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TAYLOR EXPANSION OF IMPLICIT FUNCTIONS DEFINED BY
LINEAR EQUATIONS OF VARIABLES

KazuTto Asal

Abstract

Let F be a monoid of countably many functions holomorphic at y°, and (x/)er be
a set of independent variables. We set F, = F — {1}, x, = (X/)rer.. Let (F1,F,...)
be an increasing sequence of finite subsets of F such that Ule F,=F. Forix>1,let 4;
denote the ring of all functions of (xr)rer, holomorphic at (xi,(X/)rer—q1}) =
(x9,0). Define A = projlim 4;. Consider the implicit function y e 4 defined by

9(») = rer i/ (¥) (#(x9,0) =»°). We have the Taylor expansion of y at x, = 0:

dl-! H/eﬂfﬁ(f)(gfl(xl)) x!
dx! 9'(g7(x1)) o’

y—gl(X1)+Zz(

where the sum runs over all maps o: F, — {0,1,2,...} such that |o| := }7, p of) are
positive finite.

1. The main result

Let y be the implicit function defined by the equation: g(y) =>_7, xif:(»),
where fi =1, and g, f,...,f, are holomorphic at y°=y(x?,0,...,0). The

purpose of the paper is to obtain the Taylor expansion of y at (xy,...,x,) = 0.
Also we apply our method to the general case: f(xi,...,x,;y) =0, with
flers oo en %) #0. In this study, we lay stress on concrete calculation of the

expansion coefficients. Our formula is described only by the derivatives of brief
1-variable functions and it is very useful for giving an explicit expression of the
series in each case. For convenience, we deal with complex analytic functions of
infinitely many variables defined as an element of the projective limit of dif-
ferential rings, while the theorem could be stated by the use of ordinary analytic
functions. Let I be a directed set, and (F;);., index sets such that F; c F;
whenever i <j. Let A4; (iel) be differential rings with derivations (dy)scr,.
Let (4;,¥;) (f;:A4; — 4;) be a projective system such that v 09r =3y oy
(f € F;). Now we introduce the projective limit:
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A =projlim 4; (as a differential ring)

with derivations (9y)rcr (F = | F;) that act on y = (y;),c; € 4 as dr(y;) == ;0
() (f € Fyi < J).

Let N denote {0,1,2,...}. Let F be a monoid (with respect to ordinary
product) of countably many functions holomorphic at y° € C, and x = (x7)rcp
a set of independent variables. We set F.=F — {1}, x. = (x/)rer,. Let
(Fy,F,...) be an increasing (ordered by inclusion) sequence of finite subsets
of F such that Ui>1 F;=F. Fori>1, let A; denote the ring of all functions
of (x7)rer, holomorphic at (xi,(xs)rep—q1) = (x{,0). Define y; : 4; — 4; by
Wi(h) =hl o (yer-r)- Let A=projlim A4; with derivations (0/0x/)rer. Let
g be holomorphlc at »° such that g(»°) =x¥, ¢'(»°) #0, and consider the
implicit function y € 4 defined by the equation:

(1.1) 9(») =D x5 (»); ¥(x{,0) =",
feF
For a map o : F, — N, let |o| =Y, a(f), ol = [[, a(f)!, and f*/) denote
the «(f)th power of /. Set x* =[], . x;<f), Fr=Tl.f*Y). (Also for a map

o : F — N, the above notations are defined similarly.) Let g~!' denote the inverse
function of g¢.

THEOREM 1. The Taylor expansion of y at x, =0 is given by

d" ' Fr (g () | X2
dx" g (g7 (1)) ) ol

(1.2) y=g )+ 3 (
i

It is sometimes more convenient to consider the expansion of y at x = (0,0)
when ¢~! is holomorphic at 0 and g~'(0) has simpler form than the generic
g~ '(x1). Then the expansion is obtained by replacing x; with 0 and x, with x in
Theorem 1.

This function y looks complicated due to the formulation in terms of the
monoid F of functions and the projective limit 4. However, the y satisfies
simple partial differential equations, which are given in the next section.

2. Partial differential equations for the y
Let y be as above. We prove the following lemma.

LeMMA 2. If two maps o, 8 : F — N satisfy that |«| = |f| and F* = FP, then
we have (3" /ox")y = (0¥/oxP)y.

Proof. We prove this by induction on |«| = |f]. By concrete calculation,
the lemma holds for |¢| =2. Assume the lemma is valid for |¢| < m >3. Let
lo| =m, a(p) #0 and f(g) #0. We have
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aM b a\a'\ d amfl am72 62
Ox* Y= E Wy - 6_xp OX1=20X ot Y= OX1=2 0xp0x o Y
am72 62 0 amfl 0 a|ﬂ/| (3\ﬁ\

T a2 Oxg0xpy ) Oxg OxP Zoxpy ) Oxg ol axP
where o'(f) = a(f) —dr.p, B'(f) =B(f) — 4. (0 is Kronecker delta.) O

By virtue of Lemma 2, we can compute the coefficients of the expansion of
y by (8 y/0x?)(x1,0) = (d”= Jdx""")(8y/0xpx)(x1,0), and immediately deduce
Theorem 1.

3. Examples

Example 1. Let F = {yiieN}, x,=ux, and g¢g(y)=p" that is,
Y'=>cnXiy'. We can give another proof of the formula below first proved
by Hj. Mellin in [5]. Set |m|=>_m; and p(m) = >_ im;.

1 C((p(m)+1)/n ) —nlml1) X1 X"
CRIT D S ((p(l) )/n) gy
nml,mz,.“z() ((p(m)+ )/n—|m|+ ) miylnpl---
|m|<oo

Example 1. Let F = {exp(>_, ., aiy');ae Z'}, Xexplary+-tayr) = Xay X =
(Xa)aez', and g(y) =yp. Then y =3, ,rx,exp(aiy+---+ap"). We have

o ey xBTS e )}

o:Z"—N J:partitions of |a|—1 i=laeZ’
0<of<oo M <r

where m(A) denotes (my,my,...) defined by m; = #{j;4; =i}, /(1) denotes the
length / of 1= (4,...,4;), and m(4)!, 2! denote the products of factorials of the
components.

Example I is easﬂy certified by computing the coefficients c¢,, of x”/m! by
em = (1/n)(d /dxo)"™ " <P (m)=mtD)/n = Example 11 is shown as follows. To obtain
the coefficient of x* /oc' it suffices to calculate the (|o|—1)th derivative of
eh¥otthey gt xo =0, where by =Y, - o(a)ax. Each term of the derivative is
characterized by the partition A with 4, <r as follows: A — hA)p(R2) ... plk)eh
(h=aixo+---+ayxj). Thus we have the expansion.

4. Application to the general case

Let f(x1,...,x,; ¥) be a function holomorphic at x, = (xy,...,x,) =¢, y =
»°, such that f(c;»°) = 0 and f,(c;»°) # 0. Let us consider the general problem
to give the Taylor series of the function y defined by f(xi,...,xs; ) =0, y(c) =

3°. We make use of the expansion of f(xi,...,x,;») at x, = ¢ to reduce the
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problem to Theorem 1. First of all, we add a dummy variable x;, and set xy +
f(x1,...,x,5) =0. Then it suffices to have the expansion of y at x, = ¢ and
put xo = 0. We obtain that for some neighborhood ||x. —¢|| < p, ||y — »°| < o,
x0 4+ 3, nn (@7 /0x) (¢;3) (. — €)* /ol = 0, or with the notation f,(y) = (1/a!)-

(0" Jox*)(c; ),
(4.1) —fo(¥) =x0+ D [, (»)(x. —

Let F = {f,>,+0 be the monoid generated by the functions {f,} (xe N",
o #0). Fis not finitely generated, but contains only countably many functions.
Set Fi = {f,D0<|s/<; and we have UZ,Fi=F. LetF.=F—{1}. Let 4, denote
the ring of all functions of independent variables (X,),.; holomorphic at 0.
This formulation enables us to introduce the projective limit 4 = proj lim A4; as
in §1. Let y be the element of 4 defined by the deformed equation:

a0

We now expand y by Theorem 1, and substituting (x. —¢)* for X,, we obtain
the following expansion of y. To state the theorem, we use several notations:

N""=N"—{0}, ¢=a map, NHHN €] =2 senm S(@a, 1(E) =22, <(a),
& =TI, f(oc)., and F¢ =] /™.

THEOREM 3. The function y defined by (4.1) has the expansion:

1(&)-1 -l
(43) y:f()fl(_xo) + Z (Zl d i F* (fO ( XO)))(X* —C)“.

lf|:9<é' dx(l)<g>7l _ﬁ)/(fal (_XO))

|| >0
Example 111. Let py,...,p,,s be arbitrary complex numbers and set g =
p1+---+p,—e’. Let y be the function defined by the following equality.
(4.4) piyt Aoyt =y 4g.

Then we have the series expression of y below.

oS+ MLy glaf—i lul=iy, 1y
P |or|!s (=Dt

4.5 =e'+ :
( ) Z Z )I/L! — g(| —l (ﬂ)lﬂl e

Jor|>0

Here, A runs over all n-tuples (A',...,A") of partitions such that |4’ := A +
M= = a, and ,u runs over all partitions with the conditions: |u| = |/(1)| — 1
(|l( )| =10+ l(/l")) I(¢) =i. Further, we used the following notations:
P10 = pl e gl = 0, i =

The result (4 5) 1s based on Theorem 3 and an expression of (d/du)"(log u)™.
Indeed, by Theorem 3, it is shown that
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1) [ g1

_ S " D o
46 e Y YL (g 4o
|#]>0 7 m(4)!2! dxg(”” 1

X0 =0

/(m =) Zﬂ((—l)"fin!/m(u)!ﬂl -+-;). Now put u=e*. Two equalities verify
(4.5) as desired.

On the other hand, we have (d/du)"(logu)™ = (1/u") "™ (m)(log u)™
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