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1. Introduction

Let M be a connected compact KaÈhler manifold. An obvious necessary
condition for M to admit a KaÈhler-Einstein metric is that the ®rst Chern class
c1�M� is either negative, zero or positive, where a real 2-dimensional de Rham
cohomology class is said to be negative (resp. positive) if it is represented by a
negative (resp. positive) de®nite �1; 1�-form. Conversely, if c1�M� is negative or
zero then M admits a KaÈhler-Einstein metric by the solution to the Calabi
conjectures (Aubin [1], Yau [21]).

In the remaining case where c1�M� is positive, in which case M is often
called a Fano manifold, there are further necessary conditions. First of all the
Lie algebra h�M� of all holomorphic vector ®elds on a KaÈhler-Einstein Fano
manifold M is reductive (Matsushima [14]). Secondly a Lie algebra character
f : h�M� ! C introduced in [10] must vanish on a KaÈhler-Einstein Fano
manifold. It was also proven by Bando-Mabuchi [5] that if M admits a KaÈhler-
Einstein metric then certain functional, called K-energy, of M is bounded from
below. This analytic necessary condition played a theoretically important role
in the later studies. In fact Ding and Tian [9] extended the results of [10] and
[5] to obtain a necessary condition applicable to manifolds which do not carry
any non-zero holomorphic vector ®elds. Tian [20] further extended these ideas
to de®ne certain notions of stability, called K-stability and CM-stability, and
presented an example of a Fano manifold with no non-zero holomorphic vector
®elds and no KaÈhler-Einstein metrics. On the other hand there are known
su½cient conditions for the existence of positive KaÈhler-Einstein metrics by Aubin
[2], Ding [8], Siu [17], Tian [18] and Nadel [15].

Now one would hope to have a necessary and su½cient condition for the
existence of positive KaÈhler-Einstein metrics. To state such a condition, Tian
[20] introduced a notion of properness for the K-energy and a functional in-
troduced by Ding [8]. Combining [20] and [4] one can show, at least when
h�M� � 0, that a Fano manifold admits a KaÈhler-Einstein metric if and only if
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Ding's functional (or K-energy) is proper, and thus the properness of Ding's
functional and the properness of K-energy are equivalent. It can be checked
directly that if the su½cient condition obtained in, for example, [18] is satis®ed
then the both functionals are proper, and that if either of the functionals is proper
then the necessary conditions obtained in [10], [9], [20] are satis®ed.

The purpose of this paper is to show that there is a family of functionals
satisfying cocyle conditions and that both of the K-energy and Ding's functional
can be derived from the family. It is constructed as follows. Given a KaÈhler
manifold M with a KaÈhler class W, there exists a Lie algebra character
fW : h�M� ! C with the property that if M admits a KaÈhler metric of constant
scalar curvature in W then fW � 0 (cf. [11], [7], [3]). Of course when M is a Fano
manifold and W � c1�M�, then fW coincides with the above f. We try to lift fW

to a character of the group of automorphisms which preserve W. This can be
performed successfully when W is a Hodge class and the group action lifts to a
holomorphic line bundle L whose Chern class coincides with W, see Nakagawa
[16]. We can give an explicit formula of the character in terms of the Chern-
Simons invariants of certain virtual bundles. A merit of this formula is that it is
written using Hermitian metrics of L and the anti-canonical bundle Kÿ1

M and that
we may choose these two metrics independently. Note that if in certain situ-
ations the character can be written in terms of a KaÈhler form o and the pull-back
form o 0 � s�o by an automorphism s, then we obtain a functional written in
terms of o and o 0 satisfying cocycle conditions.

Now return to the situation where W � c1�M� and L � Kÿ1
M . In section 4

we will see that if we choose a KaÈhler form o A W and then choose a ®ber metric
of L so that its Chern form is equal to o, then the formula of the group character
yields the K-energy. On the other hand if we choose metrics for L and Kÿ1

M

equal, the formula yields Ding's functional.

2. Review of characteristic classes of foliations

A transeversely holomorphic foliation F of complex codimension m on a
smooth manifold W of real dimension 2m� n is given by a system of local charts
fz1; . . . ; zm; x1; . . . ; xng where fx1; . . . ; xng is real coordinates along the leaves

and fz1; . . . ; zmg are complex coordinates in the normal directions, such that for
any neighboring local charts fw1; . . . ;wm; y1; . . . ; yng, the wi's are holomorphic
functions of zi's. Then there is a subbundle T �1;0 of TW �nC spanned by
fdz1; . . . ; dzmg in local charts. Note that the de®nition of T �1;0 is independent of
the choice of local charts. A section of T �1;0 will be called a di¨erential form
of type �1; 0�. Let S be the subbundle of TW nC annihilated by T �1;0. The
quotient bundle n�F� � �TW nC�=S is called the normal bundle of F.

Let E !W be a complex vector bundle of rank r over W. A basic
connection of E is a linear connection whose connection form is of type �1; 0�.
Not every vector bundle admits a basic connection. But, for example, an ar-
gument using partition of unity shows that the normal bundle n�F� carries basic
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connections ([6]). It is obvious from the dimension reasons that, for a multi-
index a with jaj > m, the Chern form ca�E;`� vanishes identically if ` is a
basic connection. Thus we can de®ne characteristic classes of foliations, which
we review next.

The di¨erential graded algebra WUm is de®ned as

WUm �5�u1; . . . ; um�n fC �c1; . . . ; cm�=deg > 2mgn fC �c1; . . . ; cm�=deg > 2mg
where 5�u1; . . . ; um� is the exterior algebra in u1; . . . ; um with deg ui � i,
C �c1; . . . ; cm� is a polynomial algebra in c1; . . . ; cm with deg ci � 2i and similarly
for C �c1; . . . ; cm�, and where the di¨erential d is de®ned by dui � ci ÿ ci and
dci � dci � 0.

Suppose that E carries basic connections. Let W�W be the de Rham
complex of W . We de®ne a di¨erential graded algebra map lW : WUm ! W�W
as follows.

Choose an Hermitian metric of E and take an arbitrary metric connection
`0, and a basic connection `1 of E. Let p : W � I !W be the projection,

where I denotes the unit interval. Then `0;1 � s`1 � �1ÿ s�`0 is a connection
of p�E. Denote by ci�`0�; ci�`1� and ci�`0;1� respectively the i-th Chern forms

with respect to `0;`1 and `0;1. Set hi � p�ci�`0;1�. Then we have

dhi � ci�`1� ÿ ci�`0�;
and

dhi ÿ dhi � ci�`1� ÿ ci�`1�
since `0 is a metric connection and its Chern forms are real forms. From this
it follows that the map lW de®ned by

lW �ui� � hi ÿ hi; lW �ci� � ci�`1�; lW �ci� � ci�`1�
is a DGA-map. It is well-known that the induced homomorphism l�W :
H ��WUm� ! H �

DR�W ; C� is independent of the choice of the Hermitian con-
nection `0 and the basic connection `1. We note that

Pm
k�0 ck

1 u1cmÿk
1 is closed

in WUm, and thus we have

l�W
Xm

k�0

ck
1 u1cmÿk

1

 !
A H 2m�1�W ; C�:

3. The case of suspension foliations

Let M be a compact KaÈhler manifold and s an automophism of M.
Suppose that s generates an in®nite cyclic group G GZ. Let E !M be a
holomorphic vector bundle. We assume that the action of G lifts to E. We
set Es :� �R� E�=G and Ms :� �R�M�=G, where G acts on R� E by

sn�v; t� � �tÿ n; sn�v��

characters of automorphism groups 3



and on R�M similarly. There is a natural transversely holomorphic foliation
on R�M with leaf dimension 1, and it descends to Ms.

Lemma 3.1. The complex vector bundle Es !Ms carries basic connections.

Proof. Es is obtained as follows. Consider I � E and identify f1g � E and
f0g � E by the relation �1; v�@ �o; s�v��. Ms is also obtained similarly. The
leaves of the foliation are of the form f�t; p�jt A Ig. Remark that the vector
bundle Es is ¯at along the leaf direction, i.e. the transition functions do not
involve the leaf coordinate.

Let f�t� be a smooth function on I such that f�t�1 0 near t � 0 and
f�t�1 1 near t � 1. Choose any Hermitian metric h of the line bundle E !M.
We de®ne an Hermitian metric of Es !Ms by

~ht � �1ÿ f�t��h� f�t�s�h:
Then by the above remark ~hÿ1

t q~ht de®nes a basic connection, where q
denotes the �1; 0�-part of the exterior di¨erentiation, namely

q �
Xm

i�1

dzi q

qzi

it terms of normal holomorphic coordinates z1; . . . ; zm. r

So we can de®ne f̂E : G ! R by

f̂E�s� � il�W
Xm

k�0

ck
1 u1cmÿk

1

 !
�W �:�1�

Recall that, given an Hermitian metric h on a holomorphic vector bundle E, the
Ricci form rh is given by

rh :� i

2p
qq log det h:

It represents the ®rst Chern class c1�E�, and its coe½cients

Rij :� ÿ q2

qziqz j
log det h

are called the Ricci curvature of h. When an automorphism s of M lifts to an
action on E, we have

s�rh � rs �h:

Theorem 3.2. Let h be an Hermitian metric of the holomorphic vector bundle
E !M. Then f̂E�s� can be given by
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f̂E�s� �
1

2p

�
M

log
det s�h

det h

Xm

k�0

s�rk
h 5 rmÿk

h :�2�

Moreover f̂E : G ! R is a group character.

Remark 3.3. From the independence of the choice of Hermitian connections
`0 and basic connections `1, the above expression of fE is also independent of
the choice of Hermitian metrics h.

Proof. Let ~ht be as in the proof of Lemma 3.1, and put

ht � �det h�1ÿf�t��det s�h�f�t�
det ~ht

 !1=r

~ht;

where r is the rank of E. Then the Ricci form rht
is written as

rht
� �1ÿ f�t��rh � f�t�rs �h:�3�

It is obvious that

y1 � hÿ1
t qht

also de®nes a basic connection, and it is easy to check that

y0 � hÿ1
t qht � 1

2
hÿ1

t qtht

de®nes an Hermitian connection, where

qt � dt
q

qt
:

From the de®nition of u1 we easily get

l�W u1 � i

2p
qt log det ht:

We also have

l�W c1 � i

2p
�qt � q�q log det ht:

It follows that, for all k, we have

l�W �ck
1 u1cmÿk

1 � � i

2p
qt log det ht 5

i

2p
qq log det ht

� �m

:�4�

From (3) and (4) we have
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il�W ck
1 u1cmÿk

1 �W � � �m� 1� 1

2p

�
M�I

f 0�t� log
det s�h

det h
dt5 �rh � f�t��rs �h ÿ rh��m

� �m� 1� 1

2p

�
M

log
det s�h

det h

Xm

k�0

m

k

 !
1

k� 1
�rh�mÿk 5�rs �hÿ rh�k

� 1

2p

�
M

log
det s�h

det h

Xm

k�0

rk
h 5 rmÿk

s �h :

This completes the proof of the ®rst half.
From (2) and the fact that the right hand side of (2) is independent of the

choice of the metric h it is easy to check

f̂E�st� � f̂E�s� � f̂E�t�:
This completes the proof of the second half. An alternate proof can also be
given as follows. There is a ®bration p : W �MG � EG �G M ! BG � S1.
The integration over the ®bers gives

p��il�W ck
1 u1cmÿk

1 � A H 1�BG; R�GHom�G;R�:
The interpretation of the last isomorphism shows that f̂E is a homomor-
phism. r

4. A Lie algebra character and its lifting to a group character

In this section we ®rst review the Lie algebra character obtained as an
obstruction to the existence of KaÈhler metric of constant scalar curvature ([11],
[7], [3]), and give an explicit formula of its lifting to a group character.

Let W be a ®xed KaÈhler class on an m-dimensional connected compact
KaÈhler manifold M, and o � i=�2p�P gij dzi 5 dz j a KaÈhler form which rep-
resents W. The Ricci form of o will be denoted by

ro �
i

2p

X
Rij dzi 5 dz j � i

2p
qq log det g:

We put

V :� Wm�M�;

m � 1

V

�
M

so

m
om;

where so � gijRij denotes the scalar curvature of o. Then there is a smooth
function Fo uniquely determined up to constant such that

so ÿ mm � DFo:

De®ne f : h�M� ! C by
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f �X� � 1

2p

�
M

XFoom:

It is known that f is independent of the choice of o A W. This implies that f is
invariant under automorphisms of M and is a Lie algebra character. Obviously
if M admits a KaÈhler metric of constant scalar curvature then we have Fo � 0
and f vanishes.

Let g be a Hodge metric, W its KaÈhler class, and L a holomorphic line
bundle with c1�L� � W. We assume that the action of an automorphism s lifts
to L. Consider the character de®ned by

f̂ � 1

2m�1�m� 1�!
Xm

j�0

�ÿ1� j m

j

 !
f̂Kÿ1

M
nLmÿ2j

ÿ 1

2m�1�m� 1�!
Xm

j�0

�ÿ1� j m

j

 !
f̂KMnLmÿ2j

ÿ mm

2m�1�m� 1�!�m� 1�
Xm�1

j�0

�ÿ1� j m� 1

j

 !
f̂L m�1ÿ2j :

The following theorem has been proved by the second author [16].

Theorem 4.1. Let X A h�M�. Then we have

Rf �X� � d

dt

����
t�0

f̂ �exp�tRX ��:

where Rf �X � denotes the real part of f �X�.

The proof of this theorem will follow from later computations. Combining
Remark 3.3 and Theorem 4.1 we obtain the following.

Corollary 4.2. The Lie algebra character Rf can be lifted to a group
character f̂ which can be written explicitly using Hermitian metrics of L and KM .
Moreover f̂ is independent of the choice of these metrics in each of the terms of
f̂Kÿ1

M
nLmÿ2j ; f̂KMnLmÿ2j and f̂Lm�1ÿ2j .

In the rest of this paper we show that a suitable choice of Hermitian metrics
of L and Kÿ1

M yields the K-energy, and when L � Kÿ1
M a di¨erent choice yields

Ding's functional.
Let o be a Hodge metric of M and h an Hermitian metric of L. As before

ro and rh respectively denotes the Ricci forms of o and h. By the assumption
we have �rh� � c1�L� � �o�. From Theorem 3.2 we have
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2pf̂ �s� � 1

2m�1�m�1�!
Xm

j�0

�ÿ1� j m

j

 !�
M

log
s�om

om
��mÿ2j� log

s�h
h

� �
�5�

Xm

k�0

s��ro��mÿ2j�rh�k 5 �ro��mÿ2j�rh�mÿk

ÿ 1

2m�1�m�1�!
Xm

j�0

�ÿ1� j m

j

 !�
M

ÿlog
s�om

om
��mÿ2j� log

s�h
h

� �
Xm

k�0

s��ÿro��mÿ2j�rh�k 5 �ÿro��mÿ2j�rh�mÿk

ÿ mm

2m�1�m�1�!�m�1�
Xm�1

j�0

�ÿ1� j m�1

j

 !
�m�1ÿ2j�m�1

�
�

M

log
s�h

h

Xm

k�0

s�rk
h 5 rmÿk

h :

Using Xl
j�0

�ÿ1� j l

j

 !
�lÿ 2j�k � 0 for k 0 l;

Xl
j�0

�ÿ1� j l

j

 !
�lÿ 2j�l � 2ll!

c.f. [19], and putting

g � s�om

om
; ~g � s�h

h
;

we obtain

2p�m�1�f̂ �s� � 1

2

�
M

log g
Xm

k�0

s�rk
h 5 rmÿk

h�6�

� log ~g
Xm

k�0

ks�ro 5 s�rkÿ1
h 5 rmÿk

h

� log ~g
Xm

k�0

s�rk
h 5 �mÿ k�ro 5 rmÿkÿ1

h

ÿ 1

2

�
M

�ÿlog g�
Xm

k�0

s�rk
h 5 rmÿk

h
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� log ~g
Xm

k�0

k�ÿs�ro�5 s�rkÿ1
h 5 rmÿk

h

� log ~g
Xm

k�0

s�rk
h 5 �mÿ k��ÿro�5 rmÿkÿ1

h

ÿ mm

�
M

log ~g
Xm

k�0

s�rk
h 5 rmÿk

h

�
�

M

log g
Xm

k�0

s�rk
h 5 rmÿk

h �log ~g
Xm

k�0

ks�ro 5 s�rkÿ1
h 5rmÿk

h

� log ~g
Xm

k�0

s�rk
h 5 �mÿ k�ro 5 rmÿkÿ1

h

ÿ mm

�
M

log ~g
Xm

k�0

s�rk
h 5 rmÿk

h :

Suppose now that rh � o. We put

j :� ÿlog ~g � ÿlog
s�h

h
:

Then we have

i

2p
qqj � ÿ i

2p
qq log

s�h
h
� s�rh ÿ rh � s�oÿ o:

So if we put oj :� s�o, then

oj � o� i

2p
qqj and s�ro � roj

:

De®ne a functional M�o;oj� by

M�o;oj� � 2p

V
f̂ �s�:

Theorem 4.3. M�o;oj� coincides with the K-energy.

Proof. From (6) we have

�m� 1�VM�o;oj� �
�

M

log
om

j

om

Xm

k�0

ok
j 5omÿk ÿ

�
M

j
Xm

k�0

kroj
5okÿ1

j 5omÿk

ÿ
�

M

j
Xm�1

k�1

okÿ1
j 5 �m� 1ÿ k�ro 5omÿk
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� mm

�
M

j
Xm

k�0

ok
j 5omÿk

�
�

M

log
om

j

om

Xm

k�0

ok
j 5omÿk

ÿ �m� 1�
�

M

j
Xm

k�1

okÿ1
j 5 ro 5omÿk

ÿ
�

M

j
Xm

k�0

k�roj
ÿ ro�5okÿ1

j 5omÿk

� mm

�
M

j
Xm

k�0

ok
j 5omÿk:

The third term of the right hand side is equal to�
M

log
om

j

om

Xm

k�0

k�oj ÿ o�5okÿ1
j 5omÿk

�
�

M

log
om

j

om
�oj 5omÿ1 ÿ om � 2�o2

j 5omÿ2 ÿ oj 5omÿ1�

� � � � �m�om
j ÿ omÿ1

j 5o��

� ÿ
�

M

log
om

j

om
�om � oj 5omÿ1 � � � � � om

j � � �m� 1�
�

M

log
om

j

om
om

j :

Thus we obtain

VM�o;oj� � ÿ
�

M

j
Xmÿ1

k�0

ok
j 5 ro 5omÿkÿ1�7�

�
�

M

log
om

j

om
om

j �
mm

m� 1

�
M

j
Xm

k�0

ok
j 5omÿk:

This last expression is equal to the K-energy (c.f. [4], §5). r

Proof of Theorem 4.1. Let X A h�M�, and de®ne jt by

�exp�tRX���oÿ o � i

2p
qqj;

where RX denotes the real part of X. Then

akito futaki and yasuhiro nakagawa10



2p
d

dt

����
t�0

f̂ �exp�tRX�� � d

dt

����
t�0

VM�o;oj�

� ÿ
�

M

_jjt�0�so ÿ mm�om

� ÿ
�

M

D� _jjt�0�Foom:

Since X is holomorphic, qi�X�o � 0. Hence the harmonic integration theory
shows

i�X�o � iqu� ia

where a � aj dz j is a harmonic �0; 1�-form. Therefore we have

L1=2�X�X �o � iqq�Ru�:
It follows that

_jjt�0 � Ru

modulo constant. Using q
�
a � 0, we have

ÿ
�

M

D� _jjt�0�Foom � ÿ
�

M

D�R�u��Foom

� ÿ
�

M

R�div�X��Foom

� 2pR� f �X ��:
This completes the proof of Theorem 4.1. r

Suppose that c1�M� > 0 and that ro � o� �i=2p�qqFo. Then we have

M�o;oj� � ÿ 1

V

�
M

j
Xmÿ1

k�0

ok
j 5 o� i

2p
qqFo

� �
5omÿkÿ1 � 1

V

�
M

log
om

j

om
om

j

� m

�m� 1�V
�

M

j
Xm

k�0

ok
j 5omÿk

� ÿ 1

�m� 1�V
�

M

j
Xm

k�0

ok
j 5omÿk � 1

V

�
M

log
om

j

om
om

j

ÿ 1

V

�
M

Fo�om
j ÿ om� � 1

V

�
M

jom
j :

This last expression is the K-energy for Fano manifolds used in [20].
Suppose again that c1�M� > 0 and that L � Kÿ1

M . We choose h � om.
Then from (6) we have
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2pf̂ �s� �
�

M

log
om

j

om

Xm

k�0

rk
oj

5 rmÿk
o ;

where we have put oj :� s�o. We assume h :� ro > 0, h 0 :� roj
> 0, and put

h 0 � h� �i=2p�qqc. Then of course c � ÿlog om
j =om, and thus

2pf̂ �s� � ÿ
�

M

c
Xm

k�0

h0k 5 hmÿk:�8�

Here c is normalized by �
M

eÿcom � V:

We wish to rewrite the right hand side of (8) in the form invariant under the
change of c into c� constant. If we de®ne Fh by

rh � h� i

2p
qqFh;

�
M

eFh hm � V ;

then

Fh � log
om

hm

and

1

V

�
M

eÿc�Fh hm � 1:

Hence

2p

V
f̂ �s� � ÿ 1

�m� 1�V
�

M

c
Xm

k�0

h0k 5 hmÿk ÿ log
1

V

�
M

eÿc�Fh hm

� �
:

We de®ne

F�o;oj� � ÿ 1

�m� 1�V
�

M

j
Xm

k�0

ok
j 5omÿk ÿ log

1

V

�
M

eÿj�Fo om

� �
;

where Fo is normalized by 1=V
�

M
eFo om � 1.

Theorem 4.4. F�o;oj� coincides with Ding's functional.

Proof. Ding's functional ([8]), which we denote by D�o;oj�, is de®ned by

D�o;oj� � Jo�j� ÿ 1

V

�
M

jom ÿ log
1

V

�
M

eFoÿjom

� �
;

where Jo�j� is de®ned by

akito futaki and yasuhiro nakagawa12



Io�j� � 1

V

�
M

j�om ÿ om
j �;

Jo�j� �
�1

0

Io�sj�
s

ds:

But one computes

Jo�j� � 1

V

�1

0

�
M

j�om ÿ om
sj� ds

� 1

V

�
M

jom ÿ 1

V

� 1

0

�
M

j o� i

2p
qqsj

� �m

ds

� 1

V

�
M

jom ÿ 1

�m� 1�V
�

M

j
Xm

k�0

omÿk
j 5ok:

This completes the proof. r
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