LOJASIEWICZ EXPONENT AT INFINITY IN $\boldsymbol{C}[x, y, z]$

Eric Edo

Abstract

We consider the set $\mathscr{F}=\{p(z) x+q(y, z), p \in \boldsymbol{C}[z] \backslash\{0\}, q \in \boldsymbol{C}[y, z]\}$. We connect algebraic properties of a polynomial $f \in \mathscr{F}$, such that f is a variable in $\boldsymbol{C}[x, y, z]$ or f is a tame variable in $\boldsymbol{C}[z][x, y]$ with the Lojasiewicz exponent at infinity of f. We compute this exponent for some polynomials of \mathscr{F}.

1. Introduction

Let A be a commutative ring (in this paper A will be \boldsymbol{C} or $\boldsymbol{C}[z]$) and let $A^{[n]}=A\left[x_{1}, \ldots, x_{n}\right]$ be the A-algebra of polynomials in n indeterminates. We say that an automorphism σ of the A-algebra $A^{[n]}$ is triangular if, for all $i, \sigma\left(x_{i}\right)=$ $a_{i} x_{i}+P_{i}\left(x_{i+1}, \ldots, x_{n}\right)$ where a_{i} is a unit in A and $P_{i} \in A\left[x_{i+1}, \ldots, x_{n}\right]$. An automorphism is tame if it is in the subgroup generated by affine and triangular automorphisms. We denote by $V_{n}(A)$ the set of polynomials of $A^{[n]}$ which are components of an automorphism of $A^{[n]}$, we call them variables. In a same way, we denote by $A V_{n}(A)$ (resp. $B V_{n}(A)$, resp. $T V_{n}(A)$) the set of affine (resp. triangular, resp. tame) variables of $A^{[n]}$ i.e. components of an affine (resp. triangular, resp. tame) automorphism.

For a polynomial $f \in \boldsymbol{C}\left[x_{1}, \ldots, x_{n}\right]$, we consider $\operatorname{grad} f=\left(\partial f / \partial x_{1}, \ldots\right.$, $\left.\partial f / \partial x_{n}\right)$. We denote by $W_{n}(\boldsymbol{C})$ the set of polynomials of $\boldsymbol{C}^{[n]}$ without critical value (i.e. such that grad f is nowhere vanishing).

If $f \in W_{n}(\boldsymbol{C})$, one defines the Lojasiewicz exponent at infinity, $L_{\infty}(f)$, to be the supremum of the set

$$
\left\{v \in \boldsymbol{R} \mid \exists A>0, \exists B>0, \forall x \in \boldsymbol{C}^{m}, \text { if }\|x\| \geq B, \text { then } A\|x\|^{v} \leq\|\operatorname{grad} f(x)\|\right\}
$$

This original analytic definition is equivalent to the following more algebraic one (cf. [PZ] 2.1). We set $\mathscr{A}^{n}=\left\{\psi \in\left(\boldsymbol{C}\left\{t, t^{-1}\right\}\right)^{n} ; \operatorname{ord}(\psi)<0\right\}$, where $\operatorname{ord}(\psi)$ is the t-adic valuation of ψ. Let $f \in W_{n}(\boldsymbol{C})$, for $\psi \in \mathscr{A}^{n}$, we set:

$$
L(f, \psi)=\frac{\operatorname{ord}(\operatorname{grad} f)(\psi)}{\operatorname{ord}(\psi)}
$$

We have: $L_{\infty}(f)=\inf \left\{L(f, \psi) ; \psi \in \mathscr{A}^{n}\right\}$.

Received April 12, 2000; revised October 16, 2000.

For an indeterminate $x=x_{i}$, we define the x-partial Łojasiewicz exponent of $f \in W_{n}(\boldsymbol{C})$ as $L_{\infty}^{x}(f)=\inf \left\{L(f, \psi) ; \psi \in \mathscr{A}_{x}^{n}\right\}$ where $\mathscr{A}_{x}^{n}=\left\{\psi=\left(\psi_{j}\right)_{1 \leq j \leq n} \in \mathscr{A}^{n} ;\right.$ $\left.\operatorname{ord}\left(\psi_{i}\right) \geq 0\right\}$.

When $n=3$, we set $x=x_{1}, y=x_{2}, z=x_{3}, \mathscr{A}=\mathscr{A}^{3}$ and $\mathscr{A}_{y}=\mathscr{A}_{y}^{3}$.
For a polynomial $f \in W_{2}(\boldsymbol{C})$, the number $L_{\infty}(f)$ has an algebraic significance. Precisely, we have the following two theorems (cf. [N] Theorem 0.4 for the equality in 1) of Theorem 1, cf. [CK1] Theorem 10.2 for Theorem 1 and cf. [H] Proposition 1.5.1 and [CK1] Remark 11.4 for Theorem 2):

Theorem 1. Let $f \in W_{2}(\boldsymbol{C})$, the following assumptions are equivalent:

1) $f \in V_{2}(\boldsymbol{C})=T V_{2}(\boldsymbol{C})$,
2) $L_{\infty}(f)>-1$.

Theorem 2. We have: $\quad L_{\infty}\left(W_{2}(\boldsymbol{C})\right)=\boldsymbol{Q} \backslash\{-1\}$.
In the three dimensional case, the authors of [PZ] exhibit a family $\mathscr{P} \subset$ $T V_{2}(\boldsymbol{C}[z])$ such that $L_{\infty}(\mathscr{P})=\boldsymbol{Q}$. This shows that Theorem 1, Theorem 2 can not be extended to this case. Modulo a permutation of coordinates $\mathscr{P}=\{z x+$ $\left.y-3 y^{2 n+1} z^{2 q}+2 y^{3 n+1} z^{3 q} ; n, q \in N \backslash\{0\}\right\}$. In spite of this negative observation, we try to find a relation between algebraic properties of a polynomial of $\boldsymbol{C}^{[3]}$ and its Łojasiewicz exponent at infinity. We restrict our study to the family $\mathscr{F}=$ $B V_{2}(\boldsymbol{C}(z)) \cap \boldsymbol{C}[x, y, z]$ because for $f \in \mathscr{F}$ there exists criteria to check $f \in V_{3}(\boldsymbol{C})$ and $f \in T V_{2}(\boldsymbol{C}[z])$. We have: $\mathscr{P} \subset \mathscr{F}$. For $f=p(z) x+q(y, z) \in \mathscr{F}$, we set $\tilde{f}=$ $p(z) x+\tilde{q}(y, z)$ where \tilde{q} is the remainder of the division of q by p in $\boldsymbol{C}[y][z]$. We remark that \tilde{f} is the image of f by $\tau=\left(x+(\tilde{q}(y, z)-q(y, z)) p(z)^{-1}, y, z\right)$ which is a triangular automorphism of $C[x, y, z]$. We have: $\tilde{\mathscr{P}}=\{z x+y\}$ and $\tilde{\mathscr{F}}=\left\{p(z) x+q(y, z), p \in \boldsymbol{C}[z], q \in \boldsymbol{C}[y, z] ; \operatorname{deg}_{z} q<\operatorname{deg} p\right\} \subset \mathscr{F}$.

In section 2 , we prove the following result:
Theorem 3. Let $f \in \mathscr{F} \cap W_{3}(\boldsymbol{C})$, the following assumptions are equivalent:

1) $f \in T V_{2}(\boldsymbol{C}[z])$,
2) $L_{\infty}(\tilde{f})=0$.

Theorem 3 shows that for $f \in \mathscr{F} \cap W_{3}(\boldsymbol{C})$ the number $L_{\infty}(f)$ contains an algebraic information. This information is not directly attainable, it appears with the help of the $\operatorname{map} f \mapsto \tilde{f}$. In other words, it is not attached to f but to the orbit of f under the action of triangular automorphisms of $\boldsymbol{C}[x, y, z]$.

In section 3, we make some computations to prove the following results:
Theorem 4. We have: $\left.L_{\infty}\left(\tilde{\mathscr{F}} \cap W_{3}(\boldsymbol{C}) \backslash V_{3}(\boldsymbol{C})\right)=\boldsymbol{Q} \cap\right]-\infty,-1[$.
Theorem 5. We have: $L_{\infty}\left(\tilde{\mathscr{F}} \cap V_{3}(\boldsymbol{C})\right) \cup\{-1\}=\boldsymbol{Q} \cap(]-\infty,-1 / 2[\cup\{0\})$.
Theorem 4 and Theorem 5 can be compared with Theorem 2. The following question is still open:

Question 1. Does there exist $\tilde{f} \in \tilde{\mathscr{F}} \cap W_{3}(\boldsymbol{C})$ such that $L_{\infty}(\tilde{f})=-1$?
Using only Łojasiewicz exponent and the map $f \mapsto \tilde{f}$, we can not differentiate variables from non-variables. However, this is possible with help of y-partial Łojasiewicz exponent, in fact we have:

Theorem 6. Let $f \in \mathscr{F} \cap W_{3}(\boldsymbol{C})$, the following assumptions are equivalent:

1) $f \in V_{3}(C)$,
2) $L_{\infty}^{y}(\tilde{f}) \geq 0$.

It would be interesting to connect $L_{\infty}(\tilde{f})$ to the property $f \in T V_{3}(\boldsymbol{C})$. But we know nothing about this property, for example the following two questions are open:

Question 2. Do we have $T V_{3}(\boldsymbol{C})=V_{3}(\boldsymbol{C})$?
Question 3. Let $Z_{3}^{1}(\boldsymbol{C})$ be the set of component of an automorphism σ of $\boldsymbol{C}[x, y, z]$ such that $\sigma(z)=z$. Do we have $T V_{3}(\boldsymbol{C}) \cap Z_{3}^{1}(\boldsymbol{C})=T V_{2}(\boldsymbol{C}[z])$?

An affirmative answer to Question 2 would give a negative answer to Question 3.

2. Proofs

Here is our main result:
TheOrem 7. Let $f \in \tilde{\mathscr{F}} \cap W_{3}(\boldsymbol{C})$, the following assumptions are equivalent:

1) $f \in A V_{2}(\boldsymbol{C}[z])$,
2) $L_{\infty}(f)=0$,
3) $L_{\infty}(f) \geq-1 / 2$.

Proof. We set $f=p(z) x+q(y, z)$.
We have: $\operatorname{grad} f=\left(p(z), \partial_{y} q(y, z), p^{\prime}(z) x+\partial_{z} q(y, z)\right)$.
$1) \Rightarrow 2)$: We can write $q(y, z)=a(z) y+b(z)$ with $a, b \in \boldsymbol{C}[z]$ and $\operatorname{gcd}(a, p)$ $=1$. If $p \in \boldsymbol{C}[z] \backslash \boldsymbol{C}$ (resp. $p \in \boldsymbol{C} \backslash\{0\}$), then there exists $z_{1} \in \boldsymbol{C}$ such that $p^{\prime}\left(z_{1}\right) \neq 0$ (resp. $\left.z_{1}=0\right)$. We consider $\psi(t)=\left(-p^{\prime}\left(z_{1}\right)^{-1} \partial_{z} q\left(t^{-1}, z_{1}\right), t^{-1}, z_{1}\right) \in \mathscr{A}$ (resp. $\left.\psi(t)=\left(t^{-1}, 0,0\right) \in \mathscr{A}\right)$, then $(\operatorname{grad} f)(\psi(t))=\left(p\left(z_{1}\right), a\left(z_{1}\right), 0\right)$. Therefore, $\operatorname{ord}(\operatorname{grad} f)(\psi(t)) \geq 0$ and $L_{\infty}(f) \leq L(f, \psi) \leq 0$.

Now, let $\psi(t)=(x(t), y(t), z(t)) \in \mathscr{A}$. Suppose $\operatorname{ord}(\operatorname{grad} f)(\psi(t))>0$, then $\lim _{t \rightarrow 0} p(z(t))=0$ and $\lim _{t \rightarrow 0} a(z(t))=0$ which is impossible since $\operatorname{gcd}(a, p)=1$. Therefore, $\operatorname{ord}(\operatorname{grad} f)(\psi(t)) \leq 0$ and $L(f, \psi) \geq 0$. Hence $L_{\infty}(f) \geq 0$ and finally $L_{\infty}(f)=0$.
2) \Rightarrow 3): Obvious.
$3) \Rightarrow 1)$: We suppose that $f \notin A V_{2}(\boldsymbol{C}[z])$ and we prove $L_{\infty}(f)<-1 / 2$. There are two cases:

Case 1. There exists a root z_{1} of p such that $\partial_{y} q\left(y, z_{1}\right) \in \boldsymbol{C}[y] \backslash \boldsymbol{C}^{*}$.
There exists $y_{1} \in \boldsymbol{C}$ such that $\partial_{y} q\left(y_{1}, z_{1}\right)=0$. Let $(y(t), z(t)) \in(\boldsymbol{C}\{t\})^{2}$ be a parametrization of the germ $\partial_{y} q(y, z)=0$ in the neighborhood of $\left(y_{1}, z_{1}\right)$ and let $x(t)=-p^{\prime}(z(t))^{-1} \partial_{z} q(y(t), z(t))$. We have: $\operatorname{ord}(x(t))<0$ (if $\operatorname{ord}(x(t)) \geq 0$, then $\left(x(0), y_{1}, z_{1}\right)$ is a critical point of f), thus $\psi(t)=(x(t), y(t), z(t)) \in \mathscr{A}_{y}$. We have: $\operatorname{ord}(\operatorname{grad} f)(\psi(t))=\operatorname{ord}(p(t))=l \operatorname{ord}\left(z(t)-z_{1}\right)$ where l is the multiplicity of z_{1} in p. On the other hand, $\operatorname{ord}(\psi(t))=\operatorname{ord}(x(t))=\operatorname{ord} \partial_{z} q(y(t), z(t))-$ ord $p^{\prime}\left(z(t)-z_{1}\right) \geq-(l-1)$ ord $z(t)$. Hence $L_{\infty}(f) \leq L(f, \psi) \leq l /(1-l)<-1$.

CASE 2. For every root z_{1} of p, we have $\partial_{y} q\left(y, z_{1}\right) \in \boldsymbol{C}^{*}$ and $d+1:=$ $\operatorname{deg}_{y}(q)>1$.

We write $p(z)=z_{0} \prod_{i=1}^{k}\left(z-z_{i}\right)^{l_{i}}$, with $z_{i} \in \boldsymbol{C}$ and $l_{i} \in \boldsymbol{N} \backslash\{0\}$. Let $A_{d} \in \boldsymbol{C}[z]$ be the term of degree d in $\partial_{y} q \in \boldsymbol{C}[z][y]$, and let a_{i} be the vanishing order of z_{i} in A_{d} for $1 \leq i \leq k$. If $l_{i} \leq a_{i}$ for all $1 \leq i \leq k$, then $\operatorname{deg}(p)=\sum_{i=1}^{k} l_{i} \leq \sum_{i=1}^{k} a_{i} \leq$ $\operatorname{deg}_{z}\left(A_{d}\right) \leq \operatorname{deg}_{z}(q)<\operatorname{deg}(p)$, which is impossible. Therefore, there exists $i \in$ $\{1, \ldots, k\}$ such that $a_{i}<l_{i}$. From now on, we suppose $i=1$ and $z_{i}=0$.

We write $\partial_{y} q(y, z)=\sum_{i=0}^{d} A_{i}(z) y^{i}$ and let $v_{i}=v_{z}\left(A_{i}\right) \in N$. We have: $v_{0}=0$ and $v_{i} \geq 1$ for $1 \leq i \leq d$. Let Δ_{1} be the first side of the Newton polygon of $\partial_{y} q(y, z)$ in the neighborhood of $(\infty, 0)$ and let n / m be its slope (see the picture below). In particular, $n / m \leq a_{1} / d$ and since $m \leq d$, we have $n \leq a_{1}<l_{1}$.

Let $I=\left\{i \mid\left(i, v_{i}\right) \in \Delta_{1}\right\}$, for $i \in I$ we set $c_{i}=\left(z^{-v_{i}} A_{i}\right)_{z=0}$. Let $c \in \boldsymbol{C}$ be such that $\sum_{i \in I} c_{i} c^{v_{i}}=0$, since $v_{0}=0$ and $v_{i} \geq 1$ for all $i \geq 1$, we have $c \neq 0$.

We set $g(X, Y)=\partial_{y} q\left(X^{-n}, X^{m}(c+Y)\right)=\sum_{i=0}^{d} A_{i}\left(X^{m}(c+Y)\right) X^{-n i}$. By definition of n and m, we have $g(X, Y) \in \boldsymbol{C}[X, Y]$. By definition of c_{i} and c we have $g(0, Y)=\sum_{i \in I} c_{i}(c+Y)^{v_{i}} \neq 0$ and $g(0,0)=0$. Thanks to Puiseux's theorem (cf. [BK] or [C]), there exists $u \in \boldsymbol{N}^{*}$ and $\beta \in \boldsymbol{C}\{t\}$ such that $g\left(t^{u}, \beta(t)\right)=0$ in $\boldsymbol{C}\{t\}$. We consider $\psi(t)=(x(t), y(t), z(t))$ where $z(t)=t^{u m}(c+\beta(t)), y(t)=t^{-u n}$ and $x(t)=-p^{\prime}(z(t))^{-1} \partial_{z} q(y(t), z(t))$. Since $\operatorname{ord}(y(t))<0$, we have: $\psi \in \mathscr{A}$.

Since $\partial_{y} q(y(t), z(t))=g\left(t^{u}, \beta(t)\right)=0$ and $p^{\prime}(z(t)) x(t)+\partial_{z} q(y(t), z(t))=0$, we have: $\operatorname{ord}(\operatorname{grad} f)(\psi(t))=\operatorname{ord}(p(z(t)))=l_{1} u m$.

We write $\partial_{z} q(y, z)=\sum_{i=0}^{d+1} B_{i}(z) y^{i}$ and we set $w_{i}=v_{z}\left(B_{i}\right) \in \boldsymbol{N}$. The set
$\left\{\left(i, w_{i}\right) ; i \geq 1, B_{i} \neq 0\right\}$ is the image of $\left\{\left(i, v_{i}\right) ; i \geq 1, A_{i} \neq 0\right\}$ by the translation $\tau=$ $(1,-1)$. Let Δ_{1}^{\prime} the image by τ of $\Delta_{1}, \Delta_{1}^{\prime}$ meets the (O, i)-axis at $(1+m / n, 0)$. The order of $\left\{B_{i}(z(t)) y(t)^{i} \mid\left(i, w_{i}\right) \in \Delta_{1}^{\prime}\right\}$ is equal to the order of $y(t)^{1+m / n}$ i.e. $-u n(1+m / n)=-u(n+m)$, therefore $\operatorname{ord}\left(\partial_{z} q(z(t), y(t))\right) \geq-u(n+m)$ (elements of $\left\{B_{i}(z(t)) y(t)^{i} \mid\left(i, w_{i}\right) \notin \Delta_{1}^{\prime}\right\}$ have a bigger order). On the other hand $\operatorname{ord}\left(p^{\prime}(z(t))\right)=u m\left(l_{1}-1\right)$. Hence:

$$
\begin{aligned}
\operatorname{ord}(x(t)) & =-\operatorname{ord}\left(p^{\prime}(z(t))\right)+\operatorname{ord}\left(\partial_{z} q(y(t), z(t))\right) \\
& \geq-u m\left(l_{1}-1\right)-u(n+m)=-u\left(m l_{1}+n\right) \\
\operatorname{ord}(\psi(t)) & =\min \{\operatorname{ord}(x(t)), \operatorname{ord}(y(t)), \operatorname{ord}(z(t))\} \\
& \geq \min \left\{-u\left(m l_{1}+n\right),-u n\right\}=-u\left(m l_{1}+n\right)
\end{aligned}
$$

Finally (since $n<l_{1}$) we have:

$$
L_{\infty}(f) \leq \frac{\operatorname{ord}(\operatorname{grad} f)(\psi(t))}{\operatorname{ord}(\psi(t))} \leq-\frac{u m l_{1}}{u\left(m l_{1}+n\right)}<-\frac{m}{m+1} \leq-1 / 2
$$

The proof of Theorem 7 is complete.
Proof of Theorem 3. Using Theorem 7, it is enough to prove equivalence between $f \in T V_{2}(\boldsymbol{C}[z])$ and $\tilde{f} \in A V_{2}(\boldsymbol{C}[z])$. Since $f \in B V_{2}(\boldsymbol{C}(z))$ this can be straight inferred from [EV] Proposition 2 which is a consequence of amalgamated structure of $\operatorname{Aut}_{C(z)} \boldsymbol{C}(z)^{[2]}$ (cf, for example [N] Theorem 3.3).

ThEOREM 8. Let $f=p(z) x+q(y, z) \in \mathscr{F} \cap W_{3}(\boldsymbol{C})$, the following assumptions are equivalent:

1) Every root z_{1} of p is such that $\partial_{y} q\left(y, z_{1}\right) \in C^{*}$,
2) $f \in V_{2}(\boldsymbol{C}[z])$,
3) $f \in V_{3}(C)$.

Proof. 1) $\Rightarrow 2$): Assumption 1) is equivalent to say that $q(y, z)=\sum q_{i}(z) y^{i}$ with q_{1} (resp. $q_{i}(i \geq 2)$) unit (resp. nilpotent) modulo $p \boldsymbol{C}[z][y]$ and the RussellSathaye's theorem (cf. [R] Proposition 2.2) implies $f \in V_{2}(\boldsymbol{C}[z])$.
2) $\Rightarrow 3$): Obvious.
$3) \Rightarrow 1)$: Let $Z=\left\{z_{1}, \ldots, z_{n}\right\}$ be the set of roots of p. For all $t \in \boldsymbol{C}$, the polynomial $f-t$ is a variable thus the surface $S_{t}=\left\{(x, y, z) \in C^{3} ; f(x, y, z)=t\right\}$ is isomorphic to \boldsymbol{C}^{2} and $\chi\left(S_{t}\right)=\chi\left(\boldsymbol{C}^{2}\right)=1$ (Euler's characteristics).

The map $(y, z) \mapsto\left(p(z)^{-1}(t-q(y, z)), y, z\right)$ is a homeomorphism between $\boldsymbol{C}^{2} \backslash(\boldsymbol{C} \times Z)$ and $S_{t} \backslash\left(\boldsymbol{C}^{2} \times Z\right)$, thus $\chi\left(S_{t} \backslash\left(\boldsymbol{C}^{2} \times Z\right)\right)=\chi\left(\boldsymbol{C}^{2} \backslash(\boldsymbol{C} \times Z)\right)$. Since $\chi\left(S_{t}\right)=\chi\left(S_{t} \backslash\left(\boldsymbol{C}^{2} \times Z\right)\right)+\chi\left(S_{t} \cap\left(\boldsymbol{C}^{2} \times Z\right)\right) \quad$ and $\quad \chi\left(\boldsymbol{C}^{2}\right)=\chi\left(\boldsymbol{C}^{2} \backslash(\boldsymbol{C} \times \boldsymbol{Z})\right)+$ $\chi(\boldsymbol{C} \times Z)$, we have: $\chi\left(S_{t} \cap\left(\boldsymbol{C}^{2} \times Z\right)\right)=\chi(\boldsymbol{C} \times \boldsymbol{Z})=\chi(\boldsymbol{Z})=n$.

On the other hand $\chi\left(S_{t} \cap\left(C^{2} \times Z\right)\right)=\sum_{i=1}^{n} \chi\left(q\left(y, z_{i}\right)=t\right)$ and for a generic t we have $\chi\left(S_{t} \cap\left(\boldsymbol{C}^{2} \times Z\right)\right)=\sum_{i=1}^{n} \operatorname{deg}\left(q\left(y, z_{i}\right)\right)$. Finally $\sum_{i=1}^{n} \operatorname{deg}\left(q\left(y, z_{i}\right)\right)=n$. For $1 \leq i \leq n$, we have $\operatorname{deg}\left(q\left(y, z_{i}\right)\right) \geq 1$ (if there exists i such that $q\left(y, z_{i}\right)=t \in \boldsymbol{C}$
then $z-z_{i}$ divises $f-t$ which is impossible) hence $\operatorname{deg}\left(q\left(y, z_{i}\right)\right)=1$ for all $1 \leq$ $i \leq n$ which proves 1).

Proof of Theorem 6. Suppose $f \in V_{3}(\boldsymbol{C})$ and let $\psi(t)=(x(t), y(t), z(t)) \in$ \mathscr{A}_{y}.

Suppose $\operatorname{ord}(\operatorname{grad} f)(\psi(t))>0$, then $\lim _{t \rightarrow 0} p(z(t))=0$ i.e. $\lim _{t \rightarrow 0} z(t)=z_{1}$ where z_{1} is a root of p. Since $\operatorname{ord}(y) \geq 0$, we have $0=\lim _{t \rightarrow 0} \partial_{y} q(y(t), z(t))=$ $\partial_{y} q\left(y(0), z_{1}\right)$ which contradicts Theorem 8. Therefore, ord $(\operatorname{grad} f)(\psi(t)) \leq 0$ and $L(f, \psi) \geq 0$. Hence $L_{\infty}^{y}(f) \geq 0$.

Now, suppose $f \notin V_{3}(\boldsymbol{C})$, by Theorem $8, p$ has a root z_{1} such that $\partial_{y} q\left(y, z_{1}\right)$ $\in \boldsymbol{C}[y] \backslash \boldsymbol{C}^{*}$. The Case 1 of Theorem 7 implies $L_{\infty}^{y}(f)<-1$.

Examples. $\quad L_{\infty}^{y}\left(z^{2} x+z+y^{2}\right)=-2, L_{\infty}^{y}\left(z^{2} x+y\right)=0$ and $L_{\infty}^{y}(z x+y)=1$.

3. Computations

In this section, we explain how to compute $L_{\infty}(f)$ for $f \in \tilde{\mathscr{F}}$.
Let $f=p(z) x+q(y, z) \in \tilde{\mathscr{F}}$.
If $f \in A V_{2}(\boldsymbol{C}[z])$, then $L_{\infty}(f)=0$.
Now suppose $f \notin A V_{2}(\boldsymbol{C}[z])$, we have $L_{\infty}(f)<0$ thus:

$$
L_{\infty}(f)=\inf \left\{L(f, \psi) ; \psi \in \mathscr{A} ; \lim _{t \rightarrow 0}\|(\operatorname{grad} f)(\psi(t))\|=0\right\}(*)
$$

We write $p(z)=z_{0} \prod_{i=1}^{k}\left(z-z_{i}\right)^{l_{i}}$, with $z_{i} \in \boldsymbol{C}$ and $l_{i} \in \boldsymbol{N} \backslash\{0\}$.
Let $L_{i}=\inf \left\{L(f, \psi) ; \psi=(x, y, z) \in \mathscr{A}, z \rightarrow z_{i}\right\}$ for $1 \leq i \leq k$, since (*) we have: $L_{\infty}(f)=\min \left\{L_{i} ; 1 \leq i \leq k\right\}$.

To compute L_{1} (for example) one can suppose $z_{1}=0 . \quad$ Let $l=l_{1}=v_{z}(p(z))$.
Lemma (The way to choose $x(t))$. Let $\mathscr{E}_{a, b}=\left\{\left(\right.\right.$ ord $\partial_{y} q(y, z)$, ord $\left.\partial_{z} q(y, z)\right)$; $\operatorname{ord}(y)=a, \operatorname{ord}(z)=b\}$,
$\mathscr{D}_{a, b}=\left\{(\lambda, \mu) \in \mathscr{E}_{a, b} ; \mu-(l-1) b<-1\right\}$,
$\mathscr{B}_{a, b}^{-}=\left\{(\lambda, \mu) \in \mathscr{E}_{a, b} ; \mu-(l-1) b \leq-1\right\}$,
$\mathscr{B}_{a, b}^{+}=\left\{(\lambda, \mu) \in \mathscr{E}_{a, b} ; \mu-(l-1) b>-1\right\}$.

1. If $a<0$, we set:
$M_{a, b}=\min \left\{\min \{l b, \lambda, \mu\} / a ;(\lambda, \mu) \in \mathscr{E}_{a, b}\right\}$ and

$$
N_{a, b}=\min \left\{\frac{\min \{l b, \lambda\}}{\min \{\mu-(l-1) b, a\}} ;(\lambda, \mu) \in \mathscr{E}_{a, b}\right\} .
$$

2. If $a \geq 0$, we set:
$M_{a, b}=\min \left\{-\min \{l b, \lambda, \mu\} ;(\lambda, \mu) \in \mathscr{D}_{a, b}\right\}$ and
$N_{a, b}=\min \left\{N_{a, b}^{-}, N_{a, b}^{+}\right\}$with
$N_{a, b}^{+}=-\min \{\lambda,(l-1) b-1\}$ and

$$
N_{a, b}^{-}=\min \left\{\frac{\min \{l b, \lambda\}}{\mu-(l-1) b} ;(\lambda, \mu) \in \mathscr{B}_{a, b}^{-}\right\} .
$$

Then $L_{1}=\min \left\{M_{a, b}, N_{a, b} ; a \in \boldsymbol{Z}, b \in \boldsymbol{N} \backslash\{0\}\right\}$.
Proof. Let $\psi=(x, y, z) \in \mathscr{A}$ be such that $\operatorname{ord}(y)=a \in \boldsymbol{Z}$ and $\operatorname{ord}(z)=b \in$ $\boldsymbol{N} \backslash\{0\}$. Let $(\lambda, \mu)=\left(\right.$ ord $\partial_{y} q(y, z)$, ord $\left.\partial_{z} q(y, z)\right)$ We have:

$$
L(f, \psi)=\frac{\min \left\{l b, \lambda, \operatorname{ord}\left(p^{\prime}(z) x+\partial_{z} q(y, z)\right)\right\}}{\min \{\operatorname{ord}(x), a\}} .
$$

1. If $a<0$, there are two cases:
1.1. If $\operatorname{ord}(x)>\mu-(l-1) b$, then

$$
L(f, \psi)=\frac{\min \{l b, \lambda, \mu\}}{\min \{\operatorname{ord}(x), a\}} \geq \frac{\min \{l b, \lambda, \mu\}}{a}
$$

with equality, for example, when $x=0$.
1.2. If $\operatorname{ord}(x) \leq \mu-(l-1) b$, then

$$
L(f, \psi)=\frac{\min \left\{l b, \lambda, \operatorname{ord}\left(p^{\prime}(z) x+\partial_{z} q(y, z)\right)\right\}}{\min \{\operatorname{ord}(x), a\}} \geq \frac{\min \{l b, \lambda\}}{\min \{\mu-(l-1) b, a\}}
$$

with equality, for example, when $x=-\partial_{z} q(y, z) / p^{\prime}(z)$.
2. If $a \geq 0$, then $\operatorname{ord}(x)<0$.
2.1. The case $\operatorname{ord}(x)>\mu-(l-1) b$ can occur if and only if $(\lambda, \mu) \in \mathscr{D}_{a, b}$ and then

$$
L(f, \psi)=\frac{\min \{l b, \lambda, \mu\}}{\operatorname{ord}(x)} \geq-\min \{l b, \lambda, \mu\}
$$

with equality, for example, when $x=t^{-1}$.
2.2. The case $\operatorname{ord}(x) \leq \mu-(l-1) b$ can be dealt with in the same way as when $a<0$ if $(\lambda, \mu) \in \mathscr{B}_{a, b}^{-}$, but if $(\lambda, \mu) \in \mathscr{B}_{a, b}^{+}$, then

$$
L(f, \psi)=\frac{\min \{\lambda,(l-1) b+\operatorname{ord}(x)\}}{\operatorname{ord}(x)} \geq-\min \{\lambda,(l-1) b-1\}
$$

with equality, for example, when $x=t^{-1}$.
This prove that $L_{1}=\min \left\{M_{a, b}, N_{a, b} ; a \in \boldsymbol{Z}, b \in \boldsymbol{N} \backslash\{0\}\right\}$.
Remark. In the lemma, we can change $\mathscr{E}_{a, b}$ to the set of his maximal elements.

Proposition 1. For $l \geq 2$, we have $L_{\infty}\left(z^{l} x+y^{2}+z\right)=-l /(l-1)$.
Proof. Let $f=z^{l} x+y^{2}+z$ and $q=y^{2}+z$ then $\partial_{y} q=2 y$ and $\partial_{z} q=1$.
We have: $\mathscr{E}_{a, b}=\{(a, 0)\}$ then $M_{a, b}=0$ and

$$
N_{a, b}=\frac{\min \{l b, a\}}{\min \{(1-l) b, a\}}
$$

Hence $L_{\infty}(f)=-l /(l-1)$.
Remark. If $\partial_{y} q(y, 0) \in \boldsymbol{C}[y] \backslash \boldsymbol{C}^{*}$, we write $\partial_{y} q(y, z)=\sum_{i=0}^{d} A_{i}(z) y^{i}$ and $v_{i}=$ $v_{z}\left(A_{i}\right) \in \boldsymbol{N}$. We consider the sides $\Delta_{i}(1 \leq i \leq k)$ of the Newton polygon of $\partial_{y} q(y, z)$ in the neighborhood of $(\infty, 0)$ and let n_{i} / m_{i} their slopes.

Let $\quad \mathscr{E}_{i, u}^{\prime}=\mathscr{E}_{-u n_{i}, u n_{i}}, \quad M_{i, u}^{\prime}=M_{-u n_{i}, u n_{i}} \quad$ and $\quad N_{i, u}^{\prime}=N_{-u n_{i}, u n_{i}} \quad$ then: $\quad L_{1}=$ $\min \left\{M_{i, u}^{\prime}, N_{i, u}^{\prime} ; 1 \leq i \leq k, u \in N \backslash\{0\}\right\}$.

Proposition 2. For $1 \leq n<l$, we have $L_{\infty}\left(z^{l} x+y+z^{n} y^{2}\right)=-l /(l+n)$.

Proof. Let $f=y+y^{2} z^{n}+x z^{l}$ and $q=y+y^{2} z^{n}$ then $\partial_{y} q=1+2 y z^{n}$ and $\partial_{z} q=n y^{2} z^{n-1}$.

The Newton polygon of $\partial_{y} q(y, z)$ in the neighborhood of $(\infty, 0)$ has only one side Δ_{1}, its slope is $n / 1$.

The unique maximal element of $\mathscr{E}_{1, u}^{\prime}$ is $(\infty,-u(n+1))$, thus $M_{1, u}^{\prime} \geq 0$ and $N_{1, u}^{\prime}=-l /(n+l)$.

Hence $L_{\infty}(f)=-l /(n+l)$.
Remark. Theorem 8 shows that for $1 \leq n<l, z^{l} x+y+z^{n} y^{2} \in V_{3}(\boldsymbol{C})$.
Proposition 3. For $1 \leq n<l / 2$, we have $L_{\infty}\left(z^{l+1} x+y+z^{n} y^{2}\left(-2+z^{n} y+\right.\right.$ $\left.\left.2 n z^{l-n}\right)\right)=-(l-n) / n$.

Proof. Let $f=z^{l+1} x+y+z^{n} y^{2}\left(-2+z^{n} y+2 n z^{l-n}\right) \quad$ and $\quad q=y+z^{n} y^{2}$. $\left(-2+z^{n} y+2 n z^{l-n}\right)$ then $\partial_{y} q=1-4 y z^{n}+3 y^{2} z^{2 n}+4 n y z^{l}$ and $\partial_{z} q=2 n y^{2} z^{n-1}$. $\left(-1+y z^{n}+l z^{l-n}\right)$.

The Newton polygon of $\partial_{y} q(y, z)$ in the neighborhood of $(\infty, 0)$ has only one side Δ_{1}, his slope is $n / 1$.

Let c be a root of $C(T)=1-4 T^{n}+3 T^{2 n}$ we consider: $g_{c}(X, Y)=$ $\partial_{y} q\left(X^{-n}, X(c+X)\right)$ and $h_{c}(X, Y)=X^{n+1} \partial_{z} q\left(X^{-n}, X(c+X)\right)$ then $g_{c}(X, Y)=$ $1-4(c+Y)^{n}+3(c+Y)^{2 n}+4 n X^{l-n}(c+Y)^{l} \quad h_{c}(X, Y)=2 n(c+Y)^{n-1}$. $\left(-1+(c+Y)^{n}+l X^{l-n}(c+Y)^{l-n}\right)$.

If $c^{n} \neq 1$, then the germ $\left\{h_{c}=0\right\}$ is empty and this case give no maximal element of $\mathscr{E}_{1, u}^{\prime}$.

If $c^{n}=1$ we consider: $g_{c, c_{1}}(X, Y)=X^{n-l} g_{c}\left(X, X^{l-n}\left(c_{1}+Y\right)\right)$ and $h_{c, c_{1}}(X, Y)$ $=X^{n-l} h_{c}\left(X, X^{l-n}\left(c_{1}+Y\right)\right)$.

We have $g_{c, c_{1}}(0,0)=2 n c^{n-1} c_{1}+4 n c^{l}$ and $h_{c, c_{1}}(0,0)=2 n\left(n c^{n-1} c_{1}+l c^{l}\right)$.
For $g_{c, c_{1}}(0,0)=h_{c, c_{1}}(0,0)=0$ we must have $2 n c=l c^{l}$ which is impossible since $n<l / 2$. Therefore, one of the two germs $\left\{g_{c, c_{1}}=0\right\}$ or $\left\{g_{c, c_{1}}=0\right\}$ is empty. Thus $(\infty, u(l-2 n-1))$ and $(n-l, \infty)$ are the maximal elements of $\mathscr{E}_{1, u}^{\prime}$.

Hence $\quad M_{1, u}=\min \{-(l-2 n-1) / n,-(l-n) / n\}=-(l-n) / n \quad$ and $\quad N_{1, u}=$ $\min \{-(l+1) /(2 n+1),-(l-n) / n\}=-(l-n) / n$, hence $L_{\infty}(f)=\min \{-l /(n+l)$, $-(l-n) / n\}=-(l-n) / n$.

Remark. Theorem 8 shows that for $1 \leq n<l / 2, z^{l+1} x+y+z^{n} y^{2}\left(-2+z^{n} y\right.$ $\left.+2 n z^{l-n}\right) \in V_{3}(\boldsymbol{C})$.

Proposition 4. For $1 \leq n<l / 2$ and $k \geq 2$, we have $L_{\infty}\left(z^{l+1}(z-1)^{k} x+y+\right.$ $\left.z^{n} y^{2}\left(-2+z^{n} y+2 n z^{l-n}\right)\right)=\min \{-(l-n) / n, k /(1-k)\}$.

Proof. Let $f=z^{l+1}(z-1)^{k} x+y+z^{n} y^{2}\left(-2+z^{n} y+2 n z^{l-n}\right)$.
Let $L_{0}=\inf \{L(f, \psi) ; \psi=(x, y, z) \in \mathscr{A}, z \rightarrow 0\} \quad$ and $\quad L_{1}=\inf \{L(f, \psi) ; \psi=$ $(x, y, z) \in \mathscr{A}, z \rightarrow 1\}$.

As in Proposition 1 we can compute $L_{1}=k /(1-k)$, as in Proposition 3 we can compute $L_{0}=-(l-n) / n$ and $L_{\infty}(f)=\min \left\{L_{0}, L_{1}\right\}$.

Remark. Theorem 8 shows that for $1 \leq n<l / 2$ and $k \geq 2, z^{l+1}(z-1)^{k} x+$ $y+z^{n} y^{2}\left(-2+z^{n} y+2 n z^{l-n}\right) \notin V_{3}(\boldsymbol{C})$.

Remark. For $f \in W_{n}(\boldsymbol{C})$, we have: $L_{\infty}(f) \in \boldsymbol{Q}$ cf. [CK2].
Proof of Theorem 4. Let $f \in \tilde{\mathscr{F}} \cap W_{3}(\boldsymbol{C}) \backslash V_{3}(\boldsymbol{C})$, by Theorem 8, p has a root z_{1} such that $\partial_{y} q\left(y, z_{1}\right) \in \boldsymbol{C}[y] \backslash \boldsymbol{C}^{*}$. The Case 1 of Theorem 7 implies $L_{\infty}(f)<-1$.

Conversely, Proposition 4 shows that for every rational number $r<-1$ there exists $f \in \tilde{\mathscr{F}} \cap W_{3}(\boldsymbol{C}) \backslash V_{3}(\boldsymbol{C})$ such that $L_{\infty}(f)=r$.

Proof of Theorem 5. Let $f \in \tilde{\mathscr{F}} \cap V_{3}(\boldsymbol{C})$, Theorem 7 implies that $L_{\infty}(f) \in$ $]-\infty,-1 / 2[\cup\{0\}$. Conversely, Proposition 1 and Proposition 3 show that for every rational number $r<-1 / 2, r \neq-1$ there exists $f \in \tilde{\mathscr{F}} \cap V_{3}(\boldsymbol{C})$ such that $L_{\infty}(f)=r$.

References

[C] A. Chenciner, Courbes Algebriques Planes, Puli. Math. Univ. Paris VII.
[CK1] J. Cha̧dzyński and T. Krasíśski, On the Łojasiewicz exponent at infinity for polynomial mappings of C^{2} into C^{2} and components of polynomial automorphisms of C^{2}, Ann. Polon. Math., 57 (1992), 291-302.
[CK2] J. Cha̧dzyński and T. Krasiński, A set on which the Łojasiewicz exponent at infinity is attained, Univ. Łódź, Preprint, 1996/3 (1996).
[EV] E. Edo and S. Vénéreau, Length 2 variables and transfer, to appear in Ann. Polon. Math.
[N] M. Nagata, On the automorphisms group of $\boldsymbol{C}[X, Y]$, Lectures in Math. Kyoto Univ., 5 (1972).
[PZ] L. Păunescu and A. Zaharia, On the Łojasiewicz exponent at infinity for polynomial functions, Kodai Math. J., 20 (1997), 269-274.
[R] P. Russell, Simple birational extensions of two dimensional affine rational domains, Compositio Math., 33 (1976), 197-208.
[BK] E. Brieskorn and H. Knörrer, Plane Algebraic Curves, Birkhäuser, Basel, 1986.
[H] Hà Huy Vui, Nombres de Łojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 429-432.

Département de Mathématiques pures
Université Bordeaux I
351 cours de la Libération
33405 Talence Cedex
France
E-mail: edo@math.u-bordeaux.fr

