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§1. Introduction

We consider the action of the Teichmüller modular group on the Teich-
müller space of a topologically infinite Riemann surface. For a Riemann surface
S, the Teichmüller space TðSÞ is the set of all equivalence classes of the pair
ð f ; sÞ, where f : S ! Ss is a quasiconformal homeomorphism of S onto another
Riemann surface Ss of a complex structure s. Two pairs ð f1; s1Þ and ð f2; s2Þ are
considered to be equivalent if s1 ¼ s2 and f2 � f �1

1 is isotopic to a conformal
map. Here the isotopy is considered to be relative to the boundary at in-
finity. A distance between p1 ¼ ½ f1; s1� and p2 ¼ ½ f2; s2� in TðSÞ is defined by
dðp1; p2Þ ¼ log KðhÞ for an extremal quasiconformal homeomorphism h whose
maximal dilatation KðhÞ is minimal in the isotopy class of f2 � f �1

1 . Then d
becomes a complete metric on TðSÞ, which is called the Teichmüller distance.

The Teichmüller modular group ModðSÞ of S is a group of the isotopy
classes of quasiconformal automorphisms of S. An element g of ModðSÞ acts
on TðSÞ in such a way that ½ f ; s� 7! ½ f � g�1; s�, where g also denotes a rep-
resentative of the isotopy class. It is evident from definition that ModðSÞ acts
on TðSÞ isometrically with respect to the Teichmüller distance. In the case that
TðSÞ is finite dimensional (equivalently S is of analytically finite type), ModðSÞ
acts on TðSÞ properly discontinuously and the orbit of any point p A TðSÞ is
discrete. However, when TðSÞ is infinite dimensional, these are not always true.
See recent works [4], [5] and a monograph [6, Chap. 10].

For finite dimensional Teichmüller spaces, Bers [2] classified the elements of
ModðSÞ by certain analytic criteria in comparison with Thurston’s topological
classification. This can be extended to infinite dimensional Teichmüller spaces
in the same way. For example, an element g A ModðSÞ is elliptic if g has a fixed
point in TðSÞ, and parabolic if inf dðp; gðpÞÞ ¼ 0 where the infimum is taken
over all points p in TðSÞ. An elliptic element is realized as a conformal au-
tomorphism of the Riemann surface corresponding to the fixed point of g. A
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typical parabolic element is the Dehn twist along a simple closed geodesic on a
hyperbolic surface S.

In a recent research announcement [10], which will be completed in near
future, we investigated the orbit under a cyclic subgroup of ModðSÞ generated
by an elliptic element of infinite order. In particular, we proved the existence of
a non-closed orbit which accumulates to a point of a di¤erent complex structure.
In this present paper, we consider similar problems for a parabolic abelian
subgroup G of ModðSÞ generated by an infinite number of Dehn twists along
mutually disjoint simple closed geodesics on S. In contrast to the elliptic case,
convergence of the orbit with respect to the Teichmüller distance implies locally
uniform convergence of the elements of the Teichmüller modular group, and in
particular the orbit is always closed. From this, we easily see that, if the orbit is
not discrete, then it is a perfect set and in particular uncountable. By estimating
the maximal dilatation of an element of G in terms of the hyperbolic lengths of
the simple closed geodesics, we will refine these results to obtain necessary and
su‰cient conditions for the orbit to be discrete and to be countable.

Acknowledgment. The author would like to thank Dr. Ege Fujikawa for
bringing the results in Section 2 to his attention and Dr. Hideki Miyachi for
giving him a remark concerning the estimate for a simple Dehn twist stated at the
end of Section 3.

§2. The orbit under the direct product of Dehn twists

Let S be a hyperbolic Riemann surface and fcigyi¼1 a family of mutually
disjoint simple closed geodesics on S. Let di be the Dehn twist along ci, which is
regarded as an element of the Teichmüller modular group ModðSÞ. Elements in
fdigyi¼1 are mutually commuting to each other. Hence the subgroup of ModðSÞ
generated by fdigyi¼1 is nothing but the direct sum

Py
i¼1 hdii of the infinite cyclic

groups hdii.
On the other hand, the direct product

Qy
i¼1 hdii of the infinite cyclic groups

hdii lies in the group of the isotopy classes of all orientation preserving homeo-
morphic automorphisms of S which contains ModðSÞ. We consider the inter-
section

G ¼ ModðSÞV
Yy
i¼1

hdii;

which is an abelian subgroup of ModðSÞ containing the direct sum. We call G
the direct product of fdigyi¼1 within ModðSÞ.

Let f :
Qy

i¼1 hdii ! Zy be the coordinate map defined by

dn11 dn22 � � � 7! ðn1; n2; . . .Þ:
We induce the product topology to

Qy
i¼1 hdii by f. This is equivalent to the
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topology defined by locally uniform convergence of a sequence of represen-
tatives.

Theorem 1. Let fcigyi¼1 be a family of mutually disjoint simple closed geo-
desics on a hyperbolic Riemann surface S and li the hyperbolic length of ci. Let di
be the Dehn twist along ci and G the direct product of fdigyi¼1 within ModðSÞ. If
an element g A G has the coordinate ðn1; n2; . . .Þ, then the maximal dilatation KðgÞ
of an extremal quasiconformal automorphism g satisfies

sup
ð2jnij � 1Þþli

p

� �2
þ 1

( )1=2
aKðgÞa sup

jnijli
2yi

� �2
þ 1

( )1=2
þ jnijli

2yi

2
4

3
5
2

;

where yi ¼ p� 2 arctanfsinhðli=2Þg, ð2jnij � 1Þþ ¼ maxfð2jnij � 1Þ; 0g and the
supremum is taken over all i A N .

Remark. If we slightly modify the proof given in the next section, we can
replace the left hand side of the above inequality with

sup
ðjnij � 1Þþli

p

� �2
þ 1

( )
:

Also see the remark given at the end of this paper where we discuss the better
estimate for a special case.

A proof of Theorem 1 is given in the next section. In this section, assuming
this estimate, we prove several properties of the orbit GðpÞ.

Proposition 1. For any point p A TðSÞ, the correspondence vp : G ! GðpÞ
defined by g 7! gðpÞ A TðSÞ is injective. Moreover, for any points p and q in
TðSÞ, the composition vq � v�1

p : GðpÞ ! GðqÞ is a biLipschitz homeomorphism with
respect to the Teichmüller distance on TðSÞ.

Proof. The injectivity of vp is obvious. Let d ¼ dðp; qÞ be the Teichmüller
distance between p and q. Then the ratio of the hyperbolic lengths of simple
closed geodesics measured on p and q is bounded by ed (by Wolpert [12] or
implicitly in the proof of Theorem 1). For two elements g and g 0 in G, compare
the Teichmüller distances dðgðpÞ; g 0ðpÞÞ and dðgðqÞ; g 0ðqÞÞ. By the estimate in
Theorem 1, we see that the ratio of these distances is bounded by a constant
depending on d. We omit the details, for it is merely a matter of calculation.

r

By this injection vp : G ! GðpÞHTðSÞ, we induce a distance on G from
TðSÞ, which we call the Teichmüller distance. Of course, this depends on the
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choice of p A TðSÞ, however, any such distances are biLipschitz equivalent by
Proposition 1.

Proposition 2. A bounded sequence in G with respect to the Teichmüller dis-
tance has a convergent subsequence in the product topology. A Cauchy sequence
in G is a convergent sequence with respect to the Teichmüller distance. Hence G
is complete, that is, the orbit GðpÞ is a closed subset of TðSÞ.

Proof. Consider a bounded sequence fgmg in G. We also regard gm as
an extremal quasiconformal automorphism of S representing the isotopy class.
Then the maximal dilatations of gm are bounded. Since they all preserve a free
homotopy class of a simple closed curve, say c1, we can choose a subsequence of
fgmg that converges to a quasiconformal automorphism g of S locally uniformly.
If fgmg is a Cauchy sequence, then they are bounded and hence any subsequence has
a subsequence that converges to some g A G in the product topology. This also
implies the convergence with respect to the Teichmüller distance. Since such limit g
must be unique, the entire sequence fgmg converges to g A G. r

If the orbit GðpÞ is not discrete, then it is a closed perfect set by the group
invariance. In particular, GðpÞ is uncountable. Considering this fact, we obtain
the following conditions for discreteness and countability of the orbit in terms of the
geodesic lengths flig of fcig.

Theorem 2. Let fcigyi¼1 be a family of mutually disjoint simple closed geo-
desics on a hyperbolic Riemann surface S and li the hyperbolic length of ci. Let di
be the Dehn twist along ci and G the direct product of fdigyi¼1 within ModðSÞ.
Then the orbit GðpÞ of any point p A TðSÞ is discrete if and only if the lengths flig
are uniformly bounded away from 0. On the other hand, GðpÞ is countable if and
only if, for every positive constant L, the number of ci whose lengths li are less than
L is finite. In this case, G coincides with

Py
i¼1 hdii.

Proof. Suppose that the lengths of ci are uniformly bounded away from 0.
Then, by the lower estimate in Theorem 1, the distance dðgðpÞ; g 0ðpÞÞ are uni-
formly bounded away from 0 for any distinct g and g 0 in G. Hence GðpÞ is
discrete. The converse is also clear by the upper estimate in Theorem 1.

Assume that, for every positive constant L, the number of simple closed
geodesics ci whose lengths are less than L is finite. Then, for every positive
constant K b 1, the number of elements in G the maximal dilatation of whose
extremal quasiconformal automorphism is less than K is finite by the lower esti-
mate in Theorem 1. Hence G is countable as well as GðpÞ. Conversely, if the
number of simple closed geodesics ci whose lengths are less than L is infinite
for some L, then the choice of doing the Dehn twist or not for each ci makes
an uncountable number of distinct elements whose maximal dilatations are
bounded. This can be seen by the upper estimate in Theorem 1. Hence G is
uncountable. r
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§3. Estimate of the maximal dilatation of Dehn twists

Our estimate in Theorem 1 is carried out by considering the Dehn twist on
an annular cover A and on an embedded collar A 0 of S with respect to each of
fcigyi¼1.

We begin with defining several constants concerning an annulus and giving
the relationship between them, though they are well known facts. Let g be a
hyperbolic element acting on the upper half-plane H whose translation length is
l > 0. We may assume that gðzÞ ¼ kz, where log k ¼ l. Set

CðyÞ ¼ z A H j p
2
� y

2
< arg z <

p

2
þ y

2

� �
for 0 < ya p. A fundamental domain of CðyÞ under the action of the cyclic
group hgi is conformally mapped by log onto a rectangle with the horizontal side
ð0; log kÞ and the vertical side ½p=2� y=2; p=2þ y=2�. Hence it is conformally
equivalent to a rectangle Q with the side lengths 1 and y=l.

Consider an annulus AðyÞ ¼ CðyÞ=hgi obtained by the identification of the
sides of the fundamental domain. This is realized in the complex plane C as the
image of the rectangle Q by the exponential map (combined with a euclidean
similarity): AðyÞ ¼ fz A C j 1 < jzj < rðyÞg. Then the conformal modulus log rðyÞ
of AðyÞ is 2py=l. In the case of y ¼ p, the conformal modulus log R :¼ log rðpÞ
is 2p2=l.

Let G be a Fuchsian group acting on H and assume that G contains
gðzÞ ¼ kz as an element corresponding to a simple closed geodesic c on a hyper-
bolic Riemann surface S ¼ H=G. The collar lemma (cf. [3, Chap. 4], [7] and [9])
asserts that the annulus AðyÞ ¼ CðyÞ=hgi can be conformally embedded into H=G
for a constant y ¼ p� 2 arctanfsinhðl=2Þg. We call this annulus the collar for
c. Moreover, if two simple closed geodesics c1 and c2 are disjoint, then the
corresponding collars A1 and A2 are also disjoint.

Proof of Theorem 1. We represent S ¼ H=G by a Fuchsian group G acting
on H. Choose one of the simple closed geodesics fcigyi¼1 and denote it by c.
We may assume that a lift ~cc of c is the imaginary axis and the corresponding
hyperbolic element of G is gðzÞ ¼ kz, where log k > 0 is the hyperbolic length
l ¼ li of c. Let g denote an element (an isotopy class) of G having the coor-
dinate fðgÞ ¼ ðn1; n2; . . .Þ as well as a quasiconformal automorphism representing
this isotopy class. Set n ¼ ni.

Consider all the lifts of the simple closed geodesics fcigyi¼1 and denote the
union of them by L. They do not intersect each other. Then the complement
of L in H consists of simply connected components, each of which is bounded by
complete geodesic lines and the non-empty ideal boundary on qH ¼ RU fyg.
Let E1 and E2 be the adjacent components of H� L facing to each other along
~cc. Both of them are invariant under the cyclic group hgi.

Take a lift ~gg of g so that ~gg is the identity on qE1 V qH. The whole lift ~gg
is obtained by shifting the other components of H� L along L by hyperbolic
translation and then smoothing. However the boundary value of ~gg on qH is
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exactly obtained only by this shifting operation and it does not depend on the
choice of a representative of g A G. The component E2 is invariant under hgi
and it moves along the imaginary axis ~cc by gn. Although E2 has other geodesic
boundaries than ~cc and the shifting operations are also carried out along them,
they do not a¤ect ~gg on qE2 V qH. This is because, once E2 moves along ~cc, it is
not moved by the succeeding shifts any longer. Therefore the boundary value of
~gg restricted to qE2 V qH coincides with gn.

Set A ¼ H=hgi, which is an annular cover of S with respect to c. The ideal
boundary of A consists of two components, q1A ¼ R<0=hgi and q2A ¼ R>0=hgi,
where R<0 and R>0 are the negative and the positive real axes respectively. Let
gA be the lift of g to A that is the projection of ~gg onto A. Its maximal dilatation
KðgAÞ is the same as KðgÞ.

To obtain the lower bound of KðgÞ, we estimate KðgAÞ. Take a simple arc
~aa in E1 UE2 connecting boundary points ~aa1 A qE1 V qH and ~aa2 A qE2 V qH. It
projects injectively onto an arc a on A connecting the boundary points a1 A q1A
and a2 A q2A. Then gA fixes both of a1 and a2 because ~gg fixes ~aa1 and moves
~aa2 by gn. However, the image gAðaÞ is not homotopic to a in A relatively to
fa1; a2g. Applying the following Lemma 1, we have the lower bound as stated
in Theorem 1.

Lemma 1. Let A be an annulus of the modulus log R ðR > 1Þ and a an arc in
A with the end points a1 and a2 on the distinct boundary components q1A and q2A
of A respectively. Let g be a quasiconformal automorphism of A such that g fixes
both of a1 and a2, but the image gðaÞ wraps n times around A. Then the maximal
dilatation KðgÞ of g satisfies

KðgÞb ð2jnj � 1Þ 2p

log R

� �2
þ 1

" #1=2
:

Proof. We consider the composition g2 ¼ g � g of the quasiconformal auto-
morphism g of A and estimate the maximal dilatation of g2 instead of g itself.
We remark here that, in case jnjb 2, a method shown below works for g
itself and we can obtain another estimate, which was given in the remark after
Theorem 1, however in case jnj ¼ 1, we have to work with g2.

We may assume that A ¼ fz A C j 1 < jzj < Rg, q1A ¼ fjzj ¼ 1g and q2A ¼
fjzj ¼ Rg. Let F ¼ fbg be a curve family on A consists of all the radial seg-

ments b connecting eit A q1A and Reit A q2A. We consider the extremal length

lðFÞ ¼ sup
r

finfb AF
Ð
b
rðzÞjdzjg2Ð Ð

A
rðzÞ2 dxdy

of the curve family F , where the supremum is taken over all Borel measurable
non-negative functions rðzÞ on A. See [1, Chap. 4] and [11]. Then it is known
that
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r0ðzÞjdzj :¼
jdzj

jzj log R

is the extremal metric, which is just the translation of the euclidean metric on the
rectangle Q by exp. Namely lðF Þ ¼ log R=ð2pÞ. By this metric, the length of
any radial segment b is 1, the length of any concentric circle is 2p=log R and the
area of A is 2p=log R.

Consider the length
Ð
g2ðbÞ r0ðzÞjdzj for any b A F . Then it is greater than or

equal to

ð2jnj � 1Þ 2p

log R

� �2
þ 1

" #1=2
;

which is the euclidean length of the diagonal of a rectangle consisting of 2jnj � 1
many Q straight in line. The point of our estimate is here: the 2jnj-time Dehn
twist moves a and it forces every segment b to wrap around at least 2jnj � 1
times. Therefore the extremal length lðg2ðFÞÞ of the curve family g2ðFÞ can be
estimated by

lðg2ðFÞÞb fð2jnj � 1Þ2p=log Rg2 þ 1

2p=log R
:

The extremal length of the curve families and the maximal dilatation of g
satisfy

lðg2ðFÞÞaKðg2ÞlðF ÞaKðgÞ2lðFÞ:
Hence

fð2jnj � 1Þ2p=log Rg2 þ 1

2p=log R
aKðgÞ2 log R

2p
;

from which we have KðgÞb ½fð2jnj � 1Þ2p=log Rg2 þ 1�1=2. r

Proof of Theorem 1 continued. Next we estimate the upper bound. To this
end, we take collars for the simple closed geodesics fcigyi¼1 so that they are
mutually disjoint. Each collar is conformally equivalent to an annulus Ai. We
consider a quasiconformal automorphism of S that is the ni-time Dehn twist
along ci on each Ai fixing every boundary point of Ai and is the identity outside
of 6Ai. Then the estimate on each Ai gives the upper bound of KðgÞ.

Fix an index i and set c ¼ ci, l ¼ li and n ¼ ni as before. By the collar
lemma, we can take the disjoint collar of the conformal modulus log r ¼ 2py=l,
where y ¼ p� 2 arctanfsinhðl=2Þg. By the following well known Lemma 2, we
can calculate the maximal dilatation of a particular quasiconformal auto-
morphism in the isotopy class of the Dehn twist of the collar A 0 ¼ Ai, which is
actually the extremal one (cf. [8]). Then, substituting 2py=l for log r, we have
the upper bound as stated in Theorem 1. r
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Lemma 2. Let A 0 be an annulus of the conformal modulus log r ðr > 1Þ.
Then there exists a quasiconformal automorphism d of A 0 in the isotopy class of the
Dehn twist fixing every point on the boundary of A 0 such that the maximal dil-
atation of dn is

f1þ ðjnjp=log rÞ2g1=2 þ jnjp=log r

f1þ ðjnjp=log rÞ2g1=2 � jnjp=log r
:

Proof. We may assume that A 0 ¼ fz A C j 1 < jzj < rg. Set

dðzÞ ¼ z exp 2pi
logjzj
log r

� �
;

which represents the Dehn twist of A 0 fixing every point on the boundary. Then

dnðzÞ ¼ z exp 2npi
logjzj
log r

� �
:

If we map A 0 conformally onto the rectangle Q 0 by log, the d is conjugate to
a linear map

d̂dðzÞ ¼ zþ 2pi Re z

log r

of Q 0 onto a parallel quadrangle. Then

d̂dnðzÞ ¼ zþ 2npi Re z

log r
:

We can calculate the complex dilatation of d̂dn easily:

jqðd̂dnÞj ¼ 1þ jnjp
log r

� �2( )1=2
; jqðd̂dnÞj ¼ jnjp

log r
:

Since the maximal dilatation of dn is the same as that of d̂dn, we obtain the
formula as in the statement of this lemma. r

Finally we remark a di¤erence between the estimates for a simple Dehn twist
and for the direct product of Dehn twists. Assuming that S is analytically finite,
we take a simple closed geodesic c and consider conformally embedded annuli
in S whose core curves are freely homotopic to c. Among them, there exists a
unique annulus A� that has the largest conformal modulus, which is foliated by
the trajectories of the simple Jenkins-Strebel quadratic di¤erential. Then the
extremal quasiconformal automorphism g in the isotopy class of the Dehn twist
along c is represented by the canonical transformation of the annulus as in
Lemma 2. See Marden and Masur [8]. The maximal dilatation KðgÞ of g can
be written in terms of the modulus of A�, which is between the modulus of the
collar A 0 and that of the annular cover A. Hence KðgÞ has an estimate from
above and from below in terms of the hyperbolic length of c.
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Even if S is not analytically finite, the annulus with the maximal modulus
exists (cf. [6, Chap. 11]) and the canonical transformation still gives an extremal
quasiconformal automorphism. Hence the maximal dilatation of simple Dehn
twists (n times) has the estimate in terms of the hyperbolic length l of c in any
case, which is better than the one we obtain in Theorem 1. Namely, we have

jnjl
p

� �2
a

jnjl
2p

� �2
þ 1

( )1=2
þ jnjl

2p

2
4

3
5
2

aKðgÞ:

However, if g is composed by multiple Dehn twists and positive and negative
twists are mixed, this method does not work even in the analytically finite and
finitely many case, as is remarked in [8].
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