) | 4n—k—-1) | 2m—=1) |4mn—k-=1) | 2(n—1) | 4n-1)
m(22) 4k 2(n—1) 4k 2(n—1) —
m(u;) 3 1 3 1 3
m(u,) — 2 — 2 —

Here /; is an eigenvalue of A|, and g; is that of A|,., and m(-) denotes the
multiplicity of corresponding eigenvalue.

For real hypersurfaces of type (P;), (H;) and (H3) in Theorem A we find the
following properties hold.

ProposITION 2.1 (cf. [P]). Every curvature-adapted real hypersurface M of
type (P1), (Hy) or (Hi) in the lists of Theorem A satisfies the following:



102 TOSHIAKI ADACHI AND SADAHIRO MAEDA

(1) The structure tensor ¢; and the shape operator A of M are commutative:
¢iA = A¢1 (l = 1121 3)
(2) The covariant derivative of the shape operator A satisfies

3
(24) (VxA)Y = FY _{{gX, YO& + <&, Y4, X},
i=1

where the double sign depends on the case that either the ambient space is HP"(4)
or HH"(—4).

For real hypersurfaces of type (P;) in HP" this proposition is due to [P].
For real hypersurfaces of type (H;) or (H3) in HH" we can check these properties
by the same argument as for Lemma 4.2 in [P] and Theorem 4.3 in [NR].

In the last stage of this section we write down the Codazzi equation for
a curvature adapted real hypersurface in a quaternionic projective space HP"(c)
and a quaternionic hyperbolic space HH"(c¢), which will be usefull in the fol-
lowing sections:

3
(2:5)  (VeA)Y = (VyA)X = 3D (X ED4 Y = (Y EDGX — X, YOG,
i=1

3. Characterization of curvature-adapted real hypersurfaces

A smooth curve y = y(s) on a Riemannian manifold N parametrized by its
arclength s is called a Frenet curve of proper order d if there exist orthonormal
frame fields {X; =7,..., Xy} along y and positive functions r;(s),...,ks—1(s)
which satisfy the following system of ordinary equations

(3.1) ViXis) =~ () X1 () + () X (), = 1,...d,

where Xo = X441 =0 and V; denotes the covariant differentiation along p with
respect to the Riemannian connection V of N. Equation (3.1) is called the
Frenet formula for a Frenet curve y. The functions «;(s) (j=1,...,d —1) and
the orthonormal frame {Xi,...,X;} are called the curvatures and the Frenet
frame of y, respectively. We call a smooth curve a helix of order d when it is a
Frenet curve of proper order r (<d) and all its curvatures are constant. A helix
of order 1 is nothing but a geodesic. A helix of order 2 with the first curvature
K; =K 1s called a circle of curvature k. A smooth curve y parametrized by its
arclength is a circle of curvature x if and only if it satisfies V;V;j = —x?}.

Let 1 denote the isometric immersion of a real hypersurface M into a non-flat
quaternionic space form M. For a smooth curve y on M we call the curve 10y
on M the extrinsic shape of y. For simplicity we usually denote the curve 7107y
by . The aim of this section is to characterize curvature-adapted real hyper-
surfaces in non-flat quaternionic space forms in Theorem A by the extrinsic shape
of some geodesics on these hypersurfaces.
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THEOREM 3-1. Let M be a connected real hypersurface of a quaternionic
projective space HP". Then M is locally congruent to a real hypersurface of type
(P1) or (Pa) if and only if at each point x € M there exists an orthonormal basis
{v1,.. . van-a} of Dy such that all geodesics y; = y;(s) on M with y;(0) = x and
7;(0) =v; (1 =j=4n—4) are circles of positive curvature in HP".

THEOREM 3-2. Let M be a connected real hypersurface of a quaternionic
hyperbolic space HH". Then M is locally congruent to a real hypersurface of
type (Hy), (Ho) or (Hs) if and only if at each point x € M there exists an or-
thonormal basis {vy,...,vay_4} of D such that all geodesics Y= yj(s) on M with
7;(0) = x and y;,(0) = v; (1 £j =4n—4) are circles of positive curvature in HH".

We shall prove these theorems simultaneously. In this section, let M denote
a non-flat quaternionic space form. Namely, M denotes either a quaternionic
projective space or a quaternionic hyperbolic space. We denote by V the
Riemannian connection of M. We use the following technical results due to
Berndt [B] on curvature-adapted real hypersurfaces in a non-flat quaternionic
space form.

ProposITION B ([B]). Let M be a curvature-adapted real hypersurface in a
quaternionic space form of quaternionic sectional curvature ¢ (#0). We choose a
canonical local basis of ¢ on G such that each &; is a principal curvature vector;
A = wig;. ~

(1) At each point xe G = GN M, for each principal curvature vector v e P,
with Av = v,

(27— a) g = (i +5) .

holds for every i=1,2,3.
(2) s =05 or qi|Z =0 for all distinct i,j, ke {1,2,3}.
(3) If o # o1 = o2, then qi1(S;) = ¢iv2(&;) = 0 (i mod 3).

[“Only if” part of the proof of Theorems 3.1 and 3.2.]
In the first place we prove the only if part. Let M be a real hypersurface
in a non-flat quaternionic space form M satisfying the following condition (x):

At each point x € M there exists an orthonormal basis {vy,...,vs;-4}
(x) of 2, such that all geodesics y; = y;(s) on M with 7,(0) = x and
7;(0) =v; (1 £j =4n—4) are circles of positive curvature in M.

By this condition the geodesic y; whose initial vector is v; satisfies

(3-2) Vi, (Vi) = =77,

for some positive constant ;.
On the other hand, from the formulae of Gauss and Weingarten;
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VyZ =VyZ+{AX,Z>N and Vy AN =—AX
we have
(3.3) Vi (Vi 7y) = (V5 A)35, 5,0N — < ATy, 5,547,
By comparing the tangential components of the equalities (3.2) and (3.3) we find

<A?/(S)a ?j(5)>A?j(S) = K]'Zj)_/'(s)a
in particular, at s =0
(A, v Av; = i} ;.

By noticing that x; # 0 we get
(3.4) Av; =xjv; or Avy=—ku; for j=1,...,4n—4.

This implies that &, is invariant by the shape operator A. Since xe M is
arbitrary, we find that our real hypersurface M is curvature-adapted to M.
When M is a quaternionic projective space, we obtain M is locally congruent to
a real hypersurface of type (P;) or (P;) by Berndt’s classification.

What we have to do is to prove that when M is a quarternionic hyperbolic
space all principal curvatures of our curvature-adapted real hypersurface M are
constant on M. Consider an open and dense subset % of M given by

9 =
w {xe?/ in HH" is constant on some neighborhood ¥, of x

the multiplicity of each principal curvature of M }

Then all principal curvatures are differentiable on %. For each point x € %, if
we choose sufficiently small neighborhood 7%, we can choose principal curvature
vectors to be smooth and the principal curvatures o; (i = 1,2,3) associated with
&; are constant on this neighborhood.

At a fixed point x e %, we denote by Ay,4s,...,4, the distinct principal
curvatures at x, which can be extended to differentiable functions on #,. Since
the principal curvatures associated with & (i =1,2,3) are constant on 75, we
shall prove that each A; associated with A|, is constant on some neighborhood
of x. By (3.4) there is j; such that either 4;(x) =x; or 4;(x) = —x;, holds. We
only treat the former case; Av;, = x;v;. Since the geodesic y, with the initial
vector v, € TxM on M is a circle of curvature x;, on M, we have 4,(y,(s)) = x;,
for each s, hence find v;,4; =0. As A4 is symmetric, we also have

(35) <(VL‘/’A)U/€7 Uj/> = <Uka (VL‘/[A)Uj[>7 1 é k 75]1 é 4” - 4

In order to compute (3.5) easily, we extend the tangent vectors vx,v;, € Ty M
to vector fields Vy, ¥, on some sufficiently small neighborhood #; (= 7%) in the
following manner: We denote by W, the smooth vector field on ¥ defined by
parallel displacement of the vector v;, along each geodesic through x. Although
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W, is not principal on 7 in general, we have AW (y;(s)) = x; W (7;,(s)). We
define a vector field on 7 by

Uj/ = ( H (A - )‘4111)> I/Vlz

lsm=g
m#l

Clearly, at each point y e ¥ the vector U;(y) is ][, .;(4 — 4n) times of the
projection of W, (y) onto the eigenspace corresponding to 4;(y). Hence AU, =
AU;, on 7,. We choose a neighborhood #% (= %) of x such that every Uj
does not vanish on it, and set Vj, = U;/||U;||. Our construction guarantees that
AVj, = 4V}, on W, and Vj(x) = v;, and that the integral curve of ¥} through the
point x is a geodesic on M. In particular, we obtain (Vy V;)(x) = 0. For v, we
choose a section Vi of 7, with Vi(x) = .

Since the Codazzi equation (2.5) implies {(VxA4)Y,Z> =<(VyA)X,Z> for
arbitrary sections X, Y,Z of &, we find at the point x

(The left hand side of (3.5)) = {(Vy, A4)vj,,v;,>
= <(VV/\A) I6/7 I§/>x
= <(Vk’11) V;z + ()‘/I - A)VVk W/? I§1>x

= l)k/l].
Similarly we get
(The right hand side of (3.5)) = (Vi, (Vi 4) V),
= <Vka VV/[ (il Vjvl) - AVW, I§I>X
= v, (v 41)v;,> = 0.

These imply that X1; =0 for every X € %,.

Next, we shall prove &;(x)4;, =0 (i=1,2,3). We may suppose either one
of the following conditions holds:

(I) 24;—o; #0 for every i =1,2,3 on some neighborhood of wx,

(II) 24; — o; = 0 holds on a neighborhood of x for some i,
because the set of points y € # with such a property is a dense open subset of
M. Since o; is constant on 75, we have only to study the case (I). In this case,
we obtain from Proposition B

OC,'/lj, -2
¢l Ji (21]_/ _ ai) ¢l Ji

on some neighborhood # (= #;) of x. This, together with Proposition B and
(2.3), yields
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(Ve )V, = (Vi A)&;
= Ve (AV,) = AVe Y, — Vi (&) + AVy &
= Ve, (V) — AV V, — aip; AV, + Ap; AV,

=i .

+ qir2 (V) (otip1 — 2:)Ei — i1 (V) (ctig2 — ) Eipn

ai}u -
= (&M, + (Ml — AV V, — A <O€i - 2/111_0) ¢V

On the other hand, (2.5) yields
(Ve AV, — (Vi A)E V> = 0.

By combining these two equalities we find &;4; = 0 for every i. Consequently,
1 is constant on ¥

Thus we know that every principal curvature of M is locally constant on
an open and dense subset of M. Since M is assumed to be connected, each
principal curvature is constant on M. We therefore find by Berndt’s classific-
ation that our real hypersurface M in a quaternionic hyperbolic space is locally
congruent to either a real hypersurface of type of (H;), (Ha) or (Hj).

[“If” part of the proof of Theorems 3.1 and 3.2.]

In the second place we prove the if part. We shall prove each member of
real hypersurfaces in the lists of Theorem A satisfies the condition (%) case by
case. At an arbitrary point x e M we choose orthonomal principal curvature
vectors vi,...,04—4 € Z,. We denote by 4; the principal curvature associtated
with v; (i.e. Av; = 4v;) and by p; the geodesic with initial vector uv;.

First, we study the case that M is a real hypersurface of type (Py), (H;) or
(H3) in a non-flat quaternionic space form. We shall show that j; is a principal
curvature vector field along y; for every j. It follows from Proposition 2.1(2) that

Vi 1475 — 25;1> = Vi (AGy, A7y — 24V, CADy, 3,
= 2(Vy, A)jy, A7y — 22<(V, A)jy, 7

3
= ¢2<Z{<¢[ﬁ,7y,>éi + <&} ATy — w,>

i=1
3
=F2 Z &, V1><¢1V/a Aj)_/>'
i=1

Since A¢; = ¢4, we find {¢;7;, 47;> = {A¢ y],y]> = —{A4y;, ¢;7;», which leads us
to {¢;7;, Ay;» =0, and hence to V; ||4y; — A]y]|| =0. As 45;(0) = 47;(0), this
shows that Ay]( ) = Jy]( ) for every s. By use of the formulae of Gauss and
Weingarten, we can see that V V y/ =/ V AN = -2 75, which means that the
extrinsic shape of the geodesw 718 a 01rcle of curvature |Zj| in a non-flat
quaternionic space form.
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Next we study the case that M is a real hypersurface of type (P,) in HP”".
We decompose the tangent bundle 7M into the bundles of principal curvature
vectors:

TM=9®9" = (7, ®F,) ® (% ®F).

Here, when the ambient space is HP"(4), the principal curvatures are 4; = cot r,
Ay=—tanr, u; =2cot2r, u, =—2tan2r, and %, denotes the subbundle of
principal curvature vectors associated with v. For simplicity we choose ca-
nonical local basis of # on G in Proposition B so that oy = g and oy = o3 = w,.
It follows from Proposition B and (2.2) that

$( 7)) =F,  61(F) =Ty 61(F) ={0}, 61(F,) = Py

(3.6) 0(F) = Ty 6:(F2,) = Ty 02(F) © Ty 62(F) = P
¢3(377-1) = *%27 ¢3(‘%2) = 37/117 ¢3( ,ul) ‘/7627 (%2) = 0.#1

Since oy # ap = o3, again by using Proposition B we have q2|(j =q3 \ . =0 and

02 (&1(x)) = ¢3(¢1(x)) = 0 at each point xe G =GN M.

We shall verify that both %, @ R, and %, ® RE, over G are integrable and
moreover that each leaf of these local distributions is a totally geodesic sub-
manifold of M. Since by (2.3) we have

Ve & =q3(&1)E — q2(&1)E + A8 = ag & =0,

we shall check that Vy¢y, Ve X, Vy Y are sections of 7, @ R¢; for all sections
X,Y of 7,. First, we see that

Vxéi = ¢3(X)& — p(X)&s + ¢ AX = 1 X
hence Vy¢ is a section of 7. Next we have
(Ve, A)X — (VxA)E) = Ve, (AX) — AV X — Vi (AE)) + AVxE
= (4l = Ve, X = Jj(on = ) X
= (4l —A)Ve X + 9 X
On the other hand, the Codazzi equation (2.5) leads us to

(Ve )X — (Vxd)é) = Z{<él,é>¢x X, 04,81 — 26, X&) = hi X

Thus we obtain (4;/ — A)Ve X =0, hence V¢ X is a section of ;. Finally, we
shall check VyY —<VyY,&>&. We have

A(VxY —<(Vx Y, &1 08) =Vx(AY) — (VxA)Y — ou{Vx Y, & )&
=2i(VxY —(Vx Y, &)&)
—(VxA)Y + (4 —){Vx Y, & ¢

Here we see that
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{VxA)Y, &) =LY, (VxA)E ) = (Vx(A4E) — A(Vx&y), Y
= (ol —A)VxE, YY) =<Vxéy, (gl —A)Y)
= (o1 = 4)<Vx&1, Y = (4 —aa)XVx Y, &),

hence {—(VxA)Y + (4; —ou)<{Vx Y,&)&,& > =0. For each section Z which is
orthogonal to &, we get by making use of (3.6)

AVxA)Y,Z) =Y, (VxA)Z)
3
= <(VZA)X + ) {XEDBZ — (Z,.EpdiX — 26X, Z)ED, Y>
i=1

= {(VzA)X —<Z, 5009, X —<Z, &30 X, Y
= (VZ(AX) — AV X, Y>

= (4 — A)VzX, Y

= (V2 X, (31 — A)Y ) =0.

Therefore we find that Vy Y — (Vyx Y, ;)¢ is a section of 7, so that Vy Y is
a section of 7, @ RE;. Consequently, the local distribution 7, ® R¢; is in-
tegrable and moreover each leaf L of 7, @ R¢; is a totally geodesic submanifold
of our real hypersurface M for j =1,2. When j = 1, the manifold L is locally
congruent to a geodesic sphere of radius r in a complex projective space CP"(4)
which is a totally complex totally geodesic submanifold of HP”, and when j = 2,
the manifold L is locally congruent to a geodesic sphere of radius z/2 —r in
CP"(4).

We here recall the extrinsic shape of geodesics on a geodesic sphere in a
complex projective space (see p. 540 of [MO]). Every geodesic y on a leaf L of
F, ® Ry with the initial vector y(0) € 7, is a circle of curvature |4;| in CP".
Therefore, at each point x € M taking an orthonormal basis {vj,...,v2,-2} of
(#,), and an orthonormal basis {vy,_1,...,Vs—-4} of (%,),, we find that a real
hypersurface of type (P,) in a quaternionic projective space satisfies the condition

By just the same way as in the above discussion we can check that a real
hypersurface of type (H,) in a quaternionic hyperbolic space satisfies the con-
dition (x), and complete our proof for Theorems 3-1 and 3-2.

4. Geodesics on geodesic spheres in a quaternionic space form

In the preceding section, we characterized all curvature-adapted real hyper-
surfaces with constant principal curvatures in non-flat quaternionic space forms
in terms of the extrinsic shape of geodesics of directions of principal curvature
vectors. So, next it is natural to consider the extrinsic shape of all geodesics. In
this context we devote the rest of this paper to study all geodesics on geodesic
spheres in a quaternionic projective space, and on geodesic spheres, tubes around
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quaternionic hyperplane and horospheres in a quaternionic hyperbolic space.
We shall start by observing an invariant for geodesics on these real hypersurfaces.

Let M be a real hypersurface of type (P;), (Hi) or (H3) in a non-flat
quaternionic space form M. We denote by ./ a unit normal vector field on
M and put & = —J; A" (i = 1,2,3) for an arbitrary local basis {Ji,/5,J3} of the
quaternionic structure on M. For a tangent vector ve T.M we define non-
negative p(v) by

p(v) = V<0, E + <0, &) + (v, &),

which is the norm of the projection of v onto the space 2. We put Py = p(7)
for a geodesic y on M. By using Weingarten formula and the equalities A¢; =
$;A (i=1,2,3) we find it is constant along y: Indeed,

S99 = s — ) + HADG.ED
+ a1 ()& — a3()&1 + g A7, 2D
G — ) + AP ED
= G AT ED + oA Ead + oA E) = 0.

We shall call this constant p, (fibre) structure torsion of y. Clearly it satisfies
0=p,=1. When M is one of a geodesic sphere in a quaternionic projective
space, a geodesic sphere, a tube around quaternionic hyperplane and a horo-
sphere in a quaternionic hyperbolic space, both of each vector v e ¥ and each
vector u € 9+ are principal curvature vectors. So the structure torsion plays an
important role in classifying geodesics on these real hypersurfaces.

First we study geodesics on a geodesic sphere M = P)(r) of radius r in a
quaternionic projective space HP"(4) of quaternionic sectional curvature 4. Let
V and V denote the Riemannian connections of HP"(4) and M, respectively.
For a geodesic y we also denote the curve 10y by y for simplicity. As a first
step, we have

Vi = Vip + Ap, )N = KAD, oN-

This shows that the curve 1oy is a geodesic on HP" when {Ayp,y) =cotr—
pf tanr = 0. If it is not this case, we set as

K1 = <A}, 7| = |cot r—pf, tan 7|,

i An >0,
2T = if <49, <.

Differentiating X, we have %Xg = —K1y + K2 X3 with

Ky = \/”AJ.’”2 — LAy, Py = pyyJ 1 — p2cotr,
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X; = .
—K—2(<AV',V'>V' —Ay) if <47,7) <0.

Thus, when p, =0 and p, = 1, we see that the curve 10y is a circle of curvature

cot r and 2|cot 2r|, respectively.

In order to continue our calculation we set ¢(v) = Z?Zl v, & >¢;(v) for a
tangent vector v € TM, which does not depend on the choice of canonical local
basis. One can easily compute that ||¢(v)\|2~: p*(v) — p*(v). By making use of
(23) we obtain V;‘,X3 = —1 Xy + Kk3Xy and V}‘,X4 = —r3X3 with 3 = cot r and

¢(7) if <A4p,7) >0,

¢(7) if <4j,7) <0.

Thus we get

PROPOSITION 4.1.  For each geodesic y on a geodesic sphere P (r) of radius
r (0<r<mn/2) in HP"(4), the curve 10y lies on a totally geodesic CP>(4).
Moreover, the extrinsic shape of y is as follows:

(1) Suppose the radius r satisfies n/4 <r < n/2. When p, = cotr, the curve
1oy is a geodesic.

(2) When r # /4, the curve 10y is a circle of curvature 2|cot 2r| if p, = 1.
This circle lies on a totally geodesic CP'(4).

(3) If y has null structure torsion, the curve 10y is a circle of curvature cot r.
This circle lies on a totally geodesic RP*(1).

(4) Generally, if p, # 0,1, then the curve 10y is a helix of proper order 4
whose curvatures are described as

K| = |cotr—pf tanr|, xy=p,/1—pltanr, x3=cotr.

Every geodesic y on P?(r) is a simple curve.

We call a smooth curve y closed if there exists so (# 0) with (s + s0) = p(s)
for all s. The minimum positive sy with such a property is called the length of y
and is denoted by length(y). When y is not closed we put length(y) = 0. As a
direct consequence of this proposition we obtain the following with the aid of
Theorem 2.5 in [AMY].

PROPOSITION 4.2. Let y be a geodesic on a geodesic sphere P?(r) of radius
r (0<r<m/2) in HP"(4).
(1) If the structure torsion of y is 1, then vy is closed and its length is 7 sin 2r.
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(2) If y has null structure torsion, then y is also closed and its length is
27 sin r.
(3) When the structure torsion p, of y satisfies 0 < p, <1, it is closed if and
only if
q

Py =—
* sinry/p? tan? r 4 ¢2

with some relatively prime positive integers p and q with g < p tan? r. In this case,
its length is

2n\/p2 sin® r + g2 cos2 r, if pq is even
length(y) =

n\/p2 sin? r+ g2 cos? r, if pq is odd.

We now make mention of the length spectrum of geodesic spheres in
HP". We denote by Geod(N) the moduli space of geodesics on a Riemannian
manifold N, which is the set of all congruency classes of geodesics on N under
the action of the isometry group of N. The length spectrum %y : Geod(N) —
RU {0} is defined by Zy([y]) = length(y). We also call the image Lspec(N) =
ZLn(Geod(N)) N R the length spectrum of N. For a length spectrum A € Lspec(N)
we call the cardinality my(Z) of the set %' (1) the multiplicity of .. When the
multiplicity of a length spectrum is 1 we say it is simple. For congruency of
geodesics on a geodesic sphere in HP" we obtain the following.

PROPOSITION 4.3.  On a geodesic sphere M in a quaternionic projective space,
two geodesics are congruent with respect to the isometry group of M if and only if
their structure torsions coincide.

Proof. Let y; and y, be geodesics on M. Since the isometric embedding :
is equivariant, for each isometry ¢ on M there is an isometry ¢ on HP" with
pot1=10¢@. This implies that 10y, and 10y, are congruent if y; and y, are
congruent. Comparing their curvatures we find p, =p, if 7 and p, are
congruent.

Conversely, when y; and y, have the same structure torsion p, their initial
vectors are of the form 7,(0) = /1 — p2u; + pn; and p,(0) = /1 — p2ur + pn,
with unit tangent vectors u,u> € 4 and 7,7, € Z*. By the following Lemma
4.4 we can choose an isometry ¢ of M with dg, o (u1) = uy and dp, ,(1,) = 7.
Hence, dg, )(71(0)) = 7,(0), so that poy(s) = p,(s) for every s.

LEMMA 4.4. Let M = P)(r) be a geodesic sphere in HP". For any tangent
vectors uy+mnm el M =9,® @f and w +n, e T'M =2, ® ;@}L of M with
lur| = lua| = Iny| = || = 1 at arbitrary points x,y, there exists an isometry ¢ of
HP" with

i) G(M) = M and §(x) = »,

ii) d(ﬁx(ul) = Ua, d(ﬁx(ﬂl) =1 d@x(/‘/x) =5,

iii) dg(Zx) = 9y and dg(Zy) = D;.
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Proof. Let w: S**3 — HP" denote the S3-fibration of a unit sphere S*3
in a right vector space H""!.  We decompose the tangent space 7,53 of $¥+3
at w into the horizontal and vertical spaces: T,,S**3 = #,S%*3 @ v;5%+3.
They are given by

H, S = {(w,v) € {w} x H" [ Wovg + - - - + W0, = 0},
VS = {(w,wA) e {w} x H™™" | e H,Re(1) = 0}.
Here for e H = {ay + a1j, + arj, +asj;|a; € R} we denote by 1 its quater-
nionic conjugate and by Re(A) its real part, which is given as (1+ 1)/2. Let M
denote a hypersurface in S**3 given by
{w = (wo,wi,...,w,) € H"" | |wo| = cos r, |wi|* + - + |wy|* = sin? r},

where |A| = (14)"%. We see that ' (M) is isometric to M.
For simplicity we only treat the case n =2 and M = w(M ). At a point
w = (wo, wi,w2) € M the tangent space of M is represented as

T M = {(w,v) € {w} x H*|Re(iwovy) = Re(i v| + y15) = 0}.

We denote by .1}, € (T\,M)* N #,S" the horizontal lift of the unit normal /" at
w(w), where (T, M )L denotes the orthogonal complement of T,,M in T,S'!.
When w = (cos r,wy, wy), it is of the form

Ny = (w, (—sin r, wy cot r,wy cot r)),

hence the horizontal lifs of %, and QZ =(w) are of the following forms:

QZW = {(W, (O,U],Uz))|wll)1 + Wovy = 0}7
G = {(w,(—sin r,w; cot r,wy cot r) - 1) |[Re A = 0}.

Put z = (cos r,sin r,0)(e M). For (w,(0,v1,12)) € &, the othogonal matrix

1 0 0
0 wi(sinr)™" o | e GL(3,H) ~ GL(12,R)
0 wa(sinr)™' 0,

induces an isometry ¥ of S*** such that

i) Y(z)=w and (M) =M,
ii) dlkz( 7.) =9, and dy_(N.-2) = Ny - for every AeH,
iil) dyr.((z,(0,0,1))) = (w, (0,v1,v2)).

Next for v =ayj; + a»j, + a3 j; € H with |v] =1 we choose an othogonal matrix



CURVATURE-ADAPTED REAL HYPERSURFACES 113

and consider an othogonal matrix

1 0

1 e 0(12),

0 Iy

where Iy € GL(4, R) denotes the identity matrix. This induces an isometry ¥ of
S4+3 such that X

1) ‘PKZ)A:Z angi ‘P(M):AAAJA, R R

i) d¥Y.(2.) = 2. and d¥.(J1N2) = N -,

iii) d¥.((z,(0,0,1))) = (z,(0,0,1)),
where the real linear transformation J; on H?> is defined by f,-(u) = u(—j;).
These guarantee the existence of an isometry ¢ of HP" with desirable conditions.

As a consequence of Proposition 4.2, for a geodesic sphere M of radius
2r/\/e (0 <r<m/2) in HP"(c), we see that its length spectrum coinsides with
the length spectrum of a geodesic sphere of radius 2r/y/c in a complex projective
space CP"(c) of holomorphic sectional curvature c:

2n 4rn
Lspec(M) = {— sin 2r p U {—=sinr
Ve Ve
p and ¢ are relatively prime

1 . oL . .
u 471\/ —(p? sin’ r 4 ¢2 cos? r) | positive integers which satisfy
¢ pq is even and ¢ < p tan® r

1 p and ¢ are relatively prime
u Zn\/ —(p? sin® r + g2 cos? r) | positive integers which satisfy
¢ pq is odd and ¢ < p tan® r

Therefore we obtain the following.

THEOREM 4.5. Let M be a geodesic sphere of radius 2r/+/c (0 <r < w/2) in
HP"(c) of quaternionic sectional curvature c.

(1) The length spectrum Lspec(M) of M is a discrete unbounded subset in the
real line R. In particular, there exist infinitely many congruency classes of closed
geodesics.

(2) If tan? r is irrational, every length spectrum of M is simple.

(3) If tan® r is rational, the multiplicity of each length spectrum of M is finite.
But it is not uniformly bounded; lim sup,_, , my(A) = oo, In this case, the growth
order of mys is not so rapid. It satisfies lim,_, ., )f‘)mM(ﬂn) =0 for arbitrary
positive 0.
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(4) The cardinality ny(A) of the set {[y| € Geod(M)| Lm([y]) £ A} satisfies

lim ny(4)  3er
IS )2 474 sin 2r°

Next we study geodesics on a horosphere Hj, on a geodesic sphere H(r) of
radius r and on a tube H{'~!(r) of radius r around quaternionic hyperplane in a
quaternionic hyperbolic space HH"(—4). Let M be one of H{(r), H'(r) and
Hj, and 1 be an isometric embedding of M into HH"(—4). We denote by V the
Riemannian connection of HH"(—4). For each geodesic y on M we find that
1oy is a helix of order 4 in HH"(—4):

Viy = K1X2,
ViXo = K17 X
@4.1) 12 = Sy,
V7'X3 = —10 Xy + K3Xy,
67‘X4 = —K3X3,
where

. . . 1
K1 = {AJ(s),7(s)>, K2 = \/||AV||2 — 47,7, K= pCAYe - pk

3
L S G.eoh)

pyr/1 = p2 =T

with a unit normal vector field .4/~ and the shape operator 4 of M in HH".
Thus we get the following result on the extrinsic shape of geodesics on those real
hypersurfaces in HH".

|
Xo=N, Xs= K—2(<Aw>y — A7), X4=

PROPOSITION 4.6. Let M be a real hypersurface in HH"(—4) which is one
of a horosphere, a geodesic sphere of radius r (0 <r < o0), and a tube of radius
r (0 <r< ) around quaternionic hyperplane HH"™'. For a geodesic y on M
the curve 10y lies on a totally geodesic CH?(—4). Moreover, the extrinsic shape
1oy is as follows:

(1) If p, =1, the curve 10y is a circle in HH" which lies on a totally geodesic
CH'(—4). Its curvature is 2 if M is a horosphere, 2 coth 2r if M is a geodesic
sphere of radius r or a tube of radius r around quaternionic hyperplane.

(2) If p, =0, the curve 107y is also a circle which lies on a totally geodesic

RH?*(—1). Its curvature is 1 if M is a horosphere, cothr if M is a geodesic
sphere of radius r, and tanhr if M is a tube of radius r around quaternionic
hyperplane.
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(3) Generally, if 0 < p, <1, the curve 107y is a helix of proper order 4. Its
curvatures are as the following table:

H; H(r) H (1)
K1 1+ p? coth r + pJ tanh r | tanh r 4 p} coth r

K py\/l—pf py\/l—p}z,tanhr pyy/1 = p2 cothr

K3 1 coth r tanh r

Every geodesic on these manifolds is a simple curve.
As a consequence of this proposition we obtain the following (see [AMY]).

THEOREM 4.7. Let y be a geodesic on a geodesic sphere M of radius
r (0<r< o) in HH"(—4).

(1) When p, =1, it is closed with length m sinh 2r.

(2) When p, =0, it is also closed and its length is 2 sinh r.

(3) When 0 < p, <1, it is closed if and only if

_ q

~ sinh ry/p? tanh? r — g2

with some relatively prime positive integers p and q with g < p tanh® r. In this
case, its length is

27\/p? sinh? r — g2 cosh r, if pq is even
ny/p?sinh? r — g2 cosh? r, if pq is odd.

length(y) = {

We call a smooth curve o on a quaternionic hyperbolic space CH" un-
bounded in both directions if both ¢([0, c0)) and o((—o0,0]) are unbounded sets.
Considering the ideal boundary 0HH" of HH" as a Hadamard manifold, we can
define its limit points at infinity

o(o0) = lim o(t), o(—w)= lim o(t) e 0HH",

1— 0 t——o0

if they exist. We shall call a smooth curve ¢ on HH" horocyclic if the following
conditions hold.

i) It has single point at infinity; o(o0) = g(—o0).

ii) If a geodesic p on HH" with p(o0) = g(o0) crosses ¢ at some point p(sp),
then they cross orthogonally at p(so).
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These conditions are equivalent to the condition that ¢ is unbounded in both
directions and lies on a horosphere. We obtain the following along the same
lines as in [AMY].

THEOREM 4.8. Let y be a geodesic on a tube M of radius r (0 <r < o0)
around quaternionic hyperplane HH"™' in HH"(—4).

(1) When p, =1, it is closed and its length is w sinh 2r.

(2) When p, < 1/coshr, it is unbounded in both directions, and has two
distinct points at infinity as a curve on HH".

(3) When p, = 1/coshr, it is horocyclic as a curve on HH".

(4) When 1/coshr < p, <1, it is bounded. Under this situation, it is closed
if and only if

P

Py =
cosh ry/p? — ¢2 coth? r

with some relatively prime positive integers p and q with p tanh® r > q. In this
case, its length is

Zn\/p2 sinh? r — ¢2 cosh® r, if pq is even
n\/p2 sinh? r — g2 cosh® r,  if pq is odd.

length(y) =

PrROPOSITION 4.9. Every geodesic on a horosphere in a quaternionic
hyperbolic space is unbounded in both directions, hence it is horocyclic as a curve
on a quaternionic hyperbolic space.

In order to make mention of length spectrum we need a congruence theorem.
We set
2 2 2
HP" = {w = (wo,...,wa) € H"™| —wo|” + w4+ |wy|* = ~1}

and denote by w: H14”+3 — HH" the S3-fibration. We consider the following
hypersurfaces in Hf”“’:

My = {we H""wy| = cosh r, |w;|* + - - - + |w,|* = sinh? r},

M, = {w e H'!

—|wo|* + wi* 4 -+ + |wa_1|* = —cosh? r,
|wy| = sinh r ’

M; = {weH”+l

—wol? 4 Wil 4+ wa|* = —1,
[wo —wi| =1 '

According as M is a geodesic sphere of radius r, a tube of radius r around
quaternionic hyperplane or a horosphere in HH"(—4), the manifold ww'(M) is
isometric to M;,M> or Ms. By a similar argument to that in the proof of
Lemma 4.4 and Proposition 4.3 we obtain the following.
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ProposITION 4.10. Let M be one of a horosphere, a geodesic sphere and
a tube around quaternionic hyperplane in a quaternionic hyperbolic space. Two
geodesics on M are congruent with respect to the isometry group of M if and only
if their structure torsions coincide.

With the aid of this propsition, Theorem 4.7 assures that the length spectrum
of a geodesic sphere M of radius 2r/\/c in HH"(—c) is of the following form;

4n 2n
Lspec(M) = {— sinh r » U { — sinh 2r
Ve Ve
p and ¢ are relatively prime

1 . oL . .
U 47r\/ —(p? sinh? r — ¢2 cosh? r) | positive integers which satisfy
¢ pq is even and ¢ < p tanh® r

1 p and ¢ are relatively prime
u 27z\/ —(p? sinh? r — ¢2 cosh® r) | positive integers which satisfy
¢ pq is odd and ¢ < p tanh’ r

and Theorem 4.8 assures that the length spectrum of a tube M of radius 2r/+/c
around quaternionic hyperplane HH""' in HH"(—c) is of the following form;

Lspec(M) = {2—\/7; sinh 2r}

1 p and ¢ are relatively prime
U 471\/ —(p? sinh? r — ¢2 cosh? r) | positive integers which satisfy
¢ pq is even and ¢ < p tanh® r

1 p and ¢ are relatively prime
U 271\/ —(p? sinh? r — ¢2 cosh? r) | positive integers which satisfy
¢ pq is odd and ¢ < p tanh® r

We obtain the following on the multiplicity of the length spectrum.

THEOREM 4.11.  Let M be either a geodesic sphere of radius 2r/+/c or a tube
of radius 2r/\/c around quaternionic hyperplane HH"™' in HH"(—c) of qua-
ternionic sectional curvature —c.

(1) The length spectrum Lspec(M) is a discrete unbounded subset of the real
line R. In particular, there exist infinitely many congruency classes of closed
geodesics.

(2) If coth? r is irrational of the form either

52 {4 =D - - 1 - g+ 1))
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for some relatively prime positive integers p,q with even pq and p > q+ 3, or

%qz{@zwz ~ 4= \r - -2 - <q+z>2}}

for some relatively prime positive integers p,q with odd pq and p > q + 4, then the
multiplicity of the spectrum (2r/+/c) sinh 2r is two and other length spectrum of M
is simple.

3) If coth? r is irrational and is not of the form in (2), then every length
spectrum of M is simple.

@ If coth? r is rational, the multiplicity of each length spectrum is finite.
But it is not uniformly bounded; lim sup,_, , my(A) = co. The growth order of
my(2) is not so rapid. It satisfies lim;_, 2 °my (1) = 0 for arbitrary positive 9.

(5) The number ny (1) of congruency classes of geodesics on M with length
not greater than J. satisfies

lim ny(A) 3er
i—w )2 4zt sinh 2r°

We here go back to the viewpoint of characterizations of curvature-adapted
real hypersurfaces with constant principal curvatures by the extrinsic shape of
geodesics. By Propositions 4.1 and 4.6 and the same argument as in the proof of
Propositions 4.1 and 4.2 in [AMY], we see the following.

ProrosiTioN 4.12. A4 real hypersurface M in a non-flat quaternionic space
form M of quaternionic dimension n (=3) is locally congruent to one of a geodesic
sphere, a tube around quaternionic hyperplane and a horosphere if and only if
at each point x € M there exists an orthonormal basis {v\,v3,...,04p-a} of Dy
(€ TuM) such that all geodesics on M emanating x in the direction v;+ vy
(1Zj<k=<4n—4) are circles of positive curvature in M.

ProposITION 4.13. A real hypersurface M in HH"(—c) (n=2) is locally
congruent to a horosphere if and only if at each point x € M there exists an
orthonormal basis {vy,va,...,van-a} of Dy such that all geodesics on M with the
initial vector v; (1 <j <4n—4) are circles of curvature \/c/2 on HH"(—c).
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