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CURVATURE-ADAPTED REAL HYPERSURFACES

IN QUATERNIONIC SPACE FORMS

Toshiaki Adachi and Sadahiro Maeda

Abstract

In this paper we study geodesics on curvature-adapted real hypersurfaces in non-

¯at quaternionic space forms. By observing the extrinsic shape of geodesics on these

hypersurfaces we characterize them in the class of real hypersurfaces. We also inves-

tigate the length spectrum of geodesic spheres, which are the simplest curvature-adapted

real hypersurfaces, in non-¯at quaternionic space forms.

1. Introduction

The aim of this paper is to study curvature-adapted real hypersurfaces in
quaternionic space forms from the viewpoint of the extrinsic shape of geodesics
on these hypersurfaces. A hypersurface M of a Riemannian manifold ~M is
called curvature-adapted if the normal Jacobi operator K and the shape operator
A of M with respect to a unit normal vector ®eld N are simultaneously di-
agonalizable; K � A � A � K . Here the normal Jacobi operator K : TM ! TM
of M with respect to N is de®ned by K��� � ~R��;N�N with the curvature tensor
~R of ~M. In his paper [B], J. B. Berndt completely classi®ed curvature-adapted
real hypersurfaces M4nÿ1 in a quaternionic projective space HPn of quaternionic
dimension n �Z 2�. They are locally congruent to tubes around the canonically
embedded quaternionic projective spaces of quaternionic dimension k �0Y k Y
nÿ 1� or tubes around the canonically embedded complex projective space of
complex dimension n. He also classi®ed curvature-adapted real hypersurfaces M
in a quaternionic hyperbolic space HH n of quaternionic dimension n �Z 2� under
the additional condition that all principal curvatures of M in HH n are constant.
They are locally congruent to either a horosphere, tubes around canonically
embedded quaternionic hyperbolic spaces of quaternionic dimension k �0Y k Y
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nÿ 1� or tubes around the canonically embedded complex hyperbolic space of
complex dimension n.

In the ®rst half of this paper we characterize these curvature-adapted real
hypersurfaces in non-¯at quaternionic space forms, which are quaternionic
projective spaces and quaternionic hyperbolic spaces, by the extrinsic shape of
geodesics. It is known that non-¯at quaternionic space forms do not admit real
hypersurfaces all of whose geodesics are circles in them. We consider a weaker
condition. When the ambient manifold ~M is a quaternionic KaÈhler manifold we
have a natural orthogonal decomposition DlD? of the tangent bundle TM of a
real hypersurface M: The subbundle D is the maximal subbundle of TM which
is invariant by the quaternionic structure of ~M. We characterize these curvature-
adapted real hypersurfaces in non-¯at quaternionic space forms by the existence
of an orthonormal basis of Dx at each point x such that the extrinsic shape of
geodesics of those directions are circles of positive curvature in the ambient
manifolds.

When the ambient manifold is a non-¯at complex space form, curvature-
adapted real hypersurfaces are nothing but real hypersurfaces whose structure vector
®eld JN is a principal curvature vector ®eld. In preceding papers [AKM] and
[CM] these real hypersurfaces with constant principal curvatures are characterized
by a similar condition in our results Theorems 3.1 and 3.2. Our theorems in this
paper can be regarded as quaternionic versions of preceding results.

In the second half of this paper we study the extrinsic shape of all geodesics
on geodesic spheres in a non-¯at quaternionic space form, which are the simplest
examples in the class of real hypersurfaces. By direct computation we can see
that each geodesic on these geodesic spheres is regarded as a helix of order 4
which lies on a totally geodesic complex space form of complex dimension 2. As
a consequence we clarify properties on lengths of all closed geodesics on these
geodesic spheres.

2. Modeled real hypersurfaces in quaternionic space forms

A quaternionic KaÈhler structure J on a Riemannian manifold ~M of real
dimension 4n is a rank 3 vector subbundle of the bundle of endmorphisms of the
tangent bundle T ~M with the following properties:

1) For each point ~x A ~M there is an open neighborhood ~G of ~x in ~M and
sections J1; J2; J3 of the restriction Jj ~G over ~G such that

i) each Ji is an almost Hermitian structure on ~G, that is, J 2
i � ÿid and

hJi
~X ; ~Yi� h ~X ; Ji

~Yi � 0 for all vector ®elds ~X and ~Y on ~G, where
h ; i is the Riemannian metric of ~M.

ii) JiJi�1 � Ji�2 � ÿJi�1Ji �i mod 3� for i � 1; 2; 3.

2) ~̀
~X J is a section of J holds for each vector ®eld ~X on ~M and section J

of the bundle J, where ~̀ denotes the Riemannian connection of ~M.
This triple fJ1; J2; J3g is called a canonical local basis of J. For each canonical
local basis of quaternionic structure, there exist three 1-forms q1; q2 and q3 on ~G
satisfying
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~̀
~X Ji � qi�2� ~X�Ji�1 ÿ qi�1� ~X �Ji�2 �i mod 3��2:1�

for each vector ®eld ~X on ~G and i � 1; 2; 3.
Let M be a real hypersurface of a quaternionic KaÈhler manifold ~M, which is

a Riemannian manifold equipped with a quaternionic KaÈhler structure J, and N
be a unit normal vector ®eld of M. We denote by D the maximal subbundle of
TM which is invariant by J: At a point x A M the subspace Dx is the maximal
subspace of TxM with the property that Jv A Dx for each v A Dx and J A Jx.
Let D? denote the orthogonal complement of D in TM. It is a rank 3 vector
subbundle of TM. By using a canonical local basis fJ1; J2; J3g of J over an
open subset ~G of ~M containing x, we ®nd that D?x is the real linear subspace of
TxM spanned by J1N; J2N; J3N. On an open set G � ~G VM we set xi � ÿJiN
and de®ne fi : TM ! TM by fi � p � JijTM for i � 1; 2; 3, where p : T ~MjM !
TM is the canonical projection. Then the following identities hold on G for i �
1; 2; 3:

fixi � 0; fixi�1 � xi�2; fixi�2 � ÿxi�1;

fi � fi�1jD � fi�2jD � ÿfi�1 � fijD �i mod 3�:�2:2�

Let ` denote the Riemannian connection of M and A the shape operator of M
with respect to N. It follows from (2.1) and the Weingarten formula for a real
hypersurface M that

`X xi � qi�2�X �xi�1 ÿ qi�1�X�xi�2 � fiAX�2:3�
for each vector ®eld X on G.

We call a connected quaternionic KaÈhler manifold ~M a quaternionic space
form of quaternionic sectional curvature c �A R� if the Riemannian sectional
curvature of ~M is equal to c for all tangent 2-planes spanned by u A T~x

~M and Ju
with J A J~x at each point ~x A ~M. The standard models of quaternionic space
forms are a quaternionic projective space HPn�c� of quaternionic sectional cur-
vature c �> 0�, a quaternionic Euclidean space H n and a quaternionic hyperbolic
space HH n�c� of quaternionic sectional curvature c �<0�.

In his paper [B], Berndt characterized curvature-adapted real hypersurfaces
in quaternionic space forms. Following his results, when M is a real hyper-
surface in a non-¯at quaternionic space form, the following three conditions are
equivalent each other:

(1) M is curvature-adapted.
(2) The subbundle D is invariant by the shape operator of M.
(3) The subbundle D? is invariant by the shape operator of M.

The above condition (3) guarantees the existence of an open and dense subset
U0 of a curvature-adapted real hypersurface M with the following property: For
every x A U0 there exists a canonical local basis fJ1; J2; J3g of J on a neighbor-

hood ~G of x in a non-¯at quaternionic space form ~M satisfying that G�� ~G VM�
HU0 and xi is a principal curvature vector of M at each x A G. Moreover, each
of the principal curvatures ai associated with xi is locally constant on G.

toshiaki adachi and sadahiro maeda100



Theorem A ([B], cf. [MP]). (1) A connected curvature-adapted real hyper-
surface in a quaternionic projective space HPn�4� �nZ 2� is locally congruent to
one of the following real hypersurfaces:

(P1) A tube Pk
1 �r� of some radius r A �0; p=2� around the canonically (totally

geodesic) embedded HPk for some k A f0; . . . ; nÿ 1g.
(P2) A tube P2�r� of some radius r A �0; p=4� around the canonically (totally

geodesic) embedded complex projective space CPn.
(2) A connected curvature-adapted real hypersurface with constant principal

curvatures in a quaternionic hyperbolic space HH n�ÿ4� �nZ 2� is locally con-
gruent to one of the following real hypersurfaces:

(H1) A tube H k
1 �r� of some radius r A �0;y� around the canonically (totally

geodesic) embedded HH k for some k A f0; . . . ; nÿ 1g.
(H2) A tube H2�r� of some radius r A �0;y� around the canonically (totally

geodesic) embedded complex hyperbolic space CH n.
(H3) A horosphere H3 in HH n.
(3) Conversely, each of these modeled real hypersurfaces is a curvature-

adapted real hypersurface with constant principal curvatures in the ambient
manifold.

We here list the principal curvatures and their multiplicities of these modeled
real hypersurfaces.

Pk
1 �r� P2�r� H k

1 �r� H2�r� H3

l1 cot r cot r coth r coth r 1

l2 ÿtan r ÿtan r tanh r tanh r Ð

m1 2 cot 2r 2 cot 2r 2 coth 2r 2 coth 2r 2

m2 Ð ÿ2 tan 2r Ð 2 tanh 2r Ð

m�l1� 4�nÿ k ÿ 1� 2�nÿ 1� 4�nÿ k ÿ 1� 2�nÿ 1� 4�nÿ 1�
m�l2� 4k 2�nÿ 1� 4k 2�nÿ 1� Ð

m�m1� 3 1 3 1 3

m�m2� Ð 2 Ð 2 Ð

Here lj is an eigenvalue of AjD and mj is that of AjD? , and m��� denotes the
multiplicity of corresponding eigenvalue.

For real hypersurfaces of type (P1), (H1) and (H3) in Theorem A we ®nd the
following properties hold.

Proposition 2.1 (cf. [P]). Every curvature-adapted real hypersurface M of
type (P1), (H1) or (H3) in the lists of Theorem A satis®es the following:
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(1) The structure tensor fi and the shape operator A of M are commutative:
fiA � Afi �i � 1; 2; 3�.

(2) The covariant derivative of the shape operator A satis®es

�`X A�Y �H
X3

i�1

fhfiX ;Yixi � hxi;YifiXg;�2:4�

where the double sign depends on the case that either the ambient space is HPn�4�
or HH n�ÿ4�.

For real hypersurfaces of type (P1) in HPn this proposition is due to [P].
For real hypersurfaces of type (H1) or (H3) in HH n we can check these properties
by the same argument as for Lemma 4.2 in [P] and Theorem 4.3 in [NR].

In the last stage of this section we write down the Codazzi equation for
a curvature adapted real hypersurface in a quaternionic projective space HPn�c�
and a quaternionic hyperbolic space HH n�c�, which will be usefull in the fol-
lowing sections:

�`X A�Y ÿ �`Y A�X � c

4

X3

i�1

fhX ; xiifiY ÿ hY ; xiifiX ÿ 2hfiX ;Yixig:�2:5�

3. Characterization of curvature-adapted real hypersurfaces

A smooth curve g � g�s� on a Riemannian manifold N parametrized by its
arclength s is called a Frenet curve of proper order d if there exist orthonormal
frame ®elds fX1 � _g; . . . ;Xdg along g and positive functions k1�s�; . . . ; kdÿ1�s�
which satisfy the following system of ordinary equations

` _gXj�s� � ÿkjÿ1�s�Xjÿ1�s� � kj�s�Xj�1�s�; j � 1; . . . ; d;�3:1�

where X0 1Xd�1 1 0 and ` _g denotes the covariant di¨erentiation along g with
respect to the Riemannian connection ` of N. Equation (3.1) is called the
Frenet formula for a Frenet curve g. The functions kj�s� � j � 1; . . . ; d ÿ 1� and
the orthonormal frame fX1; . . . ;Xdg are called the curvatures and the Frenet
frame of g, respectively. We call a smooth curve a helix of order d when it is a
Frenet curve of proper order r �Yd� and all its curvatures are constant. A helix
of order 1 is nothing but a geodesic. A helix of order 2 with the ®rst curvature
k1 � k is called a circle of curvature k. A smooth curve g parametrized by its
arclength is a circle of curvature k if and only if it satis®es ` _g` _g _g � ÿk2 _g.

Let i denote the isometric immersion of a real hypersurface M into a non-¯at
quaternionic space form ~M. For a smooth curve g on M we call the curve i � g
on ~M the extrinsic shape of g. For simplicity we usually denote the curve i � g
by g. The aim of this section is to characterize curvature-adapted real hyper-
surfaces in non-¯at quaternionic space forms in Theorem A by the extrinsic shape
of some geodesics on these hypersurfaces.
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Theorem 3-1. Let M be a connected real hypersurface of a quaternionic
projective space HPn. Then M is locally congruent to a real hypersurface of type
(P1) or (P2) if and only if at each point x A M there exists an orthonormal basis
fv1; . . . ; v4nÿ4g of Dx such that all geodesics gj � gj�s� on M with gj�0� � x and
_gj�0� � vj �1Y j Y 4nÿ 4� are circles of positive curvature in HPn.

Theorem 3-2. Let M be a connected real hypersurface of a quaternionic
hyperbolic space HH n. Then M is locally congruent to a real hypersurface of
type (H1), (H2) or (H3) if and only if at each point x A M there exists an or-
thonormal basis fv1; . . . ; v4nÿ4g of Dx such that all geodesics gj � gj�s� on M with
gj�0� � x and _gj�0� � vj �1Y j Y 4nÿ 4� are circles of positive curvature in HH n.

We shall prove these theorems simultaneously. In this section, let ~M denote

a non-¯at quaternionic space form. Namely, ~M denotes either a quaternionic
projective space or a quaternionic hyperbolic space. We denote by ~̀ the
Riemannian connection of ~M. We use the following technical results due to
Berndt [B] on curvature-adapted real hypersurfaces in a non-¯at quaternionic
space form.

Proposition B ([B]). Let M be a curvature-adapted real hypersurface in a
quaternionic space form of quaternionic sectional curvature c �0 0�. We choose a
canonical local basis of J on ~G such that each xi is a principal curvature vector;
Axi � aixi.

(1) At each point x A G � ~G VM, for each principal curvature vector v A Dx

with Av � lv,

�2lÿ ai�Afiv � lai � c

2

� �
fiv;

holds for every i � 1; 2; 3.
(2) ai � aj or qkjDx � 0 for all distinct i; j; k A f1; 2; 3g.
(3) If ai 0 ai�1 � ai�2, then qi�1�xi� � qi�2�xi� � 0 �i mod 3�.

[``Only if '' part of the proof of Theorems 3.1 and 3.2.]
In the ®rst place we prove the only if part. Let M be a real hypersurface

in a non-¯at quaternionic space form ~M satisfying the following condition ���:

���
At each point x A M there exists an orthonormal basis fv1; . . . ; v4nÿ4g
of Dx such that all geodesics gj � gj�s� on M with gj�0� � x and
_gj�0� � vj �1Y j Y 4nÿ 4� are circles of positive curvature in ~M.

By this condition the geodesic gj whose initial vector is vj satis®es

~̀
_gj
� ~̀ _gj

_gj� � ÿk2
j _gj�3:2�

for some positive constant kj.
On the other hand, from the formulae of Gauss and Weingarten;
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~̀
X Z � `X Z � hAX ;ZiN and ~̀

XN � ÿAX

we have

~̀
_gj
� ~̀ _gj

_gj� � h�` _gj
A� _gj; _gjiNÿ hA _gj; _gjiA _gj :�3:3�

By comparing the tangential components of the equalities (3.2) and (3.3) we ®nd

hA _gj�s�; _gj�s�iA _gj�s� � k2
j _gj�s�;

in particular, at s � 0

hAvj; vjiAvj � k2
j vj:

By noticing that kj 0 0 we get

Avj � kjvj or Avj � ÿkjvj for j � 1; . . . ; 4nÿ 4:�3:4�
This implies that Dx is invariant by the shape operator A. Since x A M is
arbitrary, we ®nd that our real hypersurface M is curvature-adapted to ~M.
When ~M is a quaternionic projective space, we obtain M is locally congruent to
a real hypersurface of type (P1) or (P2) by Berndt's classi®cation.

What we have to do is to prove that when ~M is a quarternionic hyperbolic
space all principal curvatures of our curvature-adapted real hypersurface M are
constant on M. Consider an open and dense subset U of M given by

U � x A U0

���� the multiplicity of each principal curvature of M
in HH n is constant on some neighborhood Vx of x

� �
:

Then all principal curvatures are di¨erentiable on U. For each point x A U, if
we choose su½ciently small neighborhood Vx, we can choose principal curvature
vectors to be smooth and the principal curvatures ai �i � 1; 2; 3� associated with
xi are constant on this neighborhood.

At a ®xed point x A U, we denote by l1; l2; . . . ; lg the distinct principal
curvatures at x, which can be extended to di¨erentiable functions on Vx. Since
the principal curvatures associated with xi �i � 1; 2; 3� are constant on Vx, we
shall prove that each ll associated with AjD is constant on some neighborhood
of x. By (3.4) there is jl such that either ll�x� � kjl or ll�x� � ÿkjl holds. We
only treat the former case; Avjl � kjl vjl . Since the geodesic gjl

with the initial
vector vjl A TxM on M is a circle of curvature kjl on ~M, we have ll�gjl

�s�� � kjl

for each s, hence ®nd vjl ll � 0. As A is symmetric, we also have

h�`vjl
A�vk; vjli � hvk; �`vjl

A�vjli; 1Y k 0 jl Y 4nÿ 4:�3:5�

In order to compute (3.5) easily, we extend the tangent vectors vk; vjl A TxM
to vector ®elds Vk;Vjl on some su½ciently small neighborhood Wx �HVx� in the
following manner: We denote by Wjl the smooth vector ®eld on Vx de®ned by
parallel displacement of the vector vjl along each geodesic through x. Although
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Wjl is not principal on Vx in general, we have AWjl �gjl
�s�� � kjl Wjl �gjl

�s��. We
de®ne a vector ®eld on Vx by

Ujl �
 Y

1YmYg
m0l

�Aÿ lmI�
!

Wjl :

Clearly, at each point y A Vx the vector Ujl �y� is
Q

m0l�ll ÿ lm� times of the
projection of Wjl �y� onto the eigenspace corresponding to ll�y�. Hence AUjl �
llUjl on Vx. We choose a neighborhood Wx �HVx� of x such that every Ujl

does not vanish on it, and set Vjl � Ujl=kUjlk. Our construction guarantees that
AVjl � llVjl on Wx and Vjl �x� � vjl , and that the integral curve of Vjl through the
point x is a geodesic on M. In particular, we obtain �`Vjl

Vjl ��x� � 0. For vk we
choose a section Vk of DjWx

with Vk�x� � vk.
Since the Codazzi equation (2.5) implies h�`X A�Y ;Zi � h�`Y A�X ;Zi for

arbitrary sections X ;Y ;Z of D, we ®nd at the point x

�The left hand side of �3:5�� � h�`vk
A�vjl ; vjli

� h�`Vk
A�Vjl ;Vjlix

� h�Vkll�Vjl � �ll I ÿ A�`Vk
Vjl ;Vjlix

� vkll :

Similarly we get

�The right hand side of �3:5�� � hVk; �`Vjl
A�Vjlix

� hVk;`Vjl
�llVjl � ÿ A`Vjl

Vjlix

� hvk; �vjl ll�vjli � 0:

These imply that Xll � 0 for every X A Dx.
Next, we shall prove xi�x�ll � 0 �i � 1; 2; 3�. We may suppose either one

of the following conditions holds:
(I) 2ll ÿ ai 0 0 for every i � 1; 2; 3 on some neighborhood of x,
(II) 2ll ÿ ai 1 0 holds on a neighborhood of x for some i,

because the set of points y A U with such a property is a dense open subset of
M. Since ai is constant on Vx, we have only to study the case (I). In this case,
we obtain from Proposition B

AfiVjl �
ailjl ÿ 2

2ljl ÿ ai

� �
fiVjl

on some neighborhood W 0
x �HWx� of x. This, together with Proposition B and

(2.3), yields

curvature-adapted real hypersurfaces 105



�`xi
A�Vjl ÿ �`Vjl

A�xi

� `xi
�AVjl � ÿ A`xi

Vjl ÿ `Vjl
�aixi� � A`Vjl

xi

� `xi
�llVjl � ÿ A`xi

Vjl ÿ aifiAVjl � AfiAVjl

� qi�2�Vjl ��ai�1 ÿ ai�xi�1 ÿ qi�1�Vjl ��ai�2 ÿ ai�xi�2

� �xill�Vjl � �ll I ÿ A�`xi
Vjl ÿ ll ai ÿ aill ÿ 2

2ll ÿ ai

� �
fiVjl :

On the other hand, (2.5) yields

h�`xi
A�Vjl ÿ �`Vjl

A�xi;Vjli � 0:

By combining these two equalities we ®nd xill � 0 for every i. Consequently,
ll is constant on W 0

x .
Thus we know that every principal curvature of M is locally constant on

an open and dense subset of M. Since M is assumed to be connected, each
principal curvature is constant on M. We therefore ®nd by Berndt's classi®c-
ation that our real hypersurface M in a quaternionic hyperbolic space is locally
congruent to either a real hypersurface of type of (H1), (H2) or (H3).
[``If '' part of the proof of Theorems 3.1 and 3.2.]

In the second place we prove the if part. We shall prove each member of
real hypersurfaces in the lists of Theorem A satis®es the condition ��� case by
case. At an arbitrary point x A M we choose orthonomal principal curvature
vectors v1; . . . ; v4nÿ4 A Dx. We denote by lj the principal curvature associtated
with vj (i.e. Avj � ljvj) and by gj the geodesic with initial vector vj.

First, we study the case that M is a real hypersurface of type (P1), (H1) or
(H3) in a non-¯at quaternionic space form. We shall show that _gj is a principal
curvature vector ®eld along gj for every j. It follows from Proposition 2.1(2) that

` _gj
kA _gj ÿ lj _gjk2 � ` _gj

hA _gj;A _gjiÿ 2lj` _gj
hA _gj ; _gji

� 2h�` _gj
A� _gj ;A _gjiÿ 2ljh�` _gj

A� _gj; _gji

�H2
X3

i�1

fhfi _gj; _gjixi � hxi; _gjifi _gjg;A _gj ÿ lj _gj

* +

�H2
X3

i�1

hxi; _gjihfi _gj;A _gji:

Since Afi � fiA, we ®nd hfi _gj;A _gji � hAfi _gj; _gji � ÿhA _gj; fi _gji, which leads us

to hfi _gj;A _gji � 0, and hence to ` _gj
kA _gj ÿ lj _gjk2 � 0. As A _gj�0� � lj _gj�0�, this

shows that A _gj�s� � lj _gj�s� for every s. By use of the formulae of Gauss and

Weingarten, we can see that ~̀
_gj

~̀
_gj

_gj � lj
~̀

_gj
N � ÿl2

j _gj , which means that the
extrinsic shape of the geodesic gj is a circle of curvature jljj in a non-¯at
quaternionic space form.
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Next we study the case that M is a real hypersurface of type (P2) in HPn.
We decompose the tangent bundle TM into the bundles of principal curvature
vectors:

TM � DlD? � �Fl1
lFl2

�l �Fm1
lFm2

�:
Here, when the ambient space is HPn�4�, the principal curvatures are l1 � cot r,
l2 � ÿtan r, m1 � 2 cot 2r, m2 � ÿ2 tan 2r, and Fn denotes the subbundle of
principal curvature vectors associated with n. For simplicity we choose ca-
nonical local basis of J on ~G in Proposition B so that a1 � m1 and a2 � a3 � m2.
It follows from Proposition B and (2.2) that

f1�Fl1
� �Fl1

; f1�Fl2
� �Fl2

; f1�Fm1
� � f0g; f1�Fm2

� �Fm2
;

f2�Fl1
� �Fl2

; f2�Fl2
� �Fl1

; f2�Fm1
�HFm2

; f2�Fm2
� �Fm1

;

f3�Fl1
� �Fl2

; f3�Fl2
� �Fl1

; f3�Fm1
�HFm2

; f3�Fm2
� �Fm1

:

8<:�3:6�

Since a1 0 a2 � a3, again by using Proposition B we have q2jDx
� q3jDx

� 0 and
q2�x1�x�� � q3�x1�x�� � 0 at each point x A G � ~G VM.

We shall verify that both Fl1
lRx1 and Fl2

lRx1 over G are integrable and
moreover that each leaf of these local distributions is a totally geodesic sub-
manifold of M. Since by (2.3) we have

`x1
x1 � q3�x1�x2 ÿ q2�x1�x3 � f1Ax1 � a1f1x1 � 0;

we shall check that `X x1, `x1
X , `X Y are sections of Flj

lRx1 for all sections
X ;Y of Flj

. First, we see that

`X x1 � q3�X�x2 ÿ q2�X�x3 � f1AX � ljf1X

hence `X x1 is a section of Flj
. Next we have

�`x1
A�X ÿ �`X A�x1 � `x1

�AX� ÿ A`x1
X ÿ `X �Ax1� � A`X x1

� �ljI ÿ A�`x1
X ÿ lj�a1 ÿ lj�f1X

� �ljI ÿ A�`x1
X � f1X :

On the other hand, the Codazzi equation (2.5) leads us to

�`x1
A�X ÿ �`X A�x1 �

X3

i�1

fhx1; xiifiX ÿ hX ; xiifix1 ÿ 2hfix1;Xixig � f1X :

Thus we obtain �ljI ÿ A�`x1
X � 0, hence `x1

X is a section of Flj
. Finally, we

shall check `X Y ÿ h`X Y ; x1ix1. We have

A�`X Y ÿ h`X Y ; x1ix1� � `X �AY � ÿ �`X A�Y ÿ a1h`X Y ; x1ix1

� lj�`X Y ÿ h`X Y ; x1ix1�
ÿ �`X A�Y � �lj ÿ a1�h`X Y ; x1ix1:

Here we see that
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h�`X A�Y ; x1i � hY ; �`X A�x1i � h`X �Ax1� ÿ A�`X x1�;Yi

� h�a1I ÿ A�`X x1;Yi � h`X x1; �a1I ÿ A�Yi

� �a1 ÿ lj�h`X x1;Yi � �lj ÿ a1�h`X Y ; x1i;

hence hÿ�`X A�Y � �lj ÿ a1�h`X Y ; x1ix1; x1i � 0. For each section Z which is
orthogonal to x1 we get by making use of (3.6)

h�`X A�Y ;Zi � hY ; �`X A�Zi

�
�
�`ZA�X �

X3

i�1

fhX ; xiifiZ ÿ hZ; xiifiX ÿ 2hfiX ;Zixig;Y
�

� h�`ZA�X ÿ hZ; x2if2X ÿ hZ; x3if3X ;Yi

� h`Z�AX � ÿ A`ZX ;Yi

� h�ljI ÿ A�`ZX ;Yi

� h`ZX ; �ljI ÿ A�Yi � 0:

Therefore we ®nd that `X Y ÿ h`X Y ; x1ix1 is a section of Flj
, so that `X Y is

a section of Flj
lRx1. Consequently, the local distribution Flj

lRx1 is in-

tegrable and moreover each leaf L of Flj
lRx1 is a totally geodesic submanifold

of our real hypersurface M for j � 1; 2. When j � 1, the manifold L is locally
congruent to a geodesic sphere of radius r in a complex projective space CPn�4�
which is a totally complex totally geodesic submanifold of HPn, and when j � 2,
the manifold L is locally congruent to a geodesic sphere of radius p=2ÿ r in
CPn�4�.

We here recall the extrinsic shape of geodesics on a geodesic sphere in a
complex projective space (see p. 540 of [MO]). Every geodesic g on a leaf L of
Flj

lRx1 with the initial vector _g�0� A Flj
is a circle of curvature jljj in CPn.

Therefore, at each point x A M taking an orthonormal basis fv1; . . . ; v2nÿ2g of
�Fl1
�x and an orthonormal basis fv2nÿ1; . . . ; v4nÿ4g of �Fl2

�x, we ®nd that a real
hypersurface of type (P2) in a quaternionic projective space satis®es the condition
���.

By just the same way as in the above discussion we can check that a real
hypersurface of type (H2) in a quaternionic hyperbolic space satis®es the con-
dition ���, and complete our proof for Theorems 3-1 and 3-2.

4. Geodesics on geodesic spheres in a quaternionic space form

In the preceding section, we characterized all curvature-adapted real hyper-
surfaces with constant principal curvatures in non-¯at quaternionic space forms
in terms of the extrinsic shape of geodesics of directions of principal curvature
vectors. So, next it is natural to consider the extrinsic shape of all geodesics. In
this context we devote the rest of this paper to study all geodesics on geodesic
spheres in a quaternionic projective space, and on geodesic spheres, tubes around
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quaternionic hyperplane and horospheres in a quaternionic hyperbolic space.
We shall start by observing an invariant for geodesics on these real hypersurfaces.

Let M be a real hypersurface of type (P1), (H1) or (H3) in a non-¯at

quaternionic space form ~M. We denote by N a unit normal vector ®eld on
M and put xi � ÿJiN �i � 1; 2; 3� for an arbitrary local basis fJ1; J2; J3g of the
quaternionic structure on ~M. For a tangent vector v A TxM we de®ne non-
negative r�v� by

r�v� �
�p
hv; x1i

2 � hv; x2i
2 � hv; x3i

2;

which is the norm of the projection of v onto the space D?x . We put rg � r� _g�
for a geodesic g on M. By using Weingarten formula and the equalities Afi �
fiA �i � 1; 2; 3� we ®nd it is constant along g: Indeed,

1

2

d

ds
r2

g � h _g; q3� _g�x2 ÿ q2� _g�x3 � f1A _gih _g; x1i

� h _g; q1� _g�x3 ÿ q3� _g�x1 � f2A _gih _g; x2i

� h _g; q2� _g�x1 ÿ q1� _g�x2 � f3A _gih _g; x3i

� h _g; f1A _gih _g; x1i� h _g; f2A _gih _g; x2i� h _g; f3A _gih _g; x3i � 0:

We shall call this constant rg ( ®bre) structure torsion of g. Clearly it satis®es
0Y rg Y 1. When M is one of a geodesic sphere in a quaternionic projective
space, a geodesic sphere, a tube around quaternionic hyperplane and a horo-
sphere in a quaternionic hyperbolic space, both of each vector v A D and each
vector u A D? are principal curvature vectors. So the structure torsion plays an
important role in classifying geodesics on these real hypersurfaces.

First we study geodesics on a geodesic sphere M � P0
1�r� of radius r in a

quaternionic projective space HPn�4� of quaternionic sectional curvature 4. Let
~̀ and ` denote the Riemannian connections of HPn�4� and M, respectively.
For a geodesic g we also denote the curve i � g by g for simplicity. As a ®rst
step, we have

~̀
_g _g � ` _g _g� hA _g; _giN � hA _g; _giN:

This shows that the curve i � g is a geodesic on HPn when hA _g; _gi � cot rÿ
r2

g tan r � 0. If it is not this case, we set as

k1 � jhA _g; _gij � jcot rÿ r2
g tan rj;

X2 � N if hA _g; _gi > 0,

ÿN if hA _g; _gi < 0.

�
Di¨erentiating X2, we have ~̀

_gX2 � ÿk1 _g� k2X3 with

k2 �
������������������������������������
kA _gk2 ÿ hA _g; _gi2

q
� rg

�������������
1ÿ r2

g

q
cot r;
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X3 �

1

k2
�hA _g; _gi _gÿ A _g� if hA _g; _gi > 0,

ÿ 1

k2
�hA _g; _gi _gÿ A _g� if hA _g; _gi < 0.

8>>><>>>:
Thus, when rg � 0 and rg � 1, we see that the curve i � g is a circle of curvature
cot r and 2jcot 2rj, respectively.

In order to continue our calculation we set f�v� �P3
i�1 hv; xiifi�v� for a

tangent vector v A TM, which does not depend on the choice of canonical local
basis. One can easily compute that kf�v�k2 � r2�v� ÿ r4�v�. By making use of
(2.3) we obtain ~̀

_gX3 � ÿk2X2 � k3X4 and ~̀
_gX4 � ÿk3X3 with k3 � cot r and

X4 �

1

rg

�������������
1ÿ r2

g

q f� _g� if hA _g; _gi > 0,

ÿ1

rg

�������������
1ÿ r2

g

q f� _g� if hA _g; _gi < 0.

8>>>>><>>>>>:
Thus we get

Proposition 4.1. For each geodesic g on a geodesic sphere P0
1�r� of radius

r �0 < r < p=2� in HPn�4�, the curve i � g lies on a totally geodesic CP2�4�.
Moreover, the extrinsic shape of g is as follows:

(1) Suppose the radius r satis®es p=4Y r < p=2. When rr � cot r, the curve
i � g is a geodesic.

(2) When r0 p=4, the curve i � g is a circle of curvature 2jcot 2rj if rg � 1.
This circle lies on a totally geodesic CP1�4�.

(3) If g has null structure torsion, the curve i � g is a circle of curvature cot r.
This circle lies on a totally geodesic RP2�1�.

(4) Generally, if rg 0 0; 1, then the curve i � g is a helix of proper order 4
whose curvatures are described as

k1 � jcot rÿ r2
g tan rj; k2 � rr

�������������
1ÿ r2

g

q
tan r; k3 � cot r:

Every geodesic g on P0
1�r� is a simple curve.

We call a smooth curve g closed if there exists s0 �0 0� with g�s� s0� � g�s�
for all s. The minimum positive s0 with such a property is called the length of g
and is denoted by length�g�. When g is not closed we put length�g� �y. As a
direct consequence of this proposition we obtain the following with the aid of
Theorem 2.5 in [AMY].

Proposition 4.2. Let g be a geodesic on a geodesic sphere P0
1�r� of radius

r �0 < r < p=2� in HPn�4�.
(1) If the structure torsion of g is 1, then g is closed and its length is p sin 2r.
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(2) If g has null structure torsion, then g is also closed and its length is
2p sin r.

(3) When the structure torsion rg of g satis®es 0 < rg < 1, it is closed if and
only if

rg �
q

sin r
�����������������������������
p2 tan2 r� q2

p
with some relatively prime positive integers p and q with q < p tan2 r. In this case,
its length is

length�g� � 2p

�����������������������������������������
p2 sin2 r� q2 cos2 r

q
; if pq is even

p

�����������������������������������������
p2 sin2 r� q2 cos2 r

q
; if pq is odd.

8<:
We now make mention of the length spectrum of geodesic spheres in

HPn. We denote by Geod�N� the moduli space of geodesics on a Riemannian
manifold N, which is the set of all congruency classes of geodesics on N under
the action of the isometry group of N. The length spectrum LN : Geod�N� !
RU fyg is de®ned by LN��g�� � length�g�. We also call the image Lspec�N� �
LN�Geod�N��VR the length spectrum of N. For a length spectrum l A Lspec�N�
we call the cardinality mN�l� of the set Lÿ1

N �l� the multiplicity of l. When the
multiplicity of a length spectrum is 1 we say it is simple. For congruency of
geodesics on a geodesic sphere in HPn we obtain the following.

Proposition 4.3. On a geodesic sphere M in a quaternionic projective space,
two geodesics are congruent with respect to the isometry group of M if and only if
their structure torsions coincide.

Proof. Let g1 and g2 be geodesics on M. Since the isometric embedding i
is equivariant, for each isometry j on M there is an isometry ~j on HPn with
~j � i � i � j. This implies that i � g1 and i � g2 are congruent if g1 and g2 are
congruent. Comparing their curvatures we ®nd rg1

� rg2
if g1 and g2 are

congruent.
Conversely, when g1 and g2 have the same structure torsion r, their initial

vectors are of the form _g1�0� �
�������������
1ÿ r2

p
u1 � rh1 and _g2�0� �

�������������
1ÿ r2

p
u2 � rh2

with unit tangent vectors u1; u2 A D and h1; h2 A D?. By the following Lemma
4.4 we can choose an isometry j of M with djg1�0��u1� � u2 and djg1�0��h1� � h2.
Hence, djg1�0�� _g1�0�� � _g2�0�, so that j � g1�s� � g2�s� for every s.

Lemma 4.4. Let M � P0
1�r� be a geodesic sphere in HPn. For any tangent

vectors u1 � h1 A TxM � Dx lD?x and u2 � h2 A TyM � Dy lD?y of M with
ju1j � ju2j � jh1j � jh2j � 1 at arbitrary points x; y, there exists an isometry ~j of
HPn with

i) ~j�M� �M and ~j�x� � y,
ii) d ~jx�u1� � u2, d ~jx�h1� � h2, d ~jx�Nx� �Ny,
iii) d ~jx�Dx� � Dy and d ~jx�D?x � � D?y .

curvature-adapted real hypersurfaces 111



Proof. Let $ : S4n�3 ! HPn denote the S3-®bration of a unit sphere S4n�3

in a right vector space H n�1. We decompose the tangent space TwS4n�3 of S4n�3

at w into the horizontal and vertical spaces: TwS4n�3 �HwS4n�3 lVwS4n�3.
They are given by

HwS4n�3 � f�w; v� A fwg �H n�1 j w0v0 � � � � � wnvn � 0g;
VwS4n�3 � f�w;wl� A fwg �H n�1 j l A H ;Re�l� � 0g:

Here for l A H � fa0 � a1 j1 � a2 j2 � a3 j3 j ai A Rg we denote by l its quater-
nionic conjugate and by Re�l� its real part, which is given as �l� l�=2. Let M̂

denote a hypersurface in S4n�3 given by

fw � �w0;w1; . . . ;wn� A Hn�1 j jw0j � cos r; jw1j2 � � � � � jwnj2 � sin2 rg;
where jlj � �ll�1=2. We see that $ÿ1�M� is isometric to M̂.

For simplicity we only treat the case n � 2 and M � $�M̂�. At a point
w � �w0;w1;w2� A M̂ the tangent space of M̂ is represented as

TwM̂ � f�w; v� A fwg �H 3 jRe�w0v0� � Re�w1v1 � w2v2� � 0g:
We denote by N̂w A �TwM̂�? VHwS11 the horizontal lift of the unit normal N at
$�w�, where �TwM̂�? denotes the orthogonal complement of TwM̂ in TwS11.
When w � �cos r;w1;w2�, it is of the form

N̂w � �w; �ÿsin r;w1 cot r;w2 cot r��;
hence the horizontal lifs of D$�w� and D?$�w� are of the following forms:

D̂w � f�w; �0; v1; v2��jw1v1 � w2v2 � 0g;
D̂?w � f�w; �ÿsin r;w1 cot r;w2 cot r� � l� jRe l � 0g:

Put z � �cos r; sin r; 0��A M̂�. For �w; �0; v1; v2�� A D̂w the othogonal matrix

1 0 0

0 w1�sin r�ÿ1
v1

0 w2�sin r�ÿ1 v2

0B@
1CA A GL�3;H�GGL�12;R�

induces an isometry ĉ of S4n�3 such that
i) ĉ�z� � w and ĉ�M̂� � M̂,

ii) dĉz�D̂z� � D̂w and dĉz�N̂z � l� � N̂w � l for every l A H ,

iii) dĉz��z; �0; 0; 1��� � �w; �0; v1; v2��.
Next for n � a1 j1 � a2 j2 � a3 j3 A H with jnj � 1 we choose an othogonal matrix

A �
ÿa1 � �
ÿa2 � �
ÿa3 � �

0B@
1CA A O�3�
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and consider an othogonal matrix

1

A

1

A

I4

0BBBBBBB@

1CCCCCCCA A O�12�;

0

0

where I4 A GL�4;R� denotes the identity matrix. This induces an isometry Ĉ of
S4n�3 such that

i) Ĉ�z� � z and Ĉ�M̂� � M̂,
ii) dĈz�D̂z� � D̂z and dĈz�Ĵ1N̂z� � N̂z � n,
iii) dĈz��z; �0; 0; 1��� � �z; �0; 0; 1��,

where the real linear transformation Ĵi on H 3 is de®ned by Ĵi�u� � u�ÿji�.
These guarantee the existence of an isometry ~j of HPn with desirable conditions.

As a consequence of Proposition 4.2, for a geodesic sphere M of radius
2r=

���
c
p �0 < r < p=2� in HPn�c�, we see that its length spectrum coinsides with

the length spectrum of a geodesic sphere of radius 2r=
���
c
p

in a complex projective
space CPn�c� of holomorphic sectional curvature c:

Lspec�M� � 2p���
c
p sin 2r

� �
U

4p���
c
p sin r

� �

U 4p

�������������������������������������������������
1

c
�p2 sin2 r� q2 cos2 r�

r ������
p and q are relatively prime
positive integers which satisfy
pq is even and q < p tan2 r

8<:
9=;

U 2p

�������������������������������������������������
1

c
�p2 sin2 r� q2 cos2 r�

r ������
p and q are relatively prime
positive integers which satisfy

pq is odd and q < p tan2 r

8<:
9=;:

Therefore we obtain the following.

Theorem 4.5. Let M be a geodesic sphere of radius 2r=
���
c
p �0 < r < p=2� in

HPn�c� of quaternionic sectional curvature c.
(1) The length spectrum Lspec�M� of M is a discrete unbounded subset in the

real line R. In particular, there exist in®nitely many congruency classes of closed
geodesics.

(2) If tan2 r is irrational, every length spectrum of M is simple.
(3) If tan2 r is rational, the multiplicity of each length spectrum of M is ®nite.

But it is not uniformly bounded; lim supl!y mM�l� �y. In this case, the growth
order of mM is not so rapid. It satis®es liml!y lÿdmM�l� � 0 for arbitrary
positive d.
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(4) The cardinality nM�l� of the set f�g� A Geod�M� jLM��g��Y lg satis®es

lim
l!y

nM�l�
l2

� 3cr

4p4 sin 2r
:

Next we study geodesics on a horosphere H3, on a geodesic sphere H 0
1 �r� of

radius r and on a tube H nÿ1
1 �r� of radius r around quaternionic hyperplane in a

quaternionic hyperbolic space HH n�ÿ4�. Let M be one of H 0
1 �r�, H nÿ1

1 �r� and
H3, and i be an isometric embedding of M into HH n�ÿ4�. We denote by ~̀ the
Riemannian connection of HH n�ÿ4�. For each geodesic g on M we ®nd that
i � g is a helix of order 4 in HH n�ÿ4�:

~̀
_g _g � k1X2;

~̀
_gX2 � ÿk1 _g� k2X3;

~̀
_gX3 � ÿk2X2 � k3X4;

~̀
_gX4 � ÿk3X3;

8>>><>>>:�4:1�

where

k1 � hA _g�s�; _g�s�i; k2 �
������������������������������������
kA _gk2 ÿ hA _g; _gi2

q
; k3 � 1

k2
rg

�������������
1ÿ r2

g

q
;

X2 �N; X3 � 1

k2
�hA _g; _gi _gÿ A _g�; X4 � 1

rg

�������������
1ÿ r2

g

q X3

i�1

h _g; xiifi� _g�

with a unit normal vector ®eld N and the shape operator A of M in HH n.
Thus we get the following result on the extrinsic shape of geodesics on those real
hypersurfaces in HH n.

Proposition 4.6. Let M be a real hypersurface in HH n�ÿ4� which is one
of a horosphere, a geodesic sphere of radius r �0 < r <y�, and a tube of radius
r �0 < r <y� around quaternionic hyperplane HH nÿ1. For a geodesic g on M
the curve i � g lies on a totally geodesic CH 2�ÿ4�. Moreover, the extrinsic shape
i � g is as follows:

(1) If rg � 1, the curve i � g is a circle in HH n which lies on a totally geodesic
CH 1�ÿ4�. Its curvature is 2 if M is a horosphere, 2 coth 2r if M is a geodesic
sphere of radius r or a tube of radius r around quaternionic hyperplane.

(2) If rg � 0, the curve i � g is also a circle which lies on a totally geodesic

RH 2�ÿ1�. Its curvature is 1 if M is a horosphere, coth r if M is a geodesic
sphere of radius r, and tanh r if M is a tube of radius r around quaternionic
hyperplane.
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(3) Generally, if 0 < rg < 1, the curve i � g is a helix of proper order 4. Its
curvatures are as the following table:

H3 H 0
1 �r� H nÿ1

1 �r�
k1 1� r2

g coth r� r2
g tanh r tanh r� r2

g coth r

k2 rg

�������������
1ÿ r2

g

q
rg

�������������
1ÿ r2

g

q
tanh r rg

�������������
1ÿ r2

g

q
coth r

k3 1 coth r tanh r

Every geodesic on these manifolds is a simple curve.

As a consequence of this proposition we obtain the following (see [AMY]).

Theorem 4.7. Let g be a geodesic on a geodesic sphere M of radius
r �0 < r <y� in HH n�ÿ4�.

(1) When rg � 1, it is closed with length p sinh 2r.
(2) When rg � 0, it is also closed and its length is 2p sinh r.
(3) When 0 < rg < 1, it is closed if and only if

rg �
q

sinh r
�������������������������������
p2 tanh2 rÿ q2

p
with some relatively prime positive integers p and q with q < p tanh2 r. In this
case, its length is

length�g� � 2p
����������������������������������������������
p2 sinh2 rÿ q2 cosh2 r

p
; if pq is even

p
����������������������������������������������
p2 sinh2 rÿ q2 cosh2 r

p
; if pq is odd.

(

We call a smooth curve s on a quaternionic hyperbolic space CH n un-
bounded in both directions if both s��0;y�� and s��ÿy; 0�� are unbounded sets.
Considering the ideal boundary qHH n of HH n as a Hadamard manifold, we can
de®ne its limit points at in®nity

s�y� � lim
t!y

s�t�; s�ÿy� � lim
t!ÿy s�t� A qHH n;

if they exist. We shall call a smooth curve s on HH n horocyclic if the following
conditions hold.

i) It has single point at in®nity; s�y� � s�ÿy�.
ii) If a geodesic r on HH n with r�y� � s�y� crosses s at some point r�s0�,

then they cross orthogonally at r�s0�.
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These conditions are equivalent to the condition that s is unbounded in both
directions and lies on a horosphere. We obtain the following along the same
lines as in [AMY].

Theorem 4.8. Let g be a geodesic on a tube M of radius r �0 < r <y�
around quaternionic hyperplane HH nÿ1 in HH n�ÿ4�.

(1) When rg � 1, it is closed and its length is p sinh 2r.
(2) When rg < 1=cosh r, it is unbounded in both directions, and has two

distinct points at in®nity as a curve on HH n.
(3) When rg � 1=cosh r, it is horocyclic as a curve on HH n.
(4) When 1=cosh r < rg < 1, it is bounded. Under this situation, it is closed

if and only if

rg �
p

cosh r

�������������������������������
p2 ÿ q2 coth2 r

q
with some relatively prime positive integers p and q with p tanh2 r > q. In this
case, its length is

length�g� � 2p

����������������������������������������������
p2 sinh2 rÿ q2 cosh2 r

q
; if pq is even

p

����������������������������������������������
p2 sinh2 rÿ q2 cosh2 r

q
; if pq is odd.

8<:
Proposition 4.9. Every geodesic on a horosphere in a quaternionic

hyperbolic space is unbounded in both directions, hence it is horocyclic as a curve
on a quaternionic hyperbolic space.

In order to make mention of length spectrum we need a congruence theorem.
We set

H 4n�3
1 � fw � �w0; . . . ;wn� A H n�1j ÿ jw0j2 � jw1j2 � � � � jwnj2 � ÿ1g

and denote by $ : H 4n�3
1 ! HH n the S3-®bration. We consider the following

hypersurfaces in H4n�3
1 :

M̂1 � fw A H n�1

����w0j � cosh r; jw1j2 � � � � � jwnj2 � sinh2 rg;

M̂2 � w A H n�1

����ÿjw0j2 � jw1j2 � � � � � jwnÿ1j2 � ÿcosh2 r;
jwnj � sinh r

� �
;

M̂3 � w A H n�1

����ÿjw0j2 � jw1j2 � � � � � jwnj2 � ÿ1;
jw0 ÿ w1j � 1

� �
:

According as M is a geodesic sphere of radius r, a tube of radius r around
quaternionic hyperplane or a horosphere in HH n�ÿ4�, the manifold $ÿ1�M� is

isometric to M̂1; M̂2 or M̂3. By a similar argument to that in the proof of
Lemma 4.4 and Proposition 4.3 we obtain the following.
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Proposition 4.10. Let M be one of a horosphere, a geodesic sphere and
a tube around quaternionic hyperplane in a quaternionic hyperbolic space. Two
geodesics on M are congruent with respect to the isometry group of M if and only
if their structure torsions coincide.

With the aid of this propsition, Theorem 4.7 assures that the length spectrum
of a geodesic sphere M of radius 2r=

���
c
p

in HH n�ÿc� is of the following form;

Lspec�M� � 4p���
c
p sinh r

� �
U

2p���
c
p sinh 2r

� �

U 4p

������������������������������������������������������
1

c
�p2 sinh2 rÿ q2 cosh2 r�

r ������
p and q are relatively prime
positive integers which satisfy
pq is even and q < p tanh2 r

8<:
9=;

U 2p

������������������������������������������������������
1

c
�p2 sinh2 rÿ q2 cosh2 r�

r ������
p and q are relatively prime
positive integers which satisfy
pq is odd and q < p tanh2 r

8<:
9=;;

and Theorem 4.8 assures that the length spectrum of a tube M of radius 2r=
���
c
p

around quaternionic hyperplane HH nÿ1 in HH n�ÿc� is of the following form;

Lspec�M� � 2p���
c
p sinh 2r

� �

U 4p

������������������������������������������������������
1

c
�p2 sinh2 rÿ q2 cosh2 r�

r ������
p and q are relatively prime
positive integers which satisfy
pq is even and q < p tanh2 r

8<:
9=;

U 2p

������������������������������������������������������
1

c
�p2 sinh2 rÿ q2 cosh2 r�

r ������
p and q are relatively prime
positive integers which satisfy
pq is odd and q < p tanh2 r

8<:
9=;:

We obtain the following on the multiplicity of the length spectrum.

Theorem 4.11. Let M be either a geodesic sphere of radius 2r=
���
c
p

or a tube
of radius 2r=

���
c
p

around quaternionic hyperplane HH nÿ1 in HH n�ÿc� of qua-
ternionic sectional curvature ÿc.

(1) The length spectrum Lspec�M� is a discrete unbounded subset of the real
line R. In particular, there exist in®nitely many congruency classes of closed
geodesics.

(2) If coth2 r is irrational of the form either

1

2q2
�p2 � q2 ÿ 1� ÿ

�����������������������������������������������������������������
fp2 ÿ �qÿ 1�2gfp2 ÿ �q� 1�2g

q� �
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for some relatively prime positive integers p; q with even pq and pV q� 3, or

1

2q2
�p2 � q2 ÿ 4� ÿ

�����������������������������������������������������������������
fp2 ÿ �qÿ 2�2gfp2 ÿ �q� 2�2g

q� �
for some relatively prime positive integers p; q with odd pq and pV q� 4, then the
multiplicity of the spectrum �2p=

���
c
p � sinh 2r is two and other length spectrum of M

is simple.
(3) If coth2 r is irrational and is not of the form in (2), then every length

spectrum of M is simple.
(4) If coth2 r is rational, the multiplicity of each length spectrum is ®nite.

But it is not uniformly bounded; lim supl!y mM�l� �y. The growth order of
mM�l� is not so rapid. It satis®es liml!y lÿdmM�l� � 0 for arbitrary positive d.

(5) The number nM�l� of congruency classes of geodesics on M with length
not greater than l satis®es

lim
l!y

nM�l�
l2

� 3cr

4p4 sinh 2r
:

We here go back to the viewpoint of characterizations of curvature-adapted
real hypersurfaces with constant principal curvatures by the extrinsic shape of
geodesics. By Propositions 4.1 and 4.6 and the same argument as in the proof of
Propositions 4.1 and 4.2 in [AMY], we see the following.

Proposition 4.12. A real hypersurface M in a non-¯at quaternionic space
form ~M of quaternionic dimension n �Z3� is locally congruent to one of a geodesic
sphere, a tube around quaternionic hyperplane and a horosphere if and only if
at each point x A M there exists an orthonormal basis fv1; v2; . . . ; v4nÿ4g of Dx

�HTxM� such that all geodesics on M emanating x in the direction vj � vk

�1Y j Y k Y 4nÿ 4� are circles of positive curvature in ~M.

Proposition 4.13. A real hypersurface M in HH n�ÿc� �nZ 2� is locally
congruent to a horosphere if and only if at each point x A M there exists an
orthonormal basis fv1; v2; . . . ; v4nÿ4g of Dx such that all geodesics on M with the
initial vector vj �1Y j Y 4nÿ 4� are circles of curvature

���
c
p
=2 on HH n�ÿc�.
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