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TAYLOR EXPANSION OF IMPLICIT FUNCTIONS DEFINED BY

LINEAR EQUATIONS OF VARIABLES

Kazuto Asai

Abstract

Let F be a monoid of countably many functions holomorphic at y0, and �xf �f AF be

a set of independent variables. We set F� � F ÿ f1g, x� � �xf �f AF� . Let �F1;F2; . . .�
be an increasing sequence of ®nite subsets of F such that 6

iV1
Fi � F . For iV 1, let Ai

denote the ring of all functions of �xf �f AFi
, holomorphic at �x1; �xf �f AFiÿf1g� �

�x0
1 ; 0�. De®ne A � proj lim Ai. Consider the implicit function y A A de®ned by

g�y� �Pf AF xf f �y� �y�x0
1 ; 0� � y0�. We have the Taylor expansion of y at x� � 0:

y � gÿ1�x1� �
P

a

d jajÿ1

dx
jajÿ1
1

Q
f AF� f a� f ��gÿ1�x1��

g 0�gÿ1�x1��

 !
xa
�

a!
,

where the sum runs over all maps a : F� ! f0; 1; 2; . . .g such that jaj :�Pf AF� a� f � are

positive ®nite.

1. The main result

Let y be the implicit function de®ned by the equation: g�y� �Ps
i�1 xi f i�y�,

where f1 � 1, and g; f2; . . . ; fs are holomorphic at y0 � y�x0
1 ; 0; . . . ; 0�. The

purpose of the paper is to obtain the Taylor expansion of y at �x2; . . . ; xs� � 0.
Also we apply our method to the general case: f �x1; . . . ; xn; y� � 0, with
fy�c1; . . . ; cn; y0�0 0. In this study, we lay stress on concrete calculation of the
expansion coe½cients. Our formula is described only by the derivatives of brief
1-variable functions and it is very useful for giving an explicit expression of the
series in each case. For convenience, we deal with complex analytic functions of
in®nitely many variables de®ned as an element of the projective limit of dif-
ferential rings, while the theorem could be stated by the use of ordinary analytic
functions. Let I be a directed set, and �Fi�i A I index sets such that Fi HFj

whenever i < j. Let Ai �i A I� be di¨erential rings with derivations �df �f AFi
.

Let �Ai;cij� �cij : Aj ! Ai� be a projective system such that cij � df � df � cij

� f A Fi�. Now we introduce the projective limit:
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A � proj lim Ai �as a differential ring�
with derivations �df �f AF �F �6Fi� that act on y � �yi�i A I A A as df �yi� :� cij �
df �yj� � f A Fj ; i < j�.

Let N denote f0; 1; 2; . . .g. Let F be a monoid (with respect to ordinary
product) of countably many functions holomorphic at y0 A C , and x � �xf �f AF

a set of independent variables. We set F� � F ÿ f1g, x� � �xf �f AF� . Let
�F1;F2; . . .� be an increasing (ordered by inclusion) sequence of ®nite subsets
of F such that 6

iV1 Fi � F . For iV 1, let Ai denote the ring of all functions
of �xf �f AFi

holomorphic at �x1; �xf �f AFiÿf1g� � �x0
1 ; 0�. De®ne cij : Aj ! Ai by

cij�h� � hjxf�0 � f A FjÿFi�. Let A � proj lim Ai with derivations �q=qxf �f AF . Let
g be holomorphic at y0 such that g�y0� � x0

1 , g 0�y0�0 0, and consider the
implicit function y A A de®ned by the equation:

g�y� �
X
f AF

xf f �y�; y�x0
1 ; 0� � y0:�1:1�

For a map a : F� ! N , let jaj �Pf AF� a� f �, a! � Qf a� f �!, and f a� f � denote

the a� f �th power of f. Set xa
� �

Q
f AF� x

a� f �
f , F a

� �
Q

f f a� f �. (Also for a map

a : F ! N , the above notations are de®ned similarly.) Let gÿ1 denote the inverse
function of g.

Theorem 1. The Taylor expansion of y at x� � 0 is given by

y � gÿ1�x1� �
X

a:F�!N
0<jaj<y

d jajÿ1

dx
jajÿ1
1

F a
� �gÿ1�x1��

g 0�gÿ1�x1��

 !
xa
�

a!
:�1:2�

It is sometimes more convenient to consider the expansion of y at x � �0; 0�
when gÿ1 is holomorphic at 0 and gÿ1�0� has simpler form than the generic
gÿ1�x1�. Then the expansion is obtained by replacing x1 with 0 and x� with x in
Theorem 1.

This function y looks complicated due to the formulation in terms of the
monoid F of functions and the projective limit A. However, the y satis®es
simple partial di¨erential equations, which are given in the next section.

2. Partial di¨erential equations for the y

Let y be as above. We prove the following lemma.

Lemma 2. If two maps a; b : F ! N satisfy that jaj � jbj and F a � F b, then

we have �qjaj=qxa�y � �qjbj=qxb�y.

Proof. We prove this by induction on jaj � jbj. By concrete calculation,
the lemma holds for jaj � 2. Assume the lemma is valid for jaj < mV 3. Let
jaj � m, a� p�0 0 and b�q�0 0. We have

kazuto asai32



qjaj

qxa
y � q

qxp

qja
0 j

qxa 0 y � q

qxp

qmÿ1

qxmÿ2
1 qxF a 0

y � qmÿ2

qxmÿ2
1

q2

qxpqxF a 0
y

� qmÿ2

qxmÿ2
1

q2

qxqqxF b 0
y � q

qxq

qmÿ1

qxmÿ2
1 qxF b 0

y � q

qxq

qjb
0j

qxb 0
y � qjbj

qxb
y;

where a 0� f � � a� f � ÿ df ;p, b 0� f � � b� f � ÿ df ;q. (d is Kronecker delta.) r

By virtue of Lemma 2, we can compute the coe½cients of the expansion of

y by �qjajy=qxa
� ��x1; 0� � �d jajÿ1=dx

jajÿ1
1 ��qy=qxF a� ��x1; 0�, and immediately deduce

Theorem 1.

3. Examples

Example I. Let F � fyi; i A Ng, xyi � xi, and g�y� � yn; that is,
yn �Pi AN xi yi. We can give another proof of the formula below ®rst proved
by Hj. Mellin in [5]. Set jmj �Pmi and p�m� �P imi.

y � 1

n

X
m1;m2; ...V0
jmj<y

G�� p�m� � 1�=n�
G�� p�m� � 1�=nÿ jmj � 1� � x

�p�m�ÿnjmj�1�=n
0

xm1

1 xm2

2 � � �
m1!m2! � � � :�3:1�

Example II. Let F � fexp�P1UiUr ai yi�; a A Z rg, xexp�a1y�����ary r� � xa, x �
�xa�a AZ r , and g�y� � y. Then y �Pa AZ r xa exp�a1y� � � � � ary

r�. We have

y �
X

a:Z r!N
0<jaj<y

X
l:partitions of jajÿ1

l1Ur

�jaj ÿ 1�!
m�l�!

Yl�l�
i�1

X
a AZ r

a�a�ali

 !
xa

a!
;�3:2�

where m�l� denotes �m1;m2; . . .� de®ned by mi � ]f j; lj � ig, l�l� denotes the
length l of l � �l1; . . . ; ll�, and m�l�!; l! denote the products of factorials of the
components.

Example I is easily certi®ed by computing the coe½cients cm of xm=m! by
cm � �1=n��d=dx0�jmjÿ1x

�p�m�ÿn�1�=n
0 . Example II is shown as follows. To obtain

the coe½cient of xa=a!, it su½ces to calculate the �jaj ÿ 1�th derivative of
eb1x0�����brx

r
0 at x0 � 0, where bk �

P
a AZ r a�a�ak. Each term of the derivative is

characterized by the partition l with l1 U r as follows: l! h�l1�h�l2� � � � h�ll�eh

�h � a1x0 � � � � � arx
r
0�. Thus we have the expansion.

4. Application to the general case

Let f �x1; . . . ; xn; y� be a function holomorphic at x� � �x1; . . . ; xn� � c, y �
y0, such that f �c; y0� � 0 and fy�c; y0�0 0. Let us consider the general problem
to give the Taylor series of the function y de®ned by f �x1; . . . ; xn; y� � 0, y�c� �
y0. We make use of the expansion of f �x1; . . . ; xn; y� at x� � c to reduce the
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problem to Theorem 1. First of all, we add a dummy variable x0, and set x0�
f �x1; . . . ; xn; y� � 0. Then it su½ces to have the expansion of y at x� � c and
put x0 � 0. We obtain that for some neighborhood kx� ÿ ck < r, kyÿ y0k < s,
x0 �

P
a AN n�qjajf =qxa��c; y��x� ÿ c�a=a! � 0, or with the notation fa�y� � �1=a!� �

�qjajf =qxa��c; y�,
ÿf0�y� � x0 �

X
a00

f a�y��x� ÿ c�a:�4:1�

Let F � h faia00 be the monoid generated by the functions f fag �a A N n;
a0 0�. F is not ®nitely generated, but contains only countably many functions.
Set Fi � h fai0<jajUi and we have 6y

i�1 Fi � F . Let F� � F ÿ f1g. Let Ai denote
the ring of all functions of independent variables �~xa�jajUi holomorphic at 0.

This formulation enables us to introduce the projective limit A � proj lim Ai as
in §1. Let ~y be the element of A de®ned by the deformed equation:

ÿf0�~y� � ~x0 �
X
a00

f a�~y�~xa:�4:2�

We now expand ~y by Theorem 1, and substituting �x� ÿ c�a for ~xa, we obtain
the following expansion of y. To state the theorem, we use several notations:
N n� � N n ÿ f0g, x � a map N n� ! N , jxj �Pa AN n� x�a�a, l�x� �Pa x�a�,
x! �Qa x�a�!, and F x

� �
Q

a f
x�a�

a .

Theorem 3. The function y de®ned by (4.1) has the expansion:

y � f ÿ1
0 �ÿx0� �

X
jaj>0

X
jxj�a

1

x!

d l�x�ÿ1

dx
l�x�ÿ1
0

F x
� � f ÿ1

0 �ÿx0��
ÿf 00 � f ÿ1

0 �ÿx0��

0@ 1A�x� ÿ c�a:�4:3�

Example III. Let p1; . . . ; pn; s be arbitrary complex numbers and set q �
p1 � � � � � pn ÿ es. Let y be the function de®ned by the following equality.

p1 yx1 � � � � � pnyxn � y� q:�4:4�
Then we have the series expression of y below.

y � es �
X
jaj>0

xa
�
X

l

pl�l�eÿsjl�l�j�s

m�l�!l!

Xjl�l�jÿ1

i�0

jaj!sjajÿi

�jaj ÿ i�!
X

m

�ÿ1�jmjÿijmj!
m�m�!m1 � � � mi

:�4:5�

Here, l runs over all n-tuples �l1; . . . ; ln� of partitions such that jl ij :� l i
1�

l i
2 � � � � � ai, and m runs over all partitions with the conditions: jmj � jl�l�j ÿ 1
�jl�l�j � l�l1� � � � � � l�ln��, l�m� � i. Further, we used the following notations:

pl�l� � p
l�l1�
1 � � � pl�ln�

n , l! � l1! � � � ln!, m�l�! � m�l1�! � � �m�ln�!.
The result (4.5) is based on Theorem 3 and an expression of �d=du�n�log u�m.

Indeed, by Theorem 3, it is shown that
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y � es �
X
jaj>0

xa
�
X

l

pl�l�

m�l�!l!

d jl�l�jÿ1

dx
jl�l�jÿ1
0

�log�x0 � es��jaj
" #

x0�0

:�4:6�

On the other hand, we have �d=du�n�log u�m � �1=un�Pminfm;ng
i�0 �m!�log u�mÿi

=�mÿ i�!�Pm��ÿ1�nÿi
n!=m�m�!m1 � � � mi�. Now put u � es. Two equalities verify

(4.5) as desired.
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