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Abstract Let R be an affine k-domain over the field k. The paper’s main result is that

if R admits a nontrivial embedding in a polynomial ringK[s] for some field K contain-

ing k, thenR can be embedded in a polynomial ring F [t]which extendsR algebraically.

This theorem can be applied to subrings of a ring which admits a nonzero locally nilpo-

tent derivation. In this way, we obtain a concise new proof of the cancellation theorem

for rings of transcendence degree one for fields of characteristic 0.

1. Introduction

If F ⊂ E are fields and x ∈ E, then the subfield of E generated by F and x is

denoted by F (x). If x is transcendental over F , then F (x) is isomorphic to the

field of rational functions in one variable over F , and we write F (x)∼= F (1). In

his 1967 paper, Nagata [15] proved the following fundamental result for fields.

THEOREM 1.1 ([15, THEOREM 2] AND [17, THEOREM 5.2])

Let k,K,L be fields such that

(a) k ⊂K and k ⊂ L⊂K(1);

(b) K is finitely generated over k;

(c) L �⊂K.

Then there exists a finite algebraic extension of the form L⊂M (1) for some field

M containing k.

This result extends the famous theorem of Lüroth, which asserts that if k ⊂ L⊂
k(x) are fields with k �= L and x transcendental over k, then there exists y ∈ k(x)

with L = k(y). By combining the theorems of Lüroth and Nagata, we get an

even stronger statement for fields of transcendence degree one over k (see the

Appendix).

We consider an analogous situation for integral domains. The polynomial

ring in one variable x over the field F is denoted by F [x] = F [1]. For the integral

domain R, we seek criteria to determine when R = F [1] or when R ⊂ F [1] with

F [1] algebraic over R. Our main result is Theorem 2.1, which may be regarded

as an affine version of Nagata’s theorem:
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Let k be a field, and let R be an affine k-algebra. Suppose that there exists a

field K with R ⊂K[1] and R �⊂K. Then there exists a field F and an algebraic
extension R⊂ F [1].

This result is of particular interest in the setting of locally nilpotent derivations,

where we assume that the ground field k is of characteristic 0. If an integral

k-domain B admits a nonzero locally nilpotent derivation D, then B ⊂ K[s],

where K is the field of fractions of the kernel of D and s is a local slice. Thus,

any affine subalgebra R ⊂ B not contained in the Makar-Limanov invariant of

B is isomorphic to a nontrivial subring of F [s] for some field F , where F [s] is

algebraic over R.

For rings of transcendence degree one over k, Theorem 3.1 gives an even

stronger conclusion.

Let k be a field, and let R be a k-algebra with tr.degk R= 1. Suppose that there

exists a field K with R ⊂ K[1] and R �⊂ K. Then R is k-affine and there exists

a field F algebraic over k with R ⊂ F [1]. If k is algebraically closed, then there
exists t ∈ frac(R) with R⊂ k[t].

Abhyankar, Eakin, and Heinzer [1] proved that if R,S are integral domains of

transcendence degree one over a field k such that the polynomial rings R[x1, . . . ,

xn] and S[y1, . . . , yn] are isomorphic k-algebras, then R and S are isomorphic.

In Section 4, we apply Theorem 3.1, together with the well-known theorems of

Seidenberg and Vasconcelos on derivations, to obtain a short proof of this result

in the case in which k is of characteristic 0. Makar-Limanov [14] gave a proof of

this result for k =C, and we follow his idea to use the Makar-Limanov invariant.

Other proofs are given in [5] for perfect fields and in [6] for the case in which k

is algebraically closed.

1.1. Background
Lüroth’s theorem was proved by Lüroth [13] for the field k = C in 1876 and

for all fields by Steinitz [22] in 1910. One generalization states that if k ⊂ L ⊂
k(x1, . . . , xn) and L is of transcendence degree one over k, then L= k(y). This

was proved by Gordan [10] for k = C in 1887 and for all fields by Igusa [12]

in 1951; other proofs appear in [15] and [20]. In 1894, Castelnuovo [2] showed

that if C⊂ L⊂C(x1, . . . , xn) and L is of transcendence degree two over C, then

L = C(y1, y2). Castelnuovo’s result does not extend to nonalgebraically closed

ground fields or to fields L of higher transcendence degree. An excellent account

of ruled fields and their variants can be found in [17], including the theorem of

Nagata [17, Theorem 5.2].

For polynomial rings, Evyatar and Zaks [7] showed that if R is a PID and

k ⊂ R ⊂ k[x1, . . . , xn], then R = k[1]; Zaks [24] generalized this to the case in

which R is a Dedekind domain. Abhyankar, Eakin, and Heinzer [1, (2.5)] showed

that if k ⊂ R ⊂ k[x1, . . . , xn] and R is of transcendence degree one over k, then

R is isomorphic to a subring of k[1]. Theorem 3.1 below generalizes these earlier

results. It should be noted that Makar-Limanov [14, Lemma 14] proved a result

equivalent to Theorem 3.1 for the field k =C, which is stated in the language of

locally nilpotent derivations (see also [5, Lemma 5.3] and [6, Lemma 4.2]).
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The case when R is normal is of particular interest: If k ⊂ R ⊂ k[n] and R

is normal of transcendence degree one over k, then R= k[1]. This was shown by

Cohn [3, Proposition 2.1] for n= 1, and in the stated form by Abhyankar, Eakin,

and Heinzer [1, (2.6), (2.7)].

One generalization deals with the case where the field k is replaced by a

unique factorization domain (UFD). Abhyankar, Eakin, and Heinzer [1, Theo-

rem 4.1] treat this case: If, for some integer n≥ 1, A⊂D ⊂A[n] are UFDs such

that the transcendence degree of D over A is one, then D = A[1]. See also [19,

Corollary 3.4] and [1, Proposition 4.8]. Connell and Zweibel [4, Theorem 4.1]

present what they call “an affine version of Lüroth’s theorem,” namely: If A is a

UFD and A⊂B ⊂A[x] =A[1] for a ring B, then frac(B)∩A[x] =A[v] for some

v ∈A[x], where frac(B) denotes the field of fractions of B. The authors state that

their result “is just an abstraction of what is proved in the proof of Theorem 2”

in the paper of Formanek [8].

The Makar-Limanov invariant of a commutative ring (defined below) was

introduced by Makar-Limanov in the mid-1990s, and he called it the ring of

absolute constants. It is an important invariant in the study of affine rings, affine

varieties, and their automorphisms.

1.2. Preliminaries
If B is an integral domain, then frac(B) is the quotient field of B, and B[n] is the

polynomial ring in n variables over B. Given f ∈B, Bf denotes the localization

B[1/f ]. The set of derivations D :B →B is Der(B).

If A⊂ B is a subring, then the transcendence degree of B over A, denoted

tr.degAB, will mean the transcendence degree of frac(B) over frac(A). The set

of elements of B algebraic over A is denoted by AlgAB.

Let k be a field of characteristic zero, and let B be an integral domain

containing k. The set of k-derivations D :B →B is denoted by Derk(B), and D is

said to be locally nilpotent if, for each b ∈B, there exists n ∈N with Dnb= 0. The

set of locally nilpotent derivations of B is denoted by LND(B). If D ∈ LND(B)

is nonzero and A is the kernel of D, then A is algebraically closed in B and

tr.degA(B) = 1.

The Makar-Limanov invariant of B is the intersection of all kernels of locally

nilpotent derivations of B, denoted ML(B). Note that ML(B) is a k-algebra

which is algebraically closed in B, and note that any automorphism of B maps

ML(B) into itself.

An element s ∈B is a local slice of D if D2s= 0 and Ds �= 0. Note that every

nonzero element of LND(B) admits a local slice. If s ∈ B is a local slice of D,

then

(1) BDs =ADs[s] = (ADs)
[1].

This implies the following property: IfDf ∈ fB for some f ∈B, thenDf = 0. The

reader is referred to [9] for further details regarding locally nilpotent derivations.

We also need the following.
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PROPOSITION 1.1 ([16, PROPOSITION 5.1.2])

Let k be a field, and let A be a commutative k-algebra. Then, for any field exten-

sion L/k, A is finitely generated over k if and only if L⊗kA is finitely generated

over L.

2. Main theorem

For a field K, the polynomial ring K[s] = K [1] is naturally Z-graded over K,

where s is homogeneous of degree one. Let deg be the associated degree function

in s over K. A subring R⊂K[s] is homogeneous if the Z-grading restricts to R.

LEMMA 2.1

Suppose that K is a field, and suppose that R ⊂K[s] =K [1] is a homogeneous

subring with R �⊂ K. Let L = frac(R) ∩ K, and let L̂, K̂ denote the algebraic

closures of L and K, respectively. Then there exist c ∈ K̂ and integer d≥ 1 such

that R⊂ L̂[csd] and L̂[csd] is algebraic over R.

Proof

Define the integer

d= gcd{deg r | r ∈R,r �= 0}.

Let homogeneous r ∈R of positive degree be given. Then there exist κ ∈K and

positive e ∈ Z with r = κsde. Let c ∈ K̂ be such that ce = κ. Then r = (csd)e.

If ρ ∈ R is any other homogeneous element of positive degree, then ρ =

(c′sd)e
′
for c′ ∈ K̂ and positive e′ ∈ Z. We have that

re
′

ρe
=

((csd)e)e
′

((c′sd)e′)e
=
( c

c′

)ee′

∈ L ⇒ c

c′
∈ L̂ ⇒ L̂[c′sd] = L̂[csd].

It follows that R⊂ L̂[csd]. �

THEOREM 2.1

Let k be a field, and let R be an affine k-algebra. Suppose that there exists a

field K with R ⊂K [1] and R �⊂K. Then there exist a field F and an algebraic

extension R⊂ F [1].

Proof

Suppose that R⊂K[s] =K [1]. For each g ∈K[s], let ḡ denote the highest-degree

homogeneous summand of g as a polynomial in s. Define the set

R̄= {r̄ | r ∈R,r �= 0}.

Then k[R̄] is a homogeneous subalgebra of K[s] not contained in K.

By Lemma 2.1, if L= frac(k[R̄]) ∩K and if L̂, K̂ are the algebraic closures

of L and K, respectively, then

(2) k[R̄]⊂ L̂[csd] (c ∈ K̂, d≥ 1).
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By hypothesis, there exist w1, . . . ,wm ∈ R (m≥ 1) such that R = k[w1, . . . ,

wm]. Given i, assume that wi =
∑ni

j=0 cijs
j , where cij ∈K. Define A ⊂ K̂ and

B ⊂ K̂[s] by

A= L̂[c, cij | 1≤ i≤m,0≤ j ≤ ni] and B =A[s] =A[1].

Then R ⊂ B, A is finitely generated over L̂, and the Jacobson radical of A is

trivial. Choose a maximal ideal m of A not containing c.

If R∩mB �= (0), then let nonzero r ∈R∩mB be given. Since mB =m[s], we

have r =
∑

0≤i≤e ais
i, where ai ∈m for each i. Note that e≥ 1, since L̂∩m= (0).

Therefore, by (2), there exist ε≥ 1 and nonzero λ ∈ L̂ such that

r̄ = aes
e = λ(csd)ε.

But then c ∈m, a contradiction. Therefore, R ∩mB = (0).

Let π :B →B/mB be the canonical surjection of L̂-algebras, noting that

B/mB = (A/mA)
[
π(s)

]
= L̂[1].

Since π(csd) = π(c)π(s)d, where π(c) �= 0, we see that π|R is a degree-preserving

isomorphism. It follows that R is a subring of L̂[1] via π.

It remains to show thatR and L̂[1] have the same transcendence degree over k.

Since R⊂ L̂[1], it will suffice to show that tr.degk L̂
[1] ≤ tr.degkR. By Lemma 2.1,

we see that tr.degk L̂
[1] = tr.degk k[R̄], so it will suffice to show that tr.degk k[R̄]≤

tr.degkR.

Let n= dimkR, and let r1, . . . , rn+1 ∈R be given. Then there exists a poly-

nomial h ∈ k[x1, . . . , xn+1] = k[n+1] with h(r1, . . . , rn+1) = 0. If k[x1, . . . , xn+1] is

Z-graded in such a way that each xi is homogeneous and the degree of xi is deg ri,

then H(r̄1, . . . , r̄n+1) = 0, where H is the highest-degree homogeneous summand

of h. We have thus shown that any subset of n+ 1 elements in a generating set

for k[R̄] is algebraically dependent over k. Therefore, the transcendence degree

of k[R̄] over k is at most n. This completes the proof of the theorem. �

3. Rings of transcendence degree one

THEOREM 3.1

Let k be a field, and let R be a k-algebra with tr.degkR= 1. Suppose that there

exists a field K with R ⊂K [1] and R �⊂K. Then R is k-affine and there exists

a field F algebraic over k with R ⊂ F [1]. If k is algebraically closed, then there

exists t ∈ frac(R) with R⊂ k[t].

Proof

Suppose that R⊂K[s] =K [1], and let deg be the associated degree function in

s over K.

Consider first the case in which k is algebraically closed. The set

Σ := {degw |w ∈R,w �= 0} ⊂N

is a semigroup and is therefore finitely generated as a semigroup. Let w1, . . . ,wm ∈
R be such that Σ = 〈degw1, . . . ,degwm〉, and define S = k[w1, . . . ,wm] ⊂ R.
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Then, given v ∈ R, there exists u ∈ S such that degu = deg v. Assume that

deg v ≥ 1.

As in the preceding proof, since u and v are algebraically dependent over k, ū

and v̄ are also algebraically dependent over k. Since u and v have the same degree,

there exists P ∈ k[x, y] = k[2] which is homogeneous relative to the standard Z-

grading of k[x, y] such that P (ū, v̄) = 0. Write P (x, y) =
∏

1≤i≤�(αix+βiy), where

	 is a positive integer and αi, βi ∈ k∗ (1≤ i≤ 	). Then αiū+ βiv̄ = 0 for some i.

Therefore, deg(αiu+ βiv) < deg v for some i. By induction on degrees, we can

assume that αiu+ βiv ∈ S, which implies that v ∈ S, and R= S. Therefore, R is

finitely generated over k when k is algebraically closed.

For general k, let k̂ and K̂ denote the algebraic closures of k and K, respec-

tively. Set R̂= k̂⊗kR. Then tr.degk̂ R̂= 1, R̂⊂ K̂ [1], and R̂ �⊂ K̂. By what was

shown above, we conclude that R̂ is affine over k̂. Therefore, Proposition 1.1

implies that R is affine over k.

By Theorem 2.1, there exists a field F algebraic over k with R ⊂ F [1]. If k

is algebraically closed, then F = k and k ⊂ R ⊂ k[s] for some s transcendental

over k. If O is the integral closure of R in frac(R), then since k[s] is integrally

closed, we have that k ⊂R⊂O ⊂ k[s]. In this situation, it is known that O = k[θ]

for some θ ∈ k[s] (see [3, Proposition 2.1]). �

COROLLARY 3.1 (SEE [14, LEMMA 14])

Let k be an algebraically closed field of characteristic 0, and let B be a commu-

tative k-domain. Given r ∈B, if r /∈ML(B), then there exists t ∈ frac(Algk[r]B)

such that Algk[r]B ⊂ k[t].

Proof

By hypothesis, there exists D ∈ LND(B) with Dr �= 0. If A = kerD and K =

frac(A), then K⊗kB = K [1] by (1). We therefore have Algk[r]B ⊂ K [1], and

r /∈K. The result now follows by Theorem 3.1. �

Makar-Limanov [14, p. 39] asked whether this result generalizes to rings of tran-

scendence degree two. Let k be an algebraically closed field of characteristic 0,

and let B be a commutative k-domain. Given x, y ∈B, does the implication

Algk[x,y]B ∩ML(B) = k ⇒ Algk[x,y]B ⊂ k[2]

hold?

EXAMPLE 3.1

Let k and K be fields with k ⊂K, where K = k[α] is a simple algebraic extension

of k, and [K : k]≥ 2. Define

R= k[u, v]⊂K[s] =K [1],

where u= αs2 and v = αs3. Since s= v/u and α= u3/v2, we see that frac(R) =

K(s). If R ⊂ k[t] for t ∈ frac(R), then k(t) = frac(R) =K(s), which is not pos-

sible. Therefore, the ring R cannot be embedded in k[1]. This shows that the
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hypothesis that the field k is algebraically closed is necessary in the last state-

ment of Theorem 3.1.

EXAMPLE 3.2

As an illustration of Corollary 3.1, let k[x, y] = k[2], and write k[x, y] =
⊕

i≥0 Vi,

where Vi is the vector space of binary forms of degree i over k. Define D ∈
LND(k[x, y]) by D = x ∂

∂y . Then D is linear, meaning that D(Vi)⊂ Vi for each i.

Therefore, if B = k[V2, V3], then D restricts to B. Let R be the algebraic closure

of k[y2] in B, noting that D(y2) �= 0. Then R= k[y2, y3] and frac(R) = k(y).

4. Cancellation theorem for rings of transcendence degree one

4.1. Integral extensions and the conductor ideal
DEFINITION 4.1

Let A and B be integral domains with A⊂B. The conductor of B in A is

CA(B) = {a ∈A | aB ⊂A}.

If O is the integral closure of A in frac(A), then the conductor ideal of A is

CA(O).

Note that CA(B) is an ideal of both A and B, and is the largest ideal of B

contained in A. The following two properties of the conductor are easily verified:

(C.1) CA[n](B[n]) = CA(B) ·B[n] for every n≥ 0;

(C.2) DCA(B)⊂ CA(B) for every D ∈Der(B) restricting to A.

LEMMA 4.1

Let k be a field, let A be an integral domain containing k, and let C⊂A be the

conductor ideal of A. If A is affine over k, then C �= (0).

Proof

Since A is affine over k, its normalization O is also affine over k, and is finitely

generated as an A-module (see [11, Chapter I, Theorem 3.9A]). Let {ω1, . . . , ωn}
be a generating set for O as an A-module, and let nonzero a ∈ A be such that

aω1, . . . , aωn ∈A. Then a ∈ C. �

THEOREM 4.1 (SEIDENBERG [21])

Let A be a Noetherian integral domain containing Q, and let O be the integral

closure of A in frac(A). Then every D ∈Der(A) extends to O.

THEOREM 4.2 (VASCONCELOS [23])

Let A and A′ be integral domains containing Q with A⊂A′, where A′ is an inte-

gral extension of A. If D ∈ LND(A) extends to D′ ∈Der(A′), then D′ ∈ LND(A′).
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4.2. The theorem of Abhyankar, Eakin, and Heinzer
THEOREM 4.3 (SEE [1, (3.3)])

Let k be a field, and let R,S be integral k-domains of transcendence degree one

over k. If R[n] ∼=k S
[n] for some n≥ 0, then R∼=k S.

Proof

Characteristic k = 0. Since R is algebraically closed in R[n], we have that

Algk(R
[n]) = Algk(R).

Let α :R[n] → S[n] be an isomorphism of k-algebras. If k′ =Algk(R), then α(k′) =

Algk(S), since S is algebraically closed in S[n]. Therefore, identifying k′ and

α(k′), we can view R and S as k′-algebras, and α as a k′-isomorphism. It thus

suffices to assume that k is algebraically closed in R.

Since ML(R[n]) ⊂ ML(R), we see that ML(R[n]) is an algebraically closed

subalgebra of R. Therefore, either ML(R[n]) =R or ML(R[n]) = k.

Case 1: ML(R[n]) =R. In this case, we also must have ML(S[n]) = S. Since

α maps the Makar-Limanov invariant onto itself, we conclude that α(R) = S.

Case 2: ML(R[n]) = k. We will show that R= k[1] in this case. It suffices to

assume that k is an algebraically closed field: if k̂ is the algebraic closure of k

and R̂= k̂⊗kR, then ML(R̂[n]) = k̂. If this implies R̂= k̂[1], then R= k[1]. (All

forms of the affine line over a perfect field are trivial; see [18].)

So assume that k is algebraically closed. By hypothesis, there exists D ∈
LND(R[n]) with DR �= 0. If O is the integral closure of R in frac(R), then O[n] is

the integral closure of R[n] in frac(R[n]). By property (C.1), if C is the conductor

ideal of R, then C · O[n] is the conductor ideal of R[n].

Let s be a local slice of D, and let K = frac(kerD). Then by (1), R⊂K[s]

and R �⊂K. By Theorem 3.1, R is k-affine, and there exists t ∈ frac(R) such that

O = k[t]. By the theorems of Seidenberg [21] and Vasconcelos [23], D extends to a

locally nilpotent derivation of O[n]; and by property (C.2), D(C · O[n])⊂ C · O[n].

By Lemma 4.1, C �= 0. Since C is an ideal of k[t], there exists a nonzero h ∈R

with C = h · k[t]. Thus, C · O[n] = h · O[n] and D(h · O[n]) ⊂ h · O[n]. Therefore,

Dh= 0. If h /∈ k, then k[h]⊂ kerD implies that R⊂ kerD, which is not the case.

Therefore, h ∈ k∗ and R= k[t]. By symmetry, S = k[1]. �

REMARK 4.1

The Makar-Limanov invariant can be defined for k-algebras over a field k of any

characteristic. This was done in [5], where it is defined to be the intersection of all

invariant rings of actions of the additive group of k on the ring. This is equivalent

to the definition given above when the characteristic of k is zero. Crachiola and

Makar-Limanov [6, Corollary 3.2] use this approach to prove Theorem 4.3 in the

case in which k is algebraically closed. However, the theorems of Seidenberg [21]

and Vasconcelos [23] are not available in positive characteristic, since they are

valid for Q-algebras.
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Appendix

Combining the theorems of Lüroth [13] and Nagata [15] gives the following corol-

lary.

COROLLARY A.1

Suppose that k and L are fields with k ⊂ L, where k is algebraically closed, L is

finitely generated over k, and tr.degk L= 1. If there exists a field E containing

k such that L⊂E(1) and L �⊂E, then L= k(1).

Proof

Assume that L⊂E(s) =E(1). Let α1, . . . , αn ∈ L be such that L= k(α1, . . . , αn).

Choose fi(s), gi(s) ∈ E[s] such that αi = fi/gi, and let K be the subfield of E

generated by the coefficients of fi and gi, 1≤ i≤ n. Then K is finitely generated

over k, and L⊂K(s). By Nagata’s theorem [15], there exists a finite algebraic

extension L⊂M (1) for some fieldM containing k. Since the transcendence degree

of L over k is one, we see that M is algebraic over k, that is, M = k. The corollary

now follows by Lüroth’s theorem [13]. �

We conclude by asking if the analogue of Theorem 2.1 holds for Laurent polyno-

mial rings. Let k be a field, and let R be an affine k-algebra. Suppose that there

exists a field K with R⊂K [±1] and R �⊂K. Does it follow that there exist a field

F and an algebraic extension R⊂ F [±1]?
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