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NON COMMUTATIVITY OF SELF HOMOTOPY GROUPS
Hmeakr OsHIMA AND NOBUAKI YAGITA

Abstract

We study non-commutativity of the self homotopy groups of Lie groups.

1. Introduction

Let G be a connected Lie group and i : G x G — G the multiplication of G.
For any space 4 with a base point, the based homotopy set [4, G] becomes a
group with respect to the binary operation u, :[4,G] x [4,G] =[4,G x G] —
[4,G]. Even if A4 is a simple space, it is difficult to calculate the group [4, G].
A general result was given by Whitehead (p. 464 of [17]):

(L.1) nil[4, G] < cat 4,

where nil and cat denote the nilpotency class and the Lusternik-Schnirelmann
category with cat(x) = 0, respectively. We study the special case 4 = G. In [9],
[12], [13], the group [G,G] has been calculated for G = SU(3), Sp(2), G,. 1t
shows that nil[G, G] equals 2 if G=SU(3), Sp(2) and 3 if G=G,. This
supports the following conjectures which were proposed in [13] by the first
author.

CoNsecTURE 1.1. If G is simple, then nil|G, G] > rank G.

CoNJECTURE 1.2. If G is simple and rank G > 2, then nil[G, G] > 2, that is,
(G, G] is not commutative.

If 1.1 is affirmative, then so is 1.2. Notice that two conjectures are false in
general without the assumption of simpleness of G ([13]).

The purpose of this note is to prove the following which supports the above
conjectures.
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16 HIDEAKI OSHIMA AND NOBUAKI YAGITA

THeEOREM 1.3. (1) nil[SU(4),SU4)] = 3.

(2) nil[G,G] =2 if G=SU(5),SU(6),Sp(3).
(3) nil[G, G] = 3 if G = Spin(7), Spin(8), Es, Fu.
(4) nil[Es, Eg) = 5.

We study Spin(7), Spin(8), Es, Es, Fy in §2, SU(4) in §3, and SU(5), SU(6),
Sp(3) in §4.
We do not distinguish notationally between a map and its homotopy class.

2. mod p non commutativity

For any space Y with a base point, we denote by d, the diagonal maps ¥ —
Yx---xYand Y ->Y A --- A Y,
——— ———

n n

Let X be a connected homotopy associative CW Hopf space. The com-
mutator map ¢; : X x X — X is the composite of

dyxd Ixmwx1

X x X XXX XX XX — X xXxXxX

Ix1xoxo

X x X xXxXx " xxx—" . x

where rw is the twisting map, ¢ is the inverse and u is the multiplication of
X. Inductively we define ¢, =cr0(1 x¢y): X x---x X — X for n>3. Of
———

course, when X is a topological group, c¢;(x, y) = xyx}11 y~! and ¢, can be seen as
amap X A --- AX — X forn>2. Given f,ge[Y,X], its commutator [f,g] €
—_—

[V, X] is repgesented by the map

Y o vxy % xxx -2 X,

Let p be an odd prime and /,(—) the mod p ordinary homology H.(—; Z,)
or the Morava K-theory K(n),(—) with the coefficient K(n), = Z,[v,, v, '], |va| =
2(p"—1). We assume that H;(X;Z,) is finite dimensional for every i. Thus
h.(X) is a Hopf algebra with the multiplication g, and the comultiplication d..
Hence 4.(X) is cocommutative but, in general, not commutative. Given x e
hs(X) and ye h(X), we define

b,y =y = (=1)"px € hy(X).
By direct calculation, we have
Lemma 2.1 ([14], [19]). If x1,...,x, € h(X) are primitive (n > 2), then

Cn*(xl ® - ®xn) = [xla [Xz,... [xnfhxn]“-]]
7

and it is primitive.
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By the Borel theorem, the mod p cohomology H*(X;Z,) is a tensor pro-
duct of truncated polynomial algebras and exterior algebras generated by even
and odd dimensional elements respectively. In particular, mod p-cohomology of
exceptional Lie groups have form

H ®Z yl ®A(X/)

where |y;| is even and |x;| is odd. The mod p homology is the dual of the
cohomology and is additively isomorphic to the cohomology. Let us denote by
z; (resp. y;) the dual of x; (resp. y;). We have

THEOREM 2.2 ([6], [7]). Let G be an exceptional Lie group having p-torsion in
homology. Then for some n with 2 <n <3, we have
(2) For each zj # z3, there is y; such that c».(y; ® zj) #0 in K(n),(G).

Notice that G of the above theorem is one of Fy, Eg, E7, Eg for p = 3 and Ejg
for p=5. In these cases, all y; and z; are primitive. Except the case G = Eg
for p =3, Theorem 2.2 holds for n = 2.

By definition, we easily have

LEMMA 23. ¢, (1®1)=1 and ¢2, (2 ®1) = c2.(1 @) =0 for o e h,(X).

Localization technique works for our purpose. For any prime number p
(including the case p = 2), let X{,) be the p-localization of X. Then [X ), X(,]
=~ [X,X], and

(2.1) nil[X, X] = max{nil[X(,), X,]}.
P

Now we consider the concrete cases. Harper [2], Harris [3] and Wilkerson
[18] showed that there are decompositions of mod p spaces (not as H-spaces):

Fi~3 F) % Fl!, E¢ =~ Fyx (Eg/Fy), Es~sEL,xE!
where
H*(FyZs3) = Zs[ )/ (05) @ Alxs, x7),  H*(Fy'3Z3) = A(xin, xis),
H*(Eg; Zs) = Zs[y12)/ (¥1,) ® A(x3, X101, %27, X35),
H*(E{;Zs) = A(x1s, X23, X39, X47).

The action [yg, —] (resp. [y}2, —]) in K(2),(G) for (G, p) = (Fs,3) (resp. (Es,5)) is
given as follows [6]:

Z3 — Z11 — —Uz3, Z7 — Z15 — —U2zZ7

(resp- Z3 — Z15 — Z27 —> Z39 — —U2Z3, Z11 — Z23 — Z35 — Z47 — —172211)-
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CoroLLARY 2.4. If (G,p) is (Fs,3), (Es,3) or (Es,S), then nil|G,G]| >p

Proof. Under the condition, we have y” = —uv,y in K(2),(G) by (1.4) of
[20]. As is well-known,

k
ad*(»)(z) == 1, [y, ... L,—]l Z( ) )y pl,

=0
k
In particular ad”(y)(z) = y”z — zy” = —us[y,z] # 0, whence ad” ' (y)(z) # 0.
Let f be the composite of

P"OJ

Fyz) = Fiz) — Fi3).

Then

(22) fi(yg) =ys and  f,(z15) =0.

By direct computation of the diagonal map, we have
d3.(y3z15) = 278 @ ys ® 215 + 4,

where a => a; ® a» ®a; such that a4 = Z1s for some i <2 or a; =1 for one

or two i’s and ajeK(Z) (Fa3)) (= K(2) (Fy4)) for all j with a; # 1. Since
e (f x fxid),(a) =0 by 2.3 and (2.2), it follows from 2.1 that we have

[, Lfid)) (v3z1s) = e3u(f % f x id),ds.(v§z1s) = 2 ad® (1) (z215)
= —ad?(ys)(z15) #0

in K(2),(Fy). Hence [f,[f,id]] # 0 and nil[Fy3), Fy3)] > 3 so that nil[Fy, Fy] > 3
by (2.1).
Let f be the composite of

proj

Eg3) Fy3) Fy3) Eg(3).

c

We have i*[f,[f,id]] = i.[ f,[f,id]] # 0 in [Fy3), Eg3)], because i, : [Fy3), Fys ]
[F43), E6(3)] 1s injective. Hence [f,[f,id]] # 0 in K(2),(E¢3)) and nil[Eq3), Eg(3)]
> 3 so that nil[Eg, Eg] > 3 by (2.1).

Let g be the composite of

Eys) P, Egs) — Eys).
Then
(2.3) g«(y12) = y1» and  g.(z15) = 0.

We have

dS*(y?zzIS) =5-Dyp®yn®y2®yi2®zis+a
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where a = ) a1 ® --- ® as such that a; = z5 for some i <4 or ¢; = 1 for at least
one and at most four i’s and a; € K(2).(Eys))(= K(2).(Es)) for all j with a; # 1.
Since ¢s5.(g x g x g x g x id),(a) = 0 by 2.3 and (2.3), it follows from 2.1 that we
have

[9,[9. 9, [9, id]]]]. (y1r215) = 24 ad*(y12)(215) = —ad*(y12)(215) # 0
in K(2),(Es) and nil[Eys), Eg5)] = 5 so that nil[Eg, Eg] > 5 by (2.1). O
ProposITION 2.5. nil[Spin(8), Spin(8)] > nil[Spin(7), Spin(7)] > 3.

Proof.  Since the bundle Spin(7) — Spin(7)/G> = S7 has a 3 section, there is
a mod 2 equivalence Spin(7) ~> S7 x G,. In particular the inclusion i) Gy —
Spin(7)(2) has a homotopy left inverse. Thus the following homomorphism i),
is injective and i) is surjective:

[Spin(7)(2)7 Spin(7)(2>] o [Spin(7)(2), Gy o [Ga2), Ga2))-
Hence
1’111[Sp1n(7)(2), Spln(7)(2)} > nll[Spln(7)<2), GZ(Z)] > nﬂ[G2<2), GZ(Z)]

Since the localization is an exact functor, it follows from Theorem 2.3 of [13] that
the last number is three. We then have nil[Spin(7), Spin(7)] > 3 by (2.1).
Since the bundle Spin(8) — Spin(8)/Spin(7) =S’ has a section, there
is a homeomorphism Spin(8) ~ S’ x Spin(7). In particular the inclusion
i: Spin(7) = Spin(8) has a left inverse. By the same method as above, we have
nil[Spin(8), Spin(8)] > nil[Spin(7), Spin(7)]. This completes the proof. O

Remark 2.6. By using mod 2 versions of 2.2 and 2.3, we can prove non-
commutativity of [Spin(7), Spin(7)].

3. SU®M)

The purpose of this section is to prove

ProposiTioN 3.1. nil[SU(4),SU(4)] = 3.

We have nil[SU(4),SU(4)] <cat SU4)=3 by (1.1) and [15]. It then
suffices to show the existence of three maps a;, a>,a3 : SU(4) — SU(4) such that
[a1, [a2, a3]] # 0.

Let p:SU@4) — S7, p:SUB3)— S° p':SU4) — SU@4)/Sp(2) = S> be
the canonical projections, 0:S3 = SU(2) — SU(n) (n=3), i:SU(3) — SU(4)
the inclusions, and 1, the identity map of S”".

Recall from [1], [10] the following:
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7s(SU(3)) = Z{[2]} = ns(SU@)).  p.[2] = s,
n(SU(4)) = Z{[6]}, p.[6] =617, pl:7ms(SU4)) =~ 77.'8(55) = 7oy,

B1)  7(SUB)) 2 72(SU@)) = Zeo{<i 2], [6]>),
(32)  ms(SUB)) = Zss & mis(SU@)) = Z1» ® Zo.

There exists a map g which makes the following diagram commutative up to
homotopy:

SU@) ——% ., SU(4) A SU(4) A SU(4)
Lap' Ap
SUM) SUA ASSAST 22 U4y A SU4) A SU()
[q OAnTAL [63
s 9 S3ASSAST 028D SU(4)

By using integral cohomology, we see that g is a homotopy equivalence. Hence

[1,[io[2]op’,[6] 0 p]] = +47<0,<ii[2], [6]>).

We shall prove non-triviality of these elements. Let 7, : S* — S? be the Hopf
map and write 5, = X" 2y,. Then 7,,(S") = Z2{n,} for n >3 by [16]. There
is a cell-decomposition:

SUM4) =S’U,, eUetUe’Ue'Ue?Useb.
We have an exact sequence:
[ESU@)M SU@4)] 25 1y5(SU(4)) — [SU(4), SU(4)]

where X(®) denotes the k-skeleton of a CW-complex X. The following implies
that the order of [1,[io[2] op’,[6] o p]] is a multiple of three so that 3.1 follows.

Lemma 3.2. (1) The order of <0,<i.[2],[6]>)> is a multiple of three.
) 27[=sU#)"™ SU4)] = 0.

Proof. (1) Let fen2(SU(3)) be a generator. Then, from (3.1) and (3.2),
it suffices to show that the order of <#,f) € m;5(SU(3)) is a multiple of three.
By (15.14) of [5], we have

(33) p*<07ﬁ>: <l3ap*ﬁ>r

where (| >, : 7 (S?) x 7,(SU(3)/S?) — 7, (SU(3)/S?) is the relative Samelson
product. It follows from [10], [16] that p, : m12(SU(3)) — m12(S°) = Z3{a(5)}
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®Z,DZs is surjective, 7[15(S8) = Z3{O€2(8)} CYASYLISYES and 7[15(S5) =
Zo{B1(5)} ®Zs ® Zy, 3B,(5) = —01(5) o xp(8). Also by (16.2) of [5], we have
(s,i5), = Je(i3), where Je : m3(SU(2)) — 13(SO(4)) 5 7a(S*) = m5(S5) is the
complex J-homomorphism. Since Jc is surjective in this case, we have

(3.4) (13,15), € m3(S°) = Zg @ Z3{o(5)} is a generator.

It follows from (16.5) of [5] that (13,Xx), = <13,15), 0 X*x for any x e ,,(S*).
Hence <{13,00(5)), = 13,150, 0 02(8) = £ (5) 0 2(8) = £36,(5) #0 by (3.4).
Therefore the 3-component of (i3, p.f>, is +36,(5). Since p, : 715(SU(3)) —
m15(S°) is injective by [10], it follows from (3.3) that the order of {6,8) is a
multiple of three.

(2) Let 7:S85 — CP?> be the canonical map. Then SU(4)" =xCp?=
S3U,, ¢®Ug,e’. By Proposition 1.15 of [11], =% is homotopic to the com-
pos1te of §% 2% 55 $3CP?, where gemng(S3) is a generator. Write A4 =
[ZSU (4)(> SU(4)]. There is a commutative diagram:

3, %

[S5U,, ¢7, SU@4)] 1 ng(SU(4)) —— Ay —— [S*U,, 5, SU(4)] = 0
ns(SU(4))

Since 76(SU(4)) =0, j* is surjective and p!(29)i.[2] = 215029 =4g. Hence
Im(23)*) = 4ng(SU(4)) and Ay =Z4. Write A, = [ESU4)™ SU4)], 4, =
[=SU4)" SU(4)], and 45 = [ESU(4)® SU(4)]. The following diagram im-
plies that 274; = 0:

2g*

7Z13(SU(4)) =Z4 7'[11(SU(4)) =Z4 7'(9(SU(4)) ZZZ
Jq* Jq* lq*
A EARR A AN Aj SEAN Ay O

4. SU(S),SU(6), Sp(3)

Let (G,d) be (SU 72 or (Sp,4). Let 0:S* < G(n) be the inclusion map
and o € 7wy, 1(G(n)) =Z a generator. We refer to [8] for homotopy groups of
Lie groups.

THEOREM 4.1 ([1]). The order of the Samelson product {0,a) € ng,2(G(n)) is

nn+1) (G=SU and n>3)
n(2n+1)e, (G=Sp and n>?2)

where ¢, is 1 or 4 according as n is even or odd.

Proof. The case of Sp(n) follows from Theorem 2 of [1]. By Theorem 1
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of [1], the order of j,<0,0) € my2(SU(n+1)) is n(n+1) for n>2, where
j:SU(m) c SU(n+1). It then follows from the structure of j, : m2,42(SU(n))
— 7u42(SU(m+ 1)) (see [8]) that the order of <0,0) is n(n+1) for n > 3. [

Recall that G(n) has a cell-decomposition:
G(n) = G(n—1)Ue™ U, e™2U{cells of dimension >d(n+ 1)+ 2}.

We use always this decomposition. Write Y (n) = G(n— 1)V yed-1 and
Z(n) =Y (n)U, e™2. Let p: G(n) — S™ ! be the canonical projection. For
simplicity we denote by 1 the identity maps, by j the inclusion maps, and by ¢
the quotient maps. There exists a map g which makes the following diagram
commutative up to homotopy:

G(n) —2— G(n) A G(n)

i |

Z(n) G(n) A ST 2% G(n) A G(n)
q Iﬁ/\ 1 lcz
Sa’n+2 S3 A Sdnfl G(H)
g 0,0y

By using the integral cohomology, we have that g is a homotopy equivalence so
that

J* oo pl = £47<0,0).

If these elements are non-zero, then [l,azop]#0 and [G(n),G(n)] is non-
commutative. To study non-triviality of ¢*<{60,a>, we compare the orders of
{0,y and the image of Xp;:

(4.1) Y (1), G()] =25 74ns2(G(n)) ~ [Z(n), G(n)].

Consider the following commutative diagram:

Tans2(EG(n — DIy L D (BY(n) —— g (BY (n), 2G(n — 1))

Tin+2(2G(n)) T Tant2(S)

Since j,(Ep,) = 0, there exists 7, € T2 (EG(n — 1) D)

Hence Zp; in (4.1) decomposes as

such that j,(p,) = 2p,.

(4.2) [£Y (), G(n)] = [£G(n — 1) G(n)] L may12(G(w)

and so we have
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Im(2p;) < Im(5}).

We can show that j* of (4.2) is surjective so that Im(Zp)) = Im(p). But we do
not use this.

PrOBLEM 4.2. Is there a prime p satisfying v,(#Im(p;))) < v,(#<0, «))?

Here § denotes the order and v,(m) is the exponent of p in the prime
decomposition of an integer m. Notice that ¢*{0,a) is non-zero if Problem 4.2
is affirmative.

PrOPOSITION 4.3.  Problem 4.2 is affirmative when G(n) is one of the
Sfollowing:

Sp(2),Sp(3),SU(3),SU4),SU(5),SU(6).

Proof. 1Tt is easy to show the following: p* =0 for Sp(2), SU(3) and
2.p*=0 for SU(4). Hence the result follows from 4.1 for these cases. We
omit the details.

Sp(3). Consider the following exact sequence:

w1 (5p(3)) -5 [25p(2) Y, Sp(3)] L [5* Uy €, p(3)]
Here Sp(2)"¥ = Sp(2) = S3Ue’ Ue!®.  We have j* : [S*Ueb, Sp(3)] = mu(Sp(3))
=7, by [8]. Hence 2[=Sp(2)"¥, Sp(3)] = Im(g*) and so 2 - Im(5*) = Im(g o 5)".
Hence 48 -Im(p*) =24 -Im(gop)" =0, since gopemy(S') =Zy. Therefore
v7(fIm(p*)) =0 < v7(#<0,0)) = 1.

Let n be 5 or 6. Then, we have SU(n—1)*"V =sU(n-1)* and
SUn—1)D =sUmn- 1) =5Un-2)"2Ue> 3. Since 2Monia
(ESU(m — 1) 28U —1)*7Y) =0, there exists p € ma2(ESU(n — 1))
such that j.p=2p € m,2(ESUn — 1)<2">). By Theorem (2.1) of [4], we have
T2 (ESU(m — 1)*72) 58U —2)?)=0. Hence there exists € Mo
(ESU(n —2)?"?) such that j.p = p € map2(ESU(n — 1)* ). Thus

(4.3) 2-Im(5*) = Im{p* : [ESU(n — 2)*2) SU(n)] — maus2(SU))}.

Let n =75 in (4.3). Since [S*Ue® SU(5)] =0, ¢*: mo(SU(5)) — [ESU(3),
SU(5)] is surjective. Hence Im(p*) =Im(qop)*. Since qope n2(S°) = Za,
24 -Im(p*) = 0 and 48 - Im(p*) = 0 by (4.3). Thus vs(fIm(p*)) = 0 < vs(§<0, o))
=1

Let n =6 in (4.3). First we prove

* *

(4.4) [=SU#)®, SU(6)] L [ESU(3), SU(6)] - m(SU(6) = Z.

I1e

Since 14(SU(6)) = ns(SU(6)) = [S*U,, €®, SU(6)] = 0, there are exact sequences:
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Zp3

(4.5) [S°U,. €’ SU(6)] 2B me(SU(6)) = Z - [ESU(3), SU(6)] —— 0,

m(SU(6)) - [SSU,,Se SU(6)] L= n5(SU(6)) — 0.

Since the attachlng map of the top cell of any Lie group is stably trivial, the
composite S7 -2 §3U, 5 -5 §5 is null-homotopic. Hence £2p}(Im(g*)) = 0.
Since n6(SU( ) =0, the map S° A, SU(3) = SU(4) can be extended to a map
f:8%U, el — SU4). Write f=jof:S°U, e — SU(6). Since Z?p;i(f)e
n9(SU(4)) = Z, and 7o(SU(6)) = Z, it follows that 2%p;(f) =0. Thus Z2p; =0
n (4.5), since f and Im(¢q*) generate [S°U,, e’,SU(6)]. Therefore

(4.6) q" :m9(SU(6)) = [ESU(3),SU(6)].

Since 7g(SU(6)) =0, we have an exact sequence:

0— [ZSU@)®, SU(6)] 2 [ESU3), SU(6)] = n7(SU(6)) = Z

where 7: 8¢ — SU(3) is the attaching map of the 7-dimensional cell of SU(4).
Since g o X7 =0, (4.6) implies that ¥t* =0 so that j* is an isomorphism. This
ends the proof of (4.4).

Since 710(SU(6)) =0, we have an exact sequence:

m1(SU(6)) 2 [2sU @)1, sU(6)] 2= 25U @)Y, SU(6)] — 0
Since gop e m(S'") = Zy, we have
(4.7) 24 - p*(Im(q")) = 0.
Let he [ZSU(4)(10),SU(6)] be such that & :=Xj*h is the composite of

(4

2sU4)® L 50 5 SU(5) —= SU(6)

where [4!] is a generator of m(SU(5))=7Z. By (4.4), h is a generator of

[ZSU( 4® SU@)=2Z. Let w:S8°— SUA)® be the attaching map of the
unique 10-dimensional cell of SU(4). Since qua)emo(S9) Z,, there exists
k: ZSU(4)(10) — 8% such that the following diagram is commutative up to
homotopy:

s 2 ssu@® .50 M sus) L su(s)

M
ssu@" L 2 '

L8 L SU(5) —L— SU(6)
where the latter two 2’s are power maps x — x2.  We then have (/)" (j o [4!] o k)
=2h = (%j)*(2h) and

2h—jo 4 okelm{q*:m1(SU(6)) — [ZSUHY, SU(6)]}.
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Since kopemy(S’) =0, we have 2-5*(h) € p*(Im(q*)). Thus 48-5*(h) =0
by (4.7), and hence 48 - Im(p*) = 0. Therefore 96 - Im(p*) = 0 by (4.3). Hence
v7(#Im(p)) = 0 < v7(#<6,«)) = 1. This completes the proof. O
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