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HOLOMORPHIC MOTIONS IN THE PARAMETER SPACE FOR THE

RELAXED NEWTON’S METHOD

Hartje Kriete

Abstract

It is a well known fact, that for certain polynomials f the relaxed Newton’s method

Nf ; hðzÞ ¼ z� hð f ðzÞ=f 0ðzÞÞ associated with f has some extraneous attracting cycles.

In the case of cubic polynomials the set of these bad conditioned polynomials has been

intensively studied and described by means of quasi-holomorphic surgery and holo-

morphic motions, cf. [12]. In the present paper we will generalize this description to

polynomials of higher degree.

1. Introduction

It is a well known fact, that for certain polynomials f the relaxed Newton’s
method Nf ;hðzÞ ¼ z� hð f ðzÞ=f 0ðzÞÞ associated with f has some extraneous at-
tracting cycles. In order to illustrate the seriousness of the problem we look at
the family of cubic polynomials

flðzÞ ¼ z3 þ ðl� 1Þz� l;ð1Þ

where l A C . Figure 1 shows the set of parameters l such that the Newton’s
method associated with fl fails with positive probability.

Barna seems to be the first who established the existence of the extraneous
attractors, cf. [1]. Since then, the dynamics of the Newton’s method has received
much attention [6, 8, 12, 14, 22, 27]. Patterns of non-convergent the Newton’s
method have been shown in [5, 23].

The occurrence of extraneous attractors gives rise to the following questions
. What is the probability that the Newton’s method will converge for a
randomly chosen initial value?

. What can be said about the set of polynomials such that the Newton’s
method has extraneous attractors?

. How to improve the convergence of the Newton’s method?
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Figure 1. The pictures show the parameters l satisfying jReðlÞj, jImðzÞj < 2:5 such that the relaxed

Newton’s method Nfl ; h associated with flðzÞ ¼ z3 þ ðl� 1Þz� l fails to converge with positive

probability, that is, have some extraneous attracting cycle, where h ¼ 0:2 (upper left), h ¼ 0:4 (upper

right), h ¼ 0:6 (middle left), h ¼ 0:8 (middle right), h ¼ 1:0 (lower left), h ¼ 1:2 (lower right).
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This paper is devoted to the study of the set of bad conditioned polynomials, that
is the set of polynomials such that the relaxed Newton’s method has at least one
extraneous attracting cycle.

Acknowledgement. The author gratefully acknowledges financial support
(Habilitationsstipendium) of the German Science Foundation (DFG) and JSPS
grant S 99186.

2. The relaxed Newton’s method

Instead of the standard (unrelaxed) Newton’s method, the relaxed Newton’s
method is frequently applied for finding approximations of the roots of a given
polynomial f .

Definition 1. Let f : C ! C be a polynomial and h A C . The relaxed
Newton’s method for finding the roots of f consists of iterating the function

Nf ;h : C ! C ; z 7! z� h
f ðzÞ
f 0ðzÞ :ð2Þ

Closely related to the relaxed Newton’s method is the so-called Newton flow

w 0ðtÞ ¼ � f ðwðtÞÞ
f 0ðwðtÞÞ :ð3Þ

The defining equations (2) and (3) elucidate the relation between them: The
relaxed Newton’s method is nothing else but the Euler method (with step size
h A �0; 1�) of the Newton flow. We refer to [3, 15] for a detailed discussion of the
Newton flow.

Note that the roots of f are sinks of the Newton flow and attracting fixed
points of the rational function Nf ;h. Let Gð f ; hÞ denote the set of initial values
z0 such that the sequence of iterates with respect to Nf ;h converges to a root of f .
In other words, Gð f ; hÞ is the set of ‘good’ initial values for the Newton’s method
Nf ;h. The complement Bð f ; hÞ :¼ CnGð f ; hÞ is the set of ‘bad’ initial values
causing the Newton’s method to fail. As commonly is known from the general
theory of di¤erential equations, these sets Gð f ; hÞ converge to the union of the
basins of the roots of f for the Newton flow. The complement of the latter
consists of all points whose trajectories with respect to the Newton flow land in
some singularity of the flow, that is to say, roots of f 0. In particular, the set of
points whose trajectories with respect to the Newton’s flow do not land in a root
of f equals a finite union of analytic Jordan arcs. This is the underlying idea in
the proof of the following theorem which has independently been established in
[19] and [9], see also [20] and [11].

Theorem 2. For every polynomial f the (spherical ) Lebesgue measure of
C nGð f ; hÞ tends to zero as h & 0.

holomorphic motions in the parameter space 91



In other words, the probability, that the relaxed Newton’s method converges,
tends to 1 as h & 0. Does this mean that the extraneous attractors disappear as
h tends to zero? It is known that, for generic polynomial f , there exists some
h� A �0; 1� such that for 0 < h < h� the set of bad initial values Bð f ; hÞ :¼
C nGð f ; hÞ has Lebesgue measure zero, cf. [7, 11, 20]. Note that the number h�

heavily depends of f . On the other hand, using qc-surgery for fixed h A D1ð1Þ,
one can establish a correspondence between the set of all f such that Nf ;1 has
some extraneous attractors and the set of all polynomials g such that Ng;h has
some extraneous attracting cycle. In particular, for each h A D1ð1Þ there is an
open set of polynomials f , such that Nf ;h has some extraneous attracting cycle.
The purpose of the present paper is to provide a detailed discussion of this
phenomenon.

In order to illustrate the problem we again look at the family of cubic
polynomials (1). Figure 1 shows the set of parameters l such that the relaxed
Newton’s method associated with fl fails with positive probability.

As a consequence, we have to modify the question we will address in this
paper: What can be said about the set of polynomials such that the relaxed
Newton’s method has some extraneous attractors?

Theorem 4, the main result of this paper, is a description of this set in terms
of hyperbolic motions.

3. Description of the parameter space

In [10] quasiconformal surgery has been used to establish the following result.

Theorem 3 (von Haeseler-Kriete, 1993). Let f be an arbitrary polynomial of
degree d having mb 2 roots. For each pair of parameters h1; h2 A D1ð1Þ there
exists a polynomial g, again of degree d and having m roots, such that the Julia
sets JðNf ;h1Þ and JðNg;h2Þ are homeomorphically equivalent. Let Bð f ; h1Þ and
Bðg; h2Þ denote the set of initial values where Nf ;h1 respectively Ng;h2 do not con-
verge to a root of f. In addition, Nf ;h1 jBð f ;h1Þ and Ng;h2 jBðg;h2Þ are quasicon-
formally conjugated.

Remark. Actually, it has been proved that the conjugacy is a biholomorphic
conjugacy between Nf ;h1 jIntðBð f ;h1ÞÞ and Ng;h2 jIntðBðg;h2ÞÞ. In particular, if Nf ;h1 has

an extraneous cycle then Ng;h2 also has one (with the same period and the same
multiplier). Furthermore, the conjugacy can quasiconformally be extended to
some open neighbourhoods of Bð f ; h1Þ respectively Bðg; h2Þ.

Since the space of polynomials of degree d admits a holomorphic param-
eterization one might expect the conjugacy to depend holomorphically on the
polynomial f . Then it should be possible to describe the parameter space in
terms of holomorphic motions. Unfortunately, this is not possible, cf. Lemma 9
and Lemma 13.
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We fix an integer db 3. Throughout this paper we shall deal with centered
and normalized polynomials, that are polynomials of the form

f ðzÞ ¼ zd þ ld�2z
d�2 þ � � � þ l2z

2 þ ðl1 � 1Þz�
Xd�2

n¼1

ln

with some l A C d�2. Each root z of such a polynomial f is an attracting fixed
point of the Newton’s method Nf ;h, where h A D1ð1Þ, and its basin of attraction is
defined as

Af ;hðzÞ :¼ z0 A C j lim
n!y

Nn
f ;hðz0Þ ¼ z

n o
:

Note that the immediate basin of attraction A�
f ;hðzÞ of z (with respect to Nf ;h),

that is the component of Af ;hðzÞ containting z, contains at least one critical point
of Nf ;h.

Let Md
h HC d�2 be the set of those polynomials f of degree d such that every

root of f is simple and that the immediate basin of attraction A�
f ;hðzÞ of each root

z of f contains exactly one simple critical point of Nf ;h but no further (multiple)
critical points. This can be regarded as the worst case, because this case covers
the possibility that the maximal possible number of free critical points do not con-
verge to a root of the polynomial under iteration of the relaxed Newton’s method.
The main result is:

Theorem 4 (Main Theorem). There exists a holomorphic motion L : Md
1 �

D1ð1Þ ! C d�2 satisfying:
1. Lð� ; 1Þ ¼ id,
2. Lð f ; �Þ is holomorphic on D1ð1Þ for every f A Md

1 ,
3. Lð� ; hÞ : Md

1 ! Md
h is a homeomorphism,

4. Nf ;1jBð f ;1Þ and NLð f ;hÞ;hjBðLð f ;hÞ;hÞ are homeomorphic.

Remark. The case d ¼ 3 has been settled in the paper [10]. The construc-
tion is the base of the proof of the preceding theorem in the case of arbitrary
degree db 3. However, extra arguments have had to be inserted because the l-
lemma cannot be used in this context. In addition, further arguments have
been added because of the need of clarification of certain parts of the original
proof.

4. Holomorphic motions and quasiconformal surgery

In this paper we shall make intensive use of the quasiconformal surgery.
The reader interested in further details of this technique is referred to [16]. One
of the main ingredients is the theory of quasiconformal mappings; for an intro-
duction to this theory we refer to [2] and [17]. The quasiconformal surgery for
polynomials and, more generally, rational functions was developed by Douady-
Hubbard [6] and Shishikura [24]. The main tool is
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Lemma 5 (qc-lemma, Shishikura). Let F : C ! C be a proper and orien-
tation preserving mapping such that the complex dilatation of F is bounded almost
everywhere by a constant K < 1. Assume that for m A I ¼ f1; . . . ;mg there are
pairwise disjoint domains Gm and quasiconformal mappings Fm : Gm ! G 0

m such that:
1. G1; . . . ;Gm are invariant with respect to F,
2. Fm � F �F�1

m : G 0
m ! G 0

m is holomorphic on G 0
m for every m A I ,

3. ðq=qzÞF 1 0 almost everywhere (with respect to the spherical Lebesgue
measure) on C nF�1ðG1 U � � � UGmÞ.

Then there exists a quasiconformal mapping f : C ! C such that R :¼ f � F � f�1

is holomorphic on C , ðq=qzÞf1 0 almost everywhere (with respect to the spherical

Lebesgue measure) on C nðG1 U � � � UGmÞ and f �F�1
m : G 0

m ! fðGjÞ is biholomor-

phic. f can be normalized to have the fixed points 0, 1 and y.

We refer to Shishikura [24] for a proof. In the case of cubic polynomials, the
so-called l-lemma, which may be found in [18, 25], was used as the second main
ingredient.

Lemma 6 (l-lemma, Sullivan-Thurston). Let EHC be an arbitrary set and
F : E �D1ð1Þ ! C a mapping satisfying:

1. Fð� ; h0Þ ¼ id for some h0 A D1ð1Þ,
2. Fð� ; hÞ is injective on E,
3. Fðl; �Þ is holomorphic on D1ð1Þ.

Then F extends to a continuous mapping F : clðEÞ �D1ð1Þ ! C such that Fð� ; hÞ
is a quasiconformal mapping for every h A D1ð1Þ.

In this lemma the set E should be regarded as a subset of the parameter space.
In our setting, the parameter space is not C but C m (with some mb 1).
Unfortunately, in this more general setting the l-lemma does not hold! A
counterexample will be given at the end of this section. Another one can be
found in [25, p. 224].

The proof of Theorem 4 bases on the proof in the case of cubic polynomials
as given in [10]. But the following changes have to be made. Firstly, we have
to redefine the notion of holomorphic motion, taking into account the fact that
we have to work with a multidimensional parameter space. Secondly, whenever
the l-lemma is used, an additional argument has to be inserted. At this place we
recall the multidimensional version of the definition of holomorphic motions.

Definition 7 (Holomorphic motion). Let EHC m for some m A Nnf0g and
GHC . A mapping F : E � G ! C m is called holomorphic motion if the following
conditions are satisfied:

1. F is continuous,
2. Fð� ; h0Þ ¼ id for some h0 A G,
3. Fðl; �Þ is holomorphic on G for every l A E, and
4. Fð� ; hÞ is injective on E for every h A G.

Instead of the l-lemma we shall use the following ‘theorem’.
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Theorem 8. Let F : E � G ! C m be a holomorphic motion for some set
EHC m and some m A Nnf0g. If F is equicontinuous on E � K for every rela-
tively compact set K HHG, then F extends to a mapping F̂F : E � G ! C m having
the following properties:

1. F̂F is continuous,
2. F̂Fð� ; h0Þ ¼ id for some h0 A G, and
3. F̂Fðl; �Þ is holomorphic on G for every l A E.

Warning. The extension F̂F is not necessarily a holomorphic motion. In
fact, it is not obvious that the extension is injective again.

Proof. The proof is quite elementary. The equicontinuity of F yields that
F can be extended to a continuous mapping F̂F : E � G ! C m. Since the limit
of holomorphic functions is holomorphic again, F̂Fðl; �Þ is holomorphic for every
l A E. Finally, Fð� ; h0ÞjE ¼ id carries over to F̂Fð� ; h0ÞjE ¼ id. 9

Counterexample. Let

E :¼ 1

k
; 0

� �
A C 2 j k A Nnf0g

� �
HC 2

and

F : E �D1ð1Þ ! C 2; F
1

k
; 0; h

� �
:¼ 1

k
; ð1� hÞ � ð�1Þk

� �
:

Then F has the following properties:
1. F is continuous,
2. Fð� ; 1Þ ¼ id,
3. Fðl; �Þ is holomorphic on D1ð1Þ for every l A E, and
4. Fð� ; hÞ is injective on E for every h A D1ð1Þ.

Hence, F satisfies the hypothesis of the l-lemma. But for every h A D1ð1Þnf1g
we obtain

F
1

k
; 0

� �
; h

� �
¼ 1

k
; ð1� hÞ � ð�1Þk

� �
:

Since the sequence fð1� hÞ � ð�1Þkgk AN is not converging but oscillating, F

does not have a continuous extension to E ¼ f0gUE.

5. Surgery for the Relaxed Newton’s Method

The purpose of this section is to prepare the reader for the proof of the Main
Theorem of this paper. Here we shall introduce and describe the techniques
which will be used in the next section for proving the Main Theorem. In this
first paragraph we briefly sketch the surgery procedure which is the core of this
paper. The details will be given in the proof of Theorem 10. We choose some
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polynomial f of degree d with d simple zeroes zn, where n ¼ 1; . . . ; d. Note that
each zn is a simple root and hence it is a superattracting fixed point of the
(unrelaxed) Newton’s method Nf ;1. Furthermore, Nf ;1 is biholomorphically con-
jugate to z 7! zmn on a neighbourhood U of zn for some mn b 2, cf. [4, Theorem
II.4.1]. Using quasiconformal surgery on U we shall replace Nf ;1 by a function
which is biholomorphically conjugate to the restriction of the Blaschke product

BhðzÞ ¼ z � zþ
ffiffiffiffiffiffiffiffiffiffiffi
1� hmn�1

p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hz

mn�1
p

 !mn�1

; h A D1ð1Þnf1g;ð4Þ

to a neighbourhood V of 0, such that Bh : V ! BhðVÞ is proper of degree mn.
Note that B 0

hð0Þ ¼ 1� h. Applying the qc-lemma 5 gives a rational function R
of degree d with the following properties: RðyÞ ¼ y, R has exactly d finite
fixed points xn, and R 0ðxnÞ ¼ 1� h. Thus R is the relaxed Newton’s method Ng;h

for gðzÞ ¼
Qd

n¼1ðz� xnÞ. Note that the original function Nf ;1 has been changed
on the immediately basin of attraction (with respect to Nf ;1) of the roots of f ,
only. These basins are mapped by the conjugacy f given by the qc-lemma onto
the immediate basins of attraction (with respect to Ng;h) of the roots xn of g.
Thus, the conjugacy f in fact is a conjugacy between Nf ;1 and Ng;h restricted
to their respective Julia sets. In particular, the Julia sets for Nf ;1 and Ng;h are
homeomorphic.

Clearly, the properties of the mapping ð f ; hÞ 7! g depend on the concrete
realization of the surgery. We shall discuss the details later. For the surgery we
need a ‘good’ parameterization of the polynomials. In the sequel we will consider
polynomials of degree d > 2, only. The case d ¼ 1 is trivial, and the case d ¼ 2
is handled in [26].

A short calculation yields T�1 �Nf ;h � T ¼ Ng;h with g ¼ f � T for every
polynomial f and every a‰ne transformation TðzÞ ¼ azþ b. Thus we may as-
sume that the point z ¼ 1 is a root of f and that all roots of f sum up to 0.
The definition of the relaxed Newton’s method immediately implies Nf ;h ¼ Ng;h

with g ¼ af for every a A C � :¼ Cnf0g. As a canonical parameterization of the
polynomials of degree d we obtain

flðzÞ ¼ zd þ ld�2z
d�2 þ � � � þ l2z

2 þ ðl1 � 1Þz�
Xd�2

n¼1

ln;ð5Þ

where l ¼ ðl1; . . . ; ld�2Þ A C d�2. We shall also denote the associated relaxed
Newton’s method by Nl;h, and we shall simultaneously use the notions Nfl;h and
Nl;h.

Remark. Let a be a zero of fl and gðzÞ :¼ adflðz=aÞ. Then Ng;h and Nfl;h

are conjugated via Tz ¼ az. However, the parameterization (5) is unique in the
following sense: f �1

l ð0Þ ¼ f �1
m ð0Þ , l ¼ m.

A first result on the set Md
h is the following lemma.
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Lemma 9. Let db 3. There exists some set EHC d�2 with ]Eb 2 such
that EVMd

h ¼ j.

Remark. Actually, one can show that C d�2nMd
h contains an open subset, for

example the set of all polynomials f such that all the critical points of Nf ;h are
absorbed by the roots of f .

Proof. Let

f1ðzÞ ¼ ðz� 1Þd�1ðz� ð1� dÞÞ
and

f2ðzÞ ¼ z� �1

d � 1

� �� �d�1

ðz� 1Þ

and l1 and l2 the respective parameter values in C d�2. Note that in both cases
1 is a root, that the leading coe‰cient is one and that the origin is the center of
the roots, hence these polynomials in fact belong to the family considered. In
addition, both polynomials have a multiple root, hence fl1; l2gVMd

h ¼ j. 9

Remark. Note that a short calculation shows that the components of the
two parameter values are distinct: 00 l1; j 0 l2; j 0 0 for j ¼ 1; . . . ; d � 2.

Next, we give further details about the surgery procedure which has been sketched
at the beginning of this section. Since we shall need similar constructions in the
sequel, we include the proof, although it is already contained in [10].

Theorem 10 (von Haeseler-Kriete, 1993). Let db 3. For l A C d�2 let fl
be a polynomial with d 0 zeroes zn (counted without multiplicity). Then for each
h A D1ð1Þ� :¼ D1ð1Þnf1g there exists a polynomial g of degree d 0 and a quasi-

conformal mapping f : C ! C satisfying f �Nl;1 ¼ Ng;h � f on C n6d 0

n¼1
Al;1ðznÞ.

Proof. Throughout this paper for a Jordan curve GHC let IntðGÞ denote
the bounded component of CnG.

We fix h A D1ð1Þ�. Using quasiconformal surgery we want to transform Nl;1

into a relaxed Newton’s method. To this end we shall construct a selfmapping
~NN of C which has a repelling fixed point at y and attracting fixed points with
prescribed multiplier at the roots of fl. Using Shishikura’s qc-lemma 5 we shall
conjugate ~NN to a rational function R which will turn out to be a relaxed Newton’s
method for some polynomial g.

We fix a zero z of the polynomial fl. Clearly, z is an attracting fixed point
for Nl;1. We have to distinguish two cases:

1. z is a root of fl of multiplicity mb 2, that is, z is an attracting (but not
superattracting) fixed point for Nl;1 with N 0

l;1ðzÞ ¼ ðm� 1Þ=m ¼: ~mm,
2. z is a simple root of fl, that it, z is a superattracting fixed point for Nl;1

of, say, order m.
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Case 1. Recall that in this case z is an attracting but not superattracting
fixed point of Nl;1. By Kœnig’s Theorem, cf. [4, Theorem II.2.1], there exist
an open neighbourhood G of z and a biholomorphic mapping c : G ! Drð0Þ for
some r > 0 satisfying ðc �Nl;1ÞðzÞ ¼ ~mm � cðzÞ on G and c 0ðzÞ ¼ 1. Note that the
latter normalizations makes the mapping c to be unique. We write G :¼ cðqGÞ ¼
qDrð0Þ and g :¼ qððc �Nl;1ÞðGÞÞ, that is g ¼ ~mmqDrð0Þ. We may and will assume
r to be maximal, that is to say, r is the radius of convergence of the power series
of c�1. On G we want to replace Nl;1 by a function which is on Nl;1ðGÞ con-
jugate to the mapping z 7! ð1� hÞz.

We start with defining ĜG :¼ G and ĝg :¼ j1� hjĜG. Next we construct a self
mapping ĉc of clðInt GÞ. We define ĉc ¼ id on G and ĉcðzÞ ¼ ~mm�1 � ð1� hÞ � z on
clðIntðgÞÞ. Then ĉc satisfies

z A G ) ĉcð~mmzÞ ¼ ð1� hÞ � ĉcðzÞ:ð6Þ
Now we want extend ĉc to clðIntðGÞÞ. The existence of the extension, which will
also be denoted by ĉc, is given by the following interpolation lemma. The proof
of this lemma will be postponed and can be found on page 100.

Lemma 11 (Interpolation Lemma). Let r1, r2, R1, R2 A R satisfy 0 < r1 <
R1 < y and 0 < r2 < R2 < y. Let Cr denote the circle fz A C j jzj ¼ rg. For
j ¼ 1; 2 let Aj denote the open annulus DRj

nDrj . Let a : Cr1 ! Cr2 and b : CR1
!

CR2
be real analytic di¤eomorphisms. Then there exists a mapping A : A1 ! A2

satisfying
1. AjA1

: A1 ! A2 is a di¤eomorphism,
2. AjCr1

1 a,
3. AjCR1

1 b, and
4. the complex dilatation of A is bounded by some constant K < 1.

In addition, A depends continuously on the data r1, r2, R1, R2. If the mappings a
and b depend holomorphically on some parameter h running through some complex
space E as parameter space, then the joint extension A depends holomorphically on
h A E, too.

This interpolation lemma Lemma 11 assures the extension of ĉc to an ori-
entation preserving C 1-di¤eomorphism ĉc : clðIntðGÞÞ ! clðIntðĜGÞÞ satisfying (6)
on G. We define F :¼ ĉc � c and ~NN :¼ F�1ðð1� hÞ �FðzÞÞ on clðGÞ. This new
function ~NN agrees on qG with Nl;1, and on Nl;1ðGÞ it is conjugate via F to the
holomorphic function z 7! ð1� hÞz.

Case 2. Since z is a superattracting fixed point of Nl;1 of order m, by
Böttcher’s Theorem, cf. [4, Theorem II.4.1], near z the mapping Nl;1 is con-
jugated to z ! zm. In particular, there exists a biholomorphic mapping c :
A�

l;1ðzÞ ! Drð0Þ satisfying ðc �Nl;1ÞðzÞ ¼ ðcðzÞÞm on A�
l;1ðzÞ for some number

r A �0; 1½ and c 0ðzÞ ¼ 1. We define G :¼ c�1ðDrð0ÞÞ. We write G :¼ cðqGÞ and
g :¼ qððc �Nl;1ÞðGÞÞ. We want to replace Nl;1 on G by a function which is
conjugated to a Blaschke product Bh on Nl;1ðGÞ. To this end we fix a Blaschke
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product Bh of degree m satisfying Bhð0Þ ¼ 0 and B 0
hð0Þ ¼ ð1� hÞ, for example the

Blaschke product (4). Then there exists an analytic Jordan curve ĜGHD1ð1Þ such
that Bh maps IntðĜGÞ proper and of degree m onto IntðĝgÞ, where ĝg :¼ BhðĜGÞH
IntðĜGÞ.

We fix some biholomorphic mapping C : IntðgÞ ! IntðĝgÞ. By construction,
the boundaries of the domains IntðgÞ and IntðĝgÞ are real analytic curves, hence C
has an extension to a real analytic mapping C : clðIntðgÞÞ ! clðIntðĝgÞÞ. We define
ĉc :¼ C on clðIntðgÞÞ, and ĉc ¼ id on G. Note that both domains, IntðGÞnclðIntðgÞÞ
and Intð~GGÞnclðIntð~ggÞÞ, are biholomorphically equivalent to concentric annuli and
that this equivalence extends up to the boundaries. Thus we can again apply
Lemma 11 to extend ĉc to a di¤eomorphism ĉc : clðIntðGÞÞ ! clðIntðĜGÞÞ satisfying

ĉcðzmÞ ¼ ðBh � fÞðzÞ on G:ð7Þ

We write f :¼ ĉc � c and define ~NN :¼ f�1 � Bh � f on clðGÞ. This new function ~NN
agrees on qG with Nl;1, and on Nl;1ðGÞ it is conjugate via f to a holomorphic
function having an attracting fixed point with derivative ð1� hÞ.

Having defined ~NN on the neighbourhoods Gn of the zeroes zn of pl we define
~NN :¼ Nl;1 on the complement of the Gn’s. By construction, ~NN is a proper and
orientation preserving self mapping of C . Furthermore, it is holomorphic on
C n6Gn. The degree of ~NN equals the degree of Nl;1. Applying the qc-lemma 5
gives a rational function R. R is conjugate to ~NN via a quasiconformal mapping
f (which fixes 0, 1 and y). Therefore R has the same number of finite fixed
point as ~NN has. All these fixed points of R have derivative 1� h, in particular,
they are attracting fixed point. Furthermore, since f fixes 0 and 1, these at-
tracting fixed points sum up to 0 and 1 is one of these fixed points. Note that y
is a fixed point of both, Nl;1 and R. But f is not a conjugacy between Nl;1 and
R. However, the fact that each rational function has at least one weakly re-
pelling fixed point assures y to be a weakly repelling fixed point. Thus, R is a
relaxed Newton’s method associated with some polynomial g :¼ fm of degree d 0

and some m A C d�2. Note that this in turn implies y to be a repelling fixed
point. 9

All important in what follows is the continuity of the construction.

Proposition 12. Let l0 A C d�2 and flngn AN � HC d�2 a sequence converging
to l0 having the following properties:

1. If fl0 has a multiple root z0 of multiplicity m, then for all but finitely
many ln the polynomial fln have a root zn of multiplicity m such that
limn!y zn ¼ z0 holds,

2. If fl0 has a simple root z0 such that z0 is a superattracting fixed point of
order m of Nl0;1, then for all but finitely many ln the polynomial fln has a
simple root zn such that zn is a superattracting fixed point of Nln;1 of order
m, and satisfying limn!y zn ¼ z0.
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Let g :¼ fm0 respectively gn :¼ fmn be polynomials given by Theorem 10 with

mn; m0 A C d�2. Then limn!y mn ¼ m0.

Proof. We fix fl0 and choose a sequence f flngn AN converging to fl0 .
Clearly, for each root zn of fl0 there exists a sequence fzn;ngn AN converging to
zn. Let A�

l0;1
ðznÞ and A�

ln;1
ðzn;nÞ denote the corresponding immediate basin of at-

traction of the associated Newton’s methods. Note, that each A�
l0;1

ðznÞ is kernel
of the sequence fA�

ln;1
ðzn;nÞgn AN � . This yields, that the Riemann mappings cn;n

of the domains A�
ln;1

ðzn;nÞ converge to the Riemann mapping cn of the domain
A�

l0;1
ðznÞ uniformly on compact subsets. For the same reason, the radius of con-

vergence of the mappings cn;n converges to the radius convergence of cn. Thus,
at the point l0 the data of the surgery, in particular qFn=qz, depend continuously
on the parameter l. Since the solution of the Beltrami equation depend con-
tinuously on the prescribed complex dilatation, we conclude the convergence of
the quasiconformal conjugacies fn to the conjugacy f0 determine the polynomials
g :¼ fm0 respectively gn :¼ fmn . The latter in turn implies the convergence of the
corresponding parameters mn to m0. 9

Remarks.
1. This proposition (and its proof ) is the key to settle the problems arising

from the l-lemma.
2. Note that f has been chosen such that the resulting polynomial has the

desired form:

g ¼ fm for some m A C d 0�2:

3. Note that N and ~NN coincide on C nðFðNÞn6GnÞ and that none of the Gn

contains a repelling periodic point. In particular, both mappings have the
same repelling periodic points. Since f is a homeomorphism, fðJðNÞÞ is
the closure of the set of all the repelling periodic points of ~NN. This in turn

implies fðJðNl;1ÞÞ ¼ JðNm;hÞ. Furthermore, ~NNjJðNÞ 1NjJðNÞ, hence f

conjugates Nl;1jJðNl; 1Þ and Nm;hjJðNm; hÞ.

4. Finally, if Nl;1 has an attracting cycle di¤erent from the zn, then Nm;h has
an attracting cycle of same order and with the same multiplier.

Finally, we add the proof of the Interpolation Lemma.

Proof of Lemma 11. For j ¼ 1; 2 let Sj :¼ fz A C j lnðrjÞaReðzÞa lnðRjÞg.
Note that these parallel strips are the universal coverings of the annuli clðDRj

nDrj Þ
(via the exponential function). Let âa and b̂b denote the lifts of a respectively b.
Note that these lifts are periodic with period 2pi and that they define a di¤eo-
morphism ÂA of qS1 onto qS2 by ÂAjfReðzÞ¼lnðr1Þg ¼ âa and ÂAjfReðzÞ¼lnðR1Þg ¼ b̂b. By

linear interpolation this can be extended to all of S1: For some point z ¼
ðlnðr1Þ þ tðlnðR1Þ � lnðr1ÞÞ þ iy A S1, where t A ½0; 1� and y A R, we define

ÂAðzÞ :¼ ÂAðlnðr1Þ þ iyÞ þ tðÂAðlnðR1Þ þ iyÞ � ÂAðlnðr1Þ þ iyÞÞ:
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Clearly, ÂA is periodic with period 2pi, too. Thus the push-down A of ÂA with
respect to the exponential function is well defined. It is a di¤eomorphism by
construction. If the data r1; r2;R1;R2 and the mappings a; b depend continu-
ously respectively holomorphically on some parameter, then so do S1;S2 re-
spectively âa; b̂b. This carries over to the extension ÂA and thereby to A. Note
that ~AA extends to a real analytic mapping defined on some open neighbourhood
of S1. Thus the complex dilatation of ~AA is bounded by some constant K < 1
and by the holomorphy of the exponential function this carries over to A. This
completes the proof. 9

6. Parameter space and holomorphic motions

In this section we consider the relaxed Newton method for polynomials of the
form (5). Recall that Theorem 10 assigns to each pair ð fl; hÞ a new polynomial
fm such that Nfl;1 and Nfm;h are conjugated. In particular, both Newton’s methods
have the same degree. In particular, if fl has simple roots only, then so must fm.
We want to study the function ðl; hÞ 7! m. A first result is the following lemma,
cf. [10, Lemma 4.7].

Lemma 13 (von Haeseler-Kriete, 1993). The function ðl; hÞ 7! m can not be
chosen to be both, injective in l and holomorphic in h.

Remark. There are two reasons for this trouble.
1. The first is the fact, that for l B Md

h , e.g., l su‰ciently close to 0, there is
a zero z of the polynomial fl such that A�

l;1ðzÞ contains at least two crit-
ical points. We assume for a moment, that A�

l;1ðzÞ contains two critical
points di¤erent from z. Then one has to restrict the quasiconformal sur-
gery to some neighbourhood of z containing the ‘nearest’ critical point but
not the other one. If l varies then di¤erent critical points will be the
closest to z. Hence, there does not exist any continuous or holomorphic
parameterization of the nearest critical point.

2. The second reason, which has been used in the proof of the above lemma,
is the following. Assume for a moment that d ¼ 3. Then l ¼ �2, 1/4
are the parameter values where the polynomial in question has a multiple
root. Consequently, N�2;h and N1=4;h are rational functions of degree 2
and therefore have to be fixed points of the function ðl; hÞ 7! m. Another
crucial role is playing the parameter value l ¼ 0. This is the only pa-
rameter value where 0 is a simple root of the polynomial in question
and a double critical point of the associated Newton’s method N0;1. For
0 < h < 1 however, there are three di¤erent values m1ðhÞ, m2ðhÞ, m3ðhÞ
satisfying limh!0 mjðhÞ ¼ 0, where j ¼ 1; 2; 3, such that NmjðhÞ;h has a
double critical point. Note that having a double critical point or having
degree two are invariants of the surgery procedure. But the function
ðl; hÞ 7! m cannot map Cnf�2; 0; 1=4g injectively and holomorphically
into Cnf�2; 0; 1=4; m1ðhÞ; m2ðhÞ; m3ðhÞg for generic h.
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In order to avoid these problems, in the sequel we will restrict the quasi-
conformal surgery to the parameter set Md

1 . We want to establish a construc-
tion for the surgery which guarantees, that the mapping L : Md

1 �D1ð1Þ ! C ;
ðl; hÞ 7! m is homeomorphic in l and holomorphic in h. In other words, we
want to describe Md

h in terms of holomorphic motions. Note that the con-
struction described in the proof of Theorem 10 does not work if h is chosen out
of some open neighbourhood of 1. In fact, one might say, that ‘the method has
a singularity at h ¼ 1’. Hence, we have to add another preliminary step. This
will be a canonical construction which works for h su‰ciently close to 1. Then
we shall introduce a special family of quadratic polynomials and describe a
method how these polynomials can be inserted into the relaxed Newton’s method
Nl;1. These parts are taken from [10] but not without modifications. Finally,
we shall show that this construction can be used to obtain the holomorphic
motion L whose existence has been announced in Theorem 4. Since we restrict
the qc-surgery to parameters l A Md

h , the assumptions of Proposition 12 are always
satisfied. Hence, this proposition (or arguments similar to those given in the
proof ) assures the continuity of the construction, and, therefore, we may and will
(implicitly) apply Theorem 8.

We fix l A Md
1 and a zero z of fl. Recall that A�

l;1ðzÞ is simply connected
and that there exists a biholomorphic mapping c : A�

l;1ðzÞ ! D satisfying

cðzÞ ¼ 0;

c 0ðzÞ > 0 and

ðc �Nl;1ÞðzÞ ¼ ðcðzÞÞ2 on A�
l;hðzÞ:

Note that c is unique by this normalization. We consider the holomorphic family
of polynomials ghðzÞ ¼ ð1� hÞzþ z2. Clearly, for h near 1 the polynomial gh is
a small perturbation of z 7! z2. We fix a number r A �0; 1½ and define curves:

G :¼ fjzj ¼ rg and g :¼ fjzj ¼ r2g:
If e su‰ciently small and h A Deð1Þ, for the Jordan curve ĜGh :¼ g�1

h ðgÞ we have
that ghjĜGh : ĜGh ! ĝg :¼ g is a covering of order 2. The curves ĜGh have a param-
eterization ĜG which is holomorphic in h, i.e.,

ĜG : S1 �Deð1Þ ! C such that ĜGðS1; hÞ ¼ ĜGh:

Now we construct quasiconformal mappings fð� ; hÞ : IntðGÞ ! IntðĜGhÞ depend-
ing holomorphically on h. We start by setting fð� ; hÞ ¼ id on fjzja r2g and
fð� ; hÞðzÞ ¼ g�1

h ðz2Þ on G, where the inverse branches are chosen such that

ðgh � fð� ; hÞÞðzÞ ¼ fðz2; hÞ on G:ð8Þ
As described in the proof of Theorem 10 we extend f to a mapping
f : IntðGÞ �Deð1Þ ! C such that

1. fð� ; hÞ ¼ f on IntðGÞ, fð� ; 1Þ ¼ id,
2. fð� ; hÞ is a quasiconformal mapping, and
3. fðz; �Þ is holomorphic on Deð1Þ.
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We define F :¼ fð� ; hÞ � c, and ~NN :¼ F�1 � gh �F on Gz :¼ c�1ðIntðGÞÞ. Outside

the domains Gz we set ~NN :¼ Nl;1. According to Theorem 10 and the qc-lemma
~NN is conjugate via a quasiconformal mapping Fl;h to a relaxed Newton’s method
Nm;h. This gives a mapping L̂L : Md

1 �Deð1Þ ! C .

Lemma 14. 1. L̂Lð� ; 1Þ ¼ id,
2. L̂Lðl; �Þ is holomorphic on Deð1Þ, and
3. L̂Lð� ; hÞ : Md

1 ! Md
h is a homeomorphism.

Proof. 1. This is true by construction.
2. f is a holomorphic family, thus for fixed z the complex dilatations of

fð� ; hÞ and Fð� ; hÞ are holomorphic in h (cf. [21, Theorem 2]). Therefore the
conjugacies Fl;h are holomorphic functions in h. In particular, for every zero
z of fl the values Fl;hðzÞ are holomorphic in h. This implies L̂Lðl; �Þ to be
holomorphic on Deð1Þ.

3. We show the injectivity of L̂Lð� ; hÞ. Then L̂Lð� ; hÞ is an embedding.
Furthermore one obtains the inverse L̂L�1ð� ; hÞ by the reverse construction, hence
the image of Md

1 under L̂Lð� ; hÞ is Md
h . Combining these two statements yield

that L̂Lð� ; hÞ is a homeomorphism.
We assume L̂Lðl1; hÞ ¼ L̂Lðl2; hÞ for some l1; l2 A Md

1 and h A Deð1Þ. The
quasiconformal mapping F :¼ F�1

l2;h
� Fl1;h maps C n6Al1;1ðznÞ biholomorphi-

cally onto C n6Al2;1ðznÞ. Furthermore we have FðGl1; znÞ ¼ Gl2; zn . By con-
struction the mappings

Fli;h � c�1
li; zn

: IntðGhÞ ! Fli;hðGli; znÞ
are biholomorphic. Thus F : Gl1; zn ! Gl2; zn is biholomorphic. On Ali;1ðznÞn
Gli; zn we obtain the complex dilatation of Fli;h by pulling back the complex di-
latation of Fli;hjGli ;an

via Nli;h. This proves the complex dilatation of F to vanish

on every Al1;hðznÞ. Hence F : C ! C is a biholomorphic mapping. By con-
struction we have FðyÞ ¼ y and F ð1Þ ¼ 1. This yields F to be a linear trans-
formation. We have normalized the polynomials such that their zeroes sum up
to 0. F maps the zeroes of fl1 onto the zeroes of fl2 , therefore 0 is a fixed point
of F. The identity is the only transformation having three fixed points, thus we
obtain fl1 ¼ fl2 and therefore l1 ¼ l2. 9

Remark. Note that in the proof we have fixed some r A �0; 1½ and that we
have required that g�1

h ðgÞ, where g ¼ fjzj ¼ rg and ghðzÞ ¼ ð1� hÞzþ z2, is a
Jordan curve which is mapped properly (of degree 2) onto g. This is true for
certain combinations for r and h, only, for example, for h su‰ciently near 1.
For arbitrary h A D1ð1Þ we will modify the construction.

In order to extend L̂L to the whole of Md
1 �D1ð1Þ we consider the poly-

nomials fhðzÞ ¼ ð1� hÞðzþ z2Þ for h A D1ð1Þ�. For h A D1ð1Þ� let chðzÞ ¼
zþ � � � be the formal conjugacy between fh and z 7! ð1� hÞz:

ðfh � chÞðzÞ ¼ chðð1� hÞzÞ:
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The coe‰cients of the power series of ch are holomorphic functions in h. Let
RðhÞ denote its radius of convergence. Then chðqDRðhÞð0ÞÞ and fhðchðqDRðhÞð0ÞÞÞ
¼ qchðj1� hjDRðhÞð0ÞÞ are piecewise analytic Jordan curves. The following result

is classical, see [13].

Lemma 15. For every h A D1ð1Þ� the limit uðhÞ :¼ limn!yðfn
h ðcÞ=ð1� hÞnÞ,

where c ¼ �1=2, exists. The function u is holomorphic on D1ð1Þ� with a simple
pole in h ¼ 0. Furthermore, the equality juðhÞj ¼ RðhÞ holds on D1ð1Þ�.

We now apply this lemma in order to establish

Corollary 16. The basin of attraction Ah of fh have a holomorphic pa-
rameterization.

Proof. Since the coe‰cients of the power series of ch holomorphically
depend on h, the mapping h ! chðzÞ is holomorphic. Hence due to Lemma 15
the function G : D1ð1Þ� � S1 ! C ; ðh; zÞ 7! chðz � uðhÞÞ is holomorphic in h, too.
The mapping Gðh; �Þ is a homeomorphism of S1 onto a piecewise analytic Jordan
curve Gh: fh injectively maps IntðGhÞ into itself: gh :¼ qfhðIntðGhÞÞ ¼ fhðGhÞH
IntðGhÞ. The annular domain IntðGhÞnIntðghÞ is a fundamental domain for fh in

the sense of [18]. If Kh :¼ clðIntðGhÞnIntðghÞÞ, then K̂Kh :¼ c�1
h ðKhÞ is equal to the

closed annulus fj1� hj � RðhÞa jzjaRðhÞg. For a given h0 A D1ð1Þ� one easily
finds a holomorphic family ĵjh0 : D1ð1Þ� � K̂Kh0 ! C of quasiconformal mappings
ĵjh0ðh; �Þ : K̂Kh0 ! K̂Kh. Applying ch we obtain a holomorphic family jh0 : D1ð1Þ� �
Kh0 ! C of quasiconformal mappings jh0ðh; �Þ : Kh0 ! Kh: jh0 extends via for-
ward and backward iteration of fh to a holomorphic family of quasiconformal
mappings jh0ðh; �Þ : Ah0 ! Ah. 9

Remark. The mapping jh0ðh; �Þ constructed above conjugate fh0 and fh:

fh � jh0ðh; �Þ ¼ jh0ðh; fh0ð�ÞÞ on Ah0 :

Another immediate consequence is

Corollary 17. There exists an analytic family ĜG of Jordan curves, such that
ĜGh HAh and fhðĜGhÞ ¼ ĝgh is of degree 2.

ĜG : D1ð1Þ� � ĜGh0 ! C ; ðh; zÞ 7! jh0ðh; zÞ and

ĝg : D1ð1Þ� � ĝgh0 ! C ; ðh; zÞ 7! jh0ðh; zÞ:

At this point we summarize what we have gotten hold of so far. We have ob-
tained domains IntðĜGhÞ which are parameterized holomorphically on D1ð1Þ� and
which are mapped by fh proper of degree 2 onto the domains IntðĝghÞ. For every
h A D1ð1Þ� the equality

fh � ĜGh ¼ ĝgh � fh0ð9Þ
holds on Gh0 . Furthermore we have ĜGh0 ¼ id and ĝgh0 ¼ id.
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In the next part we shall insert the restrictions fhjIntðĜGhÞ in the relaxed Newton’s

method Nl;h0 . The result of this surgery will be a relaxed Newton’s method
Nm;h. The mapping Lh0 : ðl; hÞ 7! m turns out to be a holomorphic motion. If
h0 tends to 1 then Lh0 will tend to a holomorphic motion L with the desired
properties.

For every zero z of fl, where l A Md
h0
, there exists a biholomorphic con-

jugacy gl; z : A
�
l;h0

ðzÞ ! Ah0 such that: gl; z �Nl;h0 ¼ fh0 � gl; z on A�
l;h0

ðzÞ. We

write Gz :¼ g�1
l; zðIntðGh0ÞÞ. For h A D1ð1Þ� we define a new function by

~NNl;h :¼ g�1
l; z � jh0ðh; �Þ

�1 � fh � jh0ðh; �Þ � gl; z on Gl; z

and ~NNl;h :¼ Nl;h0 otherwise. According to Theorem 10 ~NNl;h is conjugate via
some quasiconformal mapping to a relaxed Newton’s method Nm;h. We define
Lh0ðl; hÞ :¼ m and summarize some properties of Lh0 .

Proposition 18. The mapping Lh0 : M
d
h0
�D1ð1Þ� ! C d�2 is a holomorphic

motion satisfying Lh0ðMd
h0
; hÞHMd

h for all h A D1ð1Þ�.

Lemma 19. For every l A Md
h0

the functions Lh0ðl; �Þ ¼ ðL1;h0 ; . . . ;Ld�2;h0Þ
extend to meromorphic functions on D1ð1Þ with an unessential singularity at h ¼ 1.

Proof. By Proposition 18, each component Lj;h0 of the mapping Lh0ðl; �Þ is
well defined and holomorphic on the punctured disk D1ð1Þ� for each l A Md

h0
.

Therefore, in order to prove the lemma, it is su‰cient to discuss the behavior of
the function Lh0ðl; �Þ near the origin. Recall that by Lemma 9 and the remark
following its proof, each Lj;h0 omits two distinct values in C . By construction,
it takes values in C , only, thus it misses y. Applying Picard’s theorem shows
that the singularity at 0 is not essential, that is, each Lj;h0 and therefore Lh0 is
meromorphic on the disc D1ð1Þ. 9

As in Lemma 14 we prove Lh0ðMd
h0
; hÞ ¼ Md

h for every h A D1ð1Þ�. Then
Lemma 9 yields

Lemma 20. For every h A D1ð1Þ� there exist a positive number eh, depending
on h, such that EVMd

h ¼ j for every h A D1ð1ÞVDehðhÞ.

For h A D1ð1Þ� we define Lh : M
d
h �D1ð1Þ ! C d�2; ðl; hÞ 7! ðLh0ð� ; hÞ �

Lh0ð� ; hÞ
�1ÞðlÞ. By construction we have

1. Lhð� ; hÞ ¼ id,
2. Lhðl; �Þ is meromorphic on D1ð1Þ for every l A Md

h and
3. Lh1ðl; �Þ ¼ Lh2ðLh1ðl; h2Þ; �Þ on Md

h1
for every h1; h2 A D1ð1Þ�.

Now let fhngn AN HD1ð1Þnf1g be a sequence such that limn!y hn ¼ 1 and M 0 a
countable dense subset of Md

1 . We write M 0 ¼ fl0; l1; . . .g. For l0 there exists
a sequence fl0;ngn AN satisfying l0;n A Md

hn
and due to Lemma 14 we have that the

sequence fMd
hn
gn AN converges towards Md

1 . This implies limn!y l0;n ¼ l0. As

in the proof of Lemma 19, Lemma 9 and Proposition 18 yield that the sequence
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fLhnðl0;n; �Þgn AN is a normal family, thus for a suitable subsequence fh0;ngn AN
of fhngn AN we may assume the existence of limn!y Lh0; nðl0;n; �Þ on D1ð1Þ (with
l0;n A Md

h0;n
). Now we proceed by induction. For j A Nnf0g there exists a

sequence flj;ngn AN satisfying lj;n A Md
hj�1; n

and limn!y lj;n ¼ lj. As above for

a subsequence fhj;ngn AN of fhj�1;ngn AN we may assume the existence of

limn!y Lhj; nðlj;n; �Þ on D1ð1Þ. Now,

Lðlj; �Þ :¼ lim
n!y

Lhn; nðlj;n; �Þ

is well defined. Moreover Lhn; nðl; hn;nÞ ¼ l converges to l ¼ Lðl; 1Þ for all

l A M 0. Therefore L : M 0 �D1ð1Þ ! C d�2 is well defined and has the following
properties

1. Lð� ; 1Þ ¼ id,
2. Lðl; �Þ is holomorphic on D1ð1Þ,
3. Lðl; hÞ ¼ LhðLðl; hÞ; hÞ on M 0 for every h; h A D1ð1Þ�, and
4. Lð� ; hÞ is injective.

Only 4 needs a proof. For this purpose we choose l1; l2 A M 0 such that
l1 0 l2. By 1 this yields Lðl1; hnÞ0Lðl2; hnÞ for n su‰ciently large. Lhð� ; hnÞ
is an injective mapping, thus 3 completes the proof. Now by applying Theorem 8
we extend L to a holomorphic motion.

Thus we have proved the existence of an holomorphic motion L : Md
1 �

D1ð1Þ ! C d�2 satisfying:
1. Lð� ; 1Þ ¼ id,
2. Lðl; �Þ is holomorphic on D1ð1Þ for every l A Md

1 ,
3. Lðl; hÞ ¼ LhðLðl; hÞ; hÞ on M1 for every h; h A D1ð1Þ�, and

4. Lð� ; hÞ : Md
1 ! Md

h is a homeomorphism.
This completes the proof of the Main Theorem. 9
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