THE NUMBER OF FUNCTIONS DEFINING INTERPOLATING VARIETIES

Shigeki Oh'uchi

Abstract

In this paper, we prove that if a disjoint union of a countable number of complex affine subspaces is interpolating for the Hörmander algebra, then it can be written as the common zero set of $\alpha+1$ functions in the Hörmander algebra, where α is the maximum number of codimensions of the complex affine subspaces. Finally, we prove with an example in one complex variable that the number $\alpha+1$ is lowest.

1. Introduction

Let $X_{v} \quad\left(v \in \boldsymbol{N}\right.$, the set of positive integers) be k_{v}-codimensional complex affine subspaces of $C^{n}\left(1 \leq k_{v} \leq n\right)$, and put $\alpha=\max _{v \in N} k_{v}$. Assume that $X_{v} \cap$ $X_{v^{\prime}}=\emptyset$ for $v \neq v^{\prime}$. Let N_{v} be the orthogonal linear subspaces of X_{v}, where we use the canonical inner product $\langle z, w\rangle=\sum_{l=1}^{n} z_{l} \bar{w}_{l}$ on C^{n}. Set $S_{v}=N_{v} \cap S^{2 n-1}$, where $S^{2 n-1}=\left\{u \in C^{n}:|u|=1\right\}$. Then Oh'uchi [O] proved the following result:

Theorem A. Let $X=\bigcup_{v \in N} X_{v}$ be an analytic subset of \boldsymbol{C}^{n} consisting of disjoint complex affine subspaces X_{v}. Let p be a weight function on C^{n}. Then X is interpolating for $A_{p}\left(\boldsymbol{C}^{n}\right)$ if and only if there exist $f_{1}, \ldots, f_{m} \in A_{p}\left(\boldsymbol{C}^{n}\right)(m \geq \alpha)$ and constants $\varepsilon, C>0$ such that

$$
\begin{equation*}
X \subset Z\left(f_{1}, \ldots, f_{m}\right)\left(:=\left\{z \in C^{n}: f_{1}(z)=\cdots=f_{m}(z)=0\right\}\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{m}\left|D_{u} f_{j}(\zeta)\right| \geq \varepsilon \exp (-C p(\zeta)) \tag{1.2}
\end{equation*}
$$

for all $u \in S_{v}, \zeta \in X_{v}$ and $v \in \boldsymbol{N}$.
Here the directional derivative $D_{u} f$ with a vector $u=\left(u_{1}, \ldots, u_{n}\right) \in S^{2 n-1}$ is defined by

$$
D_{u} f=\sum_{l=1}^{n} \frac{\partial f}{\partial z_{l}} \cdot u_{l}
$$

For the terminologies, see $\S 2$. It extends the result of Berenstein and Li [BL1, Theorem 2.5], which deals with the case of $k_{v}=n$ for all $v \in \boldsymbol{N}$.

Here we would like to discuss how many functions in $A_{p}\left(C^{n}\right)$ we need to have an equality in (1.1). The main result of this paper is as follows:

Main Theorem. Let $X=\bigcup_{\nu \in N} X_{v}$ be an analytic subset of C^{n} consisting of disjoint complex affine subspaces X_{v}. Let p be a weight function on C^{n}. Then X is interpolating for $A_{p}\left(\boldsymbol{C}^{n}\right)$ if and only if there exist $f_{1}, \ldots, f_{\alpha+1} \in A_{p}\left(\boldsymbol{C}^{n}\right)$ and constants $\varepsilon, C>0$ such that

$$
\begin{equation*}
X=Z\left(f_{1}, \ldots, f_{\alpha+1}\right) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{\alpha+1}\left|D_{u} f_{j}(\zeta)\right| \geq \varepsilon \exp (-C p(\zeta)) \tag{1.4}
\end{equation*}
$$

for all $u \in S_{v}, \zeta \in X_{v}$ and $v \in N$.
In $\S 4$, we prove that the number $\alpha+1$ is lowest by an example in one complex variable.

2. Preliminaries

We fix the notation. A plurisubharmonic function $p: \boldsymbol{C}^{n} \rightarrow[0, \infty)$ is called a weight function if it satisfies

$$
\begin{equation*}
\log \left(1+|z|^{2}\right)=O(p(z)) \tag{2.1}
\end{equation*}
$$

and there exist constants $C_{1}, C_{2}>0$ such that for all z, z^{\prime} with $\left|z-z^{\prime}\right| \leq 1$

$$
\begin{equation*}
p\left(z^{\prime}\right) \leq C_{1} p(z)+C_{2} \tag{2.2}
\end{equation*}
$$

Definition 2.1. Let $\mathcal{O}\left(\boldsymbol{C}^{n}\right)$ be the ring of all entire functions on \boldsymbol{C}^{n} and let p be a weight function on \boldsymbol{C}^{n}. Set

$$
\begin{aligned}
A_{p}\left(\boldsymbol{C}^{n}\right)= & \left\{f \in \mathcal{O}\left(\boldsymbol{C}^{n}\right): \text { There exist constants } A, B>0\right. \text { such that } \\
& \left.|f(z)| \leq A \exp (B p(z)) \text { for all } z \in \boldsymbol{C}^{n}\right\} .
\end{aligned}
$$

Then $A_{p}\left(\boldsymbol{C}^{n}\right)$ is a subring of $\mathcal{O}\left(\boldsymbol{C}^{n}\right) . A_{p}\left(\boldsymbol{C}^{n}\right)$ is often called the Hörmander algebra. The following lemma is easily deduced from (2.1) and (2.2):

Lemma 2.2. Let p be a weight function on \boldsymbol{C}^{n}. Then the followings hold: (1) $\boldsymbol{C}\left[z_{1}, \ldots, z_{n}\right] \subset A_{p}\left(\boldsymbol{C}^{n}\right)$.
(2) If $f \in A_{p}\left(\boldsymbol{C}^{n}\right)$, then $\partial f / \partial z_{j} \in A_{p}\left(\boldsymbol{C}^{n}\right)$ for $j=1, \ldots, n$.
(3) $f \in \mathcal{O}\left(\boldsymbol{C}^{n}\right)$ belongs to $A_{p}\left(\boldsymbol{C}^{n}\right)$ if and only if there exists a constant $K>0$ such that

$$
\int_{C^{n}}|f|^{2} \exp (-K p) d \lambda<\infty,
$$

where $d \lambda$ denotes the Lebesgue measure on \boldsymbol{C}^{n}.
For the proof, see e.g. $[\mathrm{H}]$.
Example 2.3. (1) If $p(z)=\log \left(1+|z|^{2}\right)$, then $A_{p}\left(\boldsymbol{C}^{n}\right)=\boldsymbol{C}\left[z_{1}, \ldots, z_{n}\right]$.
(2) If $p(z)=|z|^{a}(a>0)$, then $A_{p}\left(\boldsymbol{C}^{n}\right)$ is a space of entire functions which are of order $=a$ and of finite type, or which are of order $<a$.
(3) If $p(z)=|\operatorname{Im} z|+\log \left(1+|z|^{2}\right)$, then $A_{p}\left(\boldsymbol{C}^{n}\right)=\hat{\delta}^{\prime}\left(\boldsymbol{R}^{n}\right)$, that is, the space of Fourier transforms of distributions with compact support on \boldsymbol{R}^{n} (see e.g. [E]).
(4) When $p(z)=\exp |z|^{a} \quad(a>0), p$ is a weight function if and only if $a \leq 1$. In the rest of this paper, p will always represent a weight function.

Definition 2.4. Let X be an analytic subset of \boldsymbol{C}^{n}, and let $\mathcal{O}(X)$ be the space of analytic functions on X. Then we define

$$
\begin{aligned}
A_{p}(X)= & \{f \in \mathcal{O}(X) \text { : There exist constants } A, B>0 \text { such that } \\
& |f(z)| \leq A \exp (B p(z)) \text { for all } z \in X\} .
\end{aligned}
$$

Definition 2.5. An analytic subset X in \boldsymbol{C}^{n} is said to be interpolating for $A_{p}\left(\boldsymbol{C}^{n}\right)$ if the restriction map $R_{X}: A_{p}\left(\boldsymbol{C}^{n}\right) \rightarrow A_{p}(X)$ defined by $R_{X}(f)=\left.f\right|_{X}$ is surjective.

The semilocal interpolating theorem by $[\mathrm{BT}]$ is useful to show an analytic subset to be interpolating. Let X be given by

$$
X=Z\left(f_{1}, \ldots, f_{N}\right)=\left\{z \in \boldsymbol{C}^{n}: f_{1}(z)=\cdots=f_{N}(z)=0\right\}
$$

with $f_{1}, \ldots, f_{N} \in A_{p}\left(\boldsymbol{C}^{n}\right)$. Then for $\varepsilon, C>0$, we define

$$
S_{p}(f ; \varepsilon, C)=\left\{z \in \boldsymbol{C}^{n}:|f(z)|=\left(\sum_{j=1}^{N}\left|f_{j}(z)\right|^{2}\right)^{1 / 2}<\varepsilon \exp (-C p(z))\right\},
$$

which is an open neighborhood of X. We recall the semilocal interpolation theorem of [BT].

Semilocal Interpolation Theorem. Let h be a holomorphic function in $S_{p}(f ; \varepsilon, C)$ such that

$$
|h(z)| \leq A_{1} \exp \left(B_{1} p(z)\right)
$$

for all $z \in S_{p}(f ; \varepsilon, C)$, where $\varepsilon, C>0$. Then there exist an entire function
$H \in A_{p}\left(\boldsymbol{C}^{n}\right)$, constants $\varepsilon_{0}, C_{0}, A, B>0$ and holomorphic functions g_{1}, \ldots, g_{N} in $S_{p}\left(f ; \varepsilon_{0}, C_{0}\right)$ such that

$$
H(z)-h(z)=\sum_{j=1}^{N} g_{j}(z) f_{j}(z)
$$

and

$$
\left|g_{j}(z)\right| \leq A \exp (B p(z))
$$

for all $z \in S_{p}\left(f ; \varepsilon_{0}, C_{0}\right)$ and $j=1, \ldots, N$. In particular, $H=h$ on the variety $X=Z\left(f_{1}, \ldots, f_{N}\right)$.

3. The proof of the main theorem

The sufficiency is included in Theorem A. Then we show the necessity.
Let $X=\bigcup_{v \in N} X_{v}$ be an analytic subset of C^{n} consisting of disjoint complex affine subspaces X_{v} of codimension k_{v}. Put $\alpha=\sup _{v \in N} k_{v}$. Then we define $f_{1}, \ldots, f_{\alpha} \in A_{p}\left(\boldsymbol{C}^{n}\right)$ by the following lemma, which follows from the proof of the necessity part of the main theorem in [O, pp. 377-384].

Lemma 3.1. If X is interpolating for $A_{p}\left(\boldsymbol{C}^{n}\right)$, then there exist α entire functions $f_{1}, \ldots, f_{\alpha} \in A_{p}\left(\boldsymbol{C}^{n}\right)$ and constants $\varepsilon, C>0$ such that

$$
\begin{equation*}
X \subset Z\left(f_{1}, \ldots, f_{\alpha}\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{\alpha}\left|D_{u} f_{j}(\zeta)\right| \geq \varepsilon \exp (-C p(\zeta)) \tag{3.2}
\end{equation*}
$$

for all $u \in S_{v}, \zeta \in X_{v}$ and $v \in N$.
Next we shall give $f_{\alpha+1}$. To do it, we need the following lemma:
Lemma 3.2. Let $f_{1}, \ldots, f_{\alpha} \in A_{p}\left(\boldsymbol{C}^{n}\right)$ be in Lemma 3.1. Let $\left\{X_{\nu}\right\} \cup\left\{Y_{\mu}\right\}$ be the set of all connected components of $Z\left(f_{1}, \ldots, f_{\alpha}\right)$. Then there exist constants $\varepsilon_{0}, C_{0}>0$ such that

$$
\sharp\left\{v \in \boldsymbol{N}: X_{v} \cap W \neq \emptyset\right\} \leq 1
$$

for every connected component W of $S_{p}\left(f ; \varepsilon_{0}, C_{0}\right)$. Moreover, letting W_{v} be the connected component of $S_{p}\left(f ; \varepsilon_{0}, C_{0}\right)$ including X_{v}, we have $W_{v} \cap Y_{\mu}=\emptyset$ for every μ.

Proof. Fix $v \in N$ and $\zeta \in X_{v}$. For $j \in\{1, \ldots, \alpha\}$ and $u \in S_{v}$, consider the entire function

$$
f_{j, u, \zeta}(w)=f_{j}(w u+\zeta), \quad w \in \boldsymbol{C}
$$

Setting

$$
f_{j, u, \zeta}^{\prime}(0)=\left.\frac{d}{d w}\right|_{w=0} f_{j, u, \zeta}
$$

we have

$$
\sum_{j=1}^{\alpha}\left|f_{j, u, \zeta}^{\prime}(0)\right| \geq \varepsilon \exp (-C p(\zeta))
$$

by (3.2). Hence, for all $u \in S_{v}$ there exists $j_{u} \in\{1, \ldots, \alpha\}$ such that

$$
\begin{equation*}
\left|f_{j_{u}, u, \zeta}^{\prime}(0)\right| \geq \frac{\varepsilon}{\alpha} \exp (-C p(\zeta)) \tag{3.3}
\end{equation*}
$$

Put

$$
V_{u, \zeta}=\left\{w \in \boldsymbol{C}: f_{j_{u}, u, \zeta}(w)=0\right\}
$$

and

$$
d_{u, \zeta}= \begin{cases}\min \left\{1, \operatorname{dist}\left(0, V_{u, \zeta} \backslash\{0\}\right)\right\}, & \text { if } V_{u, \zeta} \backslash\{0\} \neq \emptyset \\ 1, & \text { otherwise }\end{cases}
$$

Since $f_{j_{u}} \in A_{p}\left(\boldsymbol{C}^{n}\right)$, we have

$$
\left|f_{j_{u}}(z u+\zeta)\right| \leq A_{1} \exp \left(B_{1} p(z u+\zeta)\right)
$$

for some constants $A_{1}, B_{1}>0$ independent of ζ, u and v. Thus (2.2) implies that for $|w| \leq 1$

$$
\begin{equation*}
\left|f_{j_{u}, u, \zeta}(w)\right| \leq A_{2} \exp \left(B_{2} p(\zeta)\right) \tag{3.4}
\end{equation*}
$$

where $A_{2}=A_{1} \exp \left(B_{1} C_{2}\right)$ and $B_{2}=B_{1} C_{1}$. Set

$$
g_{u, \zeta}(w)=\frac{f_{j_{u}, u, \zeta}(w)}{w}
$$

Since $f_{j_{u}, u, \zeta}$ has a zero at $w=0$ of order one, $g_{u, \zeta}$ is an entire function on \boldsymbol{C} and

$$
\begin{equation*}
g_{u, \zeta}(0)=f_{j_{u}, u, \zeta}^{\prime}(0) \neq 0 \tag{3.5}
\end{equation*}
$$

By (3.4), on $|w|=1$ we have

$$
\left|g_{u, \zeta}(w)\right|=\frac{\left|f_{j_{u}, u, \zeta}(w)\right|}{|w|}=\left|f_{j_{u}, u, \zeta}(w)\right| \leq A_{2} \exp \left(B_{2} p(\zeta)\right)
$$

It follows from the Maximum Modulus Theorem that for $|w| \leq 1$

$$
\begin{equation*}
\left|g_{u, \zeta}(w)\right| \leq A_{2} \exp \left(B_{2} p(\zeta)\right) \tag{3.6}
\end{equation*}
$$

Then the entire function

$$
G_{u, \zeta}(w)=\frac{g_{u, \zeta}(w)-g_{u, \zeta}(0)}{3 A_{2} \exp \left(B_{2} p(\zeta)\right)}
$$

satisfies that $G_{u, \zeta}(0)=0$ and $\left|G_{u, \zeta}(w)\right|<1$ for $|w| \leq 1$. The Schwarz Lemma implies that $\left|G_{u, \zeta}(w)\right| \leq|w|$ for $|w| \leq 1$. In particular, for $w_{0} \in V_{u, \zeta} \backslash\{0\}$ with $\left|w_{0}\right| \leq 1$, we obtain from (3.3) and (3.5)

$$
\begin{aligned}
\left|w_{0}\right| \geq\left|G_{u, \zeta}\left(w_{0}\right)\right| & =\left|\frac{g_{u, \zeta}(0)}{3 A_{2} \exp \left(B_{2} p(\zeta)\right)}\right|=\left|\frac{f_{j_{u}, u, \zeta}^{\prime}(0)}{3 A_{2} \exp \left(B_{2} p(\zeta)\right)}\right| \\
& \geq \varepsilon_{3} \exp \left(-C_{3} p(\zeta)\right)
\end{aligned}
$$

where $\varepsilon_{3}=\varepsilon / 3 A_{2} \alpha$ and $C_{3}=C+B_{2}$. Hence,

$$
\begin{equation*}
d_{u, \zeta} \geq \varepsilon_{3} \exp \left(-C_{3} p(\zeta)\right) \tag{3.7}
\end{equation*}
$$

Now we need the following Borel-Carathèodory inequality, (cf., e.g., [BG]).
Borel-Carathèodory inequality. Let h be a function which is holomorphic in a neighborhood of $|w| \leq R$ and has no zero in $|w|<R$. If $h(0)=1$ and $0 \leq|w| \leq$ $r<R$, then the following estimate follows:

$$
\log |h(w)| \geq-\frac{2 r}{R-r} \log \max _{|\omega|=R}|h(\omega)|
$$

Since $g_{u, \zeta}(0) \neq 0$, we apply this inequality to $h(w)=g_{u, \zeta}(w) / g_{u, \zeta}(0), R=d_{u, \zeta}$ and $r=d_{u, \zeta} / 2$, to obtain

$$
\begin{aligned}
\log \left|\frac{g_{u, \zeta}(w)}{g_{u, \zeta}(0)}\right| & \geq-\frac{2 \cdot\left(d_{u, \zeta} / 2\right)}{d_{u, \zeta}-d_{u, \zeta} / 2} \log \max _{|\omega|=d_{u, \zeta}}\left|\frac{g_{u, \zeta}(\omega)}{g_{u, \zeta}(0)}\right| \\
& =-2 \log \max _{|\omega|=d_{u, \zeta} \mid}\left|\frac{g_{u, \zeta}(\omega)}{g_{u, \zeta}(0)}\right|
\end{aligned}
$$

for $|w| \leq d_{u, \zeta} / 2$. Then it follows from (3.3), (3.5) and (3.6) that

$$
\begin{align*}
\left|g_{u, \zeta}(w)\right| & \geq\left|g_{u, \zeta}(0)\right|\left(\max _{|\omega|=d_{u, \zeta}}\left|\frac{g_{u, \zeta}(\omega)}{g_{u, \zeta}(0)}\right|\right)^{-2} \tag{3.8}\\
& =\left|g_{u, \zeta}(0)\right|^{3}\left(\max _{|\omega|=d_{u, \zeta}}\left|g_{u, \zeta}(\omega)\right|\right)^{-2} \\
& \geq \varepsilon_{4} \exp \left(-C_{4} p(\zeta)\right),
\end{align*}
$$

where $\varepsilon_{4}=\varepsilon^{3} / \alpha^{3} A_{2}^{2}$ and $C_{4}=3 C+2 B_{2}$. Let

$$
\hat{d}_{\zeta}=\varepsilon_{3} \exp \left(-C_{3} p(\zeta)\right)
$$

where ε_{3} and C_{3} are the same as in (3.7). Since $\hat{d}_{\zeta} \leq d_{u, \zeta}$ by (3.7), it follows from (3.8) that for $|w|=\hat{d}_{\zeta} / 2$

$$
\left|f_{j_{u},, \zeta \zeta}(w)\right|=\left|w g_{u, \zeta}(w)\right| \geq \varepsilon_{5} \exp \left(-C_{5} p(\zeta)\right),
$$

where $\varepsilon_{5}=\varepsilon_{3} \varepsilon_{4} / 2$ and $C_{5}=C_{3}+C_{4}$. Thus we have proved that for every $u \in$ S_{v}, there exists $j_{u} \in\{1, \ldots, \alpha\}$ such that

$$
\left|f_{j_{u}}(w u+\zeta)\right| \geq \varepsilon_{5} \exp \left(-C_{5} p(\zeta)\right)
$$

for $|w|=\hat{d}_{\zeta} / 2$. Hence we have

$$
\begin{align*}
|f(w u+\zeta)| & =\left(\sum_{j=1}^{\alpha}\left|f_{j}(w u+\zeta)\right|^{2}\right)^{1 / 2} \tag{3.9}\\
& \geq\left|f_{j_{u}}(w u+\zeta)\right| \geq \varepsilon_{5} \exp \left(-C_{5} p(\zeta)\right) .
\end{align*}
$$

Note that the constants ε_{5} and C_{5} are independent of u, ζ and v.
For arbitrary $v \in N$ and $\zeta \in X_{v}$, we consider a neighborhood

$$
U_{v, \zeta}=\left\{z=w u+\zeta \in\{\zeta\}+N_{v}:|w| \leq \frac{\hat{d}_{\zeta}}{2}, u \in S_{v}\right\}
$$

of ζ in $\{\zeta\}+N_{v}$. For all $z \in \partial U_{v, \zeta}$, there exists $u_{z-\zeta} \in S_{v}$ such that

$$
z=\frac{\hat{d}_{\zeta}}{2} u_{z-\zeta}+\zeta
$$

Then it follows from (3.9) that

$$
\begin{equation*}
|f(z)|=\left|f\left(\frac{\hat{d}_{\zeta}}{2} u_{z-\zeta}+\zeta\right)\right| \geq \varepsilon_{5} \exp \left(-C_{5} p(\zeta)\right) . \tag{3.10}
\end{equation*}
$$

Let \hat{V}_{v} be the component of $S_{p}\left(f ; \varepsilon_{5}, C_{5}\right)$ containing X_{v}. Then it is clear that

$$
\hat{V}_{v} \subset \bigcup_{\zeta \in X_{v}} U_{v, \zeta}
$$

by (3.10). Now we claim that for $\zeta^{\prime} \in X_{v^{\prime}}$ and $v^{\prime} \neq v$,

$$
\zeta^{\prime} \notin \bigcup_{\zeta \in X_{v}} U_{\nu, \zeta} .
$$

In fact, by ζ we denote the orthogonal projection of ζ^{\prime} to X_{v}, so that $\zeta^{\prime} \in$ $\{\zeta\}+N_{v}$. Then there exists $u_{\zeta^{\prime}-\zeta} \in S_{v}$ such that

$$
\zeta^{\prime}=\left|\zeta^{\prime}-\zeta\right| u_{\zeta^{\prime}-\zeta}+\zeta .
$$

(3.7) implies that

$$
\left|\zeta^{\prime}-\zeta\right| \geq d_{u_{\zeta^{\prime}-\zeta}} \geq \varepsilon_{3} \exp \left(-C_{3} p(\zeta)\right)=\hat{d}_{\zeta} .
$$

Hence $\zeta^{\prime} \notin U_{v, \zeta}$. For $\tilde{\zeta} \in X_{v} \backslash\{\zeta\}$, it is clear that $\zeta^{\prime} \notin U_{v, \tilde{\zeta}}$. This proves the lamma for $\varepsilon_{0}=\varepsilon_{5}$ and $C_{0}=C_{5}$.

Proof of the main theorem. Define a holomorphic function h in $S_{p}\left(f ; \varepsilon_{0}, C_{0}\right)$ by

$$
h(z)= \begin{cases}0, & \text { if } z \in W_{v} \\ 1, & \text { if } z \in S_{p}\left(f ; \varepsilon_{0}, C_{0}\right) \backslash \bigcup_{v \in N} W_{v} .\end{cases}
$$

Then we have

$$
|h(z)| \leq 1 \cdot \exp (1 \cdot p(z))
$$

for every $z \in S_{p}\left(f ; \varepsilon_{0}, C_{0}\right)$. Hence it follows from the semilocal interpolation theorem that there exists an entire function $H \in A_{p}\left(\boldsymbol{C}^{n}\right)$ such that $\left.H\right|_{Z\left(f_{1}, \ldots, f_{x}\right)} \equiv$ $\left.h\right|_{Z\left(f_{1}, \ldots, f_{2}\right)}$, that is,

$$
H(z)= \begin{cases}0, & \text { if } z \in X_{v}, \\ 1, & \text { if } z \in Z\left(f_{1}, \ldots, f_{\alpha}\right) \backslash \bigcup_{v \in N} X_{v} .\end{cases}
$$

It is clear that $\alpha+1$ functions $f_{1}, \ldots, f_{\alpha}, \quad H \in A_{p}\left(\boldsymbol{C}^{n}\right)$ satisfy (1.3) and (1.4).

4. The sharpness of $\alpha+1$

Finally, we remark that the number ' $\alpha+1$ ' in the main theorem is lowest. We prove this remark by giving an example of an interpolating variety for $A_{p}(\boldsymbol{C})$ which can not write as the zero set of a function in $A_{p}(\boldsymbol{C})$, where $p(z)=|z|$. Let $X=\left\{\zeta_{v}\right\}_{v \in N}$ be a discrete variety in \boldsymbol{C}. Then Nevanlinna's counting function is defined as follows: $n(r, X)=\sharp\left\{v \in N:\left|\zeta_{\nu}\right| \leq r\right\}$ and

$$
N(r, X)=\int_{0}^{r} \frac{n(t, X)-n(0, X)}{t} d t+n(0, X) \log r .
$$

For $k \in \boldsymbol{N}$ and $r>0$, we define

$$
B(r ; k: X)=\frac{1}{k} \sum_{0<\left|\xi_{v}\right| \leq r}\left(\frac{1}{\zeta_{v}}\right)^{k}
$$

and for $r_{1}, r_{2}>0$

$$
B\left(r_{1}, r_{2} ; k: X\right)=B\left(r_{1} ; k: X\right)-B\left(r_{2} ; k: X\right) .
$$

Then the following proposition which gives the relationship between an entire function in $A_{p}(\boldsymbol{C})$ and its zero set is deduced by the Fourier series method by Rubel and Taylor [RT]:

Proposition 4.1 (cf. [RT, Theorem 5.2]). Let p be a radical weight of finite order on \boldsymbol{C}, that is, it satisfies $p(z)=p(|z|)$ and

$$
\varlimsup_{r \rightarrow \infty} \frac{\log p(r)}{\log r}<\infty
$$

Then there exists $f \in A_{p}(\boldsymbol{C})$ such that $X=Z(f)$ if and only if
(1) X has finite p-density, that is, we have a constant $A>0$ satisfying

$$
N(r, X) \leq A p(r)
$$

for every $r>0$.
(2) X is p-balanced, that is, there exists a constant $A>0$ such that

$$
\left|B\left(r_{1}, r_{2} ; k: X\right)\right| \leq \frac{A p\left(r_{1}\right)}{r_{1}^{k}}+\frac{A p\left(r_{2}\right)}{r_{2}^{k}}
$$

for all $r_{1}, r_{2}>0$ and $k \in N$.
Example 4.2. Put $X=\{v\}_{v \in N} \subset C$. Applying Theorem A (or [BL2, Corollary 3.5]) to $f(z)=\sin \pi z \in A_{|\cdot|}(\boldsymbol{C})$, we know that X is interpolating for $A_{|\cdot|}(\boldsymbol{C})$. Hence it follows from the main theorem that X can be written as the common zero set of two entire functions in $A_{|\cdot|}(\boldsymbol{C})$. We shall prove that X can be written as the zero set of no entire function in $A_{|\cdot|}(\boldsymbol{C})$.

Put $k=1$ and $r_{2}=1 / 2$. Then calculating $|B(r, 1 / 2 ; 1: X)|$, we have

$$
\left|B\left(r, \frac{1}{2} ; 1: X\right)\right|=\sum_{v=1}^{[r]} \frac{1}{v},
$$

where $[r]$ is the greatest integer not greater than r. Hence there does not exist a constant $A>0$ such that

$$
\left|B\left(r, \frac{1}{2} ; 1: X\right)\right| \leq \frac{A|r|}{r}+\frac{A / 2}{1 / 2}=2 A
$$

for any $r>0$. Thus X does not satisfy the condition (2) in Proposition 4.1, so that X can be written as a zero set of no entire function in $A_{|\cdot|}(\boldsymbol{C})$.

Finally, the main theorem and this example lead to the following conjecture:
Conjecture. Let X be an interpolating variety for $A_{p}\left(\boldsymbol{C}^{n}\right)$ and let α be the maximum number of codimentions of all irreducible components of X. Then X can be written as the common zero set of $\alpha+1$ entire functions in $A_{p}\left(\boldsymbol{C}^{n}\right)$.

References

[BG] C. A. Berenstein and R. Gay, Complex Variables: An Introduction, Graduate Text in Math. 125, Springer, New York, 1991.
[BL1] C. A. Berenstein and B. Q. Li, Interpolating varieties for weighted spaces of entire functions in \boldsymbol{C}^{n}, Publications Matemàtiques, 38 (1994), 157-173.
[BL2] -, Interpolating varieties for spaces of meromorphic functions, J. Geom. Anal., 5 (1995), 1-48.
[BT] C. A. Berenstein and B. A. Taylor, Interpolation problem in C^{n} with applications to harmonic analysis, J. Analyse Math., 38 (1981), 188-254.
[E] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Pure and Applied Mathematics 17, Wiley, New York, 1970.
[G] R. Gunning, Introduction to Holomorphic Functions of Several Variables Volume 1, Wadsworth, California, 1990.
[H] L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc., 73 (1967), 943-949.
[O] S. OH'UCHI, Disjoint unions of complex affine subspaces interpolating for A_{p}, Forum Math., 11 (1999), 369-384.
[RT] L. A. Rubel and B. A. Taylor, A Fourier series method for meromorphic and entire functions, Bull. Soc. Math. France, 96 (1968), 53-96.

Department of Mathematics
Tokyo Institute of Technology
2-12-1 Oh-okayama, Meguro-ku
Tokyo, 152-8551, Japan
E-mail: ouchi@math.titech.ac.jp

