ANOTHER INVOLUTION ON MODULI OF SEXTICS

Mutsuo Oka

1. Introduction

Let \mathscr{M} be the moduli space of sextics with 6 cusps and 3 nodes. A sextic C is called of $a(2,3)$-torus type (or briefly of a torus type) if its defining polynomial f has the expression $f(x, y)=f_{2}(x, y)^{3}+f_{3}(x, y)^{2}$ for some polynomials f_{2}, f_{3} of degree 2,3 respectively. We denote by $\mathscr{M}_{\text {torus }}$ the component of \mathscr{M} which consists of curves of a torus type and by $\mathscr{M}_{\text {gen }}$ the curves of a general type (= not of a torus type). We denote the dual curve of C by C^{*}. Recall that C^{*} is the image of the Gauss map dual ${ }_{C}: C \rightarrow \boldsymbol{P}^{2 *},(X, Y, Z) \mapsto\left(F_{X}(X, Y, Z)\right.$, $\left.F_{Y}(X, Y, Z), F_{Z}(X, Y, Z)\right)$. In our previous paper [O3], we have shown that the dual curve operation $C \mapsto C^{*}$ gives an involution on \mathscr{M} and it preserves the type of the curve in \mathscr{M}, i.e., $C^{*} \in \mathscr{M}_{\text {torus }}$ if and only if $C \in \mathscr{M}_{\text {torus }}$. Let $G:=\operatorname{PGL}(3, C)$. The quotient moduli spaces are by definition the quotient spaces of the moduli spaces by the action of G.

The purpose of this note is to show that there exists an involution $\bar{\imath}$ on \mathscr{M} / G such that \bar{l} is different from the dual curve operation and \bar{l} preserves the types of the sextics (Theorem 2.4).

For the construction of $\bar{\imath}$, we consider the moduli space $\tilde{\mathscr{M}}$ of plane curves of degree 12 with 24 cusps and 24 nodes. This moduli space is also self-dual in the sense that $C^{*} \in \tilde{\mathscr{M}}$ if $C \in \tilde{\mathscr{M}}$. The construction of \bar{l} is done as follows. First observe that C has three bi-tangent lines for any $C \in \mathscr{M}$. We take $g \in G$ so that the three coordinate lines $X=0, Y=0, Z=0$ are the bi-tangent lines of C^{g} and let $F(X, Y, Z)=0$ be the defining homogeneous polynomial of degree 6 . Then consider the curve \tilde{C} defined by $F\left(X^{2}, Y^{2}, Z^{2}\right)=0$. It turns out that \tilde{C} is contained in $\tilde{\mathscr{M}}$. This operation defines a rational mapping $\psi: \mathscr{M} / G \rightarrow \tilde{\mathscr{M}} / G$. We define $\bar{l}(C)=\psi^{-1}\left(\psi\left(C^{g}\right)^{*}\right)$.

2. Involution on the quotient moduli \mathscr{M} / G

Let \mathscr{M} and $\tilde{\mathscr{M}}$ be the moduli space of sextics with 6 cusps and three nodes and the moduli space of irreducible plane curves of degree 12 with 24 cusps and 24 nodes respectively. Note that the genus of a generic curve in \mathscr{M} (respectively in $\tilde{\mathscr{M}})$ is 1 (resp. 7). By the class formula $([\mathrm{N}]$ or $[\mathrm{O} 3])$, it is easy to see that

Received December 7, 1999; revised June 7, 2000.
for a generic $C \in \tilde{\mathscr{M}}$, the dual curve C^{*} is also in $\tilde{\mathscr{M}}$. We consider the mapping $\pi: \boldsymbol{P}^{2} \rightarrow \boldsymbol{P}^{2}$, defined by $\pi(X, Y, Z)=\left(X^{2}, Y^{2}, Z^{2}\right)$, which is a 4-fold covering branched along the coordinate axes $\{X=0\} \cup\{Y=0\} \cup\{Z=0\}$. Take a generic curve $C \in \mathscr{M}$ and let $F(X, Y, Z)$ be the defining homogeneous polynomial of degree 6. As C^{*} has three nodes, C has three bi-tangent lines. We denote by $\mathscr{M}^{n m l}$ the subset of \mathscr{M} which consists of curves $C \in \mathscr{M}$ whose three bi-tangent lines are $X=0, Y=0$ and $Z=0$. We define a mapping $\psi: \mathscr{M}^{n m l} \rightarrow \tilde{\mathscr{M}}$ as follows. Let $C \in \mathscr{M}^{n m l}$ and let $F(X, Y, Z)$ be the defining homogeneous polynomial. We define $\psi(C):=\pi^{-1}(C)$. Note that $\psi(C)$ is defined by $\tilde{F}(X, Y, Z)$ $:=F\left(X^{2}, Y^{2}, Z^{2}\right)$. Each cusp of C produces 4 cusps on $\psi(C)$. Thus $\psi(C)$ has 24 cusps. Each node of C also gives 4 nodes on $\psi(C)$, thus we get 12 nodes on $\psi(C)$ which are mapped onto the nodes of C. As the restriction of π to the affine chart $\{Z \neq 0\}$ is the composition of double coverings $(x, y) \mapsto\left(x, y^{2}\right)$ and $(x, y) \mapsto\left(x^{2}, y\right)$, each simple tangent on the coordinate axis $X=0, Y=0$ gives 2 nodes on $\psi(C)([\mathrm{O} 1])$. This is the same for the simple tangents for $Z=0$. Thus there are 12 nodes on $\psi(C)$ which are on the three coordinate axes and they are mapped to simple tangents on coordinate axis by π. Thus $\psi(C)$ has 24 nodes. Thus $\psi(C) \in \tilde{M}$.

Now for $C \in \mathscr{M}$, we define $\bar{\psi}(C)$ as $\psi\left(C^{g}\right)$ by choosing $g \in G$ such that $C^{g} \in$ $\mathscr{M}^{n m l}$. The ambiguity for the choice of $g \in G$ is in the stabilizer $G_{\mathscr{M}^{n m l}}$ of $\mathscr{M}^{n m l}$ which is a direct product of \mathbb{S}_{3} (the permutations of coordinates) and $\boldsymbol{C}^{*} \times \boldsymbol{C}^{*} \times$ C^{*} (scalar multiplications). Thus the polynomials $F(X, Y, Z)$ and $\tilde{F}(X, Y, Z)$ are unique up to a $G_{\mathscr{M}^{n m l}}$ action. Thus $\mathscr{M}^{n m l} / G_{\mathscr{M}^{n m l}} \cong \mathscr{M} / G$ and $\bar{\psi}: \mathscr{M} / G \rightarrow$ $\tilde{\mathscr{M}} / G$ is well-defined.

Recall that a polynomial $F(X, Y, Z)$ is called even in X (respectively symmetric in $\quad X, Y) \quad$ if $\quad F(-X, Y, Z)=F(X, Y, Z) \quad$ (resp. $\quad F(Y, X, Z)=$ $F(X, Y, Z)$). Thus the polynomial $F\left(X^{2}, Y^{2}, Z^{2}\right)$ is even in X, Y, Z. Note that evenness (or symmetricity) is preserved by the dual curve operation.

Lemma 2.1. Assume that $C=\{F(X, Y, Z)=0\}$ is defined by an even polynomial $F(X, Y, Z)$ in X (respectively symmetric polynomial in X, Y). Then the dual curve C^{*} is defined by an even polynomial $F^{*}\left(X^{*}, Y^{*}, Z^{*}\right)$ in X^{*} (resp. in $\left.X^{*}, Y^{*}\right)$.

Proof. Assume for example that $F(X, Y, Z)$ is even in X. Then for any point $P=(X, Y, Z) \in C$, let $P^{\prime}:=(-X, Y, Z)$ is also in C. Then it is easy to see that

$$
\operatorname{dual}_{C}\left(P^{\prime}\right)=\left(F_{X}\left(P^{\prime}\right), F_{Y}\left(P^{\prime}\right), F_{Z}\left(P^{\prime}\right)\right)=\left(-F_{X}(P), F_{Y}(P), F_{Z}(P)\right)=\operatorname{dual}_{C}(P)^{\prime}
$$

This implies that $F^{*}\left(X^{*}, Y^{*}, Z^{*}\right)$ is even in X. The symmetric case is proved similarly.

Assume that $C \in \mathscr{M}$ is defined by $F(X, Y, Z)=0$. If F is an even polynomial in the variable X (respectively a symmetric polynomial in X, Y), then 6 cusps are stable by the involution $(X, Y, Z) \mapsto(-X, Y, Z)$ (resp. by $(X, Y, Z) \mapsto$
(Y, X, Z)). Then there exists a homogeneous polynomial $F_{2}(X, Y, Z)$ of degree 2 which is even in X (resp. symmetric in X, Y) such that the conic $F_{2}(X, Y, Z)=$ 0 passes through the 6 cusps of C. By the criterion of Degtyarev [D], the sextic $F(X, Y, Z)=0$ is of a torus type.

Now we take a generic $C \in \mathscr{M}^{n m l}$ and consider the dual curve $\psi(C)^{*}$ and let $\tilde{G}\left(X^{*}, Y^{*}, Z^{*}\right)$ be a defining homogeneous polynomial of degree 12 , where $\left(X^{*}, Y^{*}, Z^{*}\right)$ is the dual coordinates of (X, Y, Z). As $\tilde{F}(X, Y, Z)$ is even in X, Y, Z, so is $\tilde{G}\left(X^{*}, Y^{*}, Z^{*}\right)$ in X, Y, Z by Lemma 2.1.

Proposition 2.2. $\quad \psi(C)^{*}$ has 4 nodes on each coordinate axis $X^{*}=0, Y^{*}=$ 0 or $Z^{*}=0$.

Proof. Let $C=\{F(X, Y, Z)=0\}$ and let us consider the discriminant polynomial $\Delta_{Y} F$ with respect to Y-variable. This is a homogeneous polynomial of degree 30 in $X, Z([\mathrm{O} 2])$. We assume that the singularities of the sextic $F(X, Y, Z)=0$ are not on the coordinate axis. Assume that $P:=(\alpha, \beta, \gamma) \in C$ is a singular point of C with Milnor number μ and multiplicity m. Then $\Delta_{Y} F(X, Z)$ has a linear term $(\gamma X-\alpha Z)^{\rho}$ with $\rho \geq \mu+m-1$ and the equality holds if the line $\gamma Y-\beta Z=0$ is generic with respect to C (see [O3]). Thus to each cusp (respectively to each node), there is an associated linear term with multiplicity 3 (resp. with multiplicity 2). The factor $X=0$ and $Z=0$ has also multiplicity 2 in $\Delta_{Y} F(X, Z)=0$, as they are bi-tangent lines. Assume C is generic in \mathscr{M}. Then the sum of degrees is $18+6+4=28$ by the above consideration. Thus there exists two simple tangent lines of the form $X-\eta_{1} Z=0$ and $X-\eta_{2} Z=0$ for some $\eta_{1}, \eta_{2} \neq 0$. Then four lines $X= \pm \sqrt{\eta_{i}} Z, i=1,2$ are bi-tangent lines for the curve $\psi(C)$. This implies that $\left(1,0, \pm \sqrt{\eta_{i}}\right), i=1,2$ are nodes of the dual curve $\psi(C)^{*}$. Thus the coordinate axis $Y^{*}=0$ contains 4 nodes of $\psi(C)^{*}$. By the same argument, $X^{*}=0$ and $Z^{*}=0$ contains also 4 nodes respectively. The non-emptiness of "generic" curves in \mathscr{M} in the above sense is not obvious but it follows from the example below.

Definition 2.3. For $C \in \mathscr{M}^{n m l}$, we define a polynomial of degree 6 by $G\left(X^{*}, Y^{*}, Z^{*}\right):=\tilde{G}\left(\sqrt{X^{*}}, \sqrt{Y^{*}}, \sqrt{Z^{*}}\right)$ and we define $l(C)$ by the sextics defined by $G\left(X^{*}, Y^{*}, Z^{*}\right)=0$. For $C \in \mathscr{M}$, take $g \in G$ so that $C^{g} \in \mathscr{M}^{n m l}$ and we define an involution $\bar{l}: \mathscr{M} / G \rightarrow \mathscr{M} / G$ by $\bar{l}(C)=l\left(C^{g}\right)$.

Claim 1. $\bar{\imath}(C) \in \mathscr{M}$ for a generic $C \in \mathscr{M}$ and $\bar{\imath}$ is an involution which preserves the type of sextics, that is, we have the commutative diagram:

Proof. We may assume that $C \in \mathscr{M}^{n m l}$. By the above consideration, we have seen that the dual curve $\psi(C)^{*}$ of $\psi(C)$ is defined by a polynomial $G\left(X^{*}, Y^{*}, Z^{*}\right)$ of degree 12 which is even in each of the three variables and it has 24 cusps and 12 nodes outside of coordinate axis and 4 nodes on each coordinate axis. Thus $l(C)$ has 6 cusps and 3 nodes. Note that nodes of $\psi(C)^{*}$ on the coordinate axes are mapped on simple tangents on the corresponding coordinate axes of $l(C)$. Thus the curve $l(C)$, defined by $g\left(\sqrt{x^{*}}, \sqrt{y^{*}}\right)=0$, belongs to $\mathscr{M}^{n m l}$. Finally we will show that l keeps the type of the curve. As the curves $\left\{\bar{\imath}(C) ; C \in \mathscr{M}_{\text {torus }} / G\right\}$ are topologically equivalent, the image is contained in a connected component. Thus it is enough to show that there exists a $C \in$ $\mathscr{M}_{\text {torus }} / G$ such that $\bar{l}(C) \in \mathscr{M}_{\text {torus }} / G$. To see this, it is enough to take $C \in \mathscr{M}_{\text {torus }}^{\text {nml }}$ whose defining polynomial $F(X, Y, Z)$ is symmetric in each of X, Y. Then $\tilde{F}(X, Y, Z)$ is also symmetric in X, Y. This implies also that $\tilde{G}\left(X^{*}, Y^{*}, Z^{*}\right)$ and $G\left(X^{*}, Y^{*}, Z^{*}\right)$ symmetric in X^{*}, Y^{*}. By Degtyarev's criterion, this implies that $l(C)$ is a sextic of a torus type.

Thus we have proved the following:
TheOrem 2.4. There exists an involution $\bar{\imath}$ on the quotient moduli space \mathscr{M} / G which is defined on generic points such that $\bar{\imath}$ is different from the dual curve operation and $\bar{\imath}$ preserves the types of the sextics, that is $\bar{\imath}(C) \in \mathscr{M}_{\text {torus }} / G \Leftrightarrow C \in$ $\mathscr{M}_{\text {torus }} / G$.

The following example shows that $\bar{l}(C) \neq C^{*}$ in general.
Example 2.5. Let $C \in \mathscr{M}_{\text {torus }}^{n m l}$ be the sextic defined by the symmetric polynomial:

$$
\begin{aligned}
& f:=-684\left(x^{3} y+x y^{3}\right)-1055\left(x^{3}+y^{3}\right)+2235\left(x^{2}+y^{2}\right)-2178(x+y)+ \\
& (819 / 16)\left(x^{5} y+y^{5} x\right)+(1767 / 16)\left(x^{4} y^{2}+x^{2} y^{4}\right)+(881 / 8) y^{3} x^{3}+(405 / 16)\left(x^{6}+y^{6}\right) \\
& -(873 / 8)\left(x^{5}+y^{5}\right)+(2001 / 4)\left(x^{4}+y^{4}\right)-(971 / 8)\left(x^{4} y+x y^{4}\right)-(6947 / 2) y^{2} x^{2}+ \\
& 2268+1038\left(x^{2} y+x y^{2}\right)-4883 y x-(375 / 2)\left(x^{2} y^{3}+x^{3} y^{2}\right)
\end{aligned}
$$

Then $\psi(C)$ is defined by $f\left(x^{2}, y^{2}\right)$ and $\psi(C)^{*}$ is defined by $g\left(x^{* 2}, y^{* 2}\right)=0$ and $l(C)$ is the sextic defined by the symmetric polynomial

$$
\begin{aligned}
& g\left(x^{*}, y^{*}\right):=908294 x^{* 2} y^{* 2}-354000\left(x^{*} y^{* 2}+x^{* 2} y^{*}\right)+302745\left(y^{* 4}+x^{* 4}\right)+ \\
& 529284\left(x^{* 4} y^{* 2}+y^{* 4} x^{* 2}\right)-396458\left(x^{*} y^{* 4}+y^{*} x^{* 4}\right)-722148\left(x^{* 3} y^{* 2}+y^{* 3} x^{* 2}\right)+ \\
& 11340\left(y^{* 6}+x^{* 6}\right)-109170\left(x^{* 5}+y^{* 3}\right)+86296 x^{*} y^{*}+482724\left(x^{* 3} y^{*}+y^{* 3} x^{*}\right)- \\
& 158508\left(y^{*} x^{* 5}+y^{* 5} x^{*}\right)+103096 y^{* 3} x^{* 3}-22230\left(x^{*}+y^{*}\right)-203920\left(y^{* 3}+x^{* 3}\right)+ \\
& 90570\left(y^{* 2}+x^{* 2}\right)+2025
\end{aligned}
$$

The dual curve C^{*} of C is defined by the following symmetric polynomial and we can easily check that $\bar{l}(C) \neq C^{*}$ in \mathscr{M} / G.

$$
\begin{aligned}
& h\left(x^{*}, y^{*}\right):=3\left(x^{* 4}+y^{* 4}\right)+14\left(x^{* 3}+y^{* 3}\right)+3\left(x^{* 2}+y^{* 2}\right)+4\left(y^{*} x^{* 4}+x^{*} y^{* 4}\right)+ \\
& 36\left(y^{*} x^{* 3}+x^{*} y^{* 3}\right)+6\left(y^{*} x^{* 2}+x^{*} y^{* 2}\right)-2 y^{*} x^{*}+12\left(y^{* 2} x^{* 4}+x^{* 2} y^{* 4}\right)+84\left(y^{* 2} x^{* 3}+\right. \\
& \left.x^{* 2} y^{* 3}\right)+14 y^{* 2} x^{* 2}+88 y^{* 3} x^{* 3}
\end{aligned}
$$

Proof. Put $C^{\prime}:=\imath(C)$. We can see that C^{*} and C^{\prime} are not in the same orbit of $\operatorname{PSL}(3 ; C)$. In fact, assume that there exists a $A \in \operatorname{PSL}(3 ; C)$ such that $\left(C^{*}\right)^{A}=C^{\prime}$. Then A maps nodes to nodes. This implies that A permutes the three points $(0,0,1),(0,1,0)$, and $(1,0,0)$. Thus A is a scalar multiplication of the coordinates $\left(X^{*}, Y^{*}, Z^{*}\right) \mapsto\left(\alpha X^{*}, \beta Y^{*}, \gamma Z^{*}\right)$, followed by a persutaion $\sigma \in \mathbb{G}_{3}$. These actions does not change the number of monomials in x^{*} and y^{*}. Thus $h^{A}=g$ is impossible as g has 28 monomials while h has only 19 monomials.

Remark. We know that $\mathscr{M}_{\text {torus }} / G$ is irreducible of dimension 4, in which one dimensional subvariety comes as the image of Gauss map (= dual curves) of 3 (3,4)-cuspidal sextics of torus type ([O4]). We do not know either the irreduciblity of $\mathscr{M}_{\text {gen }} / G$ or the dimension. Only thing we know is that it contains one dimensional subvariety coming from $3(3,4)$-cuspidal non-torus sextics as the image of Gauss map. However any such curve C is special in the sense C^{*} is not contained in $\mathscr{M}_{\text {gen }} / G$. We do not have any explicit example of a generic element $C \in \mathscr{M}_{\text {gen }} / G$ which has three bitangent lines.

References

[B-K] E. Brieskorn and H. Knörrer, Ebene Algebraische Kurven, Birkhäuser, Basel, 1981.
[D] A. Degtyarev, Alexander polynomial of a curve of degree six, J. Knot Theory and its Ramification, 3 (1994), 439-454.
[N] M. Namba, Geometry of Projective Algebraic Curves, Dekker, New York, 1984.
[O1] M. Oka, Symmetric plane curves with nodes and cusps, J. Math. Soc. Japan, 44 (1992), 375-414.
[O2] M. Oкa, Flex curves and their applications, Geom. Dedicata, 75 (1999), 67-100.
[O3] M. Oкa, Geometry of cuspidal sextics and their dual curves, to appear in Singularities and Arrangements, Sapporo-Tokyo 1998, Kinokuniya.
[O4] M. Oka, Elliptic curves from sextics, preprint, 2000.
[W] R. Walker, Algebraic Curves, Dover, New York, 1949.
Department of Mathematics
Tokyo Metropolitan University
Minami-Ohsawa, Hachioji-shi
TOKYO, 192-0397, JAPAN
E-mail: oka@comp.metro-u.ac.jp

