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LOJASIEWICZ EXPONENT AT INFINITY IN Clx,y,z]
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Abstract

We consider the set # = {p(z)x+q(y,z),p € C[zZ]\{0},q € C[y,z]}. We connect
algebraic properties of a polynomial f € Z, such that f'is a variable in C[x,y,z] or f'is a
tame variable in C[z][x,y] with the Lojasiewicz exponent at infinity of . We compute
this exponent for some polynomials of 7.

1. Introduction

Let 4 be a commutative ring (in this paper 4 will be C or C[z]) and let

A" = A[x|,...,x,] be the 4-algebra of polynomials in » indeterminates. We say
that an automorphism ¢ of the A-algebra A" is triangular if, for all i, o(x;) =
aix;i + Pi(xit1,...,x,) where a; is a unit in 4 and P;€ A[xiy1,...,X,]. An

automorphism is fame if it is in the subgroup generated by affine and triangular
automorphisms. We denote by V,(4) the set of polynomials of 4" which are
components of an automorphism of A", we call them variables. In a same way,
we denote by AV, (A4) (resp. BV,(A), resp. TV,(A4)) the set of affine (resp. tri-
angular, resp. tame) variables of A" ie. components of an affine (resp. trian-
gular, resp. tame) automorphism.

For a polynomial f € C|xi,...,x,], we consider grad f = (df/0xy,...,
of /0x,). We denote by W,(C) the set of polynomials of C" without critical
value (ie. such that grad f is nowhere vanishing).

If f e W,(C), one defines the Zojasiewicz exponent at infinity, L., (f), to be
the supremum of the set

{veR|34 >0,3B>0,Yxe C", if |x| > B, then A|x||" < ||grad f(x)||}

This original analytic definition is equivalent to the following more algebraic one
(cf. [PZ] 2.1). We set /" = { € (C{t,t7'})";0rd(¢) < 0}, where ord(}) is the
t-adic valuation of . Let f e W,(C), for Y € /", we set:

_ord(grad f)(y)
L(f, )= T ord(y)

We have: L, (f) =inf{L(f,y);y e o/"}.
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For an indeterminate x = x;, we define the x-partial Lojasiewicz exponent of
S e Wy(C) as LE(f) = inf{L(f, )i € '} where o = { = (), o, € "
ord(y;) = 0}.

When n =3, we set x=x1, ¥ =X, z=x3, &/ =.o/> and o, = sz/f

For a polynomial f € W,(C), the number L. (f) has an algebraic sig-
nificance. Precisely, we have the following two theorems (cf. [N] Theorem 0.4
for the equality in 1) of Theorem 1, cf. [CK1] Theorem 10.2 for Theorem 1 and
cf. [H] Proposition 1.5.1 and [CK1] Remark 11.4 for Theorem 2):

THEOREM 1. Let f € W,(C), the following assumptions are equivalent:
1) f e a(C) =Tr(C),
2) Lo(f) > -1

THEOREM 2. We have: L. (W,(C))= Q\{-1}.

In the three dimensional case, the authors of [PZ] exhibit a family 2
TV,(CJz]) such that L, (#) = Q. This shows that Theorem 1, Theorem 2 can
not be extended to this case. Modulo a permutation of coordinates 2 = {zx +
y —3p2Hlz20 4 23tz g e N\{0}}. In spite of this negative observation,
we try to find a relation between algebraic properties of a polynomial of C 3l and
its Lojasiewicz exponent at infinity. We restrict our study to the family # =
BV,(C(z))NClx,y,z] because for f € # there exists criteria to check f € V3(C)
and f € TV5(C[z]). We have: 2 = #. For f = p(z)x+ q(y,z) € F, we set f =
p(z)x+ ¢(y,z) where ¢ is the remainder of the division of ¢ by p in C[y][z].
We remark that / is the image of f by 7= (x+ (3(,2) — q(y,2)p(z) "', »,2)
which is a triangular automorphism of Clx,y,z]. We have: P = {zx +y} and
7 ={p(z2)x+4q(y,z),p e Clz],q € Cly,z];deg. ¢ < deg p} = 7.

In section 2, we prove the following result:

THEOREM 3. Let f e FNW;5(C), the following assumptions are equivalent:

) £ e TV(CE),

2) Lo (f)=0.

Theorem 3 shows that for f e # N W3(C) the number L. (f) contains an
algebraic information. This information is not directly attainable, it appears
with the help of the map f — f. In other words, it is not attached to f but to

the orbit of f under the action of triangular automorphisms of Clx,y,z].
In section 3, we make some computations to prove the following results:

THEOREM 4. We have: L..(Z N W3(C)\V3(C)) = QN]—w0, —1].
THEOREM 5. We have: L..(Z NV3(C))U{—1} = QN (]—o0,—1/2[U{0}).

Theorem 4 and Theorem 5 can be compared with Theorem 2. The fol-
lowing question is still open:
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QuEsTION 1. Does there exist f € % N W3(C) such that L. (f) = —1?

Using only Lojasiewicz exponent and the map f +— f, we can not dif-
ferentiate variables from non-variables. However, this is possible with help of
y-partial Lojasiewicz exponent, in fact we have:

THEOREM 6. Let fe€ F NW5(C), the following assumptions are equivalent:
1) feVs(C),
2) L(f) = 0.

It would be interesting to connect L. (f) to the property f € TV3(C). But
we know nothing about this property, for example the following two questions
are open:

QuesTION 2. Do we have TV3(C) = V3(C)?

QuEsTION 3. Let Z1(C) be the set of component of an automorphism o of
Clx,y,z] such that o(z) =z. Do we have TV3(C)NZI(C) = TV>(Clz])?

An affirmative answer to Question 2 would give a negative answer to
Question 3.

2. Proofs

Here is our main result:

TurOoREM 7. Let f € Z NW3(C), the following assumptions are equivalent:
1) /€ AVa(CL),

2) L.(f) =0,

3) L, (f) = —1)2.

Proof. We set f = p(z)x+q(y,2).

We have: grad f = (p(2), 8,4(7.2),p'(:)x + 0-q(.2)).

1) = 2): We can write ¢(y,z) = a(z)y + b(z) with a,be C[z] and ged(a,p)
=1. If peC[z]\C (resp. pe C\{0}), then there ex1sts o € C such that
p'(z1) #0 (resp. z; =0). We consider y(1) = (—p'(z1) ' 0-q(t7!,21), 7" ,21) € o
(resp. Y(f) = (+71,0,0) € .«7), then (grad f)(y(¢ )) (p(z1), (zl) 0). Therefore,
ord(grad f)(¥(#)) = 0 and Lo (f) < L(/,¥) <

Now, let y(¢) = (x(2),p(¢),z(t)) € o/. Suppose ord(grad f)(¥(t)) > 0, then
lim, o p(z(#)) = 0 and lim,y a(z(¢)) = 0 which is impossible since gcd(a,p) = 1.
Therefore, ord(grad f)(y(¢)) <0 and L(f,y) > 0. Hence L,,(f) = 0 and finally

2) = 3): Obvious.

3) = 1): We suppose that f ¢ AV>(C[z]) and we prove L. (f) < —1/2.
There are two cases:
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CaSE 1. There exists a root z; of p such that d,q(y,z1) € C[y]\C".

There exists y; € C such that 0,q(y;,z1) =0. Let (y(2),z(?)) € e (C{1})?
a parametrization of the germ 0,¢(p,z) =0 in the neighborhood of (y,z1) and
let x(t) = —p'(z(¢ )) Y0.q(y(1),z(2)). We have: ord(x(¢)) <0 (if ord(x(r)) >0,
then (x(0),y1,z1) is a critical point of f), thus ¥(¢) = (x(¢),»(¢),z(?)) € <4,. We
have: ord(grad f)(y(¢)) = ord(p(t)) =/ ord(z(t) — z;) where [ is the multiplicity
of z; in p. On the other hand, ord(y(z)) = ord(x(¢)) = ord d.q(y(¢),z(¢)) —
ord p'(z(t) —z1) = —(I— 1) ord z(z). Hence L (f) < L(f, ) <I/(1-1) < —

CastE 2. For every root z; of p, we have 0,¢(y,z1) € C* and d+1:=
deg,(q) > 1.

We write p(z) = z Hikzl(z —z)", with z;€ C and [; e N\{0}. Let A€ C[ ]
be the term of degree d in 0,q € C[z][y], and let a; be the Vdmshlng order of z; in
Agjfor 1 <i<k. Ifl];<a; forall 1l <i<k, then deg(p) = Zl i < Z 1 a; <
deg.(A4) < deg.(q) < deg(p), which is impossible. Therefore, there exists ie
{1,...,k} such that ¢; </. From now on, we suppose i =1 and z; = 0.

We write 0,q(y,z) = Zl 0 Ai(z)y" and let v; =v,(4;) e N. We have: vy =0
and v; > 1 for 1 <i<d. Let A, be the first side of the Newton polygon of
dyq(y,z) in the neighborhood of (c0,0) and let n/m be its slope (see the picture
below). In particular, n/m < a;/d and since m < d, we have n < a; <.

Let I = {i|(i,v;) e A1}, for iel we set ¢; = (z7"4;)._,. Let ce C be such
that 3, ;cic =0, since vp =0 and v; > 1 for all i > 1, we have ¢ # 0.

Vi
ay
AV}
n
A X
Al
S ]
O m d 1

1+m/n

We set g(X,Y) =d,g(X ", X"(c+ Y)) =% 4(X™(c+ Y))X ™. By defini-
tion of n and m, we have g(X,Y) e C[X,Y]. By definition of ¢; and ¢ we have
g(0,Y)=>",.,¢ci(c+ Y)" # 0 and ¢g(0,0) =0. Thanks to Puiseux’s theorem (cf.
[BK] or [C]), there exists ue N* and f € C{t} such that g(*,f(¢)) =0 in C{r}.
We consider (¢ ) (x(2),»(0),z(t)) where z(t) =t""(c+ p(¢)), y(t) =" and
x(1) = —p'(2(2)) " .q((1), 2(¢ )). Since ord(y(f)) < 0, we have: Y € o/

Since 2,q(»(1),=(1)) = 911 (1) =0 and p/(R(0)x() + 8.a(3(0. (1) = 0. we
have: ord(grad £)((1)) = ord(p(=(1))) = hum.

We write 0.¢(y,z) = Zd 1 Bi(z)y'" and we set w; =uv.(B;)eN. The set
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{(i,w;);i = 1, B; # 0} is the image of {(i,v;);i > 1, 4; # 0} by the translation 7 =
(1,—1). Let A] the image by 7 of A;, A] meets the (O,i)-axis at (1+ m/n,0).
The order of {B;(z(1))y(r)'|(i,w;) € Al} is equal to the order of y(r)' ™" je.
—un(l +m/n) = —u(n+m), therefore ord(d.q(z(?),y(?))) = —u(m+m) (ele-
ments of {B;(z(¢))y(¢)'|(i,w;) ¢ Aj} have a bigger order). On the other hand
ord(p'(z(¢))) = um(l; — 1). Hence:
ord(x(r)) = —ord(p'(z(1))) + ord(-q( (1), 2(1)))
> —um(l — 1) —u(n+m) = —u(ml + n)
ord(y/(z)) = min{ord(x(z)), ord(y()), ord(z(1)) }
> min{—u(ml, + n), —un} = —u(ml, + n).
Finally (since n < /;) we have:

ord(grad f)(¥(1)) uml, m
Lalf) = =0y = utmham ~ myi =~ /?*

The proof of Theorem 7 is complete.

Proof of Theorem 3. Using Theorem 7, it is enough to prove equivalence
between f € TV>2(Clz]) and f e AV>(Clz]). Since f € BV>(C(z)) this can be
straight inferred from [EV] Proposition 2 which is a consequence of amalgamated
structure of Autc(,) C(z ) (cf, for example [N] Theorem 3.3).

THEOREM 8. Let f = p(z)x+ ¢q(y,z) € F N W3(C), the following assumptions
are equivalent:

1) Every root zy of p is such that d,q(y,z1) € C",

2) f eV (Clz)),

3) fels(C).

Proof. 1) = 2): Assumption 1) is equivalent to say that g(y,z) = > ¢i(z)y’
with ¢ (resp. ¢; (i >2)) unit (resp. nilpotent) modulo pCjz][y] and the Russell-
Sathaye’s theorem (cf. [R] Proposition 2.2) implies f € V>(Clz]).

2) = 3): Obvious.

3)=1): Let Z={z,...,2z,} be the set of roots of p. For all e C, the
polynomlal f—tis 2 variable thus the surface S, = {(x,y,z) € C*; f(x,y,2) = 1}
is isomorphic to C? and y(S, ) 72(C*) =1 (Euler’s characterlstlcs)

The map (y,z) — (p(z)"'(t—q(y,2)),y,z) is a homeomorphism between
C\(CxZ) and S\(C?x Z), thus x(S;\(C*? x Z)) = x(C*\(C x Z)). Since
2(S) = 1(SNC? x 2)) +2(SN(C* x Z))  and  #(C?) = ((CA\(C x Z)) +
%(C x Z), we have: y(S;N(C*x Z)) = y(C x Z)=y(Z) =n.

On the other hand x(S,N (C? x Z)) = 327", x(q(,z;) = t) and for a generic ¢
we have x(S,N(C?x Z)) =", deg(q(»,z)). Finally 7, deg(q(y,z)) = n.
For 1 <i < n, we have deg(q(y,z;)) > 1 (if there exists i such that g(y,z;) =te C



LOJASIEWICZ EXPONENT AT INFINITY IN C[x,y,z] 81

then z — z; divises f — ¢ which is impossible) hence deg(¢(y,z;)) =1 for all 1 <
i <n which proves 1).

Proof of Theorem 6. Suppose f € V3(C) and let y(¢) = (x(¢),y(¢),z(¢)) €

Ay
: Suppose ord(grad f)(y(¢)) > 0, then lim, ¢ p(z(¢)) =0 ie lim, o z(2) = 2

where z; is a root of p. Since ord(y) >0, we have 0 = lim,_¢ d,q(y(¢),z(¢)) =
dyq(»(0),z1) which contradicts Theorem 8. Therefore, ord(grad f)(¥(7)) <0
and L(f,¥)>0. Hence L% (f)>0.

Now, suppose f ¢ V3(C), by Theorem 8, p has a root z; such that d,¢(y,z;)
e C[y]\C*. The Case 1 of Theorem 7 implies L} (f) < —1.

Examples. L (z*x+z+y?) =2, L, (z>x+y) =0 and L} (zx+y) = 1.

3. Computations

In this section, we explain how to compute L. (f) for f € 7.
Let /'=p(z)x+q(y,z) e 7.

If f e AV5(C[z]), then L (f)=0.

Now suppose f ¢ AV>(Clz]), we have L, (f) <0 thus:

Lo(f) = int{ (7 )b & ofstim (erad )W) =0} (2.

We write p(z) =z Hl-k:1(2 —z)", with z;e C and [; € N\{0}.

Let L; =inf{L(f,¥);¢ = (x,y,2) e /,z — z;} for 1 <i <k, since (x) we
have: L, (f) =min{L;1 <i < k}.

To compute L; (for example) one can suppose z; =0. Let / =1/ = v.(p(2)).

LemMa (The way to choose x(¢)). Let &, = {(ord 0,q(y,z),ord d.q(y,z));
ord(y) = a,ord(z) = b},
D = {(ot) € Bupisi— (1= )b < —1},
By ={(h ) € Eupsu— (1= 1)b < —1},
By ={(hu) € bupiu—(1-1)b>—1}.
1. If a< 0, we set:
M, , = min{min{/b, A, u}/a; (A, ) € 64} and

min{/b, A} )
min{x — (I — 1)b,a}’

- s}

2. If a >0, we set:
M, , = min{—min{/b, A, u}; (A, 1) € Dy »} and
Nup =min{N,,, N, } with
N}, = —min{Z, (I - 1)b— 1} and
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_ . min{/b,A} _
Na,b_ n{ﬂ_(l_l)bv(ﬂwu)ega,h}'

Then L; = min{M, p,Nyp;a€ Z,be N\{0}}.

Proof. Let y = (x,y,z) € o/ be such that ord(y) =ae€ Z and ord(z) =b e
N\{0}. Let (A, u)= (ord 0,q(y,z),ord 0.¢q(y,z)) We have:
B min{/b, A,ord(p’(z)x + d.q(y,2))}
Lifw) = min{ord(x),a} '

1. If a <0, there are two cases:

1.1. If ord(x) > u— (I —1)b, then
min{/b, A, u} - min{/b, A, u}
min{ord(x),a} — a

L(f¥) =

with equality, for example, when x = 0.
1.2. If ord(x) < u— (I —1)b, then

min{/b, 1, ord(p'(z)x + d.q(y,2))} min{/b, A}

L(f. W) = min{ord(x), a} = min{u— (1 1)b,a}

with equality, for example, when x = —0d.q(y,z)/p'(z2).

2. If a >0, then ord(x) <O.
2.1. The case ord(x) > u — (I — 1)b can occur if and only if (4,4) € Z,
and then

_ min{/b, A, u}

L(f.y) = T(x) > —min{/b, A, u}

with equality, for example, when x = ¢!
2.2. The case ord(x) < u— (I — 1)b can be dealt with in the same way as
when a <0 if (4,u) € 4,,, but if (1, u) € %, ,, then

min{4, (/ — 1)b + ord(x)}
ord(x)

with equality, for example, when x = ¢!
This prove that L = min{M, s, N, p;a € Z,b e N\{0}}.

L(f, W) = > —min{4, (I — 1)b — 1}

Remark. In the lemma, we can change &,, to the set of his maximal
elements.

PROPOSITION 1. For > 2, we have L. (z'x+ y*+z)=—1/(I—1).

Proof. Let f=z/x+y*+z and ¢ =y>+z then 0, =2y and 0.q = 1.
We have: &, = {(a,0)} then M,;, =0 and
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N min{/b, a}
“" " min{(1 — 1)b,a}
Hence L, (f)=—-1/(I-1).

Remark. 1If 0,q(y,0) € C[y]\C", we write 0,q4(y,z) = S, Ai(z)y" and v; =
v.(A;) e N. We consider the sides A; (1 <i<k) of the Newton polygon of
0yq(y,z) in the neighborhood of (00,0) and let n;/m; their slopes.

Let &/, =& w,um, M/, =M yym and N/, =N_, um then: L;=
min{Mifu,N;fu;I <i<kueN\{0}}. '

PROPOSITION 2. For 1 <n <1, we have L, (z'x+ y+z"y?) = —1/(l +n).

O m=1

Proof. Let f=y+y*"+xz! and ¢ =y+p?z" then J,g =1+ 2yz" and
0-q = ny*z" 1.

The Newton polygon of d,¢(y,z) in the neighborhood of (c0,0) has only one
side Ay, its slope is n/l.

The unique maximal element of &}, is (o0, —u(n+ 1)), thus M{ , >0 and
Nl = —1](n+ D).

Hence L. (f)=—-1/(n+1).

Remark. Theorem 8 shows that for 1 <n <[, z/x+y+z"y? e V3(C).

, IPI){;)POSIT(IION 3)/ For 1 <n<1/2, we have L, (z'"'x+y+z"y?(=2+4z"y+
nz'™") =—(—n)/n.

2n
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Proof Let f=:zF'x+y+z'9(-24z"y+2nz!™) and q=y+z"y?:
(=2 +z"y +2nz!"") then 0, =1 —4yz" + 3y +4dnyz' and 0.q = 2ny*z""".
(=14 pz" + Izm).

The Newton polygon of d,¢(y,z) in the neighborhood of (c0,0) has only one
side Ay, his slope is n/1.

Let ¢ be a root of C(T)=1—4T"+3T* we consider: ¢.(X,Y)=
2,g(X" X(c+ X)) and h(X,Y)=X"1a.q(X" X(c+X)) then g.(X,Y)=
1—d4(c+ Y)" +3(c+ V)" +4nX""(c+ V) he(X,Y) =2n(c+ Y)" "
(=14 (c+ )"+ X" (c+ 7)™,

If ¢" # 1, then the germ {h. = 0} is empty and this case give no maximal
element of &1 .

If ¢" = 1 we consider: g..,(X,Y) = X""g.(X,X""(c; + Y)) and h. (X, Y)
= X""h (X, X"""(c; + Y)).

We have g, (0,0) = 2nc"'c; +4nc’ and h, ., (0,0) = 2n(nc" ey + Ic!).

For ¢ (0,0) = h. ., (0,0) =0 we must have 2nc = Ic! which is impossible
since n < [/2. Therefore, one of the two germs {g.. =0} or {g., =0} is
empty. Thus (oco,u(/ —2n—1)) and (n—1[ 00) are the maximal elements of
A

b Hence M, ,=min{—(/—-2n—-1)/n,—(I —n)/n} =—(—n)/n and N, =
min{—(/+1)/2n+1),—(I —n)/n} = —( —n)/n, hence L. (f) = min{—1/(n+ 1),
—(I=n)/n} = =(l=n)/n.

Remark. Theorem 8 shows that for 1 <n < 1/2, zFlx+y+ 2"y (=2 + 2"y
+2nzl=") e 13(C).

PROPOSITION 4. For 1 <n < 1/2 and k > 2, we have L, (z""'(z — 1) x + y +
2"y (=2 + 2"y 4+ 2nz'™")) = min{—(/ — n) /n, k/(1 — k)}.

Proof. Let f =z"1(z - l)kx +y 4 2"y (=2 + "y + 2nz' M),

Let Lo=inf{L(f,y);¥ = (x,y,z) e/,z— 0} and L; =inf{L(f,¥);¢¥ =
(x,y,2) € oL,z — 1}.

As in Proposition 1 we can compute L; = k/(1 — k), as in Proposition 3 we
can compute Lo = —(/—n)/n and L, (f) = min{Loy, L,}.

Remark. Theorem 8 shows that for 1 <n < //2 and k > 2, z/*!(z — l)kx+
Y+ 22 (=2 + 2"y + 2nz' ") ¢ V3(C).

Remark. For f e W,(C), we have: L, (f) e Q cf. [CK2].

Proof of Theorem 4. Let f e % NW5(C)\V3(C), by Theorem 8, p has a
root z; such that d,q(y,z1) € C[y]\C*. The Case 1 of Theorem 7 implies
L,(f)<—1.

Conversely, Proposition 4 shows that for every rational number r < —1 there
exists f € # N W5(C)\V3(C) such that L., (f)=r.
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Proof of Theorem 5. Let f € % N V3(C), Theorem 7 implies that L. (f) e
]—00,—1/2[U{0}. Conversely, Proposition 1 and Proposition 3 show that for

every rational number r < —1/2, r# —1 there exists f € # N V3(C) such that

Lo (f)=r.
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