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THE NUMBER OF FUNCTIONS DEFINING

INTERPOLATING VARIETIES

Shigeki Oh'uchi

Abstract

In this paper, we prove that if a disjoint union of a countable number of complex

a½ne subspaces is interpolating for the HoÈrmander algebra, then it can be written as the

common zero set of a� 1 functions in the HoÈrmander algebra, where a is the maximum

number of codimensions of the complex a½ne subspaces. Finally, we prove with an

example in one complex variable that the number a� 1 is lowest.

1. Introduction

Let Xn (n A N , the set of positive integers) be kn-codimensional complex
a½ne subspaces of C n �1U kn U n�, and put a � maxn AN kn. Assume that Xn V
Xn 0 � j for n0 n 0. Let Nn be the orthogonal linear subspaces of Xn, where we
use the canonical inner product hz;wi �Pn

l�1 zl wl on C n. Set Sn � Nn VS2nÿ1,
where S2nÿ1 � fu A C n : juj � 1g. Then Oh'uchi [O] proved the following result:

Theorem A. Let X �6
n AN Xn be an analytic subset of C n consisting of

disjoint complex a½ne subspaces Xn. Let p be a weight function on C n. Then X
is interpolating for Ap�C n� if and only if there exist f1; . . . ; fm A Ap�C n� �mV a�
and constants e;C > 0 such that

X HZ� f1; . . . ; fm��:� fz A C n : f1�z� � � � � � fm�z� � 0g��1:1�
and Xm

j�1

jDu fj�z�jV e exp�ÿCp�z���1:2�

for all u A Sn, z A Xn and n A N .

Here the directional derivative Du f with a vector u � �u1; . . . ; un� A S2nÿ1 is
de®ned by
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Du f �
Xn

l�1

qf

qzl
� ul :

For the terminologies, see §2. It extends the result of Berenstein and Li [BL1,
Theorem 2.5], which deals with the case of kn � n for all n A N .

Here we would like to discuss how many functions in Ap�C n� we need to
have an equality in (1.1). The main result of this paper is as follows:

Main Theorem. Let X �6
n AN

Xn be an analytic subset of C n consisting of
disjoint complex a½ne subspaces Xn. Let p be a weight function on C n. Then X
is interpolating for Ap�C n� if and only if there exist f1; . . . ; fa�1 A Ap�C n� and
constants e;C > 0 such that

X � Z� f1; . . . ; fa�1��1:3�
and Xa�1

j�1

jDu fj�z�jV e exp�ÿCp�z���1:4�

for all u A Sn, z A Xn and n A N .

In §4, we prove that the number a� 1 is lowest by an example in one
complex variable.

2. Preliminaries

We ®x the notation. A plurisubharmonic function p : C n ! �0;y� is called
a weight function if it satis®es

log�1� jzj2� � O�p�z���2:1�
and there exist constants C1;C2 > 0 such that for all z; z 0 with jzÿ z 0jU 1

p�z 0�UC1p�z� � C2:�2:2�

Definition 2.1. Let O�C n� be the ring of all entire functions on C n and let
p be a weight function on C n. Set

Ap�C n� � f f A O�C n�: There exist constants A;B > 0 such that

j f �z�jUA exp�Bp�z�� for all z A C ng:

Then Ap�C n� is a subring of O�C n�. Ap�C n� is often called the HoÈrmander
algebra. The following lemma is easily deduced from (2.1) and (2.2):

Lemma 2.2. Let p be a weight function on C n. Then the followings hold:
(1) C �z1; . . . ; zn�HAp�C n�.
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(2) If f A Ap�C n�, then qf =qzj A Ap�C n� for j � 1; . . . ; n.
(3) f A O�C n� belongs to Ap�C n� if and only if there exists a constant K > 0

such that �
C n
j f j2 exp�ÿKp� dl <y;

where dl denotes the Lebesgue measure on C n.

For the proof, see e.g. [H].

Example 2.3. (1) If p�z� � log�1� jzj2�, then Ap�C n� � C �z1; . . . ; zn�.
(2) If p�z� � jzja �a > 0�, then Ap�C n� is a space of entire functions which

are of order � a and of ®nite type, or which are of order < a.
(3) If p�z� � jIm zj � log�1� jzj2�, then Ap�C n� � Ê 0�Rn�, that is, the space

of Fourier transforms of distributions with compact support on Rn (see e.g. [E]).
(4) When p�z� � expjzja �a > 0�, p is a weight function if and only if aU 1.
In the rest of this paper, p will always represent a weight function.

Definition 2.4. Let X be an analytic subset of C n, and let O�X � be the
space of analytic functions on X. Then we de®ne

Ap�X� � f f A O�X�: There exist constants A;B > 0 such that

j f �z�jUA exp�Bp�z�� for all z A Xg:

Definition 2.5. An analytic subset X in C n is said to be interpolating for
Ap�C n� if the restriction map RX : Ap�C n� ! Ap�X� de®ned by RX � f � � f jX is
surjective.

The semilocal interpolating theorem by [BT] is useful to show an analytic
subset to be interpolating. Let X be given by

X � Z� f1; . . . ; fN� � fz A C n : f1�z� � � � � � fN�z� � 0g
with f1; . . . ; fN A Ap�C n�. Then for e;C > 0, we de®ne

Sp� f ; e;C� � z A C n : j f �z�j �
XN

j�1

j fj�z�j2
 !1=2

< e exp�ÿCp�z��
8<:

9=;;
which is an open neighborhood of X. We recall the semilocal interpolation
theorem of [BT].

Semilocal Interpolation Theorem. Let h be a holomorphic function in
Sp� f ; e;C� such that

jh�z�jUA1 exp�B1p�z��
for all z A Sp� f ; e;C�, where e;C > 0. Then there exist an entire function
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H A Ap�C n�, constants e0;C0;A;B > 0 and holomorphic functions g1; . . . ; gN in
Sp� f ; e0;C0� such that

H�z� ÿ h�z� �
XN

j�1

gj�z�fj�z�

and

jgj�z�jUA exp�Bp�z��
for all z A Sp� f ; e0;C0� and j � 1; . . . ;N. In particular, H � h on the variety
X � Z� f1; . . . ; fN�.

3. The proof of the main theorem

The su½ciency is included in Theorem A. Then we show the necessity.
Let X �6

n AN Xn be an analytic subset of C n consisting of disjoint complex
a½ne subspaces Xn of codimension kn. Put a � supn AN kn. Then we de®ne
f1; . . . ; fa A Ap�C n� by the following lemma, which follows from the proof of the
necessity part of the main theorem in [O, pp. 377±384].

Lemma 3.1. If X is interpolating for Ap�C n�, then there exist a entire
functions f1; . . . ; fa A Ap�C n� and constants e;C > 0 such that

X HZ� f1; . . . ; fa��3:1�
and Xa

j�1

jDu fj�z�jV e exp�ÿCp�z���3:2�

for all u A Sn, z A Xn and n A N .

Next we shall give fa�1. To do it, we need the following lemma:

Lemma 3.2. Let f1; . . . ; fa A Ap�C n� be in Lemma 3.1. Let fXngU fYmg be
the set of all connected components of Z� f1; . . . ; fa�. Then there exist constants
e0;C0 > 0 such that

]fn A N : Xn VW 0jgU 1

for every connected component W of Sp� f ; e0;C0�. Moreover, letting Wn be the
connected component of Sp� f ; e0;C0� including Xn, we have Wn VYm � j for
every m.

Proof. Fix n A N and z A Xn. For j A f1; . . . ; ag and u A Sn, consider the
entire function
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fj;u; z�w� � fj�wu� z�; w A C :

Setting

f 0j;u; z�0� �
d

dw

����
w�0

fj;u; z;

we have Xa

j�1

j f 0j;u; z�0�jV e exp�ÿCp�z��

by (3.2). Hence, for all u A Sn there exists ju A f1; . . . ; ag such that

j f 0ju;u; z�0�jV
e

a
exp�ÿCp�z��:�3:3�

Put

Vu; z � fw A C : fju;u; z�w� � 0g
and

du; z � minf1; dist�0;Vu; znf0g�g; if Vu; znf0g0j,

1; otherwise.

�
Since fju A Ap�C n�, we have

j fju
�zu� z�jUA1 exp�B1p�zu� z��

for some constants A1;B1 > 0 independent of z; u and n. Thus (2.2) implies that
for jwjU 1

j fju;u; z
�w�jUA2 exp�B2p�z��;�3:4�

where A2 � A1 exp�B1C2� and B2 � B1C1. Set

gu; z�w� �
fju;u; z

�w�
w

:

Since fju;u; z has a zero at w � 0 of order one, gu; z is an entire function on C and

gu; z�0� � f 0ju;u; z�0�0 0:�3:5�
By (3.4), on jwj � 1 we have

jgu; z�w�j �
j fju;u; z�w�j
jwj � j fju;u; z�w�jUA2 exp�B2p�z��:

It follows from the Maximum Modulus Theorem that for jwjU 1

jgu; z�w�jUA2 exp�B2p�z��:�3:6�
Then the entire function
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Gu; z�w� � gu; z�w� ÿ gu; z�0�
3A2 exp�B2p�z��

satis®es that Gu; z�0� � 0 and jGu; z�w�j < 1 for jwjU 1. The Schwarz Lemma
implies that jGu; z�w�jU jwj for jwjU 1. In particular, for w0 A Vu; znf0g with
jw0jU 1, we obtain from (3.3) and (3.5)

jw0jV jGu; z�w0�j � gu; z�0�
3A2 exp�B2p�z��
���� ���� � f 0ju;u; z�0�

3A2 exp�B2p�z��
���� ����

V e3 exp�ÿC3p�z��;
where e3 � e=3A2a and C3 � C � B2. Hence,

du; z V e3 exp�ÿC3p�z��:�3:7�
Now we need the following Borel-CaratheÁodory inequality, (cf., e.g., [BG]).

Borel-CaratheÁodory inequality. Let h be a function which is holomorphic in a
neighborhood of jwjUR and has no zero in jwj < R. If h�0� � 1 and 0U jwjU
r < R, then the following estimate follows:

logjh�w�jVÿ 2r

Rÿ r
log max

joj�R
jh�o�j:

Since gu; z�0�0 0, we apply this inequality to h�w� � gu; z�w�=gu; z�0�, R � du; z

and r � du; z=2, to obtain

log
gu; z�w�
gu; z�0�
���� ����Vÿ 2 � �du; z=2�

du; z ÿ du; z=2
log max

joj�du; z

gu; z�o�
gu; z�0�
���� ����

� ÿ2 log max
joj�du; z

gu; z�o�
gu; z�0�
���� ����

for jwjU du; z=2. Then it follows from (3.3), (3.5) and (3.6) that

jgu; z�w�jV jgu; z�0�j max
joj�du; z

gu; z�o�
gu; z�0�
���� ����� �ÿ2

�3:8�

� jgu; z�0�j3 max
joj�du; z

jgu; z�o�j
� �ÿ2

V e4 exp�ÿC4p�z��;
where e4 � e3=a3A2

2 and C4 � 3C � 2B2. Let

d̂z � e3 exp�ÿC3p�z��;
where e3 and C3 are the same as in (3.7). Since d̂z U du; z by (3.7), it follows
from (3.8) that for jwj � d̂z=2
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j fju;u; z
�w�j � jwgu; z�w�jV e5 exp�ÿC5p�z��;

where e5 � e3e4=2 and C5 � C3 � C4. Thus we have proved that for every u A
Sn, there exists ju A f1; . . . ; ag such that

j fju
�wu� z�jV e5 exp�ÿC5p�z��

for jwj � d̂z=2. Hence we have

j f �wu� z�j �
Xa

j�1

j fj�wu� z�j2
 !1=2

�3:9�

V j fju
�wu� z�jV e5 exp�ÿC5p�z��:

Note that the constants e5 and C5 are independent of u; z and n.
For arbitrary n A N and z A Xn, we consider a neighborhood

Un; z � z � wu� z A fzg �Nn : jwjU d̂z

2
; u A Sn

( )
of z in fzg �Nn. For all z A qUn; z, there exists uzÿz A Sn such that

z � d̂z

2
uzÿz � z:

Then it follows from (3.9) that

j f �z�j � f
d̂z

2
uzÿz � z

 !�����
�����V e5 exp�ÿC5p�z��:�3:10�

Let V̂n be the component of Sp� f ; e5;C5� containing Xn. Then it is clear that

V̂n H 6
z AXn

Un; z

by (3.10). Now we claim that for z 0 A Xn 0 and n 00 n,

z 0 B 6
z AXn

Un; z:

In fact, by z we denote the orthogonal projection of z 0 to Xn, so that z 0 A
fzg �Nn. Then there exists uz 0ÿz A Sn such that

z 0 � jz 0 ÿ zjuz 0ÿz � z:

(3.7) implies that

jz 0 ÿ zjV duz 0ÿz
V e3 exp�ÿC3p�z�� � d̂z:

Hence z 0 B Un; z. For ~z A Xnnfzg, it is clear that z 0 B Un; ~z. This proves the
lamma for e0 � e5 and C0 � C5. r
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Proof of the main theorem. De®ne a holomorphic function h in Sp� f ; e0;C0�
by

h�z� � 0; if z A Wn,

1; if z A Sp� f ; e0;C0�n6n AN Wn.

�
Then we have

jh�z�jU 1 � exp�1 � p�z��
for every z A Sp� f ; e0;C0�. Hence it follows from the semilocal interpolation
theorem that there exists an entire function H A Ap�C n� such that HjZ� f1;...; fa�1
hjZ� f1;...; fa�, that is,

H�z� � 0; if z A Xn,

1; if z A Z� f1; . . . ; fa�n6n AN Xn.

�
It is clear that a� 1 functions f1; . . . ; fa, H A Ap�C n� satisfy (1.3) and
(1.4). r

4. The sharpness of a� 1

Finally, we remark that the number `a� 1' in the main theorem is lowest.
We prove this remark by giving an example of an interpolating variety for Ap�C�
which can not write as the zero set of a function in Ap�C�, where p�z� � jzj. Let
X � fzngn AN be a discrete variety in C . Then Nevanlinna's counting function is
de®ned as follows: n�r;X� � ]fn A N : jznjU rg and

N�r;X � �
� r

0

n�t;X� ÿ n�0;X�
t

dt� n�0;X� log r:

For k A N and r > 0, we de®ne

B�r; k : X� � 1

k

X
0<jznjUr

1

zn

� �k

and for r1; r2 > 0

B�r1; r2; k : X � � B�r1; k : X� ÿ B�r2; k : X�:
Then the following proposition which gives the relationship between an entire
function in Ap�C� and its zero set is deduced by the Fourier series method by
Rubel and Taylor [RT]:

Proposition 4.1 (cf. [RT, Theorem 5.2]). Let p be a radical weight of ®nite
order on C , that is, it satis®es p�z� � p�jzj� and

lim
r!y

log p�r�
log r

<y:
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Then there exists f A Ap�C� such that X � Z� f � if and only if
(1) X has ®nite p-density, that is, we have a constant A > 0 satisfying

N�r;X �UAp�r�
for every r > 0.

(2) X is p-balanced, that is, there exists a constant A > 0 such that

jB�r1; r2; k : X�jU Ap�r1�
rk

1

� Ap�r2�
rk

2

for all r1; r2 > 0 and k A N .

Example 4.2. Put X � fngn AN HC . Applying Theorem A (or [BL2,
Corollary 3.5]) to f �z� � sin pz A Aj � j�C�, we know that X is interpolating for
Aj � j�C�. Hence it follows from the main theorem that X can be written as the
common zero set of two entire functions in Aj � j�C�. We shall prove that X can
be written as the zero set of no entire function in Aj � j�C�.

Put k � 1 and r2 � 1=2. Then calculating jB�r; 1=2; 1 : X�j, we have

B r;
1

2
; 1 : X

� ����� ���� �X�r�
n�1

1

n
;

where �r� is the greatest integer not greater than r. Hence there does not exist a
constant A > 0 such that

B r;
1

2
; 1 : X

� ����� ����U Ajrj
r
� A=2

1=2
� 2A

for any r > 0. Thus X does not satisfy the condition (2) in Proposition 4.1, so
that X can be written as a zero set of no entire function in Aj � j�C�.

Finally, the main theorem and this example lead to the following conjecture:

Conjecture. Let X be an interpolating variety for Ap�C n� and let a be the
maximum number of codimentions of all irreducible components of X. Then X can
be written as the common zero set of a� 1 entire functions in Ap�C n�.
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