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èOJASIEWICZ EXPONENT AT INFINITY IN C �x; y; z�

Eric Edo

Abstract

We consider the set F � fp�z�x� q�y; z�; p A C �z�nf0g; q A C �y; z�g. We connect

algebraic properties of a polynomial f A F, such that f is a variable in C �x; y; z� or f is a

tame variable in C �z��x; y� with the èojasiewicz exponent at in®nity of f. We compute

this exponent for some polynomials of F.

1. Introduction

Let A be a commutative ring (in this paper A will be C or C �z�) and let
A�n� � A�x1; . . . ; xn� be the A-algebra of polynomials in n indeterminates. We say
that an automorphism s of the A-algebra A�n� is triangular if, for all i, s�xi� �
aixi � Pi�xi�1; . . . ; xn� where ai is a unit in A and Pi A A�xi�1; . . . ; xn�. An
automorphism is tame if it is in the subgroup generated by a½ne and triangular
automorphisms. We denote by Vn�A� the set of polynomials of A�n� which are

components of an automorphism of A�n�, we call them variables. In a same way,
we denote by AVn�A� (resp. BVn�A�, resp. TVn�A�) the set of a½ne (resp. tri-

angular, resp. tame) variables of A�n� i.e. components of an a½ne (resp. trian-
gular, resp. tame) automorphism.

For a polynomial f A C �x1; . . . ; xn�, we consider grad f � �qf =qx1; . . . ;

qf =qxn�. We denote by Wn�C� the set of polynomials of C �n� without critical
value (i.e. such that grad f is nowhere vanishing).

If f A Wn�C�, one de®nes the èojasiewicz exponent at in®nity, Ly� f �, to be
the supremum of the set

fn A R j bA > 0; bB > 0; Ex A C m; if kxkVB; then Akxkn U kgrad f �x�kg
This original analytic de®nition is equivalent to the following more algebraic one
(cf. [PZ] 2.1). We set An � fc A �Cft; tÿ1g�n; ord�c� < 0g, where ord�c� is the
t-adic valuation of c. Let f A Wn�C�, for c A An, we set:

L� f ;c� � ord�grad f ��c�
ord�c� :

We have: Ly� f � � inffL� f ;c�; c A Ang.
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For an indeterminate x � xi, we de®ne the x-partial èojasiewicz exponent of
f A Wn�C� as Lx

y� f � � inffL� f ;c�; c A An
x g where An

x � fc � �cj�1UjUn A An;
ord�ci�V 0g.

When n � 3, we set x � x1, y � x2, z � x3, A �A3 and Ay �A3
y .

For a polynomial f A W2�C�, the number Ly� f � has an algebraic sig-
ni®cance. Precisely, we have the following two theorems (cf. [N] Theorem 0.4
for the equality in 1) of Theorem 1, cf. [CK1] Theorem 10.2 for Theorem 1 and
cf. [H] Proposition 1.5.1 and [CK1] Remark 11.4 for Theorem 2):

Theorem 1. Let f A W2�C�, the following assumptions are equivalent:
1) f A V2�C� � TV2�C�,
2) Ly� f � > ÿ1.

Theorem 2. We have: Ly�W2�C�� � Qnfÿ1g.

In the three dimensional case, the authors of [PZ] exhibit a family PH
TV2�C �z�� such that Ly�P� � Q. This shows that Theorem 1, Theorem 2 can
not be extended to this case. Modulo a permutation of coordinates P � fzx�
yÿ 3y2n�1z2q � 2y3n�1z3q; n; q A Nnf0gg. In spite of this negative observation,
we try to ®nd a relation between algebraic properties of a polynomial of C �3� and
its èojasiewicz exponent at in®nity. We restrict our study to the family F �
BV2�C�z��VC �x; y; z� because for f A F there exists criteria to check f A V3�C�
and f A TV2�C �z��. We have: PHF. For f � p�z�x� q�y; z� A F, we set ~f �
p�z�x� ~q�y; z� where ~q is the remainder of the division of q by p in C �y��z�.
We remark that ~f is the image of f by t � �x� �~q�y; z� ÿ q�y; z��p�z�ÿ1; y; z�
which is a triangular automorphism of C �x; y; z�. We have: ~P � fzx� yg and
~F � fp�z�x� q�y; z�; p A C �z�; q A C �y; z�; degz q < deg pgHF.

In section 2, we prove the following result:

Theorem 3. Let f A FVW3�C�, the following assumptions are equivalent:
1) f A TV2�C �z��,
2) Ly� ~f � � 0.

Theorem 3 shows that for f A FVW3�C� the number Ly� f � contains an
algebraic information. This information is not directly attainable, it appears
with the help of the map f 7! ~f . In other words, it is not attached to f but to
the orbit of f under the action of triangular automorphisms of C �x; y; z�.

In section 3, we make some computations to prove the following results:

Theorem 4. We have: Ly� ~FVW3�C�nV3�C�� � QV �ÿy;ÿ1�.

Theorem 5. We have: Ly� ~FVV3�C��U fÿ1g � Q V ��ÿy;ÿ1=2�U f0g�.

Theorem 4 and Theorem 5 can be compared with Theorem 2. The fol-
lowing question is still open:
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Question 1. Does there exist ~f A ~FVW3�C� such that Ly� ~f � � ÿ1?

Using only èojasiewicz exponent and the map f 7! ~f , we can not dif-
ferentiate variables from non-variables. However, this is possible with help of
y-partial èojasiewicz exponent, in fact we have:

Theorem 6. Let f A FVW3�C�, the following assumptions are equivalent:
1) f A V3�C�,
2) L

y
y� ~f �V 0.

It would be interesting to connect Ly� ~f � to the property f A TV3�C�. But
we know nothing about this property, for example the following two questions
are open:

Question 2. Do we have TV3�C� � V3�C�?

Question 3. Let Z1
3 �C� be the set of component of an automorphism s of

C �x; y; z� such that s�z� � z. Do we have TV3�C�VZ1
3 �C� � TV2�C �z��?

An a½rmative answer to Question 2 would give a negative answer to
Question 3.

2. Proofs

Here is our main result:

Theorem 7. Let f A ~FVW3�C�, the following assumptions are equivalent:
1) f A AV2�C �z��,
2) Ly� f � � 0,
3) Ly� f �Vÿ1=2.

Proof. We set f � p�z�x� q�y; z�.
We have: grad f � �p�z�; qyq�y; z�; p 0�z�x� qzq�y; z��.
1)) 2): We can write q�y; z� � a�z�y� b�z� with a; b A C �z� and gcd�a; p�

� 1. If p A C �z�nC (resp. p A Cnf0g), then there exists z1 A C such that
p 0�z1�0 0 (resp. z1 � 0). We consider c�t� � �ÿp 0�z1�ÿ1

qzq�tÿ1; z1�; tÿ1; z1� A A
(resp. c�t� � �tÿ1; 0; 0� A A), then �grad f ��c�t�� � �p�z1�; a�z1�; 0�. Therefore,
ord�grad f ��c�t��V 0 and Ly� f �UL� f ;c�U 0.

Now, let c�t� � �x�t�; y�t�; z�t�� A A. Suppose ord�grad f ��c�t�� > 0, then
limt!0 p�z�t�� � 0 and limt!0 a�z�t�� � 0 which is impossible since gcd�a; p� � 1.
Therefore, ord�grad f ��c�t��U 0 and L� f ;c�V 0. Hence Ly� f �V 0 and ®nally
Ly� f � � 0.

2)) 3): Obvious.
3)) 1): We suppose that f B AV2�C �z�� and we prove Ly� f � < ÿ1=2.

There are two cases:
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Case 1. There exists a root z1 of p such that qyq�y; z1� A C �y�nC �.
There exists y1 A C such that qyq�y1; z1� � 0. Let �y�t�; z�t�� A �Cftg�2 be

a parametrization of the germ qyq�y; z� � 0 in the neighborhood of �y1; z1� and
let x�t� � ÿp 0�z�t��ÿ1qzq�y�t�; z�t��. We have: ord�x�t�� < 0 (if ord�x�t��V 0,
then �x�0�; y1; z1� is a critical point of f ), thus c�t� � �x�t�; y�t�; z�t�� A Ay. We
have: ord�grad f ��c�t�� � ord�p�t�� � l ord�z�t� ÿ z1� where l is the multiplicity
of z1 in p. On the other hand, ord�c�t�� � ord�x�t�� � ord qzq�y�t�; z�t��ÿ
ord p 0�z�t� ÿ z1�Vÿ�l ÿ 1� ord z�t�. Hence Ly� f �UL� f ;c�U l=�1ÿ l� < ÿ1.

Case 2. For every root z1 of p, we have qyq�y; z1� A C � and d � 1 :�
degy�q� > 1.

We write p�z� � z0

Qk
i�1�zÿ zi� li , with zi A C and li A Nnf0g. Let Ad A C �z�

be the term of degree d in qyq A C �z��y�, and let ai be the vanishing order of zi in
Ad for 1U i U k. If li U ai for all 1U i U k, then deg�p� �Pk

i�1 li U
Pk

i�1 ai U
degz�Ad�U degz�q� < deg� p�, which is impossible. Therefore, there exists i A
f1; . . . ; kg such that ai < li. From now on, we suppose i � 1 and zi � 0.

We write qyq�y; z� �Pd
i�0 Ai�z�yi and let vi � vz�Ai� A N . We have: v0 � 0

and vi V 1 for 1U i U d. Let D1 be the ®rst side of the Newton polygon of
qyq�y; z� in the neighborhood of �y; 0� and let n=m be its slope (see the picture
below). In particular, n=mU a1=d and since mU d, we have nU a1 < l1.

Let I � fij�i; vi� A D1g, for i A I we set ci � �zÿvi Ai�z�0. Let c A C be such
that

P
i A I cic

vi � 0, since v0 � 0 and vi V 1 for all i V 1, we have c0 0.

We set g�X ;Y � � qyq�Xÿn;X m�c� Y�� �Pd
i�0 Ai�X m�c� Y��Xÿni. By de®ni-

tion of n and m, we have g�X ;Y� A C �X ;Y �. By de®nition of ci and c we have
g�0;Y � �Pi A I ci�c� Y�vi 0 0 and g�0; 0� � 0. Thanks to Puiseux's theorem (cf.
[BK] or [C]), there exists u A N � and b A Cftg such that g�tu; b�t�� � 0 in Cftg.
We consider c�t� � �x�t�; y�t�; z�t�� where z�t� � tum�c� b�t��, y�t� � tÿun and

x�t� � ÿp 0�z�t��ÿ1qzq�y�t�; z�t��. Since ord�y�t�� < 0, we have: c A A.
Since qyq�y�t�; z�t�� � g�tu; b�t�� � 0 and p 0�z�t��x�t� � qzq�y�t�; z�t�� � 0, we

have: ord�grad f ��c�t�� � ord�p�z�t��� � l1um.
We write qzq�y; z� �Pd�1

i�0 Bi�z�yi and we set wi � vz�Bi� A N . The set
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f�i;wi�; i V 1;Bi 0 0g is the image of f�i; vi�; i V 1;Ai 0 0g by the translation t �
�1;ÿ1�. Let D 01 the image by t of D1, D 01 meets the �O; i�-axis at �1�m=n; 0�.
The order of fBi�z�t��y�t� ij�i;wi� A D 01g is equal to the order of y�t�1�m=n i.e.
ÿun�1�m=n� � ÿu�n�m�, therefore ord�qzq�z�t�; y�t���Vÿu�n�m� (ele-
ments of fBi�z�t��y�t� ij�i;wi� B D 01g have a bigger order). On the other hand
ord�p 0�z�t��� � um�l1 ÿ 1�. Hence:

ord�x�t�� � ÿord� p 0�z�t��� � ord�qzq�y�t�; z�t���
Vÿum�l1 ÿ 1� ÿ u�n�m� � ÿu�ml1 � n�

ord�c�t�� � minford�x�t��; ord�y�t��; ord�z�t��g
Vminfÿu�ml1 � n�;ÿung � ÿu�ml1 � n�:

Finally (since n < l1) we have:

Ly� f �U ord�grad f ��c�t��
ord�c�t�� Uÿ uml1

u�ml1 � n� < ÿ
m

m� 1
Uÿ1=2:

The proof of Theorem 7 is complete.

Proof of Theorem 3. Using Theorem 7, it is enough to prove equivalence
between f A TV2�C �z�� and ~f A AV2�C �z��. Since f A BV2�C�z�� this can be
straight inferred from [EV] Proposition 2 which is a consequence of amalgamated

structure of AutC�z� C�z��2� (cf, for example [N] Theorem 3.3).

Theorem 8. Let f � p�z�x� q�y; z� A FVW3�C�, the following assumptions
are equivalent:

1) Every root z1 of p is such that qyq�y; z1� A C �,
2) f A V2�C �z��,
3) f A V3�C�.

Proof. 1)) 2): Assumption 1) is equivalent to say that q�y; z� �P qi�z�yi

with q1 (resp. qi �iV 2�) unit (resp. nilpotent) modulo pC �z��y� and the Russell-
Sathaye's theorem (cf. [R] Proposition 2.2) implies f A V2�C �z�).

2)) 3): Obvious.
3)) 1): Let Z � fz1; . . . ; zng be the set of roots of p. For all t A C , the

polynomial f ÿ t is a variable thus the surface St � f�x; y; z� A C 3; f �x; y; z� � tg
is isomorphic to C 2 and w�St� � w�C 2� � 1 (Euler's characteristics).

The map �y; z� 7! �p�z�ÿ1�tÿ q�y; z��; y; z� is a homeomorphism between

C 2n�C � Z� and Stn�C 2 � Z�, thus w�Stn�C 2 � Z�� � w�C 2n�C � Z��. Since

w�St� � w�Stn�C 2 � Z�� � w�St V �C 2 � Z�� and w�C 2� � w�C 2n�C � Z���
w�C � Z�, we have: w�St V �C 2 � Z�� � w�C � Z� � w�Z� � n.

On the other hand w�St V �C 2 � Z�� �Pn
i�1 w�q�y; zi� � t� and for a generic t

we have w�St V �C 2 � Z�� �Pn
i�1 deg�q�y; zi��. Finally

Pn
i�1 deg�q�y; zi�� � n.

For 1U iU n, we have deg�q�y; zi��V 1 (if there exists i such that q�y; zi� � t A C
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then zÿ zi divises f ÿ t which is impossible) hence deg�q�y; zi�� � 1 for all 1U
i U n which proves 1).

Proof of Theorem 6. Suppose f A V3�C� and let c�t� � �x�t�; y�t�; z�t�� A
Ay.

Suppose ord�grad f ��c�t�� > 0, then limt!0 p�z�t�� � 0 i.e. limt!0 z�t� � z1

where z1 is a root of p. Since ord�y�V 0, we have 0 � limt!0 qyq�y�t�; z�t�� �
qyq�y�0�; z1� which contradicts Theorem 8. Therefore, ord�grad f ��c�t��U 0
and L� f ;c�V 0. Hence L

y
y� f �V 0.

Now, suppose f B V3�C�, by Theorem 8, p has a root z1 such that qyq�y; z1�
A C �y�nC �. The Case 1 of Theorem 7 implies L

y
y� f � < ÿ1.

Examples. L
y
y�z2x� z� y2� � ÿ2, L

y
y�z2x� y� � 0 and L

y
y�zx� y� � 1.

3. Computations

In this section, we explain how to compute Ly� f � for f A ~F.
Let f � p�z�x� q�y; z� A ~F.
If f A AV2�C �z��, then Ly� f � � 0.
Now suppose f B AV2�C �z��, we have Ly� f � < 0 thus:

Ly� f � � inf L� f ;c�; c A A; lim
t!0
k�grad f ��c�t��k � 0

� �
���:

We write p�z� � z0

Qk
i�1�zÿ zi� li , with zi A C and li A Nnf0g.

Let Li � inffL� f ;c�; c � �x; y; z� A A; z! zig for 1U i U k, since ��� we
have: Ly� f � � minfLi; 1U iU kg.

To compute L1 (for example) one can suppose z1 � 0. Let l � l1 � vz�p�z��.

Lemma (The way to choose x�t�). Let Ea;b � f�ord qyq�y; z�; ord qzq�y; z��;
ord�y� � a; ord�z� � bg,

Da;b � f�l; m� A Ea;b; mÿ �l ÿ 1�b < ÿ1g,
Bÿa;b � f�l; m� A Ea;b; mÿ �l ÿ 1�bUÿ1g,
B�a;b � f�l; m� A Ea;b; mÿ �l ÿ 1�b > ÿ1g.
1. If a < 0, we set:

Ma;b � minfminflb; l; mg=a; �l; m� A Ea;bg and

Na;b � min
minflb; lg

minfmÿ �l ÿ 1�b; ag ; �l; m� A Ea;b

� �
:

2. If aV 0, we set:
Ma;b � minfÿminflb; l; mg; �l; m� A Da;bg and
Na;b � minfNÿa;b;N�a;bg with
N�a;b � ÿminfl; �l ÿ 1�bÿ 1g and
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Nÿa;b � min
minflb; lg

mÿ �l ÿ 1�b ; �l; m� A Bÿa;b

� �
:

Then L1 � minfMa;b;Na;b; a A Z; b A Nnf0gg.

Proof. Let c � �x; y; z� A A be such that ord�y� � a A Z and ord�z� � b A
Nnf0g. Let �l; m� � �ord qyq�y; z�; ord qzq�y; z�� We have:

L� f ;c� � minflb; l; ord�p 0�z�x� qzq�y; z��g
minford�x�; ag :

1. If a < 0, there are two cases:
1.1. If ord�x� > mÿ �l ÿ 1�b, then

L� f ;c� � minflb; l; mg
minford�x�; ag V

minflb; l; mg
a

with equality, for example, when x � 0.
1.2. If ord�x�U mÿ �l ÿ 1�b, then

L� f ;c� � minflb; l; ord�p 0�z�x� qzq�y; z��g
minford�x�; ag V

minflb; lg
minfmÿ �l ÿ 1�b; ag

with equality, for example, when x � ÿqzq�y; z�=p 0�z�.
2. If aV 0, then ord�x� < 0.

2.1. The case ord�x� > mÿ �l ÿ 1�b can occur if and only if �l; m� A Da;b

and then

L� f ;c� � minflb; l; mg
ord�x� Vÿminflb; l; mg

with equality, for example, when x � tÿ1.
2.2. The case ord�x�U mÿ �l ÿ 1�b can be dealt with in the same way as

when a < 0 if �l; m� A Bÿa;b, but if �l; m� A B�a;b, then

L� f ;c� � minfl; �l ÿ 1�b� ord�x�g
ord�x� Vÿminfl; �l ÿ 1�bÿ 1g

with equality, for example, when x � tÿ1.
This prove that L1 � minfMa;b;Na;b; a A Z; b A Nnf0gg.

Remark. In the lemma, we can change Ea;b to the set of his maximal
elements.

Proposition 1. For l V 2, we have Ly�zlx� y2 � z� � ÿl=�l ÿ 1�.

Proof. Let f � zlx� y2 � z and q � y2 � z then qyq � 2y and qzq � 1.
We have: Ea;b � f�a; 0�g then Ma;b � 0 and
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Na;b � minflb; ag
minf�1ÿ l�b; ag :

Hence Ly� f � � ÿl=�l ÿ 1�.
Remark. If qyq�y; 0� A C �y�nC �, we write qyq�y; z� �Pd

i�0 Ai�z�yi and vi �
vz�Ai� A N . We consider the sides Di �1U iU k� of the Newton polygon of
qyq�y; z� in the neighborhood of �y; 0� and let ni=mi their slopes.

Let E 0i;u � Eÿuni ;uni
, M 0

i;u �Mÿuni ;uni
and N 0i;u � Nÿuni ;uni

then: L1 �
minfM 0

i;u;N
0
i;u; 1U i U k; u A Nnf0gg.

Proposition 2. For 1U n < l, we have Ly�zlx� y� zny2� � ÿl=�l � n�.

Proof. Let f � y� y2zn � xzl and q � y� y2zn then qyq � 1� 2yzn and
qzq � ny2znÿ1.

The Newton polygon of qyq�y; z� in the neighborhood of �y; 0� has only one
side D1, its slope is n=1.

The unique maximal element of E 01;u is �y;ÿu�n� 1��, thus M 0
1;u V 0 and

N 01;u � ÿl=�n� l�.
Hence Ly� f � � ÿl=�n� l�.
Remark. Theorem 8 shows that for 1U n < l, zlx� y� zny2 A V3�C�.
Proposition 3. For 1U n < l=2, we have Ly�zl�1x� y� zny2�ÿ2� zny�

2nzlÿn�� � ÿ�l ÿ n�=n.

èojasiewicz exponent at infinity in C�x; y; z� 83



Proof. Let f � zl�1x� y� zny2�ÿ2� zny� 2nzlÿn� and q � y� zny2 �
�ÿ2� zny� 2nzlÿn� then qyq � 1ÿ 4yzn � 3y2z2n � 4nyzl and qzq � 2ny2znÿ1 �
�ÿ1� yzn � lzlÿn�.

The Newton polygon of qyq�y; z� in the neighborhood of �y; 0� has only one
side D1, his slope is n=1.

Let c be a root of C�T� � 1ÿ 4T n � 3T 2n we consider: gc�X ;Y � �
qyq�Xÿn;X �c� X�� and hc�X ;Y � � X n�1qzq�Xÿn;X�c� X�� then gc�X ;Y � �
1ÿ 4�c� Y�n � 3�c� Y �2n � 4nX lÿn�c� Y� l hc�X ;Y � � 2n�c� Y�nÿ1 �
�ÿ1� �c� Y�n � lX lÿn�c� Y � lÿn�.

If cn 0 1, then the germ fhc � 0g is empty and this case give no maximal
element of E 01;u.

If cn � 1 we consider: gc; c1
�X ;Y� � X nÿlgc�X ;X lÿn�c1 � Y�� and hc; c1

�X ;Y�
� X nÿlhc�X ;X lÿn�c1 � Y ��.

We have gc; c1
�0; 0� � 2ncnÿ1c1 � 4ncl and hc; c1

�0; 0� � 2n�ncnÿ1c1 � lcl�.
For gc; c1

�0; 0� � hc; c1
�0; 0� � 0 we must have 2nc � lcl which is impossible

since n < l=2. Therefore, one of the two germs fgc; c1
� 0g or fgc; c1

� 0g is
empty. Thus �y; u�l ÿ 2nÿ 1�� and �nÿ l;y� are the maximal elements of
E 01;u.

Hence M1;u � minfÿ�l ÿ 2nÿ 1�=n;ÿ�l ÿ n�=ng � ÿ�l ÿ n�=n and N1;u �
minfÿ�l � 1�=�2n� 1�;ÿ�l ÿ n�=ng � ÿ�l ÿ n�=n, hence Ly� f � � minfÿl=�n� l�;
ÿ�l ÿ n�=ng � ÿ�l ÿ n�=n.

Remark. Theorem 8 shows that for 1U n < l=2, zl�1x� y� zny2�ÿ2� zny
� 2nzlÿn� A V3�C�.

Proposition 4. For 1U n < l=2 and k V 2, we have Ly�zl�1�zÿ 1�kx� y�
zny2�ÿ2� zny� 2nzlÿn�� � minfÿ�l ÿ n�=n; k=�1ÿ k�g.

Proof. Let f � zl�1�zÿ 1�kx� y� zny2�ÿ2� zny� 2nzlÿn�.
Let L0 � inffL� f ;c�; c � �x; y; z� A A; z! 0g and L1 � inffL� f ;c�; c �

�x; y; z� A A; z! 1g.
As in Proposition 1 we can compute L1 � k=�1ÿ k�, as in Proposition 3 we

can compute L0 � ÿ�l ÿ n�=n and Ly� f � � minfL0;L1g.

Remark. Theorem 8 shows that for 1U n < l=2 and k V 2, zl�1�zÿ 1�kx�
y� zny2�ÿ2� zny� 2nzlÿn� B V3�C�.

Remark. For f A Wn�C�, we have: Ly� f � A Q cf. [CK2].

Proof of Theorem 4. Let f A ~FVW3�C�nV3�C�, by Theorem 8, p has a
root z1 such that qyq�y; z1� A C �y�nC �. The Case 1 of Theorem 7 implies
Ly� f � < ÿ1.

Conversely, Proposition 4 shows that for every rational number r < ÿ1 there
exists f A ~FVW3�C�nV3�C� such that Ly� f � � r.
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Proof of Theorem 5. Let f A ~FVV3�C�, Theorem 7 implies that Ly� f � A
�ÿy;ÿ1=2�U f0g. Conversely, Proposition 1 and Proposition 3 show that for
every rational number r < ÿ1=2, r0ÿ1 there exists f A ~FVV3�C� such that
Ly� f � � r.
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