NON COMMUTATIVITY OF SELF HOMOTOPY GROUPS

HIDEAKI ŌSHIMA AND NOBUAKI YAGITA

Abstract

We study non-commutativity of the self homotopy groups of Lie groups.

1. Introduction

Let G be a connected Lie group and $\mu: G \times G \to G$ the multiplication of G. For any space A with a base point, the based homotopy set [A, G] becomes a group with respect to the binary operation $\mu_*: [A, G] \times [A, G] = [A, G \times G] \to [A, G]$. Even if A is a simple space, it is difficult to calculate the group [A, G]. A general result was given by Whitehead (p. 464 of [17]):

(1.1)
$$\operatorname{nil}[A, G] \le \operatorname{cat} A,$$

where nil and cat denote the nilpotency class and the Lusternik-Schnirelmann category with cat(*)=0, respectively. We study the special case A=G. In [9], [12], [13], the group [G,G] has been calculated for G=SU(3), Sp(2), G_2 . It shows that nil[G,G] equals 2 if G=SU(3), Sp(2) and 3 if $G=G_2$. This supports the following conjectures which were proposed in [13] by the first author.

Conjecture 1.1. If G is simple, then $nil[G, G] \ge rank G$.

Conjecture 1.2. If G is simple and rank $G \ge 2$, then $nil[G, G] \ge 2$, that is, [G, G] is not commutative.

If 1.1 is affirmative, then so is 1.2. Notice that two conjectures are false in general without the assumption of simpleness of G ([13]).

The purpose of this note is to prove the following which supports the above conjectures.

¹⁹⁹¹ Mathematics Subject Classification: 55Q05.

Key words and phrases: Lie group, self map, nilpotency class, Morava K-theory. Received December 6, 1999.

THEOREM 1.3. (1) nil[SU(4), SU(4)] = 3.

- (2) $nil[G, G] \ge 2$ if G = SU(5), SU(6), Sp(3).
- (3) $\text{nil}[G, G] \ge 3$ if $G = \text{Spin}(7), \text{Spin}(8), E_6, F_4$.
- (4) $nil[E_8, E_8] \ge 5$.

We study Spin(7), Spin(8), E_6 , E_8 , F_4 in §2, SU(4) in §3, and SU(5), SU(6), Sp(3) in §4.

We do not distinguish notationally between a map and its homotopy class.

2. mod p non commutativity

For any space Y with a base point, we denote by d_n the diagonal maps $Y \to \underbrace{Y \times \cdots \times Y}_{n}$ and $Y \to \underbrace{Y \wedge \cdots \wedge Y}_{n}$.

Let X be a connected homotopy associative CW Hopf space. The commutator map $c_2: X \times X \to X$ is the composite of

$$\begin{array}{c} X \times X \xrightarrow{d_2 \times d_2} X \times X \times X \times X \xrightarrow{1 \times tw \times 1} X \times X \times X \times X \\ \xrightarrow{1 \times 1 \times \sigma \times \sigma} X \times X \times X \times X \xrightarrow{\mu \times \mu} X \times X \xrightarrow{\mu} X \end{array}$$

where tw is the twisting map, σ is the inverse and μ is the multiplication of X. Inductively we define $c_n = c_2 \circ (1 \times c_{n-1}) : \underbrace{X \times \cdots \times X}_{n-1} \to X$ for $n \ge 3$. Of course, when X is a topological group, $c_2(x,y) = xyx^{n-1}y^{-1}$ and c_n can be seen as a map $\underbrace{X \wedge \cdots \wedge X}_{n-1} \to X$ for $n \ge 2$. Given $f, g \in [Y, X]$, its commutator $[f, g] \in [Y, X]$ is represented by the map

$$Y \xrightarrow{d_2} Y \times Y \xrightarrow{f \times g} X \times X \xrightarrow{c_2} X.$$

Let p be an odd prime and $h_*(-)$ the mod p ordinary homology $H_*(-; \mathbf{Z}_p)$ or the Morava K-theory $K(n)_*(-)$ with the coefficient $K(n)_* = \mathbf{Z}_p[v_n, v_n^{-1}], |v_n| = 2(p^n - 1)$. We assume that $H_i(X; \mathbf{Z}_p)$ is finite dimensional for every i. Thus $h_*(X)$ is a Hopf algebra with the multiplication μ_* and the comultiplication d_{2*} . Hence $h_*(X)$ is cocommutative but, in general, not commutative. Given $x \in h_s(X)$ and $y \in h_t(X)$, we define

$$[x, y] = xy - (-1)^{st}yx \in h_{s+t}(X).$$

By direct calculation, we have

LEMMA 2.1 ([14], [19]). If
$$x_1, ..., x_n \in h_*(X)$$
 are primitive $(n \ge 2)$, then
$$c_{n*}(x_1 \otimes \cdots \otimes x_n) = [x_1, [x_2, ..., [x_{n-1}, x_n]] \underbrace{] \dots]}_{n-1}$$

and it is primitive.

By the Borel theorem, the mod p cohomology $H^*(X; \mathbf{Z}_p)$ is a tensor product of truncated polynomial algebras and exterior algebras generated by even and odd dimensional elements respectively. In particular, mod p-cohomology of exceptional Lie groups have form

$$H^*(X; \mathbf{Z}_p) = \bigotimes_{i,j} \mathbf{Z}_p[y_i]/(y_i^p) \otimes \Lambda(x_j),$$

where $|y_i|$ is even and $|x_j|$ is odd. The mod p homology is the dual of the cohomology and is additively isomorphic to the cohomology. Let us denote by z_i (resp. y_i) the dual of x_i (resp. y_i). We have

Theorem 2.2 ([6], [7]). Let G be an exceptional Lie group having p-torsion in homology. Then for some n with $2 \le n \le 3$, we have

- (1) $K(n)_*(G) \cong K(n)_* \otimes H_*(G; \mathbb{Z}_p)$.
- (2) For each $z_j \neq z_3$, there is y_i such that $c_{2*}(y_i \otimes z_j) \neq 0$ in $K(n)_*(G)$.

Notice that G of the above theorem is one of F_4 , E_6 , E_7 , E_8 for p=3 and E_8 for p=5. In these cases, all y_i and z_j are primitive. Except the case $G=E_8$ for p=3, Theorem 2.2 holds for n=2.

By definition, we easily have

LEMMA 2.3.
$$c_{2*}(1 \otimes 1) = 1$$
 and $c_{2*}(\alpha \otimes 1) = c_{2*}(1 \otimes \alpha) = 0$ for $\alpha \in \tilde{h}_*(X)$.

Localization technique works for our purpose. For any prime number p (including the case p=2), let $X_{(p)}$ be the p-localization of X. Then $[X_{(p)},X_{(p)}] \cong [X,X]_{(p)}$ and

(2.1)
$$\min[X, X] = \max_{p} \{ \min[X_{(p)}, X_{(p)}] \}.$$

Now we consider the concrete cases. Harper [2], Harris [3] and Wilkerson [18] showed that there are decompositions of mod p spaces (not as H-spaces):

$$F_4 \simeq_3 F_4' \times F_4'', \quad E_6 \simeq_3 F_4 \times (E_6/F_4), \quad E_8 \simeq_5 E_8' \times E_8''$$

where

$$H^*(F_4'; \mathbf{Z}_3) = \mathbf{Z}_3[y_8]/(y_8^3) \otimes \Lambda(x_3, x_7), \quad H^*(F_4''; \mathbf{Z}_3) = \Lambda(x_{11}, x_{15}),$$

$$H^*(E_8'; \mathbf{Z}_5) = \mathbf{Z}_5[y_{12}]/(y_{12}^5) \otimes \Lambda(x_3, x_{11}, x_{27}, x_{35}),$$

$$H^*(E_8''; \mathbf{Z}_5) = \Lambda(x_{15}, x_{23}, x_{39}, x_{47}).$$

The action $[y_8, -]$ (resp. $[y_{12}, -]$) in $K(2)_*(G)$ for $(G, p) = (F_4, 3)$ (resp. $(E_8, 5)$) is given as follows [6]:

$$z_3 \to z_{11} \to -v_2 z_3, \quad z_7 \to z_{15} \to -v_2 z_7$$

(resp. $z_3 \to z_{15} \to z_{27} \to z_{39} \to -v_2 z_3, \quad z_{11} \to z_{23} \to z_{35} \to z_{47} \to -v_2 z_{11}$).

COROLLARY 2.4. If (G, p) is $(F_4, 3)$, $(E_6, 3)$ or $(E_8, 5)$, then $nil[G, G] \ge p$.

Proof. Under the condition, we have $y^p = -v_2 y$ in $K(2)_*(G)$ by (1.4) of [20]. As is well-known,

$$ad^{k}(y)(z) := [y, [y, \dots [y, z] \dots]] = \sum_{l=0}^{k} {k \choose l} (-1)^{l} y^{k-l} z y^{l}.$$

In particular $\operatorname{ad}^p(y)(z) = y^p z - z y^p = -v_2[y, z] \neq 0$, whence $\operatorname{ad}^{p-1}(y)(z) \neq 0$. Let f be the composite of

$$F_{4(3)} \xrightarrow{\operatorname{proj}} F'_{4(3)} \xrightarrow{\subset} F_{4(3)}.$$

Then

$$f_*(y_8) = y_8 \quad \text{and} \quad f_*(z_{15}) = 0.$$

By direct computation of the diagonal map, we have

$$d_{3*}(y_8^2 z_{15}) = 2y_8 \otimes y_8 \otimes z_{15} + a,$$

where $a = \sum a_1 \otimes a_2 \otimes a_3$ such that $a_i = z_{15}$ for some $i \leq 2$ or $a_i = 1$ for one or two i's and $a_j \in \widetilde{K(2)}_*(F_{4(3)})(=\widetilde{K(2)}_*(F_4))$ for all j with $a_j \neq 1$. Since $c_{3*}(f \times f \times id)_*(a) = 0$ by 2.3 and (2.2), it follows from 2.1 that we have

$$[f, [f, id]]_*(y_8^2 z_{15}) = c_{3*}(f \times f \times id)_* d_{3*}(y_8^2 z_{15}) = 2 \text{ ad}^2(y_8)(z_{15})$$
$$= -\text{ad}^2(y_8)(z_{15}) \neq 0$$

in $K(2)_*(F_4)$. Hence $[f, [f, id]] \neq 0$ and $nil[F_{4(3)}, F_{4(3)}] \geq 3$ so that $nil[F_4, F_4] \geq 3$ by (2.1).

Let \tilde{f} be the composite of

$$E_{6(3)} \xrightarrow{\text{proj}} F_{4(3)} \xrightarrow{f} F_{4(3)} \xrightarrow{i} E_{6(3)}.$$

We have $i^*[\tilde{f}, [\tilde{f}, id]] = i_*[f, [f, id]] \neq 0$ in $[F_{4(3)}, E_{6(3)}]$, because $i_* : [F_{4(3)}, F_{4(3)}] \rightarrow [F_{4(3)}, E_{6(3)}]$ is injective. Hence $[\tilde{f}, [\tilde{f}, id]] \neq 0$ in $K(2)_*(E_{6(3)})$ and $nil[E_{6(3)}, E_{6(3)}] \geq 3$ so that $nil[E_6, E_6] \geq 3$ by (2.1).

Let g be the composite of

$$E_{8(5)} \xrightarrow{\operatorname{proj}} E'_{8(5)} \xrightarrow{\subset} E_{8(5)}.$$

Then

$$(2.3) g_*(y_{12}) = y_{12} \text{ and } g_*(z_{15}) = 0.$$

We have

$$d_{5*}(y_{12}^4 z_{15}) = (5-1)! y_{12} \otimes y_{12} \otimes y_{12} \otimes y_{12} \otimes z_{15} + a$$

where $a = \sum a_1 \otimes \cdots \otimes a_5$ such that $a_i = z_{15}$ for some $i \leq 4$ or $a_i = 1$ for at least one and at most four i's and $a_j \in \widetilde{K(2)}_*(E_{8(5)}) (= \widetilde{K(2)}_*(E_8))$ for all j with $a_j \neq 1$. Since $c_{5*}(g \times g \times g \times id)_*(a) = 0$ by 2.3 and (2.3), it follows from 2.1 that we have

$$[g, [g, [g, id]]]_*(y_{12}^4 z_{15}) = 24 \text{ ad}^4(y_{12})(z_{15}) = -\text{ad}^4(y_{12})(z_{15}) \neq 0$$

in
$$K(2)_*(E_8)$$
 and $nil[E_{8(5)}, E_{8(5)}] \ge 5$ so that $nil[E_8, E_8] \ge 5$ by (2.1).

PROPOSITION 2.5. $nil[Spin(8), Spin(8)] \ge nil[Spin(7), Spin(7)] \ge 3$.

Proof. Since the bundle $Spin(7) \rightarrow Spin(7)/G_2 = S^7$ has a 3 section, there is a mod 2 equivalence $Spin(7) \simeq_2 S^7 \times G_2$. In particular the inclusion $i_{(2)} : G_{2(2)} \rightarrow Spin(7)_{(2)}$ has a homotopy left inverse. Thus the following homomorphism $i_{(2)*}$ is injective and $i_{(2)}^*$ is surjective:

$$[\mathrm{Spin}(7)_{(2)}, \mathrm{Spin}(7)_{(2)}] \stackrel{i_{(2)*}}{\longleftarrow} [\mathrm{Spin}(7)_{(2)}, G_{2(2)}] \stackrel{i_{(2)}^*}{\longrightarrow} [G_{2(2)}, G_{2(2)}].$$

Hence

$$nil[Spin(7)_{(2)}, Spin(7)_{(2)}] \ge nil[Spin(7)_{(2)}, G_{2(2)}] \ge nil[G_{2(2)}, G_{2(2)}].$$

Since the localization is an exact functor, it follows from Theorem 2.3 of [13] that the last number is three. We then have $nil[Spin(7), Spin(7)] \ge 3$ by (2.1).

Since the bundle $Spin(8) \rightarrow Spin(8)/Spin(7) = S^7$ has a section, there is a homeomorphism $Spin(8) \approx S^7 \times Spin(7)$. In particular the inclusion $i: Spin(7) \subset Spin(8)$ has a left inverse. By the same method as above, we have $nil[Spin(8), Spin(8)] \ge nil[Spin(7), Spin(7)]$. This completes the proof.

Remark 2.6. By using mod 2 versions of 2.2 and 2.3, we can prove non-commutativity of [Spin(7), Spin(7)].

3. SU(4)

The purpose of this section is to prove

Proposition 3.1. $\operatorname{nil}[SU(4), SU(4)] = 3.$

We have $\operatorname{nil}[SU(4),SU(4)] \leq \operatorname{cat} SU(4) = 3$ by (1.1) and [15]. It then suffices to show the existence of three maps $a_1, a_2, a_3 : SU(4) \to SU(4)$ such that $[a_1, [a_2, a_3]] \neq 0$.

Let $p: SU(4) \to S^7$, $p: SU(3) \to S^5$, $p': SU(4) \to SU(4)/Sp(2) = S^5$ be the canonical projections, $\theta: S^3 = SU(2) \to SU(n)$ $(n \ge 3)$, $i: SU(3) \to SU(4)$ the inclusions, and ι_n the identity map of S^n .

Recall from [1], [10] the following:

$$\pi_5(SU(3)) = \mathbb{Z}\{[2]\} \stackrel{i_*}{\cong} \pi_5(SU(4)), \quad p_*[2] = 2\iota_5,
\pi_7(SU(4)) = \mathbb{Z}\{[6]\}, \quad p_*[6] = 6\iota_7, \quad p'_* : \pi_8(SU(4)) \cong \pi_8(S^5) = \mathbb{Z}_{24},$$

(3.1)
$$\pi_{12}(SU(3)) \stackrel{i_*}{\cong} \pi_{12}(SU(4)) = \mathbb{Z}_{60}\{\langle i_*[2], [6] \rangle\},$$

(3.2)
$$\pi_{15}(SU(3)) = \mathbb{Z}_{36} \stackrel{i_*}{\subset} \pi_{15}(SU(4)) = \mathbb{Z}_{72} \oplus \mathbb{Z}_2.$$

There exists a map g which makes the following diagram commutative up to homotopy:

By using integral cohomology, we see that g is a homotopy equivalence. Hence

$$[1, [i \circ [2] \circ p', [6] \circ p]] = \pm q^* \langle \theta, \langle i_*[2], [6] \rangle \rangle.$$

We shall prove non-triviality of these elements. Let $\eta_2: S^3 \to S^2$ be the Hopf map and write $\eta_n = \Sigma^{n-2}\eta_2$. Then $\pi_{n+1}(S^n) = \mathbb{Z}_2\{\eta_n\}$ for $n \geq 3$ by [16]. There is a cell-decomposition:

$$SU(4) = S^3 \cup_{n} e^5 \cup e^8 \cup e^7 \cup e^{10} \cup e^{12} \cup_{\varepsilon} e^{15}.$$

We have an exact sequence:

$$[\Sigma SU(4)^{(14)},SU(4)] \xrightarrow{\Sigma \xi^*} \pi_{15}(SU(4)) \xrightarrow{q^*} [SU(4),SU(4)]$$

where $X^{(k)}$ denotes the k-skeleton of a CW-complex X. The following implies that the order of $[1, [i \circ [2] \circ p', [6] \circ p]]$ is a multiple of three so that 3.1 follows.

LEMMA 3.2. (1) The order of
$$\langle \theta, \langle i_*[2], [6] \rangle \rangle$$
 is a multiple of three. (2) $2^7[\Sigma SU(4)^{(14)}, SU(4)] = 0$.

Proof. (1) Let $\beta \in \pi_{12}(SU(3))$ be a generator. Then, from (3.1) and (3.2), it suffices to show that the order of $\langle \theta, \beta \rangle \in \pi_{15}(SU(3))$ is a multiple of three. By (15.14) of [5], we have

$$(3.3) p_*\langle \theta, \beta \rangle = \langle \iota_3, p_*\beta \rangle_r$$

where $\langle \ , \ \rangle_r : \pi_s(S^3) \times \pi_t(SU(3)/S^3) \to \pi_{s+t}(SU(3)/S^3)$ is the relative Samelson product. It follows from [10], [16] that $p_* : \pi_{12}(SU(3)) \to \pi_{12}(S^5) = Z_3\{\alpha_2(5)\}$

 \bigoplus $Z_2 \oplus Z_5$ is surjective, $\pi_{15}(S^8) = Z_3\{\alpha_2(8)\} \oplus Z \oplus Z_8 \oplus Z_5$, and $\pi_{15}(S^5) = Z_9\{\beta_1(5)\} \oplus Z_8 \oplus Z_2$, $3\beta_1(5) = -\alpha_1(5) \circ \alpha_2(8)$. Also by (16.2) of [5], we have $\langle \iota_3, \iota_5 \rangle_r = J_C(\iota_3)$, where $J_C : \pi_3(SU(2)) \to \pi_3(SO(4)) \xrightarrow{J} \pi_7(S^4) \xrightarrow{\Sigma} \pi_8(S^5)$ is the complex *J*-homomorphism. Since J_C is surjective in this case, we have

(3.4)
$$\langle i_3, i_5 \rangle_r \in \pi_8(S^5) = \mathbb{Z}_8 \oplus \mathbb{Z}_3\{\alpha_1(5)\}$$
 is a generator.

It follows from (16.5) of [5] that $\langle \iota_3, \Sigma x \rangle_r = \langle \iota_3, \iota_5 \rangle_r \circ \Sigma^4 x$ for any $x \in \pi_m(S^4)$. Hence $\langle \iota_3, \alpha_2(5) \rangle_r = \langle \iota_3, \iota_5 \rangle_r \circ \alpha_2(8) = \pm \alpha_1(5) \circ \alpha_2(8) = \pm 3\beta_1(5) \neq 0$ by (3.4). Therefore the 3-component of $\langle \iota_3, p_*\beta \rangle_r$ is $\pm 3\beta_1(5)$. Since $p_* : \pi_{15}(SU(3)) \to \pi_{15}(S^5)$ is injective by [10], it follows from (3.3) that the order of $\langle \theta, \beta \rangle$ is a multiple of three.

(2) Let $\gamma: S^5 \to \mathbb{C}P^2$ be the canonical map. Then $SU(4)^{(7)} = \Sigma \mathbb{C}P^3 = S^3 \cup_{\eta_3} e^6 \cup_{\Sigma_7} e^7$. By Proposition 1.15 of [11], $\Sigma^3 \gamma$ is homotopic to the composite of $S^8 \xrightarrow{2g} S^5 \subset \Sigma^3 \mathbb{C}P^2$, where $g \in \pi_8(S^5)$ is a generator. Write $A_4 = [\Sigma SU(4)^{(7)}, SU(4)]$. There is a commutative diagram:

$$[S^5 \cup_{\eta_5} e^7, SU(4)] \xrightarrow{\Sigma^3 \gamma^*} \pi_8(SU(4)) \longrightarrow A_4 \longrightarrow [S^4 \cup_{\eta_4} e^6, SU(4)] = 0$$

$$\downarrow^{j^*} \downarrow$$

$$\pi_5(SU(4))$$

Since $\pi_6(SU(4)) = 0$, j^* is surjective and $p'_*(2g)^*i_*[2] = 2i_5 \circ 2g = 4g$. Hence $\operatorname{Im}(\Sigma^3\gamma^*) = 4\pi_8(SU(4))$ and $A_4 = \mathbb{Z}_4$. Write $A_1 = [\Sigma SU(4)^{(14)}, SU(4)]$, $A_2 = [\Sigma SU(4)^{(10)}, SU(4)]$, and $A_3 = [\Sigma SU(4)^{(8)}, SU(4)]$. The following diagram implies that $2^7A_1 = 0$:

$$\pi_{13}(SU(4)) = \mathbb{Z}_4 \qquad \pi_{11}(SU(4)) = \mathbb{Z}_4 \qquad \pi_9(SU(4)) = \mathbb{Z}_2$$

$$\downarrow^{q^*} \qquad \qquad \downarrow^{q^*} \qquad \qquad \downarrow^{q^*}$$

$$A_1 \qquad \xrightarrow{j^*} \qquad A_2 \qquad \xrightarrow{j^*} \qquad A_3 \qquad \xrightarrow{j^*} A_4 \quad \Box$$

4. SU(5), SU(6), Sp(3)

Let (G,d) be (SU,2) or (Sp,4). Let $\theta:S^3\subset G(n)$ be the inclusion map and $\alpha\in\pi_{dn-1}(G(n))=Z$ a generator. We refer to [8] for homotopy groups of Lie groups.

Theorem 4.1 ([1]). The order of the Samelson product $\langle \theta, \alpha \rangle \in \pi_{dn+2}(G(n))$ is $\begin{cases} n(n+1) & (G = SU \text{ and } n \geq 3) \\ n(2n+1)\varepsilon_n & (G = Sp \text{ and } n \geq 2) \end{cases}$

where ε_n is 1 or 4 according as n is even or odd.

Proof. The case of Sp(n) follows from Theorem 2 of [1]. By Theorem 1

of [1], the order of $j_*\langle\theta,\alpha\rangle\in\pi_{2n+2}(SU(n+1))$ is n(n+1) for $n\geq 2$, where $j:SU(n)\subset SU(n+1)$. It then follows from the structure of $j_*:\pi_{2n+2}(SU(n))\to\pi_{2n+2}(SU(n+1))$ (see [8]) that the order of $\langle\theta,\alpha\rangle$ is n(n+1) for $n\geq 3$. \square

Recall that G(n) has a cell-decomposition:

$$G(n) = G(n-1) \cup e^{dn-1} \cup_{\rho_n} e^{dn+2} \cup \{\text{cells of dimension} \ge d(n+1) + 2\}.$$

We use always this decomposition. Write $Y(n) = G(n-1)^{(dn+1)} \cup e^{dn-1}$ and $Z(n) = Y(n) \cup_{\rho_n} e^{dn+2}$. Let $p: G(n) \to S^{dn-1}$ be the canonical projection. For simplicity we denote by 1 the identity maps, by j the inclusion maps, and by q the quotient maps. There exists a map g which makes the following diagram commutative up to homotopy:

By using the integral cohomology, we have that g is a homotopy equivalence so that

$$j^*[1, \alpha \circ p] = \pm q^* \langle \theta, \alpha \rangle.$$

If these elements are non-zero, then $[1, \alpha \circ p] \neq 0$ and [G(n), G(n)] is non-commutative. To study non-triviality of $q^*\langle \theta, \alpha \rangle$, we compare the orders of $\langle \theta, \alpha \rangle$ and the image of $\Sigma \rho_n^*$:

$$(4.1) \qquad \qquad [\Sigma Y(n), G(n)] \xrightarrow{\Sigma \rho_n^*} \pi_{dn+2}(G(n)) \xrightarrow{q^*} [Z(n), G(n)].$$

Consider the following commutative diagram:

$$\pi_{dn+2}(\Sigma G(n-1)^{(dn+1)}) \xrightarrow{j_*} \pi_{dn+2}(\Sigma Y(n)) \longrightarrow \pi_{dn+2}(\Sigma Y(n), \Sigma G(n-1)^{(dn+1)})$$

$$\downarrow_{j_*} \qquad \qquad \cong \downarrow_{q_*}$$

$$\pi_{dn+2}(\Sigma G(n)) \xrightarrow{\Sigma_{p_*}} \qquad \pi_{dn+2}(S^{dn})$$

Since $j_*(\Sigma \rho_n) = 0$, there exists $\tilde{\rho}_n \in \pi_{dn+2}(\Sigma G(n-1)^{(dn+1)})$ such that $j_*(\tilde{\rho}_n) = \Sigma \rho_n$. Hence $\Sigma \rho_n^*$ in (4.1) decomposes as

$$(4.2) \qquad \qquad [\Sigma Y(n), G(n)] \xrightarrow{j^*} [\Sigma G(n-1)^{(dn+1)}, G(n)] \xrightarrow{\tilde{\rho}_n^*} \pi_{dn+2}(G(n))$$

and so we have

$$\operatorname{Im}(\Sigma \rho_n^*) \subset \operatorname{Im}(\tilde{\rho}_n^*).$$

We can show that j^* of (4.2) is surjective so that $\mathrm{Im}(\Sigma \rho_n^*) = \mathrm{Im}(\tilde{\rho}_n^*)$. But we do not use this.

PROBLEM 4.2. Is there a prime p satisfying $v_p(\sharp \operatorname{Im}(\tilde{\rho}_n^*)) < v_p(\sharp \langle \theta, \alpha \rangle)$?

Here \sharp denotes the order and $v_p(m)$ is the exponent of p in the prime decomposition of an integer m. Notice that $q^*\langle\theta,\alpha\rangle$ is non-zero if Problem 4.2 is affirmative.

PROPOSITION 4.3. Problem 4.2 is affirmative when G(n) is one of the following:

$$Sp(2), Sp(3), SU(3), SU(4), SU(5), SU(6).$$

Proof. It is easy to show the following: $\tilde{\rho}^*=0$ for Sp(2), SU(3) and $2\cdot\tilde{\rho}^*=0$ for SU(4). Hence the result follows from 4.1 for these cases. We omit the details.

Sp(3). Consider the following exact sequence:

$$\pi_{11}(Sp(3)) \xrightarrow{q^*} [\Sigma Sp(2)^{(13)}, Sp(3)] \xrightarrow{j^*} [S^4 \cup_{\eta} e^8, Sp(3)]$$

Here $Sp(2)^{(13)} = Sp(2) = S^3 \cup e^7 \cup e^{10}$. We have $j^* : [S^4 \cup e^8, Sp(3)] \cong \pi_4(Sp(3)) = \mathbb{Z}_2$ by [8]. Hence $2[\Sigma Sp(2)^{(13)}, Sp(3)] \subset \operatorname{Im}(q^*)$ and so $2 \cdot \operatorname{Im}(\tilde{\rho}^*) \subset \operatorname{Im}(q \circ \tilde{\rho})^*$. Hence $48 \cdot \operatorname{Im}(\tilde{\rho}^*) \subset 24 \cdot \operatorname{Im}(q \circ \tilde{\rho})^* = 0$, since $q \circ \tilde{\rho} \in \pi_{14}(S^{11}) = \mathbb{Z}_{24}$. Therefore $v_7(\sharp \operatorname{Im}(\tilde{\rho}^*)) = 0 < v_7(\sharp \langle \theta, \alpha \rangle) = 1$.

Let n be 5 or 6. Then, we have $SU(n-1)^{(2n+1)} = SU(n-1)^{(2n)}$ and $SU(n-1)^{(2n-1)} = SU(n-1)^{(2n-2)} = SU(n-2)^{(2n-2)} \cup e^{2n-3}$. Since $2\pi_{2n+2}$ $(\Sigma SU(n-1)^{(2n)}, \Sigma SU(n-1)^{(2n-2)}) = 0$, there exists $\hat{\rho} \in \pi_{2n+2}(\Sigma SU(n-1)^{(2n-2)})$ such that $j_*\hat{\rho} = 2\tilde{\rho} \in \pi_{2n+2}(\Sigma SU(n-1)^{(2n-2)})$. By Theorem (2.1) of [4], we have $\pi_{2n+2}(\Sigma SU(n-1)^{(2n-2)}, \Sigma SU(n-2)^{(2n-2)}) = 0$. Hence there exists $\bar{\rho} \in \pi_{2n+2}(\Sigma SU(n-2)^{(2n-2)})$ such that $j_*\bar{\rho} = \hat{\rho} \in \pi_{2n+2}(\Sigma SU(n-1)^{(2n-2)})$. Thus

$$(4.3) 2 \cdot \operatorname{Im}(\tilde{\rho}^*) \subset \operatorname{Im}\{\bar{\rho}^* : [\Sigma SU(n-2)^{(2n-2)}, SU(n)] \to \pi_{2n+2}(SU(n))\}.$$

Let n = 5 in (4.3). Since $[S^4 \cup e^6, SU(5)] = 0$, $q^* : \pi_9(SU(5)) \to [\Sigma SU(3), SU(5)]$ is surjective. Hence $\text{Im}(\bar{\rho}^*) = \text{Im}(q \circ \bar{\rho})^*$. Since $q \circ \bar{\rho} \in \pi_{12}(S^9) = \mathbb{Z}_{24}$, $24 \cdot \text{Im}(\bar{\rho}^*) = 0$ and $48 \cdot \text{Im}(\tilde{\rho}^*) = 0$ by (4.3). Thus $v_5(\sharp \text{Im}(\tilde{\rho}^*)) = 0 < v_5(\sharp \langle \theta, \alpha \rangle) = 1$.

Let n = 6 in (4.3). First we prove

$$(4.4) \qquad [\Sigma SU(4)^{(8)}, SU(6)] \xrightarrow{j^*} [\Sigma SU(3), SU(6)] \xleftarrow{q^*} \pi_9(SU(6)) = Z.$$

Since $\pi_4(SU(6)) = \pi_6(SU(6)) = [S^4 \cup_{\eta_4} e^6, SU(6)] = 0$, there are exact sequences:

$$(4.5) \quad [S^5 \cup_{\eta_5} e^7, SU(6)] \xrightarrow{\Sigma^2 \rho_3^*} \pi_9(SU(6)) = \mathbf{Z} \xrightarrow{q^*} [\Sigma SU(3), SU(6)] \longrightarrow 0,$$

$$\pi_7(SU(6)) \xrightarrow{q^*} [S^5 \cup_{\eta_5} e^7, SU(6)] \xrightarrow{j^*} \pi_5(SU(6)) \longrightarrow 0.$$

Since the attaching map of the top cell of any Lie group is stably trivial, the composite $S^7 \stackrel{\rho_3}{\longrightarrow} S^3 \cup_{\eta_3} e^5 \stackrel{q}{\longrightarrow} S^5$ is null-homotopic. Hence $\Sigma^2 \rho_3^*(\operatorname{Im}(q^*)) = 0$. Since $\pi_6(SU(4)) = 0$, the map $S^5 \stackrel{|2|}{\longrightarrow} SU(3) \subset SU(4)$ can be extended to a map $f: S^5 \cup_{\eta_5} e^7 \to SU(4)$. Write $\tilde{f} = j \circ f: S^5 \cup_{\eta_5} e^7 \to SU(6)$. Since $\Sigma^2 \rho_3^*(f) \in \pi_9(SU(4)) = \mathbb{Z}_2$ and $\pi_9(SU(6)) = \mathbb{Z}$, it follows that $\Sigma^2 \rho_3^*(\tilde{f}) = 0$. Thus $\Sigma^2 \rho_3^* = 0$ in (4.5), since \tilde{f} and $\operatorname{Im}(q^*)$ generate $[S^5 \cup_{\eta_5} e^7, SU(6)]$. Therefore

(4.6)
$$q^* : \pi_9(SU(6)) \cong [\Sigma SU(3), SU(6)].$$

Since $\pi_8(SU(6)) = 0$, we have an exact sequence:

$$0 \longrightarrow [\Sigma SU(4)^{(8)}, SU(6)] \stackrel{j^*}{\longrightarrow} [\Sigma SU(3), SU(6)] \stackrel{\Sigma \tau^*}{\longrightarrow} \pi_7(SU(6)) = Z$$

where $\tau: S^6 \to SU(3)$ is the attaching map of the 7-dimensional cell of SU(4). Since $q \circ \Sigma \tau = 0$, (4.6) implies that $\Sigma \tau^* = 0$ so that j^* is an isomorphism. This ends the proof of (4.4).

Since $\pi_{10}(SU(6)) = 0$, we have an exact sequence:

$$\pi_{11}(SU(6)) \xrightarrow{q^*} \left[\Sigma SU(4)^{(10)}, SU(6)\right] \xrightarrow{\Sigma j^*} \left[\Sigma SU(4)^{(8)}, SU(6)\right] \longrightarrow 0$$

Since $q \circ \bar{\rho} \in \pi_{14}(S^{11}) = \mathbb{Z}_{24}$, we have

(4.7)
$$24 \cdot \bar{\rho}^*(\text{Im}(q^*)) = 0.$$

Let $h \in [\Sigma SU(4)^{(10)}, SU(6)]$ be such that $\overline{h} := \Sigma j^*h$ is the composite of

$$\Sigma SU(4)^{(8)} \stackrel{q}{\longrightarrow} S^9 \stackrel{[4!]}{\longrightarrow} SU(5) \stackrel{\subset}{\longrightarrow} SU(6)$$

where [4!] is a generator of $\pi_9(SU(5)) = \mathbb{Z}$. By (4.4), \overline{h} is a generator of $[\Sigma SU(4)^{(8)}, SU(6)] = \mathbb{Z}$. Let $\omega : S^9 \to SU(4)^{(8)}$ be the attaching map of the unique 10-dimensional cell of SU(4). Since $q \circ \Sigma \omega \in \pi_{10}(S^9) = \mathbb{Z}_2$, there exists $k : \Sigma SU(4)^{(10)} \to S^9$ such that the following diagram is commutative up to homotopy:

$$S^{10} \xrightarrow{\Sigma\omega} \Sigma SU(4)^{(8)} \xrightarrow{q} S^{9} \xrightarrow{[4!]} SU(5) \xrightarrow{j} SU(6)$$

$$\downarrow^{\Sigma j} \qquad \qquad \downarrow^{2_{l_9}} \qquad \downarrow^{2} \qquad \qquad \downarrow^{2}$$

$$\Sigma SU(4)^{(10)} \xrightarrow{k} S^{9} \xrightarrow{[4!]} SU(5) \xrightarrow{j} SU(6)$$

where the latter two 2's are power maps $x \mapsto x^2$. We then have $(\Sigma j)^*(j \circ [4!] \circ k) = 2\overline{h} = (\Sigma j)^*(2h)$ and

$$2h - j \circ [4!] \circ k \in \text{Im}\{q^* : \pi_{11}(SU(6)) \to [\Sigma SU(4)^{(10)}, SU(6)]\}.$$

Since $k \circ \bar{\rho} \in \pi_{14}(S^9) = 0$, we have $2 \cdot \bar{\rho}^*(h) \in \bar{\rho}^*(\operatorname{Im}(q^*))$. Thus $48 \cdot \bar{\rho}^*(h) = 0$ by (4.7), and hence $48 \cdot \operatorname{Im}(\bar{\rho}^*) = 0$. Therefore $96 \cdot \operatorname{Im}(\tilde{\rho}^*) = 0$ by (4.3). Hence $v_7(\sharp \operatorname{Im}(\tilde{\rho})) = 0 < v_7(\sharp \langle \theta, \alpha \rangle) = 1$. This completes the proof.

REFERENCES

- [1] R. BOTT, A note on the Samelson product in the classical groups, Comment. Math. Helv., 34 (1960), 249–256.
- [2] J. Harper, The mod 3 homotopy type of F_4 , Lecture Notes in Math. 418, Springer, 1974, 58–67.
- [3] B. Harris, Suspensions and characteristic maps for symmetric spaces, Ann. of Math., 76 (1962), 295-305.
- [4] I. M. James, On the homotopy groups of certain pairs and triads, Quart. J. Math., 5 (1954), 260–270.
- [5] I. M. James, The Topology of Stiefel Manifolds, London Math. Soc. Lecture Note Series 24, Cambridge, 1976.
- [6] K. KUDOU AND N. YAGITA, Modulo odd prime homotopy normality for H-spaces, J. Math. Kyoto Univ., 38 (1998), 643–651.
- [7] K. KUDOU AND N. YAGITA, Highly homotopy non-commutativity of Lie groups with 2-torsion, Kyushu J. Math., 53 (1999), 133–150.
- [8] M. MIMURA, Homotopy theory of Lie groups, Handbook of Algebraic Topology (I. M. James ed.), Elsevier, 1995, 951–991.
- [9] M. MIMURA AND H. ŌSHIMA, Self homotopy groups of Hopf spaces with at most three cells, J. Math. Soc. Japan, 51 (1999), 71–92.
- [10] M. Mimura and H. Toda, Homotopy groups of SU(3), SU(4) and Sp(2), J. Math. Kyoto Univ., 3 (1964), 217–250.
- [11] H. ŌSHIMA, On stable James numbers of stunted complex or quaternionic projective spaces, Osaka J. Math., 16 (1979), 479–504.
- [12] H. ŌSHIMA, Self homotopy set of a Hopf space, Quart. J. Math., 50 (1999), 483-495.
- [13] H. Ōshima, Self homotopy group of the exceptional Lie group G₂, J. Math. Kyoto Univ., 40 (2000), 177–184.
- [14] V. R. RAO, Spin(n) is not homotopy nilpotent for $n \ge 7$, Topology, 32 (1993), 239–249.
- [15] W. Singhof, On the Lusternik-Schnirelmann category of Lie groups, Math. Z., 145 (1975), 111–116
- [16] H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Study 49, Princeton 1962.
- [17] G. W. WHITEHEAD, Elements of Homotopy Theory, Graduate Texts in Math. 61, Springer, 1978.
- [18] C. WILKERSON, Self maps of classifying spaces, Lecture Notes in Math. 418, Springer, 1974, 150–157.
- [19] N. YAGITA, Homotopy nilpotency for simply connected Lie groups, Bull. London Math. Soc., 25 (1993), 481–486.
- [20] N. Yagita, Pontrjagin rings of the Morava K-theory for finite H-spaces, J. Math. Kyoto Univ., 36 (1996), 447–452.

Ibaraki University Mito, Ibaraki, 310-8512 Japan

E-mail: ooshima@mito.ipc.ibaraki.ac.jp yagita@mito.ipc.ibaraki.ac.jp