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FANO THREEFOLDS WITH PICARD NUMBER 2

IN POSITIVE CHARACTERISTIC

Natsuo Saito

Abstract

The smooth Fano threefolds with Picard number two in positive characteristic are

classified. The each class has the same description as in characteristic zero. We give

also a new example of Fano threefolds with Picard number three having a wild conic

bundle structure.

0. Introduction

Let X be a smooth projective variety over an algebraically closed field k.
We say that X is a Fano variety if its anticanonical divisor �KX is ample.

Fano threefolds are one of the fundamental classes of varieties in three
dimensional birational geometry. In characteristic zero, the classification of
smooth Fano threefolds was completed by many authors:

(1) Iskovskih studied Fano threefolds in the 1970s and classified them when
Picard number is one (see [Isk77, Isk78]).

(2) Shokurov proved that there exist lines on Fano threefolds. This is a
crucial result for the classification, though his proof was complicated (see
[Sho79]).

(3) Using Mori’s description of extremal rays, the classification of Fano
threefolds with bigger Picard numbers was established by Mori and
Mukai (see [MM81, MM83, MM86]). This depends on the existence of
lines on Fano threefolds with Picard number one.

(4) Fujita developed the theory of D-genera to classify Fano varieties of
coindex two in any dimension (see [Fuj90]).

(5) Takeuchi reproduced the classification of Fano threefolds with Picard
number one by simple numerical calculations based on the theory of
extremal rays (see [Tak89]). In particular, his approach gives automat-
ically the existence of lines on them, thus simplifying substantially the
method by Iskovskih and Shokurov.

There are several di‰culties for conducting the classification of Fano three-
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folds in positive characteristic, including the failures of Kodaira vanishing or
Bertini’s theorems. Shepherd-Barron [SB97] has overcome these obstacles and
given a birational classification of Fano threefolds of Picard number one. He
also proved the existence of lines on them, an essential fact for the analysis when
Picard number is at least two. On the other hand, Megyesi [Meg98] has clas-
sified Fano threefolds in positive characteristic of Fano index at least two, using
the method of D-genera by Fujita.

In view of these works, it is natural to investigate Fano threefolds with
bigger Picard numbers. Here we have to cope with the di‰culties that conic
bundle structures may be wild and that del Pezzo fibrations may have singular
general fiber. Instead of the original Mori-Mukai’s argument, we depend on
numerical arguments due to Takeuchi.

Our main theorem is the following:

Theorem 0.1. Let X be a Fano threefold with rðXÞ ¼ 2. Then
(i) X belongs to one of the 36 classes which have the same description as the

classification by Mori and Mukai.
(ii) If X has a wild conic bundle structure, then X belongs to the class

No. 24 in the Mori-Mukai’s table, that is, X is a divisor in P2 � P2 of
bidegree ð1; 2Þ.

(iii) X does not have any non-normal del Pezzo fibrations.
(iv) If X has a quadric cone fibration structure, then X belongs to the class

No. 29 in the Mori-Mukai’s table, that is, X is the blow-up of a quadric
threefold QHP4 along a conic.

As a consequence, we obtain a new example of Fano threefolds with Picard
number three having a wild conic bundle structure.

Throughout this paper, the ground field k is algebraically closed of char-
acteristic p > 0.

Remark. Recently, the author heard that Mori had already obtained the
classification of Fano threefolds with Picard number at least 2 in any charac-
teristic.

1. Preliminaries

1.1. For studying higher dimensional algebraic varieties, the classification
of extremal rays by Mori is one of the key results. In [Kol91], Kollár proved
that extremal rays on smooth threefolds in positive characteristic have almost the
same description as in characteristic zero:

Theorem 1.1. Let X be a smooth projective threefold over k. Let R be an
extremal ray of the cone of curves. Then

(i) There is a normal projective variety Y and a surjective morphism
f : X ! Y such that an irreducible curve CHX is mapped to a point by
f if and only if ½C � A R.
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(ii) The possibilities for f and Y are as follows:
The case (E). There is a unique irreducible divisor E on X with E:C < 0
such that f contracts E. There are five di¤erent types:
(E1): f is the blow-up of a smooth curve in Y. E is a smooth ruled

surface and Y is also smooth.
(E2): f is the blow-up of a point in Y. EGP2 and Y is smooth.
(E3): f is the blow-up of a singular point P in Y. E is a smooth quadric

surface in P3. ÔOP;Y G k½½x; y; z; t��=ðxy� ztÞ.
(E4): f is the blow-up of a singular point P in Y. E is a quadric cone in

P3. ÔOP;Y G k½½x; y; z; t��=ðxy� z2 � t3Þ.
(E5): f is the blow-up of a singular point P in Y. EGP2.

ÔOP;Y G k½½x2; y2; z2; xy; yz; zx��.
The case (C). Y is a smooth surface, and f is a flat conic bundle. If
char k0 2, the general fiber is smooth.
The case (D). Y is a smooth curve and every fiber of f is irreducible.
Any fiber with reduced scheme structure is a ( possibly non-normal ) del
Pezzo surface.
The case (F). X is a Fano threefold with rðXÞ ¼ 1.

Put mðRÞ :¼ minfð�KX Þ:C jC A Rg. For the cases (C) and (D), we can
divide f into subcases:

(C1): f has a singular fiber, that is, a line pair or a double line. We have
mðRÞ ¼ 1.

(C2): f is a smooth morphism. We have mðRÞ ¼ 2.
(D1): The general fiber of f is a del Pezzo surface of degree d, 1a da 6.

It may be singular. If it is normal, then it has only rational double
points or it is the cone over an elliptic curve by [HW81]. We have
mðRÞ ¼ 1.

(D2): The general fiber of f is isomorphic to P1 � P1 or a quadric cone in
P3. We have mðRÞ ¼ 2.

(D3): f is a P2-bundle. We have mðRÞ ¼ 3.
We recall the following significant result on Fano threefolds in positive

characteristic.

Theorem 1.2 (Shepherd-Barron [SB97]). Let X be a Fano threefold with
rðX Þ ¼ 1. Then X contains a line.

Theorems 1.1 and 1.2 enable us to apply the following result in [MM86,
Theorem 5.2] to the positive characteristic case:

Theorem 1.3. Let X be a Fano threefold with rðXÞ ¼ 2, and f : X ! Y be a
contraction of an extremal ray of type (E1). Then Y is a Fano threefold of index
rb 2.

Proof. Thanks to Theorem 1.2, the proof by Mori-Mukai works. Let Y be
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a Fano threefold with rðY Þ ¼ 1 and of index 1, and f : X ! Y the blow-up of Y
along a smooth curve C. When �KY is not very ample, we have ð�KY Þ3 a 4,
hence ð�KX Þ3 ¼ 2. Then by the classification of hyperelliptic Fano threefolds
([Meg98]), �KX must be very ample. However, we see that X GP3 since
h0ðX ;�KX Þ ¼ 4, which is a contradiction.

Assume that �KY is very ample and ð�KY Þ:C > 1. Then by Theorem 1.2,
there exists a curve l such that ð�KY Þ:l ¼ 1. Since

Nl=Y GOP1 lOP1ð�1Þ or OP1ð1ÞlOP1ð�2Þ;
by Iskovskih ([Isk78]), we have h0ðNl=Y Þ � h1ðNl=Y Þ > 0, hence l moves in Y.
So there exists a surface SHY swept out by lines. Therefore we can take a
line l 0 on Y intersecting C. However, we have �KX : f

�1ðl 0Þa 0, which shows
that X is not a Fano threefold. When C is a line, we can also prove in the same
way as in [MM86, Theorem 5.2]. r

1.2. We recall some known results about the structure of double covers
in characteristic 2 (see [CD89] or [Meg98]). Let h : X ! Y be a finite morphism
of degree 2 from Cohen-Macaulay scheme X to a smooth variety Y. Then the
natural inclusion OY ! h�OX defines a line bundle L ¼ ðh�OX=OY Þ4. X is
locally a hypersurface in Yi � A1 given by an equation x2 þ aixþ bi ¼ 0, where
fYig is an open a‰ne covering of Y which trivializes L, and ai; bi A OY ðYiÞ.
The local data ðbi; ai; 1Þ glue together to give a section s of a vector bundle E of
rank 3, which is isomorphic to an extension

0 ! Ln2 ! E ! LlO ! 0:

We see that the triple ðL;E; sÞ determines a double cover h : X ! Y . E is
said to be splittable if it splits into the sum of line bundles Ln2 lLlO. If
H1ðY ;LÞ ¼ 0, E is splittable. Obviously, fbig form a global section b A
GðY ;Ln2Þ if E is splittable.

If a ¼ faig0 0, we see that h is separable and branched along Supp divðaÞ.
Then the singularity of X is the inverse image of the zeros of x dai þ dbi lying on
Supp divðaÞ. On the other hand, if a ¼ 0, then h is inseparable and the inverse
image of the zeros of dbi is the singularity of X. In both cases, we have

oX G h�ðoY nLÞ:
fx dai þ dbig is glued together to form a section of the sheaf Ln2 nW1

Y . Thus
by checking c3ðLn2 nW1

Y Þ is not equal to zero, we can exclude the possibility
that the double cover given is purely inseparable.

1.3. We recall also the classification table of normalized del Pezzo surfaces
by Reid ([Rei94, Theorem 1.1]).

Theorem 1.4. Let S be a non-normal del Pezzo surface, ~SS its normalization,
and C the curve on ~SS defined by the conductor ideal. Then pairs CH ~SS are listed
as follows:
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Case ð ~SS;O ~SSð1ÞÞ deg ~SS Class of C Nature of C

(a) ðP2;OP2ð1ÞÞ 1 OP2ð2Þ
(a1) smooth conic
(a2) line pair
(a3) double line

(b) ðP2;OP2ð2ÞÞ 4 OP2ð1Þ smooth conic

(c) ðFa;0; aAÞ for ab 2 a 2A

(c1) line pair
(c2) double line
(c0) smooth conic

(only if a ¼ 2)

(d) ðFa;1; ðaþ 1ÞAþ BÞ
for ab 0

aþ 2 Aþ B
(d1) line pair
(d0) smooth conic

(only if aa 1)

(e) ðFa;2; ðaþ 2ÞAþ BÞ aþ 4 B smooth conic

Here A is a fiber of Fa, and B a negative section.

In the following, we investigate Fano threefolds for each pair of extremal
contractions. Unless otherwise stated, we assume that X is a Fano threefold
with rðXÞ ¼ 2.

2. Conic bundles

We treat here Fano threefolds having an extremal contraction of type (C),
that is, a conic bundle structure. In particular, in characteristic 2, we must take
account of the possibility that the conic bundle may be wild.

Definition. Let f : X ! S be a surjective morphism from a smooth pro-
jective threefold X to a smooth projective surface S. We say that f is a wild
conic bundle if every fiber of f is a double line. Clearly, wild conic bundle
occurs only in characteristic 2. We call an ordinary conic bundle if it is not wild.

Proposition 2.1 (Shepherd-Barron [SB97]). If X is a Fano threefold and

f : X ! S is a wild conic bundle, then SGP2 or P1 � P1.

Put W :¼ f �1ðlÞ where l is a smooth rational curve on S. Let m be a fiber
of f with reduced structure.

Lemma 2.2. W is reduced.

Proof. If W is non-reduced, then it follows that W ¼ 2U where U is a
P1-bundle over l with fiber m. We have NU=X :m ¼ 0 since m moves in X, so
the adjunction formula gives �KU :m ¼ 1. Obviously, this is impossible. r
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Let m : ~WW ! W be the normalization. Then there exists a factorization
~WW ! lð�1Þ !F l of f � m, where F is the geometric Frobenius map.

Lemma 2.3. ~WW ! lð�1Þ is a smooth P1-bundle.

Proof. Since m�ð�KX jW Þ:m ¼ 1, every fiber m is generically reduced. m is

a Cartier divisor on the normal surface ~WW , so m has no embedded point. This
implies that ~WW is smooth. r

Let CH ~WW be the curve defined by the conductor ideal. Since

o ~WW G m�oW nO ~WW ð�CÞ
G m�OW ðKX jW Þn m�NW=X nO ~WW ð�CÞ;

we have C:m ¼ 1, so we can set C1C0 þ rm, where C0 is the negative section of
~WW and r an integer. In particular, the singularities of W are unibranched.

We recall also the fact about ordinary conic bundles.

Definition. Let f : X ! S be a surjective morphism from a smooth pro-
jective threefold X to a smooth projective surface S such that a general fiber is
a smooth conic. Then the set D defined by

fP A S j f �1ðPÞ is not smoothg
is said to be the discriminant locus of a conic bundle.

Lemma 2.4. Let f : X ! S be an ordinary conic bundle over a smooth pro-
jective surface S, and D its discriminant locus. Then:

(i) D is smooth at every point over which the fiber is a reduced line pair. If
the characteristic of k is not equal to 2, D is a curve with at worst ordinary
double points.

(ii) We have the formula

D1�f�ð�KX Þ2 � 4KS:

Proof. (i) If the characteristic0 2, the proof by Beauville ([Bea77]) works.
So assume that char k ¼ 2. Let P A D be a point in D such that the fiber over P
is a line pair. In a neighborhood of P in S, we may take local coordinates u; v
such that X is locally given as

qðx; yÞ ¼ a1x
2 þ a2xyþ a3y

2 þ a4xþ a5yþ a6 ¼ 0;

where ai ði ¼ 1; . . . ; 6Þ are functions of ðu; vÞ. We may assume that the fiber
over P has a singularity at ðx; yÞ ¼ ð0; 0Þ. Then by qx ¼ a2 yþ a4 and qy ¼
a2xþ a5, we see that a2 has a constant term. The equation of discriminant locus
is locally given as

Pðu; vÞ ¼ a1a
2
5 þ a2a4a5 þ a3a

2
4 þ a22a6 ¼ 0:
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On the other hand, since X is smooth at ðx; y; u; vÞ ¼ ð0; 0; 0; 0Þ, a6 must have a
linear term for ðu; vÞ. Therefore we have

Puð0; 0Þ ¼ a22
qa6

qu
ð0; 0Þ0 0; Pvð0; 0Þ ¼ a22

qa6

qv
ð0; 0Þ0 0;

which shows that D is smooth at P.
(ii) This is proved just as in characteristic zero (see [MM83, Proposition 6.2

(4)], [MM86, Corollary 4.6]). r

Now we consider Fano threefolds X with rðX Þ ¼ 2 having a conic bundle
structure f : X ! S including the case where it is wild. Clearly, S is isomorphic
to P2, and f : X ! P2 is one of the two extremal contractions. We denote the
other extremal contraction by g : X ! Y :

X�����!f �����!g
P2 Y :

We set H :¼ f �OP2ð1Þ. By definition, we obtain

H 3 ¼ 0; ð�KX Þ:H 2 ¼ 2:

Moreover, we set c :¼ ð�KX Þ2:H. If f : X ! P2 is ordinary, then c ¼ 12� deg D
by Lemma 2.4, where D is the discriminant locus of f : X ! P2.

If f is of type (C2), namely a P1-bundle, then the argument in [MM83] are
valid in positive characteristic. Thus we assume that f : X ! P2 is of type (C1).
Let m be an irreducible component of a reducible fiber, or a reduced part of a
general fiber when the conic bundle is wild. We analyze X for each type of g.

2.1. The case (E). First assume that g is of type (E). We use the method
inspired by [Tak89]. Let E be the exceptional divisor of g : X ! Y . Since
rðX Þ ¼ 2, we can write E1 zð�KX Þ � uH, where z; u A Q. Then from the
equalities

E:m ¼ zð�KX Þ:m� uH:m ¼ z and

E:ð�KX Þ:H ¼ zð�KX Þ2:H � uð�KX Þ:H 2 ¼ zc� 2u;

we have z A Z>0, u A Z>0

2
. Indeed, if ua 0, then we get kðzð�KX Þ � uHÞ ¼ 3,

which is absurd.
Consider the case where g is of type (E2), (E3), (E4) or (E5). Then we have

the following equalities:

E3 ¼ z3ð�KX Þ3 � 3z2uð�KX Þ2:H þ 3zu2ð�KX Þ:H 2 � u3H 3

¼ zðz2ð�KX Þ3 � 3czuþ 6u2Þ;

ð2:1Þ
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ð�KX Þ:E2 ¼ z2ð�KX Þ3 � 2zuð�KX Þ2:H þ u2ð�KX Þ:H 2

¼ z2ð�KX Þ3 � 2czuþ 2u2;

ð2:2Þ

ð�KX Þ2:E ¼ zð�KX Þ3 � uð�KX Þ2:H

¼ zð�KX Þ3 � cu:

ð2:3Þ

In the (E2) case, we have

E3 ¼ 1; ð�KX Þ:E2 ¼ �2; ð�KX Þ2:E ¼ 4:

Hence it follows that

ðz; z2ð�KX Þ3 � 3czuþ 6u2Þ ¼ ð1; 1Þ or 2;
1

2

� �

from (2.1). However, by (2.2) and (2.3), it is easily checked that ð�KX Þ3 B 2Z.
Thus this case is impossible.

We can also rule out the possibility that g is of type (E5) in a similar way.
In the (E3), (E4) cases, since we have

E3 ¼ 2; ð�KX Þ:E2 ¼ �2; ð�KX Þ2:E ¼ 2;

we obtain

ð�KX Þ3 ¼ 14; c ¼ 6; ðz; uÞ ¼ ð1; 2Þ

by the similar argument as the case before. As in characteristic zero, it follows
that X is a double cover of V7 ¼ PP2ðOlOð1ÞÞ ([MM83, p. 115]). Note that
in characteristic 2, if the double cover is separable then the branch locus B is
non-reduced. This belongs to the class No. 8 in the Mori-Mukai’s table
([MM81]).

Assume that the conic bundle structure of X is wild. Then since E:m ¼ 1
where m is a reduced general fiber of f : X ! P2, we see that gjE : E ! P2 is a
purely inseparable morphism of degree 2. However, by [GR82, Theorem 2.1],
there exists no inseparable cover of P2. Thus we can exclude the possibility that
X has a wild conic bundle structure in this case.

Now suppose that g is of type (E1). By Theorem 1.3, Y is a Fano three-
fold of index at least 2, which is classified as in characteristic zero by [Meg98].
Put gðEÞ ¼ C. We denote a fiber of gjE : E ! C by l. Since E:l ¼ �1, we can
write zþ 1 ¼ uk where k is an integer.

Claim 2.5. If u A Z>0, then u ¼ F ðYÞ, where FðYÞ is the Fano index of Y.

Proof. Since E1 zð�KX Þ � uH, we have

Pic X=ZElZð�KX ÞGPic X=ZuHlZð�KX Þ:

Take any divisor D A Pic X , and set a ¼ D:m. By ðD� að�KX ÞÞ:m ¼ 0, we
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have D� að�KX Þ A f � Pic P2, so we can write D� að�KX Þ1 bH where b A Z.
Hence we have

Z=uZGPic X=ZuHlZð�KX Þ:
Moreover, by a similar argument, we also have Pic X GZg� Pic Y lZE, hence

Pic X=ZElZg�ð�KY ÞGPic Y=Zð�KY Þ:
Therefore we have Z=uZGPic Y=Zð�KY Þ. r

Claim 2.6. If u A Z>0

2
and u B Z>0, then 2u jFðYÞ.

Proof. Let M be a fundamental divisor of Y. Since 2E1 2zð�KX Þ � 2uH,
we have 2zð�KY Þ1 2ugðHÞ, hence

2ugðHÞ1 2zFðY ÞM:

Since E is reduced, ð2z; 2uÞ ¼ 1 by assumption, so we are done. r

We have the following equalities:

ð�KY Þ3 ¼ ð�KX þ EÞ2:ð�KX Þð2:4Þ

¼ ððzþ 1Þð�KX Þ � uHÞ2:ð�KX Þ

¼ ðzþ 1Þ2ð�KX Þ3 � 2cðzþ 1Þuþ 2u2;

0 ¼ ð�KX þ EÞ2:Eð2:5Þ

¼ ððzþ 1Þð�KX Þ � uHÞ2:ðzð�KX Þ � uHÞ

¼ zðzþ 1Þ2ð�KX Þ3 � cðzþ 1Þð3zþ 1Þuþ 2ð3zþ 2Þu2;
ð�KY Þ:C ¼ ð�KX þ EÞ:E:ð�KX Þð2:6Þ

¼ ððzþ 1Þð�KX Þ � uHÞ:ðzð�KX Þ � uHÞ:ð�KX Þ

¼ zðzþ 1Þð�KX Þ3 � cð2zþ 1Þuþ 2u2;

ð�KEÞ2 ¼ ð�KX � EÞ2:Eð2:7Þ

¼ 4ðz2ð�KX Þ3 � 2zuð�KX Þ2:H þ u2ð�KX Þ:H 2Þ

¼ �4ðz2ð�KX Þ3 � 2czuþ 2u2Þ:
The case F ðYÞ ¼ 4. Clearly, Y GP3 and ð�KY Þ3 ¼ 64. By Claims 2.5

and 2.6, we have u ¼ 4 or 1
2 . Assume that u ¼ 4. Then by (2.4), k ¼ zþ1

u
¼ 1

or 2. If k ¼ 1, then by (2.5)–(2.7), we obtain

z ¼ 3; ð�KX Þ3 ¼ 16; deg C ¼ 7 and paðCÞ ¼ 5:

This belongs to the class No. 9. We also have c ¼ 7, which means deg D ¼ 5
when f : X ! P2 is ordinary. If k ¼ 2, then we see that ð�KX Þ3 B Z, which is
absurd.
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On the other hand, if u ¼ 1
2 , by (2.4) and (2.5), we get ð�KX Þ3 < 0, which is

impossible.
The case FðYÞ ¼ 3. Clearly, Y GQ, where Q is a quadric threefold in P4,

and ð�KY Þ3 ¼ 54. By Claims 2.5 and 2.6, we have u ¼ 3; 12 or
3
2 . If u ¼ 3, then

by (2.4), k ¼ 1; 2 or 4. When k ¼ 1, we obtain

z ¼ 2; ð�KX Þ3 ¼ 20; deg C ¼ 6 and paðCÞ ¼ 2

by (2.5)–(2.7). If f : X ! P2 is ordinary, we have deg D ¼ 4. This belongs to
the class No. 13.

We have no solutions when k ¼ 2; 4. An argument similar to that when
F ðYÞ ¼ 4 also gives a contradiction if u ¼ 1

2 or 3
2 .

The case FðY Þ ¼ 2. In this case, Y is a del Pezzo threefold of degree d, and
ð�KY Þ3 ¼ 8d. We obtain u ¼ 2 and

z ¼ 1; ð�KX Þ3 ¼ 2ð2d þ 3Þ; deg C ¼ d � 2 ðd ¼ 3; 4 or 5Þ

by the same argument as the two cases above. These belong to the classes
Nos. 11, 16 and 20, respectively.

Proposition 2.7. If X is a Fano threefold with rðX Þ ¼ 2 such that the two
extremal contractions are (C1) and (E1) types, then the conic bundle structures of X
is not wild.

Proof. Assume that f : X ! P2 is wild. Then every fiber of f is a double
line 2m. If F ðYÞ ¼ 2, then we can prove in the same way as the case where g
is of type (E3) or (E4); indeed, we have E:m ¼ 1, which means the restriction

morphism f jE : E ! P2 is purely inseparable. However, there exists no purely
inseparable cover of P2 by [GR82, Theorem 2.1], hence we have a contradiction.

Suppose that FðY Þ ¼ 3. In this case, X is the blow-up of a quadric three-
fold Q along a curve of degree 6, and gðHÞ is a quadric section in Q, namely, a
non-normal del Pezzo surface of degree 4. We denote the curve EjH by C 0. C 0

is a Cartier divisor on E. Moreover, C 0 is smooth. Indeed, otherwise C 0 is the
union of a section and fibers on E, but it contradicts that H has unibranched
singularities. Hence H is smooth along C 0 and isomorphic to gðHÞ. Since
SingðHÞ are unibranched and the normalization ~HH of H is a smooth P1-bundle
by Lemma 2.3, ~HH belongs to the case (e) in the classification table in Theorem
1.4. Since C 0 is of degree 6, its inverse image on ~HH is equivalent to 4Aþ B
or 2Aþ 2B. However, in both cases, it must intersect the curve defined by the
conductor ideal. Thus we have a contradiction.

We can show the claim in the same way when F ðYÞ ¼ 4. r

2.2. The case (D). Next, we assume that g is of type (D), namely a
del Pezzo fibration. Clearly, Y GP1. We can write H1 xð�KX Þ � yS with
x; y A Q, where S is a fiber of g : X ! P1.

Consider first the case where g is of type (D1). Let d be the degree of a
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general fiber. Since S3 ¼ ð�KX Þ:S2 ¼ 0, ð�KX Þ2:S ¼ d, we have the following
relations:

H 3 ¼ x3ð�KX Þ3 � 3x2yd ¼ 0;ð2:8Þ

ð�KX Þ:H 2 ¼ x2ð�KX Þ3 � 2xyd ¼ 2;ð2:9Þ

ð�KX Þ2:H ¼ xð�KX Þ3 � yd ¼ c:ð2:10Þ

Since a general fiber S has a line l, we have

x ¼ xð�KX Þ:l � yS:l ¼ H:l A Z:

We also see that x=y ¼ S:m A Z. Moreover, since kðHÞ ¼ 2, we have x > 0,
y > 0. Under these conditions, the equations (2.8)–(2.10) have the following
solutions:

ð�KX Þ3 ¼ 6; c ¼ 4; ðx; y; d Þ ¼ ð1; 1; 2Þ or ð1; 1=2; 4Þ:

However, since S is reduced, the latter case is excluded. Hence S is a del Pezzo
surface of degree 2. Take h :¼ ð f ; gÞ : X ! P2 � P1. h is finite and surjective.
We have

deg h ¼ H 2:S ¼ H 2:ðð�KX Þ �HÞ ¼ 2;

therefore X is a double cover of P2 � P1. This belongs to the class No. 2.
Now assume that the conic bundle f : X ! P2 is wild. Then h is set-

theoretically one-to-one, so it is a purely inseparable cover of degree 2. By
comparing the canonical divisors, we see that the invertible sheaf defined by
h is LGOP2ð2Þr�OP1ð1Þ (see Section 1.2). Hence c3ðLn2 nW1Þ ¼ 40 which

implies the sheaf Ln2 nW1 cannot have any nowhere vanishing sections.
Therefore we conclude that there exists no wild conic bundle structure in this
case.

Proposition 2.8. Under the notation above, a general fiber Xh of del Pezzo
fibration g : X ! P1 is normal.

Proof. Since f : X ! P2 is not wild and H1ðP2 � P1;LÞ ¼ 0, X is a sep-
arable double cover of P2 � P1 and given by an equation y2 þ ayþ b ¼ 0, where
a A H0ðP2 � P1;LÞ and b A H0ðP2 � P1;Ln2Þ. Let ½s; t� be the homogeneous
coordinates of P1. Then we can write

a ¼ spðx0; x1; x2Þ þ tqðx0; x1; x2Þ;

b ¼ s2r1ðx0; x1; x2Þ þ str2ðx0; x1; x2Þ þ t2r2ðx0; x1; x2Þ;

where pðx0; x1; x2Þ and qðx0; x1; x2Þ are quadrics, and riðx0; x1; x2Þ ði ¼ 1; 2; 3Þ are
quartic homogeneous polynomials. Assume that Xh is non-normal. Then the
singularity on Xh is one-dimensional locus, and contained in the locus defined by
a ¼ 0. On the other hand, since the total space X is smooth, the equations
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pðx0; x1; x2Þyþ tr2ðx0; x1; x2Þ ¼ 0;ð2:11Þ
qðx0; x1; x2Þyþ sr2ðx0; x1; x2Þ ¼ 0ð2:12Þ

have no common zeros. Since Xh is of degree 2, its normalization ~XXh is of type
(c) or (d) in Theorem 1.4. Then in both cases the inverse image of the non-
normal locus is ample, so we can take the point P which is the intersection of
the locus defined by (2.11) and the non-normal locus on Xh. However, P also
satisfies (2.12) since aðPÞ ¼ 0. Hence X must have a singularity at P. r

Next suppose that g is of type (D2). Since S3 ¼ ð�KX Þ:S2 ¼ 0 and
ð�KX Þ2:S ¼ 8, by computing in the same way as the (D1) case, we have the
following:

ð�KX Þ3 ¼ 24; c ¼ 8; ðx; yÞ ¼ ð1=2; 1=2Þ:
This belongs to the class No. 18. As in the case before, we see that h :¼
ð f ; gÞ : X ! P2 � P1 is a double cover of P2 � P1.

If f : X ! P2 is a wild conic bundle, then X is a purely inseparable cover
of P2 � P1. Therefore we get a contradiction in the same way as in the case
before.

For the possibility that the general fiber is not smooth in this case, we
discuss in Section 5.

2.3. The case (C). Now we assume that g is of type (C). Clearly,
Y GP2. First we consider the (C1) case. Let L be the inverse image of a line
in P2 and set H1 xð�KX Þ � yL. We have the following relations:

L3 ¼ 0;

ð�KX Þ:L2 ¼ 2;

ð�KX Þ2:L ¼ 12� deg D;

where D is the discriminant locus on P2 of the conic bundle g : X ! P2. The
last equality follows from Lemma 2.4. Hence we obtain

H 3 ¼ x3ð�KX Þ3 � 3x2yð12� deg DÞ þ 6xy2 ¼ 0;ð2:13Þ

ð�KX Þ:H 2 ¼ x2ð�KX Þ3 � 2xyð12� deg DÞ þ 2y2 ¼ 2;ð2:14Þ

ð�KX Þ2:H ¼ xð�KX Þ3 � yð12� deg DÞ ¼ c:ð2:15Þ
If x < 0, then we have y < 0 since L:m ¼ x=y A Z>0. Thus we see that

kð�yLÞ ¼ kð�xð�KX Þ þHÞ ¼ 3, which is absurd. Hence x > 0, y > 0. More-

over, x is an integer since H:l ¼ xð�KX Þ:l � yL:l ¼ x, where l is a component of
degenerate fibers on the discriminant locus D. On the other hand, the equality
�KX :L:H ¼ xð�KX Þ2:L� yð�KX Þ:L2 gives

y ¼ �KX :L:H � xð12� deg DÞ
2

A
Z>0

2
:

natsuo saito158



We have also that 1=y A Z>0

2
in a similar way. Hence y ¼ 1=2; 1 or 2. Under

these conditions, we solve (2.13)–(2.15) and obtain

ð�KX Þ3 ¼ 12; c ¼ 6; ðx; y; 12� deg DÞ ¼ ð1; 1; 6Þ:

Take the morphism h ¼ ð f ; gÞ : X ! P2 � P2. By an argument similar to
that in [MM83, pp. 114–115], we see that h is either an embedding and hðXÞ is
a divisor of bidegree ð2; 2Þ in P2 � P2, or a double cover and hðXÞ is a divisor W
of bidegree ð1; 1Þ. This belongs to the class No. 6.

Now consider the case where the conic bundle f : X ! P2 is wild.
Consider the former case. Let P be a singular point of a degenerate fiber of the
ordinary conic bundle g : X ! P2. Clearly, gðPÞ is on the discriminant locus D

in P2. We can take an open set U HP2 with local coordinates ðy1; y2Þ con-
taining gðPÞ such that the local equation of X over U is expressed as

f1ðxÞy21 þ f2ðxÞy22 þ af3ðxÞ ¼ 0;

where f1ðxÞ; f2ðxÞ; f3ðxÞ are homogeneous polynomials of degree 2 and a is
a constant. Then it is easy to see that the total space X also has a singularity
at P. Thus we exclude this possibility. In the latter case, the sheaf
defining the double cover L is isomorphic to OP2ð1Þr�OP2ð1Þ. Thus we
obtain c3ðLn2 nW1

W Þ ¼ 18, which implies that X has singularities. Hence this
case is also impossible.

Next suppose that g is of type (C2). By some numerical calculations similar
to ones above, we obtain

ð�KX Þ3 ¼ 30; c ¼ 9; ðx; yÞ ¼ ð1=2; 1=2Þ:

This belongs to the class No. 24. Consider the morphism h ¼ ð f ; gÞ : X !
P2 � P2. Then X is a divisor of bidegree ð2; 1Þ in P2 � P2.

The example below by Kollár shows that there exists a Fano threefold
having a wild conic bundle structure in this class.

Example 2.9 ([Kol91]). Let X be the smooth hypersurface in P2 � P2

defined by

x0y
2
0 þ x1y

2
1 þ x2 y

2
2 ¼ 0;

where ½x0; x1; x2� and ½y0; y1; y2� are homogeneous coordinates. Then projection
to the first factor makes it into a wild conic bundle. X is a Fano threefold, and
has two extremal contractions of types (C1) and (C2). X belongs to the class
No. 24.

3. Del Pezzo fibrations

We treat here Fano threefolds having a structure of del Pezzo fibrations.
Note that in positive characteristic, a general fiber of del Pezzo fibrations may
have singularities.
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Let X be a Fano threefold with rðX Þ ¼ 2. Suppose that X has a del Pezzo
fibration, say f : X ! P1. Let g : X ! Y be the other extremal contraction:

X�����!f �����!g
P1 Y :

Let S be a general fiber of f , and d its degree. By the argument in [MM83,
p. 124], g is either of type (E1) or (C). The case where g is of type (C1) was
treated in the previous section. On the other hand, f : X ! P1 is just a P2-
bundle when it is of type (D3), and we can classify them as in characteristic
zero. So we consider the case where f is of type (D1) or (D2), and g is of type
(E1).

Suppose first that f is of type (D1). Then we have the following intersec-
tion numbers:

S3 ¼ ð�KX Þ:S2 ¼ 0; ð�KX Þ2:S ¼ d:

Suppose that g is of type (E1). Let E be the exceptional divisor of g, and C
the center of the blow-up. Since rðXÞ ¼ 2, we can put E1 zð�KX Þ � uS, where
z; u A Q. In the same way as in the case where X has a conic bundle structure,
we have the following equalities:

ðzþ 1Þ2ð�KX Þ3 � 2ðzþ 1Þud ¼ ð�KY Þ3;ð3:1Þ

zð�KX Þ3 � ð3zþ 1Þud ¼ 0;ð3:2Þ

zðzþ 1Þð�KX Þ3 � ð2zþ 1Þud ¼ ð�KY Þ:C;ð3:3Þ

�4ðz2ð�KX Þ3 � 2zudÞ ¼ ð�KEÞ2:ð3:4Þ

Since S has a line, we have z A Z>0. Moreover, for a fiber l of gjE : E ! C, we
have

zð�KX Þ:l � uS:l ¼ E:l ¼ �1;

hence we have zþ1
u

¼ S:l A Z>0. Since E:ð�KX Þ2 ¼ zð�KX Þ3 � ud, we have
u A Z>0

d
. Note that if S is not smooth, the fibration f : X ! P1 does not nec-

essarily have a section.

Claim 3.1. If u A Z>0, then u ¼ F ðYÞ, where FðYÞ is the Fano index of Y.

Proof. Just as Claim 2.5. r

Claim 3.2. If u B Z>0 and u A Z>0

d
, one of the following holds:

(1) ud jFðYÞ.
(2) d ¼ 4, u A Z>0

2
.
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Proof. Let M be a fundamental divisor of Y. Since dE1 dzð�KX Þ � duS,
we have dzð�KY Þ1 dugðSÞ, hence dugðSÞ1 dzF ðYÞM. Since E is reduced,
ðdz; duÞ ¼ 1 if d0 4 by assumption. If d ¼ 4, ðdz; duÞ may be 2, which is the
case u A Z>0

2
. r

By Theorem 1.3, we have F ðY Þ ¼ 2; 3 or 4.
The case FðY Þ ¼ 4. Clearly, Y GP3 and ð�KY Þ3 ¼ 64. Then for the

equations (3.1)–(3.4), there exists the only one solution under the claims above
and the other numerical conditions, which is as follows:

ðz; uÞ ¼ ð3; 4Þ; d ¼ 3; ð�KX Þ3 ¼ 10; deg C ¼ 9:

Hence X is the blow-up of P3 with center an intersection of two cubic hyper-
surfaces. This belongs to the class No. 4.

The case F ðY Þ ¼ 3. Clearly, Y GQ and ð�KY Þ3 ¼ 54. We obtain the
solution for (3.1)–(3.4) in the same way as in the case FðY Þ ¼ 4:

ðz; uÞ ¼ ð2; 3Þ; d ¼ 4; ð�KX Þ3 ¼ 14; deg C ¼ 4:

Hence X is the blow-up of Q with center an intersection of two members in
jOQð2Þj. This belongs to the class No. 7.

The case FðY Þ ¼ 2. In this case, Y is a del Pezzo threefold of degree d, and

ð�KY Þ3 ¼ 8d. By the classification of del Pezzo threefolds, we have da 5. We
obtain

ðz; uÞ ¼ ð1; 2Þ; ð�KX Þ3 ¼ 4d; deg C ¼ d ðd ¼ 1; . . . ; 5Þ

by the same argument as the two cases above. These belong to the classes
Nos. 1, 3, 5, 10 and 14, respectively.

We also see that S is normal as in the previous section. Assume that S
is non-normal, and denote its normalization by m : ~SS ! S. Let G be the non-
normal locus on S. The inverse image of G on ~SS is described in the list of
Theorem 1.4. Consider the case where FðYÞ ¼ 2. Then as in the previous
section, we see that S is smooth along the curve EjS. However, EjS is of
degree d, hence its inverse image must intersect m�1ðGÞ which is a conic. Thus
we have a contradiction. We can show the normality of S in the same way
when FðYÞb 3.

Suppose next that f is of type (D2). We may assume that g is of type (E1).
Let E be the exceptional divisor of g : X ! Y , and C the center of the blow-up.
We set E1 zð�KX Þ � uH. Then the numerical argument as the case before
gives the two classes:

ðz; uÞ ¼ ð1; 2Þ; ð�KX Þ3 ¼ 32; deg C ¼ 4 or

ðz; uÞ ¼ ð1=2; 3=2Þ; ð�KX Þ3 ¼ 40; deg C ¼ 2:

These correspond to the classes Nos. 25 and 29 in the table.
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4. Divisorial contractions

Let X be a Fano threefold with rðX Þ ¼ 2. When the both extremal con-
tractions are divisorial, Mori-Mukai’s method works in any characteristic. We
give here the classification using the numerical argument only for the case where
the both contractions are of (E1) type. We can classify them having the con-
tractions of the other types in the similar way.

We denote the two contractions by f ; g:

X�����!f
�����!g

Y1 Y2:

We set L :¼ f �M, where M is the fundamental divisor in Y1. Let E be the
exceptional divisor of g : X ! Y2 and C its center. By Theorem 1.3, Y1 and Y2

are both Fano threefolds of index at least 2. Let F ðYiÞ be the Fano index
of Yi. We may assume that FðY1ÞbFðY2Þ. Since rðXÞ ¼ 2, we can write
E1 zð�KX Þ � uH, where z; u A Q. We set c :¼ ð�KX Þ2:H. Then as the case
before, we have the following equalities:

ð�KY2
Þ3 ¼ ð�KX þ EÞ2:ð�KX Þð4:1Þ

¼ ððzþ 1Þð�KX Þ � uHÞ2:ð�KX Þ

¼ ðzþ 1Þ2ð�KX Þ3 � 2cðzþ 1Þuþ u2ð�KX Þ:H 2;

0 ¼ ð�KX þ EÞ2:Eð4:2Þ

¼ ððzþ 1Þð�KX Þ � uHÞ2:ðzð�KX Þ � uHÞ

¼ zðzþ 1Þ2ð�KX Þ3 � cðzþ 1Þð3zþ 1Þu

þ ð3zþ 2Þu2ð�KX Þ:H 2 � u3H 3;

ð�KY2
Þ:C ¼ ð�KX þ EÞ:E:ð�KX Þð4:3Þ

¼ ððzþ 1Þð�KX Þ � uHÞ:ðzð�KX Þ � uHÞ:ð�KX Þ

¼ zðzþ 1Þð�KX Þ3 � cð2zþ 1Þuþ u2ð�KX Þ:H 2;

ð�KEÞ2 ¼ ð�KX � EÞ2:Eð4:4Þ

¼ 4ðz2ð�KX Þ3 � 2zuð�KX Þ2:H þ u2ð�KX Þ:H 2Þ

¼ �4ðz2ð�KX Þ3 � 2czuþ u2ð�KX Þ:H 2Þ:

As in the previous sections, we see that z A Z>0 and zþ1
u

A Z>0. The following
claim is proved just as Claim 2.5:

Claim 4.1. If u A Z>0, then u ¼ FðY2Þ.
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Suppose first Y1 GP3. Then we have H 3 ¼ 1 and ð�KX Þ:H 2 ¼
F ðY1Þ:H 2 ¼ 4. Moreover, E:H 2 ¼ zð�KX Þ:H 2 � uH 3 implies u A Z>0, hence
u ¼ FðY2Þ. Hence from the equalities (4.1)–(4.4), we obtain the classes of Fano
threefolds having the following invariants:

ðz; uÞ ¼ ð3; 4Þ; ð�KX Þ3 ¼ 20; deg C ¼ 6 if Y2 GP3;

ðz; uÞ ¼ ð2; 3Þ; ð�KX Þ3 ¼ 24; deg C ¼ 5 if Y2 GQ;

ðz; uÞ ¼ ð1; 2Þ; ð�KX Þ3 ¼ 26; deg C ¼ 1 if Y2 GV4;

ðz; uÞ ¼ ð1; 2Þ; ð�KX Þ3 ¼ 30; deg C ¼ 2 if Y2 GV5;

where Q is a quadric threefold in P4, and Vd is a del Pezzo threefold of
degree d. These correspond to the classes Nos. 12, 17, 19 and 22, respectively.

When Y1 GQ, we have H 3 ¼ 2 and ð�KX Þ:H 2 ¼ 6. Moreover, we have
u A Z>0

2
. If u A Z>0, then since u ¼ FðY2Þ, we solve the equalities (4.1)–(4.4) to

obtain the following:

ðz; uÞ ¼ ð2; 3Þ; ð�KX Þ3 ¼ 28; deg C ¼ 4 if Y2 GQ;

ðz; uÞ ¼ ð1; 2Þ; ð�KX Þ3 ¼ 34; deg C ¼ 1 if Y2 GV5:

These correspond to the classes Nos. 21 and 26, respectively.
If u B Z>0 and u A Z>0

2
, it is easy to see that 2u j 3. Hence we have u ¼ 1

2
or 3

2 . However, we obtain ð�KX Þ3 B Z in both cases, which is impossible.
Assume that Y1 GVd1 . We have H 3 ¼ d1 and ð�KX Þ:H 2 ¼ 2d1. Since

E:H 2 ¼ 2d1z� ud1, we have u A Z>0

d1
. If u A Z>0, then u ¼ FðY2Þ ¼ 2. Let d2

be the degree of Y2. Then from (4.1) and (4.2), we have ð�KX Þ3 ¼ 4ðd1 þ d2Þ.
However, by (4.3) we obtain ð�KY2

Þ:C ¼ �20d1 � 4d2, which is a contradiction.
When u B Z>0, the assertion just as Claim 3.2 holds. For each d1 and d2, we
solve the equations (4.1)–(4.4) to see that ð�KX Þ3 is negative or not integer.
Clearly, this is impossible.

Thus we have done for (i)–(iii) of Theorem 0.1.

5. Quadric cone fibrations

Definition. Let f : X ! P1 be a surjective morphism from a smooth
projective threefold X to P1. We say that f is a quadric cone fibration if every
fiber of f is a quadric cone in P3. As an extremal contraction, f is of type
(D2).

By the classification, Fano threefolds having the extremal contraction of type
(D2) are in the following three classes:
No. 18: a double cover of P2 � P1 whose branch locus is a divisor of bidegree

ð2; 2Þ.
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No. 25: the blow-up of P3 along an elliptic curve which is an intersection of two
quadrics.

No. 29: the blow-up of QHP4 along a conic.

Proposition 5.1. Fano threefolds of the classes No. 18 and No. 25 cannot
have a quadric cone fibration structure.

Proof. Consider first the case No. 18. X has two extremal contractions of
types (C1) and (D2). We denote the corresponding morphisms by f : X ! P2

and g : X ! P1. Now assume that g : X ! P1 is a quadric cone fibration.
We have �KX 1 2H þ S, where H ¼ f �OP2ð1Þ and S ¼ g�OP1ð1Þ. Let C be
the curve defined by the locus of vertices of quadric cones. Since S:C ¼ 2,
gjC : C ! P1 is a purely inseparable morphism of degree 2. In particular, C is a
conic. Hence we have H:C ¼ 0 which means C is a fiber of f : X ! P2.

Let j : Z ! X be the blow-up of X along C, and E its exceptional divisor.
Then Z has two conic bundle structures: one of them is f 0 : Z ! F1, which
derives from the conic bundle structure f : X ! P2. The base surface F1

is obtained as the blow-up of P2 at the point f ðCÞ. The other one is
g 0 : Z ! P1 � P1. Its general fiber is the inverse image of two rulings of a
quadric cone. Hence g 0 : Z ! P1 � P1 is a wild conic bundle over P1 � P1.
Since E:m ¼ 1 where m is a reduced fiber of g 0, g 0jE : E ! P1 � P1 is a purely
inseparable morphism. Take H0 :¼ f �1ðlÞ where l is a line on P2 through
f ðCÞ, and set L :¼ j�ðH0Þ. Then L is the inverse image of a ruling on P1 � P1

and covered by lines. Hence H0:S is double rulings of S. However, this means
each fiber of f over every point on l is a double line. This is a contradiction.

Next we consider Fano threefold X in the class No. 25. Suppose that
f : X ! P1 is a quadric cone fibration. Set S :¼ f �OP1ð1Þ. X has the divisorial
contraction of type (E1). We denote the corresponding morphism by g : X ! P3

and its exceptional divisor by E1. Note that gðE1Þ is an elliptic curve which is
an intersection of quadric cones. We have �KX 1E1 þ 2S by the classification.
Let C2 be the curve defined by the locus of vertices of quadric cones. Since
S:C2 ¼ 2, we see that gjC2

: C2 ! P1 is purely inseparable, and gðC2Þ is a line

in P3. We consider the blow-up j : Z ! X along C2, and denote its exceptional
divisor by E2. Then Z has a wild conic bundle structure over P1 � P1 such that
each fiber is the inverse image of two rulings of a quadric cone. We denote it by
h : Z ! P1 � P1. Now we take the blow-down c : Z ! Y of Z contracting E1

to obtain a new Fano threefold Y. This is the blow-up of P3 along a line, hence
belongs to the class No. 33:

r ¼ 3 Z��������! j
???yh

��������!
c

r ¼ 2 X ðNo: 25Þ P1 � P1 Y ðNo: 33Þ��������!g

��������!

r ¼ 1 P3:
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We denote the inverse image of a ruling of P1 � P1 by H, and set C1 :¼ cðE1Þ.
We have �KZ 1 2H þ E1 � E2. cðHÞ is a quadric in Y, hence a non-normal del
Pezzo surface of degree 2 containing C1. We see that H is smooth along E1jH as
in the previous section. On the other hand, since the normalization ~HH of H is a
smooth P1-bundle by Lemma 2.3, it is of type (d) in Theorem 1.4. It is easy to
see that an elliptic curve of degree 4 must intersect the inverse image of the non-
normal locus. Hence we obtain a contradiction. r

We have an example of Fano threefolds of the class No. 29 such that its
general fiber is a quadric cone.

Example 5.2. Let Y be a quadric threefold in P4 defined by

x2
0 þ x1x2 þ x3x4 ¼ 0:

Then every hyperplane section derived from a hyperplane through the point
½1; 0; 0; 0; 0� is a quadric cone. In particular, the smooth conic defined by

C: x2
0 þ x1x2 ¼ 0; x3 ¼ x4 ¼ 0

is the intersection of one-dimensional family of quadric cones. Let f : X ! Y
be the blow-up along C. Then X is a Fano threefold and has a del Pezzo
fibration with a singular general fiber, namely, a quadric cone.

Example 5.3. We have also a new example of Fano threefolds having a
wild conic bundle structure. Let Y be a quadric threefold defined in Example
5.2, and C1 and C2 smooth conics defined by

C1: x2
0 þ x1x2 ¼ 0; x3 ¼ x4 ¼ 0 and

C2: x2
0 þ x3x4 ¼ 0; x1 ¼ x2 ¼ 0;

respectively. Note that C1;C2 are disjoint. Let f : X ! Y be the blow-up along
C1 and C2. Then X has a wild conic bundle structure over P1 � P1. It is easy
to see that X is a Fano threefold with rðXÞ ¼ 3, and ð�KX Þ3 ¼ 10.
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