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INEQUALITIES GENERATED BY CHAINS OF
JENSEN INEQUALITIES FOR CONVEX FUNCTIONS

LiaNG-CHENG WANG* AND XU ZHANG'

Abstract

In this paper, we study the monotonicity of some weighted differences between
any two terms in chains of Jensen’s inequalities for convex functions. The problem is
reduced to the solvability of some weight equations or weight inequalities. Our proofs
are based on the classical Jensen’s inequality and some elementary identity involved
combinatorial numbers.

1 Introduction

Let f be a given convex function defined on a non-empty interval I < R.
For any given ne N, x;el and t;, >0 (i=1,2,...,n), it is well-known that the
following Jensen’s inequality holds

n n n n
Zlif(xi)z Zfi S Zlixi/zli . (L.1)
i1 i—1 i1 i1
Jensen’s inequality is one of the classical inequalities and has a lot of appli-
cations. Also, there exist extensive works which were devoted to generalize or
improve Jensen’s inequality. In this respect, we refer the reader to [1], [2], [3]
and [6] and the reference cited therein for updated results.

For any je NU{0}, we recall the definition of combinatorial number C;:

| if j=o0,

c/ " it 0 </ 12
J — < .
L= s 0<i=n (1)

0 if j>n.
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Now, for any positive integers s,k and r with 1 <k, r <n, put
M(I’l,s;f') = M(n,S;f',ll,...,ln,X],...,Xn)

£ ) <Z’Jﬁ> (i!x}%/i%) (1.3)

I<ji<<js<n \ p=

1
T =Tt twxn, o Xa) £ cF 1M(n ks f), (1.4)

and
F(n k,r; f) = F(nk,r; ft1, .oty X1y oy Xy)
£ oM (n,k; f) — G M(n,rs f). (1.5)
It is easy to see that
Flnk,rs f) = CEIGI ) = ().

The first named author of this paper showed in [5] that the following chain
of Jensen inequalities hold

Nz =2L() =z =)z =J)(f), 1<k<r<n (16)
Note that

i=1

_<th> (Zt,x, / Zt,> R =t ),

Therefore, (1.6) is obtained by inserting n — 2 terms Jj'(f),...,J" (f) in (1.1).
On the other hand, it is easy to see that

F(n, 1,m; 10, by X1,y X)) = thx, <Zt> (iz,xi/iz,)
i=1 i=1

i=1

= 71~ T2(S) (1.7)

can be obtained by taking the difference between the left hand side and the
right one of (1.1) (or between the first term and the n-th one in (1.6)). Vasic,
Mijalkovi¢ and Pecari¢ found an interesting property on the monotonicity of
F(n,1,n; f,1,...,1,x1,...,x,) with respect to n. In [7] and [8], they showed the
following inequality

F(n,Lim; f,1,...,1,x1,...,%x,) = if(xi) —nf(ix,»/n)
i=1 i=1
n—1 n—1
>3 flx) - (n— 1>f<§jx,»/<n— 1>>
i=1 i=1

=Fn—-11n=1/f1,...;x,....,x4—1). (1.8)
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He obtained the monot-

116
Wang ([4]) gave a generalization of inequality (1.8)

onicity of F(n,1,n; f) with respect to n, i.e
F(n,l,n;f',ll,...,tn,X],...,Xn)

=3 s - (Z ff)f (Zl /3 ")

th Xi)
= F(n—1,1,n—1; f Hy oy X1, X 1), (1.9)
In view of (1.7), one may re-write (1.9)
Ty () = 7N = L ). (1.10)

Ji(f) -
Therefore, it seems to be natural to expect that
JL) =T S), 1<k<r<n
the difference between the k-th term and the r-th one in the chain of in-
i . However,

ic. .
equalities (1.6), has a similar monotonicity property with respect to n
Indeed, we have the following simple counterexample

this is not the case.
Then it is clear that the function

Let us take I =[0,4].
0<x<3,

Example 1.1.
0
N ’
/() {x—S, 3<x<4

is convex in I. Take x1 =4, 1 =1, xo=3, b =1, x3=2, t3=1, x4 =1 and
Then, noting that f(x) =0 whenever x € [0,3], we get

ty = 1.
L) = I3(f)
1 1ixi + 1;x;
(4 gt (5008
Cf 1 1<12</:<4 Li+1
1 tix; + tix; + tixg
T Sty +tk)f( Al i >
1 <i<j<k<4 LY k
<X1 +X2)
e
and
L) =)
1 1ixi + 1;x;
= Li+6)f
DI -
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1 1ix; + ;X + te Xy
] Z (it + tk)f( [ [tA +Jt:/+z :
3-1 1<i<j<k<3 Ptk

2 X1+ x2 1
)L
cr] 2 2

() =J5(f) < T3() =I5 ().
On the other hand, take x; =1, /1 =1, x, =2, h =1, x3=3, 13 =1, x4 = 4 and
t4 = 1. Then similar to the above computation, we obtain the following converse
inequality:

Therefore

) =T =5 > BU) - B =0

Example 1.1 shows that J'(f) —J/(f) does not have monotonicity with
respect to n without further assumptions. Stimulated by this example, we will
consider in this paper some weighted differences between J'(f) and J!'(f), or
equivalently between M (n, k; f) and M(n,r;f), and analyze their monotonicity
under suitable conditions.

The rest of this paper is organized as follows. In Section 2, we will state
our main results, Theorems 2.1-2.5. Section 3 is devoted to the proof of Theo-
rems 2.1-2.2. In Section 4, we will prove Theorems 2.3-2.5.

2 Main results

2.1 Monotonicity of weighted differences
Fix two functions u,v: N X N x N — R. For any k,re{l,2,...,n}, we
set

F(n,k,r, f) & uln, ke, r)M(n,k; f) = v(n, ke, r) M (n,r; ),
A(nyk,r) 2 (u(n, k,r) —u(n — 1,k,r))Ck C*}!
— (v(n,k,r) = v(n — 1k, 1)) Gy CF = v(n, ke, 1) G 71
B(n,k,r) £ u(n, k,r)C* ' —v(n,kc,r)CI~].

2.1)

Obviously, Z(n,k,r; f) is a weighted difference between M(n,k;f) and
M(n,r; f) (with weight functions u and v). We have the following monotonicity
result on F (n,k,r; f) with respect to n:

THEOREM 2.1. Let f be a convex function defined on I, n >3, 1 <k <r <n.
Assume v is non-negative and v(n,k,r) > v(n—1,k,r). Then

T (nk,r; [) = F(n—1,k,r, f) (2.2)
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provided one of the following three class of conditions holds

(1) A(n,k,r) = B(n,k,r) = 0; (2.3)

(2) A(n,k,r) >0, B(nk,r) >0 (2.4)
and f is non-negative; or

(3) A(n,k,r) <0, B(nk,r)<0 (2.5)

and f is non-positive.

Note, however, that in Theorem 2.1, we assume r < n, which excludes the
important case of r=n. Therefore, Theorem 2.1 does not cover the monot-
onicity result in inequality (1.9).

In order to include the case of r = n, we will go a little bit further. Fix two
functions #,5: N x N x N — R. For any k,re{1,2,...,n—1}, we put

G(n,k,r; f) & a(n, k,r)M(n, ks f) — o(n, k,r)M (n,n —r+1; f),
A(n,k,r) £ CK-ICK (a(n, ke, r) —a(n — 1,k, 1))
- Cr:ljlﬂrl Cf_,,ﬂﬁ(n, k’ r)v
B nk,r) & C,f_’llit(n,k, r) — C;:}ﬁ(mk, r),

o 26)
Clnk,r) & CFlo(n — 1,k,r) — CF21 i(n K, 1),

(

(

n— n—r—1

)
)
A(n k,r) 2 a(n k,r) —a(n — 1,k,r),
)
)

[I>

Cf:llﬁ(n,k, r) — C"_lfz(n,k7 r),

n—1
2 (n—r)o(n—1,k,r)— (n—k)o(n,k,r).
Clearly, 9(n,k,r; ) is a weighted difference between M (n,k; f) and M(n,

n—r+1;f) (with weight functions # and ). We have the following monot-
onicity result on %(n, k,r; f) with respect to n:

THEOREM 2.2. Let f be a convex function defined on I, v be non-negative,
nx=3and 1 <k+r<n+1. Then

Gn,k,r; ) =9(n—1,k,r; f) (2.7)
provided one of the following six class of conditions holds
(1) A(n,k,r) = B(n, k,r) = C(n,k,r) = 0; (2.8)
) A(n,k,r) = B(n,k,r) = C(n,k,r) = 0; (2.9)
3) A(n,k,r) =0, B(nk,r)>0, C(nk,r)>0 (2.10)

and f is non-negative;

(4) A(n,k,r) >0, B(nk,r)=0, C(nk,r)=0 (2.11)
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and f is non-negative;
(5) A(n,k,r) <0, B(nk,r)<0, C(nk,r)<0 (2.12)

and f is non-positive; or

(6) A(n,k,r) <0, B(nk,r) <0, C(nk,r)<0 (2.13)

and [ is non-positive.

Theorems 2.1-2.2 reduce the monotonicity of weighted differences between
M(n,k; ) and M(n,r; f), or equivalently between J'(f) and J'(f), to the solv-
ability of suitable weight equations or weight inequalities. The solutions of
weight equations will be studied in the next subsection.

The proof of Theorems 2.1-2.2 will be given in Section 3.

Remark 2.1. Theorems 2.1-2.2 remain true for more general case when
interval I < R is replaced by any non-empty convex subset E in a linear space
X over R.

Remark 2.2. To the best of our knowledge, the following weight inequalities
(with unknowns u and v)
A(n,k,r) =0,
B(n,k,r) =0,

and the following two weight inequalities (with unknowns # and ?)

A(n,k,r) >0, A(n,k,r) >0,

B(n,k,r) >0, < B(nk,r) >0,

C(n,k,r) >0, |Cnk,r) >0,
are new, and very little is known about their solutions. (The other weight in-
equalities appeared in Theorems 2.1-2.2 can be easily reduced to the above ones).

It would be interesting to analyze the structure of their solutions. But this is by
now an open problem.

2.2 Solutions of weight equations
We have the following three results, which characterize the structure of
solutions of weight equations (2.3), (2.8) and (2.9).

THEOREM 2.3. Letn >3,1 <k <r<n. Thenu(nk,r) and v(n,k,r) satisfy

A(n,k,r) = B(n,k,r) =0 (2.14)
if and only if
crl
u(n, k,r) = = v(nk,r). (2.15)
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THEOREM 2.4. Let n>3, | <k+r<n+1. Then a(nk,r) and o(nk,r)
satisfy

A(n,k,r) = B(n, k,r) = C(n,k,r) =0 (2.16)
if and only if
Ckfl Crfl
b(n,k,r) = —=—0o(n—1,k,r), da(nkr)= CZ:II o(n, k,r). (2.17)
n—r—1 n—1

THEOREM 2.5. Let n>3, | <k+r<n+1. Then a(nk,r) and o(nk,r)
satisfy

A(n,k,r) = B(n,k,r) = C(n,k,r) =0 (2.18)
if and only if
Ckfl
ulnke,r)y=a(n—1,k,r), d(nk,r)= C’;‘_ll a(n,k,r). (2.19)

n—1
The proof of Theorems 2.3-2.5 will be given in Section 4.

_ Remark 2.3. By Theorem 2.5, in order that A~(n7k, r) = B(n,k, r) =
C(n,k,r) =0 (and therefore inequality (2.7) holds), without loss of generality, one
may choose the weight functions @(n, k,r) and o(n, k,r) in ¥(n, k,r; ) as follows:
Ckfl
u(nkyr)y =1, o(nk,r)= ”:11 .
Cr
n—1

This is the unique “linearly” independent solution of weight equation (2.18).

2.3 Several corollaries
First, combining Theorem 2.1 and Theorem 2.3, we get

COROLLARY 2.1. Let f be a convex function defined on I, n >3, 1 <k <
r<n. Let u(nk,r)=C=to(nk,r)/C*=}, where v: N xNxN— R is any

n—1>
given non-negative function such that v(n,k,r) >v(n— 1,k,r). Then

97(”7k7r;f) = ‘97(”_ 17kar7f)

Let us choose v(n,k,r) = C* in Corollary 2.1. Then u(n,k,r)= C!}.

n—1
As a direct consequence of Corollary 2.1, we obtain the monotonicity of

F(n,k,r; f) (1<k<r<n)
with respect to n, i.e., we have
COROLLARY 2.2. Let f be a convex function defined on I, n >3 and 1 < k <
r<n. Then
F(n,k,r; f) = F(n = 1,k,r; f). (2.20)
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Next, choosing r = 1, @(n, k,r) = 1 and (n,k,r) = C*=! in Theorem 2.2 and
Theorem 2.4, and noting (1.5) and (2.6), we get

COROLLARY 2.3. Let f be a convex function defined on I, n >3 and 1 <
k <n. Then

F(n,k,n; f) > F(n— —1:). (2.21)

Remark 2.4. 1t is easy to see that inequality (1.9) is a special case of
Corollary 2.3.

Similarly, choosing r = k, @(n, k,r) = d(n,k,r) = 1 in Theorem 2.2 and Theo-
rem 2.5, we get

COROLLARY 2.4. Let f be a convex function defined on I, n >4 and 1 <
k < [n/2], the integer part of n/2. Then

Mmk; f)—Mmn—k+ 1) >Mun—1Lk f)—Mn-1,n—k;f). (2.22)

3 Proof of Theorems 2.1-2.2

This section is devoted to prove Theorems 2.1-2.2. For this purpose, we
need some simple preliminaries.

Lemma 3.1. Fix me N with 1 <m <n. Let y\,y2,...,yn€R. Then

m

Cl > (Z ys,> = Z Vi (3.1)
i=1

n— 1 1<s1<<sp<n

Proof. In view of the symmetry, it is easy to see that
> () 52
1<si<<spu<n

is equal to some integer times of >." | y;. Obviously, this integer is equal to the
times that y; appears in (3.2), which in turn is C";!. This completes the proof
of Lemma 3.1. O

Lemma 3.2, Let f be a convex function defined on 1. Then for any m,/ € N
with 1 <m < ¢ <n, it holds

() (/52

cnlw > (i’) (ZfX/Zt> (3.3)

/— 1 1<si<<su</ \ j=1 j=1




122 LIANG-CHENG WANG AND XU ZHANG

Proof. By (3.1), we have

Z lixj = Cm

(=1 1<s<<sp </

(Z t xs/> (3.4)

J

and

/
Sicg % (z ) 59
i=1 / 1 1<s1<<sp <7

J

Now, by (3.4), (3.5) and (1.1), we conclude that

(5 5r) sl 2 () /)

m
C”11 <Z ts//Zt,> (Z zv/xs//Zzs)
/-1 l<\1< sy <l

J

which yields (3.3). This completes the proof of Lemma 3.2. O

LemMa 3.3. Let k,r,me N satisfy 1 <k <r<m. Then for any function
g:N*¥ = R, it holds

. . CI;CI{C . .
glif,... i) = ol Z g, Jjk). (3.6)

I<iy<<ip<m{i],...i = {i1 .., ir} mol<ji<<jx<m

Proof. Similar to the proof of Lemma 3.1, by symmetry, it is easy to see
that

gt ip) (3.7)
V< iy <oy S {i] il Y & {1 e}
is equal to some integer times of the following summation

> gl k) (3.8)

I<ji<-<jr<m

To compute this integer, we note that there are C!CX terms (including
repeated terms) in (3.7); while in (3.8) there are CX terms. Therefore, the desired
integer is equal to C!Ck/Ck. This completes the proof of Lemma 3.3. [J
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Lemma 3.4. Let f be a convex function defined on I. Then for any s, h,
meN with | <s<h<m<n, it holds

h h
Z (Z lg,)f(Z Ziﬁ@/Zh},)
I<ii<-<ip<m q=1 q=1

Ch Cx i S s
< CAm Z (Z t/p)f (Z t/px/p/ Z Zfi[)) . (39)
p=1 p=1

ml<]|< <Jjs<m

Proof. Thanks to Lemma 3.2, and by s < h, we see that

h h
(Z ’4> (Z l’qx’q/z tiq)
q=1 q=1
< % > ( A fa;>f<sz4xn;/2’m>-
h=1{if,....ily = {ir,in} \q=1 q=1 q=1

Therefore, we have

I<i<-<ip<m \ ¢g=1

< C} Z Z (zs:th;) <Ztlf;xl‘1/zt’q>' (310)
it \q=1

h— ]l<11< <ip<m{if,..,ij} < {i,.. g=1

However, by Lemma 3.3, we get

SO A

1<i<-<ip<m {lll } {i1yeees

:cﬁfg > (Zz/,,>f'<iz,,,x,p/itﬂ,>. (3.11)
p=1 p=1

m o 1<ji<-<jy<m \ p=

Now, combining (3.10) and (3.11), we arrive at the desired inequality

(3.9). O
Now, we can prove Theorems 2.1-2.2.

Proof of Theorem 2.1. First, we assume k > 1. The proof is divided into
several steps.
Step 1. It is easy to see that
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F(nk,r; f)

k k
=u(n,k,r) [ Z <z t][)>f<z tjpxjp/ Z lf;p)
p=1 p=1

1<ji<-<jik<n—1

k—1 k=1 k-1
+ Y (tn +)° tjp)f((tnxn +y° t,-p)g,,) / <tn +)° tﬁ)ﬂ
1<ji<-<ji=n p=1 p=1 p=1
r
- U(l’l, k? V) [ <Z tlt/) <Z l’c/x’q/ Z Z’1/>
1<i<-<i<n—1 \¢g=1

po
r=1 r-1 r—1
+ > (rn +> t,»q)f ( (tnxn +y tiqx,-q> / (zn +y z,-q) )1 (3.12)
1<ii<--<ip=n q=1 q=1 q=1
and

?(nflakar;f)

k k
—un—1kr) Y (Z z,/,> y (Z 6 x, / Z@»)

1<ji<-<jr<n—1

From (3.12) and (3.13), we see that
F(nk,r; ) —F(n—1,k,r; f)

k k k
= (u(n,k,r) —uln—1,k,r)) Z (Z tjp)f<z ljpxjp/ Z qp)
=1

1<ji<-<jr<n—1 \ p=1 =
— (v(n,k,r) —v(n—1,k,r)) ( t,q) (Z t,qxlq/ Z t,q)
1<l|< <ir<n—1 \¢=1
+ u(n, k,r) Z (zn + Z t,p) <<lnx,, + Z t/pxjp> (zn + Z t,p))
1<y << =n =1
r—1 r—1
—v(nk,r) > (zn +y° tiq>_f<(tnxn +Y° z,»qx,-q> (z + Z t,q))
1<i<-<iy=n q=1 q=1
(3.14)

Step 2. Let us analyze the second term in the right side of (3.14).
Applying Lemma 3.4 with s=k, h=r and m=n—1, and by ov(nk,r) >
v(n—1,k,r), we get
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—(v(n,k,r) —v(n—1,k,r)) Z <Z t,q) (Z t,qx,q/ Z t,q)

1<ii<-<i,<n—1

v(n,k,r) —v 1,k,r)C,_ Cr/‘
(o >C<klck Lo 5 (Z%)

n—1 I<ji<<jk<n-1

k k
y f(Z %, / ztjp) (3.15)
p=1 p=1

SteP 3. Let us analyze the last term in the right side of (3.14). Thanks to
Lemma 3.2, and recalling that k < r, we see that

r—1 r—1 r—1
(o) [ £4)
g=1 q=1 q=1
1 . k k
Y= > (Z ffq>f (Z %, / > fﬁ;)-
r—1 {] q=1 q=1

..... Jeysdinye b1, n}

Therefore,

r—1 r—1
—vn k) Y <tn +> h,) <<t Xp+ Z t,qx,q) (tn +3° n;,))
1<ij<-<iy=n q=1 q=1
k

v(n, k,r
s (S (e

r— 1<ip<e<ipoy <n=1{j{ o, ji} <{itsesir1,m}

g=1

v(n, k,r) k k
=——oEr 2 D Z G I\ 2o ) D

r=1 l<ii<o<ipy <n=1 L{jl e, 1Y {iteniv} g=1 g=1

k-1 k-1 k-1
n 3 <zn +>° tjt;)f((tnxn +y t,-q/qu> / (tn +y z;;;))] .
Uil i Y itsenivt} g=1 9=1 g=1

(3.16)

In view of Lemma 3.3, it is easy to see that

> > (i%’) (sz qu/:l’h}>

I<iy<<ipy <n=1{jl,.... jiy <{ir i1} q=1

Ccr- llck k k k
HCT Z (Z tjfl) <Z /qx/!l/zltfq> (317)

n—1  1<j<-<jr<n—1 \¢=1 g=1

and
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SRR SN (RS 9
1<iy <oy <n=1{jl e, ji_ y = {inyesir } q=1
k—1 k—1
(D S VATED o
q=1 q=1
Crfllckfl k-1 k—1
Gl s (e S ((wr S ) (050
n—1 1<ji<<je_1 <n—1 q=1 g=1 g=1

(3.18)
Now, combining (3.16), (3.17) and (3.18), we conclude that

r—1 r—1 r—1
—v(n, k, ) Z (zn + Z l,-q)f((tnxn + Z z,-qx,-q> / (zn + Z t,-q))
I <iy<-<ip=n q=1 q=1 g=1

k Crflck a -
v(n, k,r) ngk r—1 S <E f/q>f<§ :’./‘qx.iq/zt-"q
n—1 a=! o

= — Ck—l
r—1 1<ji<-<jr<n—1

cr-lck! k=l
=Y ot 2t
n—1 g=1

<1< <J-1<jk=n

X f<<tnxn + kz_i lf/}/qu> <l‘n + Z i, )] (319)

Step 4. Let us complete the proof. By (3. 14, (3.15) and (3.19), and
recalling the definitions of A(n,k,r) and B(n,k,r) in (2.1), we end up with

F(nk,r; f)—Fm—1k,r;f)

A ,k, k k
¥ = =

r— n—11<j<-<jr<n—1

B(n, k, =
+% 3 (z,ﬂrzltﬂ,)

n=1  1<ji<-<jy=n

k—1
xf((rnanthjqqu)/(t +Z m)) (3.20)
q=1

However, from the proof of (3.20), it is easy to see that the same inequalities
hold for k =1 if we replace

k=1 k-1 k-1
I<ji<-<jk=n q=1 g=1 =1

in (3.20) by #,f(x,).
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Now, noting our assumptions on A(n,k,r), B(n,k,r) and f, the desired
result (2.2) follows from (3.20) immediately. This completes the proof of Theo-
rem 2.1. U

Proof of Theorem 2.2. We proceed as in the proof of Theorem 2.1. First,
we assume k > 1. By (2.6) and (1.3), we see that

G(n,k,r; f)
2 a(n,k,r)M(n,k; ) — o(n,k,r)M (n,n —r + 1; f)

k k
= i(n, k,r) [ > (Z %)f (Z £,%;, / > m)
p=1 p=1

1<ji<-<jr<n—1

k—1 k—1 k—1
£ (S (o ) o)
<1< <Jk—1<n-1 p=1 p=1 p=1
n—r+1 n—r+1 n—r+1
— b(n, k, r)l > ( > z,-q) ( t,qx,q/ t,q)
1 <ij < <iy—py1 <n—1 q=1
+ > <t,, +y t,-q)f < (l,,x,, +y t,;/x,-q) / <t,, +y tiq> )] . (3.21)
1<ii<-<iy_,<n—1 q=1 q=1 q=1

Here, we agree that when r =1,

n—r+1 n—r+1 n—r+1
Z < Z ti,,)_f( Z t,-qx,-q/ Z ti,,) =0 (322)
q=1 q=1

1<i < <ipyp1 <n—1 q=1

_|_

(since in this case there are no integers ij,...,i—r+1 such that 1 <ij <---<
in—r-H <n-— 1)

Now, when r>1, applying Lemma 34 with s=k, h=n—r+1 and
m=n— 1, we conclude that

n—r+1 n—r+1 n—r+1
S (Sa(S /S
q

I1<ij<-<iypp1 <n—1 =1 q=1 g=1
Cn H—lck k k
< el Y Zt St /Y ). (323
Ck lck Ip Jp¥p Ip
n—1  1<j<-<jp<n—1 p=1 p=1

Note that by our convention in (3.22), inequality (3.23) is also valid for r =1
(recall that, by definition (1.2), C , = 0).
Replacing k& by n—r in (3.23), we get
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n—r+1 n— r+1 n— r+l
(S T
1<ij<-<ippp1 <n—1 q=1

_ 1 Cn r+1 n—r n—r
< (n (nrj—r))cnn : Z (Z tj,;) (Z lijjp/ Z lj]}) . (324)
n—1 1 =1 =T

1<i<<jp—yr<n—

On the other hand, by Lemma 3.1, we see that (recall that k+r<
1+n)

k=1 n—r
SRR o IR0 o0
(il ity inr} py

g=1

= Cr]::,l t + Z (Z tz: > + C,f:rlfl f tiq
q=1

1<s1<<sp_1 <n—r

k—1 k
_Cnt" (Cnil+ nrl Zth

n—r
_ e <z,, s z,~q>.
q=1
Similarly,

n-r n—r
k—1 k—1
(lnxn + Z l,/X, ) + Cnfrfl Z ll}/xt}, = Cnfr (tﬂxn + Z ll}/xll/> .
q=1 q=1

{il,""' ilifl } < {il sy in—r}

Noting the above two identities, and using (1.1), we obtain

(tn + 2 n;,)f < <tnxn + 2 t,»,,x,;,> / (tn + 2 n-,,))
q=1 g=1 g=1
:(rn+§tiq>f<l > <txn+2t1x,>
q=1 (il ool Y it sesinr}
/ Cii( rl (tn + f liq) ])
q=1

n—r

k-1 2 :
Cn—r— 1 Ziq xiq

q=1
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n—r k—1
q=1
— (tn +y t,»q)f o Z | (tn + t,;) —
q=1 LA VS AR LIy q=1 f+ Z li‘;

Loy g

n—r ‘
+< n— rllzlq)'#
Zt’v

k—1 k—1
< % > <z,1 - Z ty ) ((l,,xn +) t,-(;x,;) / <t,, + t,;;))
n q=1 q=1

LR LI (A N=N I g=1

gkr l1 (Z Z,q)f (Z t,—qx,-q/ Z tiq> . (325)
= q=

n—r

However, by Lemma 3.3, we have

.....

rk—1 k-1
= % Z (ln + Z t@)

k—1
C’l—l 1<ii<-<ip_1 <n—1

k—1 k—1
x f((znxn +) rl-qx,zq> / (zn +y t,»q) > . (3.26)
q=1 q=1

Now, by (3.25) and (3.26), we get

e B s
1<ip<-<ip—p<n—1 g=1 g=1 g=1
crr k-1 k-1 k-1
qu 3 (tn +> z,»q)f((znxn +> z,-qx,»q) / (z,, +y t,~q>>
q=1 q=1 g=1

n—1 1<ij<-<ig_; <n—1

k—1 n n—r n—r
3 Y (Z m)f <Z 295> t) - (327)
n— <n—1 g=1 g=1

rol<i <<y,
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On the other hand, it follows from (2.6) and (1.3) that

2an— 1k, )M(n—1,k; f) —o(n— 1, k,r)M(n—1,n—r; f)

—an—1kr) > <Z’1p> (Zl"’x’”/zt”’>

I<ji<-<jik<n—1

—in—1kr) > <Z ,) '(Z £, / Zzi(,>. (3.28)
<n-1 q=1 g=1

1<ii<-<iy—y

Therefore, combining (3.21), (3.23), (3.27) and (3.28), and recalling the defi-
nitions of A(n, k,r), B(n,k,r) and C(n,k,r) in (2.6), we conclude that for any
l<k<n+1-r, it holds

G(n,k,r; f) —%(n—1,k,r; f)
A(n k,r)

k k
= Ck lck Z (Z tJI’) ' (Z tj/)xfl)/ Z Zfi/’)
p=1 p=1

n—11<j<<jr <n—1

B(n,k,r) S
TR > (ln + Z f,
n— =

1<ii<-<ip_1 <n—1

k—1 k—1
f<<tnxn +y ti,,xiq> / (tn +y t,»,,>>
q=1 q=1

A(n k,r)

N A
" p=1 p=1

r 1<ii<<iy,<n—1

Similarly, combining (3.21), (3.24), (3.27) and (3.28), and recalling the defi-

nitions of A(n,k,r), B(n,k,r) and C(n,k,r) in (2.6), we conclude that for any
l<k<n+1-—r, it holds

G(nk,r; [)—9G(n—1,k,r; f)

>Am k) > (Z t],,>f (i: £,j, / Z@)

I<ji<<jr<n-—1 p=1

~(n k,r)

k—1
SECCN S (5 o)
n—1 1<ii<-<ip_1<n—1

(55

C(n,k,r)

L— <Z ﬁ,,)f(Z ti,,x,»p/znp). (3.30)
1<i<-- <l,7,<n 1 1 p=1 =1
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However, from the proof of (3.29) and (3.30), it is easy to see that the same
inequalities hold for & =1 if replacing

k-1 k-1 k-1
Z <ln + Z Zt},) f < <tnxn + Z Ziﬂﬁ},) / <Zn + Z t@))
1<ii<<ip_1 <n—1 1 q=1 q=1

q=

in (3.29) and (3.30) by #,f(xs). These facts, combined with our assumptions
on A(n,k,r), B(n,k,r), C(n,k,r), A(n,k,r), B(n,k,r), C(n,k,r) and f, yield the
desired inequality (2.7). This completes the proof of Theorem 2.2. O

4 Proof of Theorems 2.3-2.5
This section is devoted to the proof of Theorems 2.3-2.5.

Proof of Theorem 2.3. The “only if” part is a direct consequence of
B(n,k,r) =0.

The “if” part. It suffices to show A(n,k,r) =0. By (2.15) and the def-
inition of A(n,k,r) in (2.1), we have

r—1 r

~1
Aln, k) = (C o(n.k,r) — <12

k-1 k—1
C e

n—1

v(n—1,k, r)) ck ckl

- (v(n,k,r) - U(n - laka r)) . C)k - U(nakar)C};:%Crkfl

n—1
Ccroick ck) :
= ( n_lc’;c:ll =l — CJ*ICI{( - Ciillcrkl>v(n)k7r)
n—1
) crick ¢kl
+< ,;IC,FW>U(n1,k,r). (4.1)
n-2
However,
c-ick ck!
—”_IC'};II —L— ¢ Cf-Crick,
n—1
_ (n=Kk)m-1! (n—1) B (n—1)!
kK m=nr—k) Kmn—r—DIr—k! kK@n-nr—k-1)!
=0. (4.2)
Similarly,
, CV:ICIZ C{c:l
cr ck— % =0. (4.3)
n—2
Hence, combining (4.1)-(4.3), we see that A(n,k,r) =0. This completes the
proof of Theorem 2.3. O

_ Proof of Theorem 2.4. It suffices to analyze the structure of solutions of
A(n,k,r) = B(n,k,r) = C(n,k,r) = 0.
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Obviously, by (2.6), B(n,k,r) =0 is equivalent to

r—1
a(n k,r) = g;’(:ll o(n, k,r). (4.4)
n—1
Similarly, C‘(n,k,r) =0 is equivalent to
Ckfl
o(n—1,k,r) = C”,;’:ll o(n, k,r). (4.5)
Therefore, by (4.4) and (4.5), we see that
Cr—l Crfl Ckfl
a(n— 1k, r) = =2=24(n— 1,k,r) = 2201150 fc ). (4.6)
) CLas

Now, by (4.4) and (4.6), and using the definition of A(n,k,r) in (2.6), we
get

R Cki,lck Crfl Ck Crflckfl
A(n,k,r):< 1o Cz;; n=l _ “n-l g;ﬁl nor=l _crti ek e k,r) (4.7)
n—2

n—1

A direct computation shows that for any r > 1, it holds

k=1 k r—1 k r—=1 k-1
Cn—r Cn71Cn71 _ Cn71Cn72 Cnfrfl _ Cn—r—HCk
n—1

Cy]f:ll erszl n—r+1
_ (n—1D(n—k) 3 (n—1)
m—k—r+Dr-1)! (m—k—-rki(r-1)!
(n—1)
=k —r4+ D)k (r=2)!
=0. (4.8)

However, when r =1, by (1.2), we see that C,'::I’“ =C' , =0. Thus
GGG CGLCGHCGT  pnri ok
C;i(:ll C’gg:zl n—1 n—r+1

(n—Dl(n—k) (n—1)!
m—k)kl (n—k— Dkl
Therefore, (4.8) holds for r > 1 such that 1 <k+r<n-+1.

Now, from (4.7) and (4.8), it is easy to see that the desired result holds.
This completes the proof of Theorem 2.4. O

0.

Proof of Theorem 2.5. Similar to the proof of Theorem 2.4, let us analyze
the structure of solutions of A(n,k,r) = B(n,k,r) = C(n,k,r) = 0.

Obviously, by (2.6), A(n,k,r) =0 is equivalent to
a(n,ke,r)y =a(n—1,k,r). (4.9)
Similarly, B(n,k,r) =0 is equivalent to



INEQUALITIES GENERATED BY CHAINS OF JENSEN INEQUALITIES 133

ke
o(n k,r) = l] uln,k,r). (4.10)
oy
Therefore, by (4.9) and (4.10), we see that
Ck Ck721
o(n— 1,k,r) =—20(n — 1,k,r) = 2=240(n, k,r). (4.11)
o o
Now, by (4.10) and (4.11), and using the definition of C(n, k, ) in (2.6), we get
N Ck 1 Ckfl
Clner) = (1= G~ =) 2 Jitn ) =

which implies the desired result. Th1s completes the proof of Theorem 2.5.
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