ŁOJASIEWICZ EXPONENT AT INFINITY IN C[x, y, z]

Eric Edo

Abstract

We consider the set $\mathscr{F} = \{p(z)x + q(y, z), p \in \mathbb{C}[z] \setminus \{0\}, q \in \mathbb{C}[y, z]\}$. We connect algebraic properties of a polynomial $f \in \mathscr{F}$, such that f is a variable in $\mathbb{C}[x, y, z]$ or f is a tame variable in $\mathbb{C}[z][x, y]$ with the Łojasiewicz exponent at infinity of f. We compute this exponent for some polynomials of \mathscr{F} .

1. Introduction

Let A be a commutative ring (in this paper A will be C or C[z]) and let $A^{[n]} = A[x_1, \ldots, x_n]$ be the A-algebra of polynomials in n indeterminates. We say that an automorphism σ of the A-algebra $A^{[n]}$ is triangular if, for all $i, \sigma(x_i) = a_i x_i + P_i(x_{i+1}, \ldots, x_n)$ where a_i is a unit in A and $P_i \in A[x_{i+1}, \ldots, x_n]$. An automorphism is tame if it is in the subgroup generated by affine and triangular automorphisms. We denote by $V_n(A)$ the set of polynomials of $A^{[n]}$ which are components of an automorphism of $A^{[n]}$, we call them variables. In a same way, we denote by $AV_n(A)$ (resp. $BV_n(A)$, resp. $TV_n(A)$) the set of affine (resp. triangular, resp. tame) variables of $A^{[n]}$ i.e. components of an affine (resp. triangular, resp. tame) automorphism.

For a polynomial $f \in C[x_1, \ldots, x_n]$, we consider grad $f = (\partial f / \partial x_1, \ldots, \partial f / \partial x_n)$. We denote by $W_n(C)$ the set of polynomials of $C^{[n]}$ without critical value (*i.e.* such that grad f is nowhere vanishing).

If $f \in W_n(C)$, one defines the *Lojasiewicz exponent at infinity*, $L_{\infty}(f)$, to be the supremum of the set

$$\{v \in \mathbf{R} \mid \exists A > 0, \exists B > 0, \forall x \in \mathbf{C}^m, \text{ if } \|x\| \ge B, \text{ then } A\|x\|^v \le \|\text{grad } f(x)\|\}$$

This original analytic definition is equivalent to the following more algebraic one (cf. [PZ] 2.1). We set $\mathscr{A}^n = \{\psi \in (\mathbb{C}\{t, t^{-1}\})^n; \operatorname{ord}(\psi) < 0\}$, where $\operatorname{ord}(\psi)$ is the *t*-adic valuation of ψ . Let $f \in W_n(\mathbb{C})$, for $\psi \in \mathscr{A}^n$, we set:

$$L(f, \psi) = \frac{\operatorname{ord}(\operatorname{grad} f)(\psi)}{\operatorname{ord}(\psi)}$$

We have: $L_{\infty}(f) = \inf\{L(f, \psi); \psi \in \mathscr{A}^n\}.$

Received April 12, 2000; revised October 16, 2000.

For an indeterminate $x = x_i$, we define the x-partial Lojasiewicz exponent of $f \in W_n(\mathbf{C})$ as $L_{\infty}^x(f) = \inf\{L(f,\psi); \psi \in \mathscr{A}_x^n\}$ where $\mathscr{A}_x^n = \{\psi = (\psi_i)_{1 \le i \le n} \in \mathscr{A}^n\}$ $\operatorname{ord}(\psi_i) \ge 0$.

When n = 3, we set $x = x_1$, $y = x_2$, $z = x_3$, $\mathscr{A} = \mathscr{A}^3$ and $\mathscr{A}_y = \mathscr{A}_y^3$.

For a polynomial $f \in W_2(C)$, the number $L_{\infty}(f)$ has an algebraic significance. Precisely, we have the following two theorems (cf. [N] Theorem 0.4 for the equality in 1) of Theorem 1, cf. [CK1] Theorem 10.2 for Theorem 1 and cf. [H] Proposition 1.5.1 and [CK1] Remark 11.4 for Theorem 2):

THEOREM 1. Let $f \in W_2(\mathbf{C})$, the following assumptions are equivalent: 1) $f \in V_2(\mathbf{C}) = TV_2(\mathbf{C}),$ 2) $L_{\infty}(f) > -1$.

THEOREM 2. We have: $L_{\infty}(W_2(\mathbf{C})) = \mathbf{Q} \setminus \{-1\}.$

In the three dimensional case, the authors of [PZ] exhibit a family $\mathscr{P} \subset$ $TV_2(C[z])$ such that $L_{\infty}(\mathscr{P}) = Q$. This shows that Theorem 1, Theorem 2 can not be extended to this case. Modulo a permutation of coordinates $\mathcal{P} = \{zx + zx\}$ $y - 3y^{2n+1}z^{2q} + 2y^{3n+1}z^{3q}; n, q \in N \setminus \{0\}\}$. In spite of this negative observation, we try to find a relation between algebraic properties of a polynomial of $C^{[3]}$ and its Łojasiewicz exponent at infinity. We restrict our study to the family $\mathcal{F} =$ $BV_2(C(z)) \cap C[x, y, z]$ because for $f \in \mathscr{F}$ there exists criteria to check $f \in V_3(C)$ and $f \in TV_2(C[z])$. We have: $\mathscr{P} \subset \mathscr{F}$. For $f = p(z)x + q(y, z) \in \mathscr{F}$, we set $\tilde{f} =$ $p(z)x + \tilde{q}(y,z)$ where \tilde{q} is the remainder of the division of q by p in C[y][z]. We remark that \tilde{f} is the image of f by $\tau = (x + (\tilde{q}(y,z) - q(y,z))p(z)^{-1}, y, z)$ which is a triangular automorphism of C[x, y, z]. We have: $\tilde{\mathscr{P}} = \{zx + y\}$ and $\tilde{\mathscr{F}} = \{ p(z)x + q(y,z), p \in \mathbb{C}[z], q \in \mathbb{C}[y,z]; \deg_z q < \deg p \} \subset \mathscr{F}.$

In section 2, we prove the following result:

THEOREM 3. Let $f \in \mathcal{F} \cap W_3(C)$, the following assumptions are equivalent: 1) $f \in TV_2(\boldsymbol{C}[\boldsymbol{z}]),$ 2) $L_{\infty}(\tilde{f}) = 0.$

Theorem 3 shows that for $f \in \mathscr{F} \cap W_3(\mathbb{C})$ the number $L_{\infty}(f)$ contains an algebraic information. This information is not directly attainable, it appears with the help of the map $f \mapsto f$. In other words, it is not attached to f but to the orbit of f under the action of triangular automorphisms of C[x, y, z].

In section 3, we make some computations to prove the following results:

THEOREM 4. We have:
$$L_{\infty}(\tilde{\mathscr{F}} \cap W_3(\mathbb{C}) \setminus V_3(\mathbb{C})) = \mathbb{Q} \cap]-\infty, -1[.$$

THEOREM 5. We have: $L_{\infty}(\tilde{\mathscr{F}} \cap V_3(\mathbb{C})) \cup \{-1\} = \mathbb{Q} \cap (]-\infty, -1/2[\cup \{0\}]).$

Theorem 4 and Theorem 5 can be compared with Theorem 2. The following question is still open:

QUESTION 1. Does there exist $\tilde{f} \in \tilde{\mathscr{F}} \cap W_3(C)$ such that $L_{\infty}(\tilde{f}) = -1$?

Using only Łojasiewicz exponent and the map $f \mapsto \tilde{f}$, we can not differentiate variables from non-variables. However, this is possible with help of *y*-partial Łojasiewicz exponent, in fact we have:

THEOREM 6. Let $f \in \mathscr{F} \cap W_3(\mathbb{C})$, the following assumptions are equivalent: 1) $f \in V_3(\mathbb{C})$, 2) $L^y_{\infty}(\tilde{f}) \ge 0$.

It would be interesting to connect $L_{\infty}(\tilde{f})$ to the property $f \in TV_3(C)$. But we know nothing about this property, for example the following two questions are open:

QUESTION 2. Do we have $TV_3(\mathbf{C}) = V_3(\mathbf{C})$?

QUESTION 3. Let $Z_3^1(C)$ be the set of component of an automorphism σ of C[x, y, z] such that $\sigma(z) = z$. Do we have $TV_3(C) \cap Z_3^1(C) = TV_2(C[z])$?

An affirmative answer to Question 2 would give a negative answer to Question 3.

2. Proofs

Here is our main result:

THEOREM 7. Let $f \in \tilde{\mathscr{F}} \cap W_3(\mathbb{C})$, the following assumptions are equivalent: 1) $f \in AV_2(\mathbb{C}[z])$, 2) $L_{\infty}(f) = 0$,

3) $L_{\infty}(f) \ge -1/2.$

Proof. We set f = p(z)x + q(y,z). We have: grad $f = (p(z), \partial_y q(y,z), p'(z)x + \partial_z q(y,z))$.

1) \Rightarrow 2): We can write q(y,z) = a(z)y + b(z) with $a, b \in \mathbb{C}[z]$ and gcd(a,p) = 1. If $p \in \mathbb{C}[z] \setminus \mathbb{C}$ (resp. $p \in \mathbb{C} \setminus \{0\}$), then there exists $z_1 \in \mathbb{C}$ such that $p'(z_1) \neq 0$ (resp. $z_1 = 0$). We consider $\psi(t) = (-p'(z_1)^{-1}\partial_z q(t^{-1}, z_1), t^{-1}, z_1) \in \mathscr{A}$ (resp. $\psi(t) = (t^{-1}, 0, 0) \in \mathscr{A}$), then $(grad f)(\psi(t)) = (p(z_1), a(z_1), 0)$. Therefore, $ord(grad f)(\psi(t)) \ge 0$ and $L_{\infty}(f) \le L(f, \psi) \le 0$.

Now, let $\psi(t) = (x(t), y(t), z(t)) \in \mathscr{A}$. Suppose $\operatorname{ord}(\operatorname{grad} f)(\psi(t)) > 0$, then $\lim_{t\to 0} p(z(t)) = 0$ and $\lim_{t\to 0} a(z(t)) = 0$ which is impossible since $\operatorname{gcd}(a, p) = 1$. Therefore, $\operatorname{ord}(\operatorname{grad} f)(\psi(t)) \le 0$ and $L(f, \psi) \ge 0$. Hence $L_{\infty}(f) \ge 0$ and finally $L_{\infty}(f) = 0$.

2) \Rightarrow 3): Obvious.

3) \Rightarrow 1): We suppose that $f \notin AV_2(C[z])$ and we prove $L_{\infty}(f) < -1/2$. There are two cases: CASE 1. There exists a root z_1 of p such that $\partial_y q(y, z_1) \in C[y] \setminus C^*$.

There exists $y_1 \in C$ such that $\partial_y q(y_1, z_1) = 0$. Let $(y(t), z(t)) \in (C\{t\})^2$ be a parametrization of the germ $\partial_{y}q(y,z) = 0$ in the neighborhood of (y_{1},z_{1}) and let $x(t) = -p'(z(t))^{-1}\partial_z q(y(t), z(t))$. We have: $\operatorname{ord}(x(t)) < 0$ (if $\operatorname{ord}(x(t)) \ge 0$, then $(x(0), y_1, z_1)$ is a critical point of f), thus $\psi(t) = (x(t), y(t), z(t)) \in \mathcal{A}_{\psi}$. We have: $\operatorname{ord}(\operatorname{grad} f)(\psi(t)) = \operatorname{ord}(p(t)) = l \operatorname{ord}(z(t) - z_1)$ where l is the multiplicity of z_1 in p. On the other hand, $\operatorname{ord}(\psi(t)) = \operatorname{ord}(x(t)) = \operatorname{ord}(\partial_z q(y(t), z(t))$ ord $p'(z(t) - z_1) \ge -(l-1)$ ord z(t). Hence $L_{\infty}(f) \le L(f, \psi) \le l/(1-l) < -1$.

CASE 2. For every root z_1 of p, we have $\partial_{y}q(y,z_1) \in C^*$ and d+1 := $\deg_{v}(q) > 1.$

We write $p(z) = z_0 \prod_{i=1}^k (z - z_i)^{l_i}$, with $z_i \in C$ and $l_i \in N \setminus \{0\}$. Let $A_d \in C[z]$ be the term of degree d in $\partial_y q \in C[z][y]$, and let a_i be the vanishing order of z_i in A_d for $1 \le i \le k$. If $l_i \le a_i$ for all $1 \le i \le k$, then $\deg(p) = \sum_{i=1}^k l_i \le \sum_{i=1}^k a_i \le k$ $\deg_z(A_d) \le \deg_z(q) < \deg(p)$, which is impossible. Therefore, there exists $i \in$

 $\{1, \ldots, k\}$ such that $a_i < l_i$. From now on, we suppose i = 1 and $z_i = 0$. We write $\partial_y q(y, z) = \sum_{i=0}^d A_i(z) y^i$ and let $v_i = v_z(A_i) \in N$. We have: $v_0 = 0$ and $v_i \ge 1$ for $1 \le i \le d$. Let Δ_1 be the first side of the Newton polygon of $\partial_{y}q(y,z)$ in the neighborhood of $(\infty,0)$ and let n/m be its slope (see the picture below). In particular, $n/m \le a_1/d$ and since $m \le d$, we have $n \le a_1 < l_1$.

Let $I = \{i | (i, v_i) \in \Delta_1\}$, for $i \in I$ we set $c_i = (z^{-v_i}A_i)_{z=0}$. Let $c \in C$ be such that $\sum_{i \in I} c_i c^{v_i} = 0$, since $v_0 = 0$ and $v_i \ge 1$ for all $i \ge 1$, we have $c \ne 0$.

We set $g(X, Y) = \partial_y q(X^{-n}, X^m(c+Y)) = \sum_{i=0}^d A_i (X^m(c+Y)) X^{-ni}$. By definition of *n* and *m*, we have $g(X, Y) \in \mathbb{C}[X, Y]$. By definition of c_i and *c* we have $g(0, Y) = \sum_{i \in I} c_i (c + Y)^{v_i} \neq 0$ and g(0, 0) = 0. Thanks to Puiseux's theorem (cf. [BK] or [C]), there exists $u \in N^*$ and $\beta \in C\{t\}$ such that $g(t^u, \beta(t)) = 0$ in $C\{t\}$. We consider $\psi(t) = (x(t), y(t), z(t))$ where $z(t) = t^{um}(c + \beta(t)), y(t) = t^{-un}$ and $x(t) = -p'(z(t))^{-1}\partial_z q(y(t), z(t))$. Since $\operatorname{ord}(y(t)) < 0$, we have: $\psi \in \mathscr{A}$.

Since $\partial_y q(y(t), z(t)) = q(t^u, \beta(t)) = 0$ and $p'(z(t))x(t) + \partial_z q(y(t), z(t)) = 0$, we have: ord(grad f)($\psi(t)$) = ord(p(z(t))) = $l_1 um$. We write $\partial_z q(y, z) = \sum_{i=0}^{d+1} B_i(z) y^i$ and we set $w_i = v_z(B_i) \in N$. The set

 $\{(i, w_i); i \ge 1, B_i \ne 0\}$ is the image of $\{(i, v_i); i \ge 1, A_i \ne 0\}$ by the translation $\tau = (1, -1)$. Let Δ'_1 the image by τ of Δ_1 , Δ'_1 meets the (O, i)-axis at (1 + m/n, 0). The order of $\{B_i(z(t))y(t)^i|(i, w_i) \in \Delta'_1\}$ is equal to the order of $y(t)^{1+m/n}$ *i.e.* -un(1 + m/n) = -u(n + m), therefore $\operatorname{ord}(\partial_z q(z(t), y(t))) \ge -u(n + m)$ (elements of $\{B_i(z(t))y(t)^i|(i, w_i) \notin \Delta'_1\}$ have a bigger order). On the other hand $\operatorname{ord}(p'(z(t))) = um(l_1 - 1)$. Hence:

$$ord(x(t)) = -ord(p'(z(t))) + ord(\partial_z q(y(t), z(t)))$$

$$\geq -um(l_1 - 1) - u(n + m) = -u(ml_1 + n)$$

$$ord(\psi(t)) = \min\{ord(x(t)), ord(y(t)), ord(z(t))\}$$

$$\geq \min\{-u(ml_1 + n), -un\} = -u(ml_1 + n).$$

Finally (since $n < l_1$) we have:

$$L_{\infty}(f) \le \frac{\operatorname{ord}(\operatorname{grad} f)(\psi(t))}{\operatorname{ord}(\psi(t))} \le -\frac{uml_1}{u(ml_1+n)} < -\frac{m}{m+1} \le -1/2.$$

The proof of Theorem 7 is complete.

Proof of Theorem 3. Using Theorem 7, it is enough to prove equivalence between $f \in TV_2(\mathbb{C}[z])$ and $\tilde{f} \in AV_2(\mathbb{C}[z])$. Since $f \in BV_2(\mathbb{C}(z))$ this can be straight inferred from [EV] Proposition 2 which is a consequence of amalgamated structure of $\operatorname{Aut}_{\mathbb{C}(z)} \mathbb{C}(z)^{[2]}$ (cf, for example [N] Theorem 3.3).

THEOREM 8. Let $f = p(z)x + q(y, z) \in \mathscr{F} \cap W_3(\mathbb{C})$, the following assumptions are equivalent:

- 1) Every root z_1 of p is such that $\partial_y q(y, z_1) \in \mathbf{C}^*$, 2) $f \in V_2(\mathbf{C}[z])$,
- 2) $f \in V_2(\mathbb{C}[2]),$ 2) $f = V(\mathbb{C})$
- 3) $f \in V_3(\mathbf{C})$.

Proof. 1) \Rightarrow 2): Assumption 1) is equivalent to say that $q(y,z) = \sum q_i(z)y^i$ with q_1 (resp. q_i ($i \ge 2$)) unit (resp. nilpotent) modulo pC[z][y] and the Russell-Sathaye's theorem (cf. [**R**] Proposition 2.2) implies $f \in V_2(C[z])$.

2) \Rightarrow 3): Obvious.

3) \Rightarrow 1): Let $Z = \{z_1, \ldots, z_n\}$ be the set of roots of p. For all $t \in C$, the polynomial f - t is a variable thus the surface $S_t = \{(x, y, z) \in C^3; f(x, y, z) = t\}$ is isomorphic to C^2 and $\chi(S_t) = \chi(C^2) = 1$ (Euler's characteristics).

The map $(y,z) \mapsto (p(z)^{-1}(t-q(y,z)), y,z)$ is a homeomorphism between $C^2 \setminus (C \times Z)$ and $S_t \setminus (C^2 \times Z)$, thus $\chi(S_t \setminus (C^2 \times Z)) = \chi(C^2 \setminus (C \times Z))$. Since $\chi(S_t) = \chi(S_t \setminus (C^2 \times Z)) + \chi(S_t \cap (C^2 \times Z))$ and $\chi(C^2) = \chi(C^2 \setminus (C \times Z)) + \chi(C \times Z)$, we have: $\chi(S_t \cap (C^2 \times Z)) = \chi(C \times Z) = \chi(Z) = n$.

On the other hand $\chi(S_t \cap (\mathbb{C}^2 \times \mathbb{Z})) = \sum_{i=1}^n \chi(q(y, z_i) = t)$ and for a generic twe have $\chi(S_t \cap (\mathbb{C}^2 \times \mathbb{Z})) = \sum_{i=1}^n \deg(q(y, z_i))$. Finally $\sum_{i=1}^n \deg(q(y, z_i)) = n$. For $1 \le i \le n$, we have $\deg(q(y, z_i)) \ge 1$ (if there exists i such that $q(y, z_i) = t \in \mathbb{C}$ then $z - z_i$ divises f - t which is impossible) hence $\deg(q(y, z_i)) = 1$ for all $1 \le i \le n$ which proves 1).

Proof of Theorem 6. Suppose $f \in V_3(\mathbb{C})$ and let $\psi(t) = (x(t), y(t), z(t)) \in \mathcal{A}_y$.

Suppose $\operatorname{ord}(\operatorname{grad} f)(\psi(t)) > 0$, then $\lim_{t\to 0} p(z(t)) = 0$ *i.e.* $\lim_{t\to 0} z(t) = z_1$ where z_1 is a root of p. Since $\operatorname{ord}(y) \ge 0$, we have $0 = \lim_{t\to 0} \partial_y q(y(t), z(t)) = \partial_y q(y(0), z_1)$ which contradicts Theorem 8. Therefore, $\operatorname{ord}(\operatorname{grad} f)(\psi(t)) \le 0$ and $L(f, \psi) \ge 0$. Hence $L^y_{\infty}(f) \ge 0$.

Now, suppose $f \notin V_3(C)$, by Theorem 8, p has a root z_1 such that $\partial_y q(y, z_1) \in C[y] \setminus C^*$. The Case 1 of Theorem 7 implies $L_{\infty}^y(f) < -1$.

Examples.
$$L_{\infty}^{y}(z^{2}x + z + y^{2}) = -2$$
, $L_{\infty}^{y}(z^{2}x + y) = 0$ and $L_{\infty}^{y}(zx + y) = 1$.

3. Computations

In this section, we explain how to compute $L_{\infty}(f)$ for $f \in \tilde{\mathscr{F}}$. Let $f = p(z)x + q(y, z) \in \tilde{\mathscr{F}}$. If $f \in AV_2(\mathbb{C}[z])$, then $L_{\infty}(f) = 0$. Now suppose $f \notin AV_2(\mathbb{C}[z])$, we have $L_{\infty}(f) < 0$ thus:

$$L_{\infty}(f) = \inf \left\{ L(f, \psi); \psi \in \mathscr{A}; \lim_{t \to 0} \|(\operatorname{grad} f)(\psi(t))\| = 0 \right\} \ (*).$$

We write $p(z) = z_0 \prod_{i=1}^k (z - z_i)^{l_i}$, with $z_i \in C$ and $l_i \in \mathbb{N} \setminus \{0\}$.

Let $L_i = \inf \{L(f, \psi); \psi = (x, y, z) \in \mathcal{A}, z \to z_i\}$ for $1 \le i \le k$, since (*) we have: $L_{\infty}(f) = \min \{L_i; 1 \le i \le k\}$.

To compute L_1 (for example) one can suppose $z_1 = 0$. Let $l = l_1 = v_z(p(z))$.

LEMMA (The way to choose x(t)). Let $\mathscr{E}_{a,b} = \{ (\text{ord } \partial_y q(y,z), \text{ord } \partial_z q(y,z)); \text{ord}(y) = a, \text{ord}(z) = b \},$

$$\begin{split} \mathscr{D}_{a,b} &= \{ (\lambda,\mu) \in \mathscr{E}_{a,b}; \mu - (l-1)b < -1 \}, \\ \mathscr{B}_{a,b}^{-} &= \{ (\lambda,\mu) \in \mathscr{E}_{a,b}; \mu - (l-1)b \leq -1 \}, \\ \mathscr{B}_{a,b}^{+} &= \{ (\lambda,\mu) \in \mathscr{E}_{a,b}; \mu - (l-1)b > -1 \}. \\ 1. \ If \ a < 0, \ we \ set: \\ M_{a,b} &= \min\{\min\{lb,\lambda,\mu\}/a; (\lambda,\mu) \in \mathscr{E}_{a,b}\} \ and \\ N_{a,b} &= \min\left\{ \frac{\min\{lb,\lambda\}}{\min\{\mu - (l-1)b,a\}}; (\lambda,\mu) \in \mathscr{E}_{a,b} \right\}. \end{split}$$

2. If
$$a \ge 0$$
, we set:
 $M_{a,b} = \min\{-\min\{lb, \lambda, \mu\}; (\lambda, \mu) \in \mathcal{D}_{a,b}\}$ and
 $N_{a,b} = \min\{N_{a,b}^{-}, N_{a,b}^{+}\}$ with
 $N_{a,b}^{+} = -\min\{\lambda, (l-1)b-1\}$ and

ERIC EDO

$$N_{a,b}^{-} = \min\left\{\frac{\min\{lb,\lambda\}}{\mu - (l-1)b}; (\lambda,\mu) \in \mathscr{B}_{a,b}^{-}\right\}.$$

Then $L_1 = \min\{M_{a,b}, N_{a,b}; a \in \mathbb{Z}, b \in \mathbb{N} \setminus \{0\}\}.$

Proof. Let $\psi = (x, y, z) \in \mathscr{A}$ be such that $\operatorname{ord}(y) = a \in \mathbb{Z}$ and $\operatorname{ord}(z) = b \in \mathbb{N} \setminus \{0\}$. Let $(\lambda, \mu) = (\operatorname{ord} \partial_y q(y, z), \operatorname{ord} \partial_z q(y, z))$ We have:

$$L(f,\psi) = \frac{\min\{lb,\lambda,\operatorname{ord}(p'(z)x + \partial_z q(y,z))\}}{\min\{\operatorname{ord}(x),a\}}$$

1. If a < 0, there are two cases: 1.1. If $\operatorname{ord}(x) > \mu - (l-1)b$, then

$$L(f,\psi) = \frac{\min\{lb,\lambda,\mu\}}{\min\{\operatorname{ord}(x),a\}} \ge \frac{\min\{lb,\lambda,\mu\}}{a}$$

with equality, for example, when x = 0. 1.2. If $\operatorname{ord}(x) \le \mu - (l-1)b$, then

$$L(f,\psi) = \frac{\min\{lb,\lambda,\operatorname{ord}(p'(z)x + \partial_z q(y,z))\}}{\min\{\operatorname{ord}(x),a\}} \ge \frac{\min\{lb,\lambda\}}{\min\{\mu - (l-1)b,a\}}$$

with equality, for example, when $x = -\partial_z q(y, z)/p'(z)$.

- 2. If $a \ge 0$, then $\operatorname{ord}(x) < 0$.
 - 2.1. The case $\operatorname{ord}(x) > \mu (l-1)b$ can occur if and only if $(\lambda, \mu) \in \mathcal{D}_{a,b}$ and then

$$L(f,\psi) = \frac{\min\{lb,\lambda,\mu\}}{\operatorname{ord}(x)} \ge -\min\{lb,\lambda,\mu\}$$

with equality, for example, when $x = t^{-1}$.

2.2. The case $\operatorname{ord}(x) \leq \mu - (l-1)b$ can be dealt with in the same way as when a < 0 if $(\lambda, \mu) \in \mathscr{B}_{a,b}^-$, but if $(\lambda, \mu) \in \mathscr{B}_{a,b}^+$, then

$$L(f,\psi) = \frac{\min\{\lambda, (l-1)b + \operatorname{ord}(x)\}}{\operatorname{ord}(x)} \ge -\min\{\lambda, (l-1)b - 1\}$$

with equality, for example, when $x = t^{-1}$. This prove that $L_1 = \min\{M_{a,b}, N_{a,b}; a \in \mathbb{Z}, b \in \mathbb{N} \setminus \{0\}\}$.

Remark. In the lemma, we can change $\mathscr{E}_{a,b}$ to the set of his maximal elements.

PROPOSITION 1. For $l \ge 2$, we have $L_{\infty}(z^{l}x + y^{2} + z) = -l/(l-1)$.

Proof. Let $f = z^l x + y^2 + z$ and $q = y^2 + z$ then $\partial_y q = 2y$ and $\partial_z q = 1$. We have: $\mathscr{E}_{a,b} = \{(a,0)\}$ then $M_{a,b} = 0$ and

$$N_{a,b} = \frac{\min\{lb, a\}}{\min\{(1-l)b, a\}}.$$

Hence $L_{\infty}(f) = -l/(l-1)$.

Remark. If $\partial_y q(y,0) \in \mathbb{C}[y] \setminus \mathbb{C}^*$, we write $\partial_y q(y,z) = \sum_{i=0}^d A_i(z) y^i$ and $v_i = v_z(A_i) \in \mathbb{N}$. We consider the sides Δ_i $(1 \le i \le k)$ of the Newton polygon of $\partial_y q(y,z)$ in the neighborhood of $(\infty, 0)$ and let n_i/m_i their slopes.

Let $\mathscr{E}'_{i,u} = \mathscr{E}_{-un_i,un_i}$, $M'_{i,u} = M_{-un_i,un_i}$ and $N'_{i,u} = N_{-un_i,un_i}$ then: $L_1 = \min\{M'_{i,u}, N'_{i,u}; 1 \le i \le k, u \in \mathbb{N} \setminus \{0\}\}.$

PROPOSITION 2. For $1 \le n < l$, we have $L_{\infty}(z^l x + y + z^n y^2) = -l/(l+n)$.

Proof. Let $f = y + y^2 z^n + xz^l$ and $q = y + y^2 z^n$ then $\partial_y q = 1 + 2yz^n$ and $\partial_z q = ny^2 z^{n-1}$.

The Newton polygon of $\partial_y q(y, z)$ in the neighborhood of $(\infty, 0)$ has only one side Δ_1 , its slope is n/1.

The unique maximal element of $\mathscr{E}'_{1,u}$ is $(\infty, -u(n+1))$, thus $M'_{1,u} \ge 0$ and $N'_{1,u} = -l/(n+l)$.

Hence $L_{\infty}(f) = -l/(n+l)$.

Remark. Theorem 8 shows that for $1 \le n < l$, $z^l x + y + z^n y^2 \in V_3(\mathbf{C})$.

PROPOSITION 3. For $1 \le n < l/2$, we have $L_{\infty}(z^{l+1}x + y + z^ny^2(-2 + z^ny + 2nz^{l-n})) = -(l-n)/n$.

Proof. Let $f = z^{l+1}x + y + z^n y^2 (-2 + z^n y + 2nz^{l-n})$ and $q = y + z^n y^2 \cdot (-2 + z^n y + 2nz^{l-n})$ then $\partial_y q = 1 - 4yz^n + 3y^2 z^{2n} + 4nyz^l$ and $\partial_z q = 2ny^2 z^{n-1} \cdot (-1 + yz^n + lz^{l-n})$.

The Newton polygon of $\partial_y q(y, z)$ in the neighborhood of $(\infty, 0)$ has only one side Δ_1 , his slope is n/1.

Let c be a root of $C(T) = 1 - 4T^n + 3T^{2n}$ we consider: $g_c(X, Y) = \partial_y q(X^{-n}, X(c+X))$ and $h_c(X, Y) = X^{n+1}\partial_z q(X^{-n}, X(c+X))$ then $g_c(X, Y) = 1 - 4(c+Y)^n + 3(c+Y)^{2n} + 4nX^{l-n}(c+Y)^l$ $h_c(X, Y) = 2n(c+Y)^{n-1} \cdot (-1 + (c+Y)^n + lX^{l-n}(c+Y)^{l-n}).$

If $c^n \neq 1$, then the germ $\{h_c = 0\}$ is empty and this case give no maximal element of $\mathscr{E}'_{1,u}$.

If $c^n = 1$ we consider: $g_{c,c_1}(X, Y) = X^{n-l}g_c(X, X^{l-n}(c_1 + Y))$ and $h_{c,c_1}(X, Y) = X^{n-l}h_c(X, X^{l-n}(c_1 + Y))$.

We have $g_{c,c_1}(0,0) = 2nc^{n-1}c_1 + 4nc^l$ and $h_{c,c_1}(0,0) = 2n(nc^{n-1}c_1 + lc^l)$.

For $g_{c,c_1}(0,0) = h_{c,c_1}(0,0) = 0$ we must have $2nc = lc^l$ which is impossible since n < l/2. Therefore, one of the two germs $\{g_{c,c_1} = 0\}$ or $\{g_{c,c_1} = 0\}$ is empty. Thus $(\infty, u(l-2n-1))$ and $(n-l,\infty)$ are the maximal elements of $\mathscr{E}'_{1,u}$.

Hence $M_{1,u} = \min\{-(l-2n-1)/n, -(l-n)/n\} = -(l-n)/n$ and $N_{1,u} = \min\{-(l+1)/(2n+1), -(l-n)/n\} = -(l-n)/n$, hence $L_{\infty}(f) = \min\{-l/(n+l), -(l-n)/n\} = -(l-n)/n$.

Remark. Theorem 8 shows that for $1 \le n < l/2$, $z^{l+1}x + y + z^n y^2(-2 + z^n y + 2nz^{l-n}) \in V_3(\mathbf{C})$.

PROPOSITION 4. For $1 \le n < l/2$ and $k \ge 2$, we have $L_{\infty}(z^{l+1}(z-1)^k x + y + z^n y^2(-2 + z^n y + 2nz^{l-n})) = \min\{-(l-n)/n, k/(1-k)\}.$

Proof. Let $f = z^{l+1}(z-1)^k x + y + z^n y^2(-2 + z^n y + 2nz^{l-n})$. Let $L_0 = \inf\{L(f, \psi); \psi = (x, y, z) \in \mathcal{A}, z \to 0\}$ and $L_1 = \inf\{L(f, \psi); \psi = (x, y, z) \in \mathcal{A}, z \to 1\}$.

As in Proposition 1 we can compute $L_1 = k/(1-k)$, as in Proposition 3 we can compute $L_0 = -(l-n)/n$ and $L_{\infty}(f) = \min\{L_0, L_1\}$.

Remark. Theorem 8 shows that for $1 \le n < l/2$ and $k \ge 2$, $z^{l+1}(z-1)^k x + y + z^n y^2 (-2 + z^n y + 2nz^{l-n}) \notin V_3(\mathbf{C})$.

Remark. For $f \in W_n(C)$, we have: $L_{\infty}(f) \in Q$ cf. [CK2].

Proof of Theorem 4. Let $f \in \tilde{\mathscr{F}} \cap W_3(\mathbb{C}) \setminus V_3(\mathbb{C})$, by Theorem 8, p has a root z_1 such that $\partial_y q(y, z_1) \in \mathbb{C}[y] \setminus \mathbb{C}^*$. The Case 1 of Theorem 7 implies $L_{\infty}(f) < -1$.

Conversely, Proposition 4 shows that for every rational number r < -1 there exists $f \in \tilde{\mathscr{F}} \cap W_3(\mathbb{C}) \setminus V_3(\mathbb{C})$ such that $L_{\infty}(f) = r$.

Proof of Theorem 5. Let $f \in \tilde{\mathscr{F}} \cap V_3(\mathbb{C})$, Theorem 7 implies that $L_{\infty}(f) \in]-\infty, -1/2[\cup \{0\}]$. Conversely, Proposition 1 and Proposition 3 show that for every rational number r < -1/2, $r \neq -1$ there exists $f \in \tilde{\mathscr{F}} \cap V_3(\mathbb{C})$ such that $L_{\infty}(f) = r$.

REFERENCES

- [C] A. CHENCINER, Courbes Algebriques Planes, Puli. Math. Univ. Paris VII.
- [CK1] J. CHĄDZYŃSKI AND T. KRASIŃSKI, On the Łojasiewicz exponent at infinity for polynomial mappings of C² into C² and components of polynomial automorphisms of C², Ann. Polon. Math., 57 (1992), 291–302.
- [CK2] J. CHĄDZYŃSKI AND T. KRASIŃSKI, A set on which the Łojasiewicz exponent at infinity is attained, Univ. Łódź, Preprint, 1996/3 (1996).
- [EV] E. EDO AND S. VÉNÉREAU, Length 2 variables and transfer, to appear in Ann. Polon. Math.
- [N] M. NAGATA, On the automorphisms group of C[X, Y], Lectures in Math. Kyoto Univ., 5 (1972).
- [PZ] L. PĂUNESCU AND A. ZAHARIA, On the Łojasiewicz exponent at infinity for polynomial functions, Kodai Math. J., 20 (1997), 269–274.
- [R] P. RUSSELL, Simple birational extensions of two dimensional affine rational domains, Compositio Math., 33 (1976), 197–208.
- [BK] E. BRIESKORN AND H. KNÖRRER, Plane Algebraic Curves, Birkhäuser, Basel, 1986.
- [H] HÀ HUY VUI, Nombres de Łojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 429–432.

Département de Mathématiques pures Université Bordeaux I 351 cours de la Libération 33405 Talence Cedex France E-mail: edo@math.u-bordeaux.fr