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NON COMMUTATIVITY OF SELF HOMOTOPY GROUPS

Hideaki OÅ shima and Nobuaki Yagita

Abstract

We study non-commutativity of the self homotopy groups of Lie groups.

1. Introduction

Let G be a connected Lie group and m : G � G ! G the multiplication of G.
For any space A with a base point, the based homotopy set �A;G � becomes a
group with respect to the binary operation m� : �A;G � � �A;G� � �A;G � G � !
�A;G�. Even if A is a simple space, it is di½cult to calculate the group �A;G �.
A general result was given by Whitehead (p. 464 of [17]):

nil�A;G�U cat A;�1:1�

where nil and cat denote the nilpotency class and the Lusternik-Schnirelmann
category with cat��� � 0, respectively. We study the special case A � G. In [9],
[12], [13], the group �G;G � has been calculated for G � SU�3�, Sp�2�, G2. It
shows that nil�G;G � equals 2 if G � SU�3�, Sp�2� and 3 if G � G2. This
supports the following conjectures which were proposed in [13] by the ®rst
author.

Conjecture 1.1. If G is simple, then nil�G;G�V rank G.

Conjecture 1.2. If G is simple and rank G V 2, then nil�G;G�V 2, that is,
�G;G� is not commutative.

If 1.1 is a½rmative, then so is 1.2. Notice that two conjectures are false in
general without the assumption of simpleness of G ([13]).

The purpose of this note is to prove the following which supports the above
conjectures.
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Theorem 1.3. (1) nil�SU�4�;SU�4�� � 3.
(2) nil�G;G�V 2 if G � SU�5�;SU�6�;Sp�3�.
(3) nil�G;G�V 3 if G � Spin�7�; Spin�8�;E6;F4.
(4) nil�E8;E8�V 5.

We study Spin�7�, Spin�8�, E6, E8, F4 in §2, SU�4� in §3, and SU�5�, SU�6�,
Sp�3� in §4.

We do not distinguish notationally between a map and its homotopy class.

2. mod p non commutativity

For any space Y with a base point, we denote by dn the diagonal maps Y !
Y � � � � � Y|���������{z���������}

n

and Y ! Y 5 � � �5Y|���������{z���������}
n

.

Let X be a connected homotopy associative CW Hopf space. The com-
mutator map c2 : X � X ! X is the composite of

X � X ������!d2�d2
X � X � X � X ������!1�tw�1

X � X � X � X

������!1�1�s�s
X � X � X � X ������!m�m

X � X ������!m
X

where tw is the twisting map, s is the inverse and m is the multiplication of
X. Inductively we de®ne cn � c2 � �1� cnÿ1� : X � � � � � X|���������{z���������}

n

! X for nV 3. Of

course, when X is a topological group, c2�x; y� � xyxÿ1yÿ1 and cn can be seen as
a map X 5 � � �5X|���������{z���������}

n

! X for nV 2. Given f ; g A �Y ;X �, its commutator � f ; g� A
�Y ;X � is represented by the map

Y ��!d2
Y � Y ��!f�g

X � X ��!c2
X :

Let p be an odd prime and h��ÿ� the mod p ordinary homology H��ÿ; Zp�
or the Morava K-theory K�n���ÿ� with the coe½cient K�n�� � Zp�vn; v

ÿ1
n �, jvnj �

2� pn ÿ 1�. We assume that Hi�X ; Zp� is ®nite dimensional for every i. Thus
h��X� is a Hopf algebra with the multiplication m� and the comultiplication d2�.
Hence h��X� is cocommutative but, in general, not commutative. Given x A
hs�X � and y A ht�X�, we de®ne

�x; y� � xyÿ �ÿ1� styx A hs�t�X�:
By direct calculation, we have

Lemma 2.1 ([14], [19]). If x1; . . . ; xn A h��X� are primitive �nV 2�, then

cn��x1 n � � � n xn� � �x1; �x2; . . . �xnÿ1; xn � . . .��|�{z�}
nÿ1

and it is primitive.
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By the Borel theorem, the mod p cohomology H ��X ; Zp� is a tensor pro-
duct of truncated polynomial algebras and exterior algebras generated by even
and odd dimensional elements respectively. In particular, mod p-cohomology of
exceptional Lie groups have form

H ��X ; Zp� �1
i; j

Zp�yi�=�yp
i �nL�xj�;

where jyij is even and jxj j is odd. The mod p homology is the dual of the
cohomology and is additively isomorphic to the cohomology. Let us denote by
zj (resp. yi) the dual of xj (resp. yi). We have

Theorem 2.2 ([6], [7]). Let G be an exceptional Lie group having p-torsion in
homology. Then for some n with 2U nU 3, we have

(1) K�n���G�GK�n��nH��G; Zp�.
(2) For each zj 0 z3, there is yi such that c2��yi n zj�0 0 in K�n���G�.

Notice that G of the above theorem is one of F4;E6;E7;E8 for p � 3 and E8

for p � 5. In these cases, all yi and zj are primitive. Except the case G � E8

for p � 3, Theorem 2.2 holds for n � 2.
By de®nition, we easily have

Lemma 2.3. c2��1n 1� � 1 and c2��an 1� � c2��1n a� � 0 for a A ~h��X�.

Localization technique works for our purpose. For any prime number p
(including the case p � 2), let X�p� be the p-localization of X. Then �X�p�;X�p��
G �X ;X ��p� and

nil�X ;X � � max
p
fnil�X�p�;X� p��g:�2:1�

Now we consider the concrete cases. Harper [2], Harris [3] and Wilkerson
[18] showed that there are decompositions of mod p spaces (not as H-spaces):

F4 F3 F 04 � F 004 ; E6 F3 F4 � �E6=F4�; E8 F5 E 08 � E 008

where

H ��F 04; Z3� � Z3� y8�=�y3
8�nL�x3; x7�; H ��F 004 ; Z3� � L�x11; x15�;

H ��E 08; Z5� � Z5� y12�=�y5
12�nL�x3; x11; x27; x35�;

H ��E 008 ; Z5� � L�x15; x23; x39; x47�:
The action � y8;ÿ� (resp. �y12;ÿ�) in K�2���G� for �G; p� � �F4; 3� (resp. �E8; 5�) is
given as follows [6]:

z3 ! z11 ! ÿv2z3; z7 ! z15 ! ÿv2z7

�resp: z3 ! z15 ! z27 ! z39 ! ÿv2z3; z11 ! z23 ! z35 ! z47 ! ÿv2z11�:
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Corollary 2.4. If �G; p� is �F4; 3�, �E6; 3� or �E8; 5�, then nil�G;G�V p.

Proof. Under the condition, we have yp � ÿv2 y in K�2���G� by (1.4) of
[20]. As is well-known,

adk�y��z� :� �y; �y; . . . �y; z � . . .��|�{z�}
k

�
Xk

l�0

k

l

 !
�ÿ1� l ykÿlzyl :

In particular adp�y��z� � ypzÿ zyp � ÿv2�y; z�0 0, whence adpÿ1�y��z�0 0.
Let f be the composite of

F4�3� ��!proj
F 04�3� ��!H F4�3�:

Then

f��y8� � y8 and f��z15� � 0:�2:2�
By direct computation of the diagonal map, we have

d3��y2
8z15� � 2y8 n y8 n z15 � a;

where a �P a1 n a2 n a3 such that ai � z15 for some i U 2 or ai � 1 for one

or two i 's and aj A gK�2���F4�3���� gK�2���F4�� for all j with aj 0 1. Since
c3�� f � f � id���a� � 0 by 2.3 and (2.2), it follows from 2.1 that we have

� f ; � f ; id ����y2
8z15� � c3�� f � f � id��d3��y2

8z15� � 2 ad2�y8��z15�
� ÿad2�y8��z15�0 0

in K�2���F4�. Hence � f ; � f ; id ��0 0 and nil�F4�3�;F4�3��V 3 so that nil�F4;F4�V 3
by (2.1).

Let ~f be the composite of

E6�3� ��!proj
F4�3� ��!f F4�3� ��!i

H
E6�3�:

We have i�� ~f ; � ~f ; id �� � i�� f ; � f ; id ��0 0 in �F4�3�;E6�3��, because i� : �F4�3�;F4�3�� !
�F4�3�;E6�3�� is injective. Hence � ~f ; � ~f ; id ��0 0 in K�2���E6�3�� and nil�E6�3�;E6�3��
V 3 so that nil�E6;E6�V 3 by (2.1).

Let g be the composite of

E8�5� ��!proj
E 08�5� ��!H E8�5�:

Then

g��y12� � y12 and g��z15� � 0:�2:3�
We have

d5��y4
12z15� � �5ÿ 1�!y12 n y12 n y12 n y12 n z15 � a
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where a �P a1 n � � � n a5 such that ai � z15 for some iU 4 or ai � 1 for at least

one and at most four i 's and aj A gK�2���E8�5���� gK�2���E8�� for all j with aj 0 1.
Since c5��g� g� g� g� id���a� � 0 by 2.3 and (2.3), it follows from 2.1 that we
have

�g; �g; �g; �g; id ������y4
12z15� � 24 ad4�y12��z15� � ÿad4�y12��z15�0 0

in K�2���E8� and nil�E8�5�;E8�5��V 5 so that nil�E8;E8�V 5 by (2.1). r

Proposition 2.5. nil�Spin�8�; Spin�8��V nil�Spin�7�; Spin�7��V 3.

Proof. Since the bundle Spin�7� ! Spin�7�=G2 � S7 has a 3 section, there is
a mod 2 equivalence Spin�7�F2 S7 � G2. In particular the inclusion i�2� : G2�2� !
Spin�7��2� has a homotopy left inverse. Thus the following homomorphism i�2��
is injective and i��2� is surjective:

�Spin�7��2�; Spin�7��2��  �i�2�� �Spin�7��2�;G2�2�� �!i ��2� �G2�2�;G2�2��:
Hence

nil�Spin�7��2�; Spin�7��2��V nil�Spin�7��2�;G2�2��V nil�G2�2�;G2�2��:
Since the localization is an exact functor, it follows from Theorem 2.3 of [13] that
the last number is three. We then have nil�Spin�7�; Spin�7��V 3 by (2.1).

Since the bundle Spin�8� ! Spin�8�=Spin�7� � S7 has a section, there
is a homeomorphism Spin�8�AS7 � Spin�7�. In particular the inclusion
i : Spin�7�H Spin�8� has a left inverse. By the same method as above, we have
nil�Spin�8�; Spin�8��V nil�Spin�7�; Spin�7��. This completes the proof. r

Remark 2.6. By using mod 2 versions of 2.2 and 2.3, we can prove non-
commutativity of �Spin�7�; Spin�7��.

3. SU�4�
The purpose of this section is to prove

Proposition 3.1. nil�SU�4�;SU�4�� � 3.

We have nil�SU�4�;SU�4��U cat SU�4� � 3 by (1.1) and [15]. It then
su½ces to show the existence of three maps a1; a2; a3 : SU�4� ! SU�4� such that
�a1; �a2; a3��0 0.

Let p : SU�4� ! S7, p : SU�3� ! S5, p 0 : SU�4� ! SU�4�=Sp�2� � S5 be
the canonical projections, y : S3 � SU�2� ! SU�n� �nV 3�, i : SU�3� ! SU�4�
the inclusions, and in the identity map of S n.

Recall from [1], [10] the following:
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p5�SU�3�� � Zf�2�gGi� p5�SU�4��; p��2� � 2i5;

p7�SU�4�� � Zf�6�g; p��6� � 6i7; p 0� : p8�SU�4��G p8�S5� � Z24;

p12�SU�3��Gi� p12�SU�4�� � Z60fhi��2�; �6�ig;�3:1�

p15�SU�3�� � Z36 H
i�

p15�SU�4�� � Z72 lZ2:�3:2�
There exists a map g which makes the following diagram commutative up to

homotopy:

SU�4� ��������!d3
SU�4�5SU�4�5SU�4�






????y15p 05p

SU�4� SU�4�5S55S7 ��������!15i��2�5�6�
SU�4�5SU�4�5SU�4�????yq

x????y5151

????yc3

S15 ��������!g
S35S55S7 ��������!hy;hi��2�; �6�ii

SU�4�
By using integral cohomology, we see that g is a homotopy equivalence. Hence

�1; �i � �2� � p 0; �6� � p�� �Gq�hy; hi��2�; �6�ii:
We shall prove non-triviality of these elements. Let h2 : S3 ! S2 be the Hopf
map and write hn � Snÿ2h2. Then pn�1�S n� � Z2fhng for nV 3 by [16]. There
is a cell-decomposition:

SU�4� � S3 Uh3
e5 U e8 U e7 U e10 U e12 Ux e15:

We have an exact sequence:

�SSU�4��14�;SU�4�� ��!Sx �
p15�SU�4�� ��!q � �SU�4�;SU�4��

where X �k� denotes the k-skeleton of a CW-complex X. The following implies
that the order of �1; �i � �2� � p 0; �6� � p�� is a multiple of three so that 3.1 follows.

Lemma 3.2. (1) The order of hy; hi��2�; �6�ii is a multiple of three.
(2) 27�SSU�4��14�;SU�4�� � 0.

Proof. (1) Let b A p12�SU�3�� be a generator. Then, from (3.1) and (3.2),
it su½ces to show that the order of hy; bi A p15�SU�3�� is a multiple of three.
By (15.14) of [5], we have

p�hy; bi � hi3; p�bir�3:3�
where h ; ir : ps�S3� � pt�SU�3�=S3� ! ps�t�SU�3�=S3� is the relative Samelson
product. It follows from [10], [16] that p� : p12�SU�3�� ! p12�S5� � Z3fa2�5�g
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lZ2 lZ5 is surjective, p15�S8� � Z3fa2�8�glZlZ8 lZ5, and p15�S5� �
Z9fb1�5�glZ8 lZ2, 3b1�5� � ÿa1�5� � a2�8�. Also by (16.2) of [5], we have

hi3; i5ir � JC�i3�, where JC : p3�SU�2�� ! p3�SO�4�� !J p7�S4� !S p8�S5� is the
complex J-homomorphism. Since JC is surjective in this case, we have

hi3; i5ir A p8�S5� � Z8 lZ3fa1�5�g is a generator:�3:4�
It follows from (16.5) of [5] that hi3;Sxir � hi3; i5ir � S4x for any x A pm�S4�.
Hence hi3; a2�5�ir � hi3; i5ir � a2�8� �Ga1�5� � a2�8� �G3b1�5�0 0 by (3.4).
Therefore the 3-component of hi3; p�bir is G3b1�5�. Since p� : p15�SU�3�� !
p15�S5� is injective by [10], it follows from (3.3) that the order of hy; bi is a
multiple of three.

(2) Let g : S5 ! CP2 be the canonical map. Then SU�4��7� � SCP3 �
S3 Uh3

e6 USg e7. By Proposition 1.15 of [11], S3g is homotopic to the com-

posite of S8 �!2g
S5 H

j
S3CP2, where g A p8�S5� is a generator. Write A4 �

�SSU�4��7�;SU�4��. There is a commutative diagram:

�S5 Uh5
e7;SU�4�� ���!S3g �

p8�SU�4�� ���! A4 ���! �S4 Uh4
e6;SU�4�� � 0

j �

???y
2g�

p5�SU�4�� �����
���!

Since p6�SU�4�� � 0, j � is surjective and p 0��2g��i��2� � 2i5 � 2g � 4g. Hence

Im�S3g�� � 4p8�SU�4�� and A4 � Z4. Write A1 � �SSU�4��14�;SU�4��, A2 �
�SSU�4��10�;SU�4��, and A3 � �SSU�4��8�;SU�4��. The following diagram im-
plies that 27A1 � 0:

p13�SU�4�� � Z4 p11�SU�4�� � Z4 p9�SU�4�� � Z2???yq �

???yq �

???yq �

A1 ���!j �
A2 ���!j �

A3 ���!j �
A4 r

4. SU�5�;SU�6�;Sp�3�
Let �G; d� be �SU ; 2� or �Sp; 4�. Let y : S3 HG�n� be the inclusion map

and a A pdnÿ1�G�n�� � Z a generator. We refer to [8] for homotopy groups of
Lie groups.

Theorem 4.1 ([1]). The order of the Samelson product hy; ai A pdn�2�G�n�� is

n�n� 1� �G � SU and nV 3�
n�2n� 1�en �G � Sp and nV 2�

�
where en is 1 or 4 according as n is even or odd.

Proof. The case of Sp�n� follows from Theorem 2 of [1]. By Theorem 1
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of [1], the order of j�hy; ai A p2n�2�SU�n� 1�� is n�n� 1� for nV 2, where
j : SU�n�HSU�n� 1�. It then follows from the structure of j� : p2n�2�SU�n��
! p2n�2�SU�n� 1�� (see [8]) that the order of hy; ai is n�n� 1� for nV 3. r

Recall that G�n� has a cell-decomposition:

G�n� � G�nÿ 1�U ednÿ1 Urn
edn�2 U fcells of dimensionV d�n� 1� � 2g:

We use always this decomposition. Write Y �n� � G�nÿ 1��dn�1� U ednÿ1 and
Z�n� � Y �n�Urn

edn�2. Let p : G�n� ! S dnÿ1 be the canonical projection. For
simplicity we denote by 1 the identity maps, by j the inclusion maps, and by q
the quotient maps. There exists a map g which makes the following diagram
commutative up to homotopy:

G�n� ���!d2
G�n�5G�n�

j

x??? ???y15p

Z�n� G�n�5S dnÿ1 ���!15a
G�n�5G�n�

q

???y x???y51

???yc2

S dn�2 ���!
g

S35S dnÿ1 ���!
hy;ai

G�n�

By using the integral cohomology, we have that g is a homotopy equivalence so
that

j ��1; a � p� �Gq�hy; ai:

If these elements are non-zero, then �1; a � p�0 0 and �G�n�;G�n�� is non-
commutative. To study non-triviality of q�hy; ai, we compare the orders of
hy; ai and the image of Sr�n :

�SY �n�;G�n�� ��!Sr �n
pdn�2�G�n�� ��!q � �Z�n�;G�n��:�4:1�

Consider the following commutative diagram:

pdn�2�SG�nÿ 1��dn�1�� ���!j�
pdn�2�SY �n�� ���! pdn�2�SY �n�;SG�nÿ 1��dn�1��???yj� G

???yq�

pdn�2�SG�n�� ���!
Sp�

pdn�2�S dn�

Since j��Srn� � 0, there exists ~rn A pdn�2�SG�nÿ 1��dn�1�� such that j��~rn� � Srn.
Hence Sr�n in (4.1) decomposes as

�SY�n�;G�n�� �!j � �SG�nÿ 1��dn�1�;G�n�� �!~r�n pdn�2�G�n���4:2�
and so we have
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Im�Sr�n �H Im�~r�n �:
We can show that j � of (4.2) is surjective so that Im�Sr�n � � Im� ~r�n �. But we do
not use this.

Problem 4.2. Is there a prime p satisfying vp�]Im� ~r�n �� < vp�]hy; ai�?

Here ] denotes the order and vp�m� is the exponent of p in the prime
decomposition of an integer m. Notice that q�hy; ai is non-zero if Problem 4.2
is a½rmative.

Proposition 4.3. Problem 4.2 is a½rmative when G�n� is one of the
following:

Sp�2�;Sp�3�;SU�3�;SU�4�;SU�5�;SU�6�:

Proof. It is easy to show the following: ~r� � 0 for Sp�2�, SU�3� and
2 � ~r� � 0 for SU�4�. Hence the result follows from 4.1 for these cases. We
omit the details.

Sp�3�. Consider the following exact sequence:

p11�Sp�3�� �!q � �SSp�2��13�;Sp�3�� �!j � �S4 Uh e8;Sp�3��
Here Sp�2��13� � Sp�2� � S3 U e7 U e10. We have j � : �S4 U e8;Sp�3��G p4�Sp�3��
� Z2 by [8]. Hence 2�SSp�2��13�;Sp�3��H Im�q�� and so 2 � Im� ~r��H Im�q � ~r��.
Hence 48 � Im�~r��H 24 � Im�q � ~r�� � 0, since q � ~r A p14�S11� � Z24. Therefore
v7�]Im� ~r��� � 0 < v7�]hy; ai� � 1.

Let n be 5 or 6. Then, we have SU�nÿ 1��2n�1� � SU�nÿ 1��2n� and

SU�nÿ 1��2nÿ1� � SU�nÿ 1��2nÿ2� � SU�nÿ 2��2nÿ2� U e2nÿ3. Since 2p2n�2

�SSU�nÿ 1��2n�;SSU�nÿ 1��2nÿ2�� � 0, there exists r̂ A p2n�2�SSU�nÿ 1��2nÿ2��
such that j�r̂ � 2~r A p2n�2�SSU�nÿ 1��2n��. By Theorem (2.1) of [4], we have

p2n�2�SSU�nÿ 1��2nÿ2�;SSU�nÿ 2��2nÿ2�� � 0. Hence there exists r A p2n�2

�SSU�nÿ 2��2nÿ2�� such that j�r � r̂ A p2n�2�SSU�nÿ 1��2nÿ2��. Thus

2 � Im�~r��H Imfr� : �SSU�nÿ 2��2nÿ2�;SU�n�� ! p2n�2�SU�n��g:�4:3�
Let n � 5 in (4.3). Since �S4 U e6;SU�5�� � 0, q� : p9�SU�5�� ! �SSU�3�;

SU�5�� is surjective. Hence Im�r�� � Im�q � r��. Since q � r A p12�S9� � Z24,
24 � Im�r�� � 0 and 48 � Im�~r�� � 0 by (4.3). Thus v5�]Im�~r��� � 0 < v5�]hy; ai�
� 1.

Let n � 6 in (4.3). First we prove

�SSU�4��8�;SU�6�� �!j �
G
�SSU�3�;SU�6��  �q �

G
p9�SU�6�� � Z:�4:4�

Since p4�SU�6�� � p6�SU�6�� � �S4 Uh4
e6;SU�6�� � 0, there are exact sequences:
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�S5 Uh5
e7;SU�6�� ��!S2r �

3
p9�SU�6�� � Z ��!q � �SSU�3�;SU�6�� ��! 0;�4:5�

p7�SU�6�� �!q� �S5 Uh5
e7;SU�6�� �!j � p5�SU�6�� �! 0:

Since the attaching map of the top cell of any Lie group is stably trivial, the

composite S7 �!r3
S3 Uh3

e5 �!q S5 is null-homotopic. Hence S2r�3 �Im�q��� � 0.

Since p6�SU�4�� � 0, the map S5 �!j2j SU�3�HSU�4� can be extended to a map
f : S5 Uh5

e7 ! SU�4�. Write ~f � j � f : S5 Uh5
e7 ! SU�6�. Since S2r�3 � f � A

p9�SU�4�� � Z2 and p9�SU�6�� � Z, it follows that S2r�3 � ~f � � 0. Thus S2r�3 � 0
in (4.5), since ~f and Im�q�� generate �S5 Uh5

e7;SU�6��. Therefore

q� : p9�SU�6��G �SSU�3�;SU�6��:�4:6�
Since p8�SU�6�� � 0, we have an exact sequence:

0 ��!�SSU�4��8�;SU�6�� ��!j � �SSU�3�;SU�6�� ��!St �
p7�SU�6�� � Z

where t : S6 ! SU�3� is the attaching map of the 7-dimensional cell of SU�4�.
Since q � St � 0, (4.6) implies that St� � 0 so that j � is an isomorphism. This
ends the proof of (4.4).

Since p10�SU�6�� � 0, we have an exact sequence:

p11�SU�6�� ��!q� �SSU�4��10�;SU�6�� ��!Sj � �SSU�4��8�;SU�6�� ��! 0

Since q � r A p14�S11� � Z24, we have

24 � r��Im�q��� � 0:�4:7�
Let h A �SSU�4��10�;SU�6�� be such that h :� Sj �h is the composite of

SSU�4��8� �!q S9 �!�4!�
SU�5� �!H SU�6�

where [4!] is a generator of p9�SU�5�� � Z. By (4.4), h is a generator of

�SSU�4��8�;SU�6�� � Z. Let o : S9 ! SU�4��8� be the attaching map of the
unique 10-dimensional cell of SU�4�. Since q � So A p10�S9� � Z2, there exists
k : SSU�4��10� ! S9 such that the following diagram is commutative up to
homotopy:

S10 ���!So
SSU�4��8� ���!q S9 ���!�4!�

SU�5� ���!j SU�6�???ySj

???y2i9

???y2

???y2

SSU�4��10� ���!k S9 ���!�4!�
SU�5� ���!j SU�6�

where the latter two 2's are power maps x 7! x2. We then have �Sj��� j � �4!� � k�
� 2h � �Sj���2h� and

2hÿ j � �4!� � k A Imfq� : p11�SU�6�� ! �SSU�4��10�;SU�6��g:
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Since k � r A p14�S9� � 0, we have 2 � r��h� A r��Im�q���. Thus 48 � r��h� � 0
by (4.7), and hence 48 � Im�r�� � 0. Therefore 96 � Im�~r�� � 0 by (4.3). Hence
v7�]Im�~r�� � 0 < v7�]hy; ai� � 1. This completes the proof. r
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