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A GENERALIZATION OF WILF’S FORMULA
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Abstract

A remarkable infinite product formula was recently posed as a problem by Wilf

[6]. Subsequently, Choi and Seo [2] proved Wilf ’s formula as well as three other

analogous product formulas. The main object of this sequel to these earlier works is to

present several general infinite product formulas which include, as their special cases, the

aforementioned product formulas of Wilf [6] and Choi and Seo [2]. Some other related

results, involving the Riemann Zeta function, are also considered briefly.

1. Introduction

In 1997, Wilf [6] posed as a problem the following elegant infinite product
formula which contains some of the most important mathematical constants such
as p, e and the Euler-Mascheroni constant g defined by Equation (6) below:
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Subsequently, Choi and Seo [2] proved (1) as well as three other similar product
formulas by making use of well-known infinite product formulas for circular and
hyperbolic functions and the familiar Stirling formula:
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Here, in this sequel to the works of Wilf [6] and Choi and Seo [2], we present
the following two general infinite product formulas which include Wilf ’s formula
(1) and other similar formulas in [2] as their special cases:
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2. Derivation of the product formulas (3) and (4)

We begin by letting

Aðp; qÞ :¼
Yy
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and take logarithms on both sides of (5). Then, using the Euler-Mascheroni
constant g defined by
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we obtain
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which, upon applying Stirling’s formula (2) to the last summation, yields
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Now we recall the infinite product formula of cosh z:
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If we set z ¼ ap in (8) and take logarithms on both sides of the resulting equa-
tion, and use the following version of Stirling’s formula (2):
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we find that
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Combining (7) and (10), we obtain
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In a similar manner, if we consider the infinite product formula of sinh z
instead of cosh z in (8), we also have
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þ lim
n!y

�p log nþ
Xn
j¼1

logð j2 þ pj þ qÞ �
Xn
j¼1

logð j2 þ b2Þ
" #

:

Finally, by setting

ðp; qÞ ¼ 1; a2 þ 1

4
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in (11) and (12), respectively, we arrive at the desired formulas (3) and (4).
We note that the special case of (3) when a ¼ 1=2 leads to Wilf ’s formula

(1). Other interesting special cases of (3) and (4) include all of the afore-
mentioned results of Choi and Seo [2].

3. Further remarks and observations

Taking logarithms on both sides of (3) and (4), and using the Riemann Zeta
function zðsÞ defined by
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together with the Maclaurin expansion of logð1þ xÞ, we obtain the following
interesting closed-form evaluation of two families of series involving the Riemann
Zeta function:
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Just as it has been observed earlier (cf., e.g., [1], [3], and [4]; see also [5]), the
subject of closed-form summation of series involving the Riemann Zeta function
can be traced back to an over two-century-old theorem of Christian Goldbach
(1690–1764).
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