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Abstract In this paper, we consider terminal reflexive polytopes arising from finite

directed graphs and study the problem of deciding which directed graphs yield smooth

Fano polytopes (SFPs). We show that any centrally symmetric or pseudosymmetric

SFPs can be obtained fromdirected graphs.Moreover, by using directed graphs, we pro-

vide new examples of SFPs whose corresponding varieties admit Kähler–Einstein met-

rics.

Introduction

Let P ⊂ Rd be an integral convex polytope, that is, a convex polytope whose

vertices have integer coordinates, of dimension d. We say that P is a Fano polytope

if the origin of Rd is a unique integer point in the interior of P .

• A Fano polytope is called terminal if every integer point on the boundary

is a vertex.

• A Fano polytope is called reflexive if its dual polytope is integral. Here, the

dual polytope of a Fano polytope P is the convex polytope consisting of x ∈Rd

such that 〈x, y〉 ≤ 1 for all y ∈ P , where 〈x, y〉 is the usual inner product of Rd.

When P is reflexive, the corresponding toric Fano variety is Gorenstein.

• When P is simplicial, the corresponding toric Fano is Q-factorial.

• A Fano polytope is called smooth if the vertices of each facet form a Z-basis

of Zd.

In particular, smooth Fano polytopes (SFPs) are always terminal, reflexive, and

simplicial.

Fano polytopes have been studied by many people. Øbro [13] constructed

the so-called SFPs-algorithm, which yields the complete classification list of the

smooth Fano polytopes of dimension d for any given positive integer d. Casagrande

[2] proved that the number of vertices of a simplicial reflexive polytope is at most

3d when d is even and at most 3d− 1 when d is odd. Nill and Øbro [11] classified

the simplicial reflexive polytopes of dimension d with 3d− 1 vertices. Reflexive

polytopes of dimension d were classified for d≤ 4 by Kreuzer and Skarke [7], [8].
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The study of the classification of Fano polytopes of dimension 3 was done by

Kasprzyk [5], [6]. The combinatorial conditions for what it implies to be terminal

and canonical are explained in Reid [16].

In this paper, given a finite directed graph G, we associate a terminal reflex-

ive polytope PG, which has been already defined in [15] when G is a tournament

graph and in [9] when G is a symmetric directed graph. We study the char-

acterization problem of directed graphs which yield SFPs (see Theorem 2.2).

Moreover, we show that any centrally symmetric or pseudosymmetric SFP can

be obtained from a directed graph (see Theorem 3.3). In addition, as an appli-

cation of Theorem 2.2, we provide new examples of SFPs whose corresponding

varieties admit Kähler–Einstein metrics (see Example 4.4). As we see in many

examples in Section 4, smooth Fano polytopes arising from directed graphs are

helpful to understand and useful to consider the combinatorics of SFPs.

1. Fano polytopes arising from finite directed graphs

In this section, we construct an integral convex polytope associated with a finite

directed graph and discuss the condition under which the directed graph yields

a Fano polytope. For most parts of this section, we refer to [4], [9], [14], and [15].

Let G= (V (G),A(G)) be a finite directed graph on the vertex set V (G) =

{1, . . . , d} with the arrow set A(G). Here an arrow of G is an ordered pair of two

vertices (i, j), where 1≤ i �= j ≤ d, and the arrow set A(G) of G is the set of all the

arrows of G. In particular, we regard (i, j) and (j, i) as distinct arrows. We also

define an undirected graph G̃ from a directed graph G as follows: G̃ consists of the

vertex set V (G) and the edge set E(G) = {{i, j} ∈ V (G)×V (G) : (i, j) or (j, i) ∈
A(G)}. We call a pair of two vertices without ordering {i, j} ∈E(G) an edge of G.

Throughout this paper, we allow that both (i, j) and (j, i) are simultaneously

contained in A(G) and that G̃ is connected.

DEFINITION 1.1

Let e1, . . . ,ed be the standard basis of Rd. For an arrow �e= (i, j) of G, we define

ρ(�e ) ∈Rd by setting ρ(�e ) = ei − ej . Moreover, we write PG ⊂Rd for the convex

hull of {ρ(�e ) : �e ∈A(G)}.

REMARK 1.2

In [15], PG is introduced for a tournament graph G, which is called the edge

polytope of G, and some properties on PG are studied in [15, Section 1]. Similarly,

in [9, Section 4], PG is defined for a symmetric graph G, which is denoted by P±
G

and is called the symmetric edge polytope of G.

Let H ⊂ Rd denote the hyperplane defined by the equation x1 + · · ·+ xd = 0.

Since each integer point of {ρ(�e ) : �e ∈A(G)} lies on H, one has PG ⊂H. Thus,

dim(PG)≤ d−1. First, we discuss the dimension of PG. A sequence Γ = (i1, . . . , il)

of vertices of G is called a cycle if ij �= ij′ for 1≤ j < j′ ≤ l and either (ij , ij+1) or

(ij+1, ij) is an arrow of G for each 1 ≤ j ≤ l, where il+1 = i1. In other words,
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the edges {i1, i2},{i2, i3}, . . . ,{il, i1} form a cycle in G̃. For short, we often

write Γ = (�e1, . . . , �el), where �ej = (ij , ij+1) or �ej = (ij+1, ij) for 1 ≤ j ≤ l. The

length of a cycle is the number of vertices (or edges) forming a cycle. For a

cycle Γ = (�e1, . . . , �el) in G, let Δ
(+)
Γ = {�ej ∈ {�e1, . . . , �el} : �ej = (ij , ij+1)}, and let

Δ
(−)
Γ = {�e1, . . . , �el} \Δ(+)

Γ . A cycle Γ is called nonhomogeneous if |Δ(+)
Γ | �= |Δ(−)

Γ |
and homogeneous if |Δ(+)

Γ |= |Δ(−)
Γ |, where |X| denotes the cardinality of a finite

set X . We note that two arrows (i, j) and (j, i) form a nonhomogeneous cycle of

length 2, although these do not form a cycle in G̃. We also note that every odd

cycle is nonhomogeneous. (Here an odd (resp., even) cycle is a cycle of odd (resp.,

even) length.) The following result can be proved similarly to [14, Proposition 1.3]

and [15, Lemma 1.1].

PROPOSITION 1.3 ([14, PROPOSITION 1.3], [15, LEMMA 1.1])

One has dim(PG) = d− 1 if and only if G contains a nonhomogeneous cycle.

We assume that G has at least one nonhomogeneous cycle.

Next, we investigate directed graphs which define Fano polytopes. Once we

know that PG is a Fano polytope, one can verify that it is terminal and reflexive

(see [4, Lemmas 1.4, 1.5]). The following result can be proved similarly to [9,

Proposition 4.2] and [15, Lemma 1.2].

PROPOSITION 1.4 ([9, PROPOSITION 4.2], [15, LEMMA 1.2])

An integral convex polytope PG ⊂H is a terminal reflexive polytope of dimension

d− 1 if and only if every arrow of G appears in a directed cycle in G, where a

cycle Γ is called a directed cycle if either Δ
(+)
Γ or Δ

(−)
Γ is empty.

Hereafter, we assume that every arrow of G appears in a directed cycle in G.

Notice that, by this condition, G has a nonhomogeneous cycle since every directed

cycle is nonhomogeneous.

EXAMPLE 1.5

Let G be a directed graph on the vertex set {1,2,3} with the arrow set {(1,2),
(2,1), (2,3), (3,1)}. Then G, ρ(�e )’s, and PG are as in Figure 1.

Figure 1.
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We remark that the arrows (1,2), (2,3), (3,1) (resp., the arrows (1,2), (2,1))

form a directed cycle of length 3 (resp., length 2). In the picture of PG, we ignore

the third coordinate of each integer point. Then the convex polytope PG of this

example becomes a smooth (in particular, terminal and reflexive) Fano polytope

of dimension 2.

REMARK 1.6

In [4], terminal reflexive polytopes QP arising from finite partially ordered sets

P are introduced. Let P = {y1, . . . , yd} be a partially ordered set, and let P̂ =

P ∪ {y0, yd+1}, where y0 = 0̂ and yd+1 = 1̂. Then we can regard P̂ as a directed

graph on the vertex set {0,1, . . . , d+ 1} with the arrow set{
(i, j) : yj covers yi

}
.

Identifying 0 with d+ 1 as the same vertex, we obtain a directed graph GP on

the vertex set {1, . . . , d+ 1}. Then QP is nothing but PGP
. Therefore, terminal

reflexive polytopes associated with directed graphs are a natural generalization

of those defined in [4]. We can study these polytopes in Section 2 in a similar

way.

2. When is PG smooth?

In this section, we consider the problem of which directed graphs yield SFPs.

First, we prove the following result.

LEMMA 2.1

(a) Let C = (�e1, . . . , �el) be a cycle in G. If there exists a facet F of PG with

{ρ(�e1), . . . , ρ(�el)} ⊂ F , then C is homogeneous.

(b) Suppose that (i, j) ∈ A(G) and (j, i) ∈ A(G). If ρ((i, j)) is contained in

some facet F of PG, then ρ((j, i)) does not belong to F .

Proof

(a) Let a1x1 + · · · + adxd = 1, where each ai ∈ Q, and denote the equation of

the supporting hyperplane of PG which defines a facet F . Let �ej ∈ {(ij , ij+1),

(ij+1, ij)} for 1≤ j ≤ l, where il+1 = i1. It then follows that

l∑
j=1

(aij −aij+1) =
∑

�ej∈Δ
(+)
C

(aij −aij+1)−
∑

�ej∈Δ
(−)
C

(aij+1 −aij ) = |Δ(+)
C |− |Δ(−)

C |= 0.

Hence, C must be homogeneous.

(b) Similarly, we set a1x1+ · · ·+adxd = 1 as above and suppose that ρ((i, j))

lies on this supporting hyperplane. Then one has ai−aj = 1. Thus, aj −ai =−1.

This implies that ρ((j, i)) cannot be contained in the same supporting hyperplane.

�
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Next, we define two pieces of notation, μC and distG. Let C = (�e1, . . . , �el) be a

homogeneous cycle in G of length l, where �ej is either (ij , ij+1) or (ij+1, ij) for

1≤ j ≤ l with il+1 = i1. Then there exists a unique function

μC : {i1, . . . , il}→ Z≥0

such that

• μC(ij+1) = μC(ij)−1 (resp., μC(ij+1) = μC(ij)+1) if �ej = (ij , ij+1) (resp.,

�ej = (ij+1, ij)) for 1≤ j ≤ l;

• min({μC(i1), . . . , μC(il)}) = 0.

For two distinct vertices i and j of G, the distance from i to j, denoted by

distG(i, j), is the length of the shortest directed path in G from i to j. If there

exists no directed path from i to j, then the distance from i to j is defined to be

infinity.

THEOREM 2.2

Let G be a connected directed graph on the vertex set {1, . . . , d} satisfying that

every arrow of G appears in a directed cycle in G. Then the following conditions

are equivalent.

(a) PG is simplicial.

(b) PG is smooth.

(c) G possesses no homogeneous cycle C = (�e1, . . . , �el) such that

(1) μC(ia)− μC(ib)≤ distG(ia, ib)

for all 1≤ a, b≤ l, where �ej is (ij , ij+1) or (ij+1, ij) for 1≤ j ≤ l with il+1 = i1.

Proof

(a) ⇒ (c). Suppose that G possesses a homogeneous cycle C satisfying (1), and

let C = (�e1, . . . , �el) be such a cycle, where �ej is either (ij , ij+1) or (ij+1, ij) for

1 ≤ j ≤ l with ij+1 = i1. Then one has
∑l

j=1 qjρ(�ej) = (0, . . . ,0), where qj = 1

(resp., qj = −1) if �ej = (ij , ij+1) (resp., if �ej = (ij+1, ij)) for 1 ≤ j ≤ l. Since

C is homogeneous, one has
∑l

j=1 qj = 0, which implies that the integer points

ρ(�e1), . . . , ρ(�el) are not affinely independent.

Let vj = ρ(�ej) for 1 ≤ j ≤ l. To show that PG is not simplicial, it suf-

fices to find a face of PG containing v1, . . . , vl. Let a1, . . . , ad be integers. We

write H⊂ Rd for the hyperplane defined by the equation a1x1 + · · ·+ adxd = 1

and H(+) ⊂ Rd for the closed half-space defined by the inequality a1x1 + · · ·+
adxd ≤ 1. We will show that for suitable a1, . . . , ad, we make H a supporting

hyperplane of a face F of PG satisfying {v1, . . . , vl} ⊂ F and PG ⊂H(+).

First, let aij = μC(ij) for 1≤ j ≤ l. It then follows easily that vj lies on the

hyperplane defined by the equation
∑l

j=1 aijxij = 1.

Next, we determine ak with k ∈A= {1, . . . , d} \ {i1, . . . , il}. We set

ak =max
({

aij − distG(ij , k)
}
∪ {0}

)
.
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In particular, we have ak = 0 when there is no ij with distG(ij , k)<∞. Here, we

notice that one has

(2) ak ≤ a′k,

where a′k =min({aij′ + distG(k, ij′)}). In fact, if ak > a′k, then there are ij and

ij′ such that distG(ij , k) <∞, distG(k, ij′) <∞, and aij − distG(ij , k) > aij′ +

distG(k, ij′). Since distG(ij , k) + distG(k, ij′)≥ distG(ij , ij′), one has that

μC(ij)− μC(ij′) = aij − aij′ > distG(ij , k) + distG(k, ij′)≥ distG(ij , ij′).

This contradicts (1).

Now we finish determining the integers a1, . . . , ad. Since each vj lies on H,

to show that F is defined by H, it suffices to show that PG ⊂H(+).

Let (i, j) ∈ A(G). When i ∈ {i1, . . . , il} and j ∈ A, one has that aj ≥
max({ai − 1,0}) by the definition of aj . Hence, ai − aj ≤ 1. If i ∈ A and j ∈
{i1, . . . , il}, then one has that ai ≤ aj + 1 by (2). Hence, ai − aj ≤ 1. Let

B =
{
k ∈A : there is ij with distG(ij , k)<∞

}
and

C =
{
k ∈A : there is ij′ with distG(k, ij′)<∞

}
.

Again, let (i, j) ∈A(G). In each of the nine cases below, by a routine computation,

we can easily show that ρ((i, j)) is in H(+).

(1) i ∈B \C and j ∈B \C; (2) i ∈C \B and j ∈C \B;

(3) i ∈C \B and j ∈B \C; (4) i ∈C \B and j ∈B ∩C;

(5) i ∈C \B and j /∈B ∪C; (6) i ∈B ∩C and j ∈B \C;

(7) i ∈B ∩C and j ∈B ∩C; (8) i /∈B ∪C and j ∈B \C;

(9) i /∈B ∪C and j /∈B ∪C.

For example, a routine computation of case (1) is as follows. When ai = 0,

since aj ≥ 0, one has that ai − aj ≤ 0 ≤ 1. When ai > 0, since aj ≥ ai − 1, one

has that ai − aj ≤ 1.

Therefore, it follows that H is a supporting hyperplane of a face of PG which

is not a simplex.

(c) ⇒ (a). Suppose that PG is not simplicial, that is, PG contains a facet F
which is not a simplex. Let v1, . . . , vn be the vertices of F , where n > d− 1, and

let �e1, . . . , �en be the arrows with vj = ρ(�ej) for 1≤ j ≤ n. We write H⊂ Rd for

the supporting hyperplane a1x1 + · · ·+ adxd = 1 defining F . Since v1, . . . , vn are

not affinely independent, there is (r1, . . . , rn) ∈ Rn with (r1, . . . , rn) �= (0, . . . ,0)

satisfying
∑n

j=1 rj = 0 and
∑n

j=1 rjvj = (0, . . . ,0). By removing rj with rj = 0,

we may assume that
∑n′

j=1 rjvj = (0, . . . ,0), where rj �= 0 for 1 ≤ j ≤ n′ with∑n′

j=1 rj = 0. Let �ej = (ij , i
′
j) with 1≤ ij , i

′
j ≤ d, and let G′ denote the subgraph of

G with the arrow set {�e1, . . . , �en′}. If degG′(ij) = 1 or degG′(i′j) = 1, then rj = 0,

which is a contradiction. (For a graph H and its vertex v, degH(v) denotes

the number of arrows �e in H such that �e looks like (v, v′) or (v′, v).) Thus,
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degG′(ij)≥ 2 and degG′(i′j)≥ 2. By Lemma 2.1(b), since {ρ(�e1), . . . , ρ( �en′)} ⊂ F ,

it cannot happen that (ij , i
′
j) = (i′k, ik) for some 1≤ j �= k ≤ n′. Moreover, since

every vertex in G′ is at least degree 2, G′ is not a tree. Hence, G′ contains a

cycle, which should be homogeneous by Lemma 2.1(a).

Let C = (�e1, . . . , �el) be a homogeneous cycle in G, where �ej is either (ij , ij+1)

or (ij+1, ij) for 1≤ j ≤ l with ij+1 = i1. Our goal is to show that C satisfies the

inequality (1).

Let Γ = (k0, k1, . . . , km) be a directed shortest path in G such that k0 and

km belong to {i1, . . . , il}. On the one hand, since ekj − ekj+1 ∈ PG, one has

akj − akj+1 ≤ 1 for 0≤ j ≤m− 1. Hence, ak0 − akm ≤m= distG(k0, km). On the

other hand, we have ak0 − akm = μC(k0) − μC(km). Thus, μC(k0) − μC(km) ≤
distG(k0, km). Therefore, the required inequality (1) holds.

(a) ⇒ (b). Suppose that PG is simplicial. Then there are just (d−1) vertices

in each facet which are linearly independent. Let M be the ((d− 1)× d)-matrix

whose row vectors v1, . . . , vd−1 ∈ Zd are the vertices of a facet of PG, and let M ′

be the ((d− 1)× (d− 1))-submatrix of M ignoring the dth column of M . From

the theory of totally unimodular matrices (see [17]), the determinant of M ′ is

equal to ±1, which means that PG is smooth.

(b) ⇒ (a). In general, every SFP is simplicial. �

For a directed graph G, we say that G is symmetric if (j, i) belongs to A(G) for

every (i, j) ∈A(G), that is, 2|E(G)|= |A(G)|. Note that, when G is symmetric,

every arrow of G is contained in a directed cycle of length 2, so PG is always a

terminal reflexive polytope.

A connected undirected graph G is called two-connected if the induced sub-

graph with the vertex set V (G)\{i} is connected for any i ∈ V (G). A subgraph is

called a two-connected component of G if it is a maximal two-connected subgraph

in G.

For symmetric directed graphs, we obtain the following.

COROLLARY 2.3

Assume that G is a connected symmetric directed graph. Then the following con-

ditions are equivalent:

(a) PG is simplicial;

(b) PG is smooth;

(c) G̃ contains no even cycle;

(d) every two-connected component of G̃ is either one edge or an odd cycle.

Proof

(a) ⇔ (b). This equivalence follows from Theorem 2.2.

(a) ⇒ (c). Suppose that G̃ possesses an even cycle C of length 2l. Let C =

(ei1 , . . . , ei2l) be a cycle, where ej = {ij , ij+1} for 1≤ j ≤ 2l with i2l+1 = i1. Since

G is symmetric, there are arrows (i2, i1), (i2, i3), (i4, i3), (i4, i5), . . . , (i2l, i2l−1),
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(i2l, i1) in G. We define v1, . . . , v2l ∈Rd by setting

vj =

{
ρ((ij+1, ij)) j = 1,3, . . . ,2l− 1,

ρ((ij , ij+1)) j = 2,4, . . . ,2l.

Then one has that
l∑

j=1

v2j−1 −
l∑

j=1

v2j = (0, . . . ,0).

Thus, v1, . . . , v2l are not affinely independent. Hence, we may show that there is

a face F of PG with {v1, . . . , v2l} ⊂ F .

Now, we have v2j−1 = −ei2j−1 + ei2j and v2j = ei2j − ei2j+1 for 1 ≤ j ≤ l.

Thus, v1, . . . , v2l lie on the hyperplane H ⊂ Rd defined by the equation xi2 +

xi4 + · · ·+ xi2l = 1. In addition, it is clear that ρ(�e ) is contained in H(+) ⊂ Rd

for any arrow �e of G. Hence, H is a supporting hyperplane defining a face F of

PG with {v1, . . . , v2l} ⊂ F . Therefore, PG is not simplicial.

(c) ⇒ (d). We prove this implication by elementary graph theory. Suppose

that there is a two-connected component of G̃ which is neither one edge nor

an odd cycle. Let G′ be such a two-connected subgraph of G̃. Now, an arbitrary

two-connected graph with at least three vertices can be obtained by the following

method: starting from a cycle and repeatedly appending an H-path to a graph H

that has been already constructed (consult, e.g., [19]). Since G′ is not one edge,

G′ has at least three vertices. Thus, there is one cycle C1 and (m − 1) paths

Γ2, . . . ,Γm such that G′ = C1 ∪ Γ2 ∪ · · · ∪ Γm. Since G′ is not an odd cycle, one

has G′ = C1, where C1 is an even cycle, or m> 1. Suppose that m> 1 and C1

is an odd cycle. Let v and w be distinct two vertices of C1 which are intersected

with Γ2. Then there are two paths in C1 from v to w. Since C1 is odd, the parities

of the lengths of two such paths are different. By attaching the path Γ2 to one

or another of these two paths, we can construct an even cycle. Therefore, there

exists an even cycle.

(d) ⇒ (a). Suppose that each two-connected component of G̃ is either one

edge or an odd cycle. Then there is no homogeneous cycle in G. Hence, by

Theorem 2.2, PG is simplicial. �

3. The case where G̃ possesses no even cycle

In this section, we show that every pseudosymmetric SFP can be obtained from

some directed graph whose corresponding undirected graph contains no even

cycle. This includes the case of centrally symmetric SFPs.

Let P ⊂Rd be a Fano polytope.

• We call P centrally symmetric if P =−P = {−α : α ∈ P}.
• We call P pseudosymmetric if there is a facet F of P such that −F is also

its facet. Note that every centrally symmetric polytope is pseudosymmetric.

• A del Pezzo polytope of dimension 2k is a convex polytope

conv
({

±e1, . . . ,±e2k,±(e1 + · · ·+ e2k)
})

,
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whose the corresponding variety is called a del Pezzo variety V 2k. Note that del

Pezzo polytopes are centrally symmetric SFPs.

• A pseudo–del Pezzo polytope of dimension 2k is a convex polytope

conv
(
{±e1, . . . ,±e2k,e1 + · · ·+ e2k}

)
,

whose corresponding variety is called a pseudo–del Pezzo variety Ṽ 2k. Note that

pseudo–del Pezzo polytopes are pseudosymmetric SFPs.

• Let us say that P splits into P1 and P2 if P is the convex hull of two

Fano polytopes P1 ⊂Rd1 and P2 ⊂Rd2 with d= d1+d2; that is, by renumbering

coordinates, we have

P = conv
({

(α1,0), (0, α2) ∈Rd : α1 ∈ P1, α2 ∈ P2

})
.

There is a well-known fact on the characterization of centrally symmetric or

pseudosymmetric SFPs.

THEOREM 3.1 ([18])

Any centrally symmetric SFP splits into copies of the closed interval [−1,1] or a

del Pezzo polytope.

THEOREM 3.2 ([3], [18])

Any pseudosymmetric SFP splits into copies of the closed interval [−1,1] or a

del Pezzo polytope or a pseudo–del Pezzo polytope.

We note that Nill [10] studies pseudosymmetric simplicial reflexive polytopes.

Somewhat surprisingly, we can give the complete characterization of centrally

symmetric or pseudosymmetric SFPs by means of directed graphs.

THEOREM 3.3

(a) Any centrally symmetric SFP is obtained from a symmetric directed

graph whose corresponding undirected graph has no even cycle.

(b) Any pseudosymmetric SFP is obtained from a directed graph whose cor-

responding undirected graph has no even cycle.

Proof

First, we prove (b). Let P be an arbitrary pseudosymmetric SFP of dimension d.

By Theorem 3.2, P splits into P1, . . . ,Pm, which are copies of the closed interval

[−1,1] or a del Pezzo polytope or a pseudo–del Pezzo polytope. Let P1, . . . ,Pm′

be del Pezzo polytopes, let Pm′+1, . . . ,Pm′′ be pseudo–del Pezzo polytopes, and

let Pm′′+1, . . . ,Pm be the closed interval [−1,1]. Then the following easily follow.

• Let, say, P1 be a del Pezzo polytope of dimension 2k1, and let G1 be a

symmetric directed graph with its arrow set

A(G1) =
{
(i, i+ 1), (i+ 1, i) : 1≤ i≤ 2k1

}
∪
{
(1,2k1 + 1), (2k1 + 1,1)

}
.
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Then G1 is an odd cycle, that is, there is no even cycle, so PG1 is smooth by

Corollary 2.3 and we can check that PG1 is unimodularly equivalent to P1.

• Let, say, Pm′+1 be a pseudo–del Pezzo polytope of dimension 2k1, and let

G′
1 be a directed graph with its arrow set

A(G′
1) =A(G1) \

{
(2,1)

}
,

that is, we miss one arrow from G1. Then we can also check that PG′
1
is unimod-

ularly equivalent to Pm′+1.

• A directed graph consisting of only one symmetric edge yields the SFP of

dimension 1, that is, the closed interval [−1,1].

By connecting the above graphs with one vertex, we obtain the directed graph

whose corresponding undirected graph has no even cycle, and this yields the

required SFP P .

Moreover, del Pezzo polytopes and the closed interval [−1,1] are constructed

by symmetric directed graphs. Therefore, by Theorem 3.1, we can also find the

symmetric directed graph G such that G̃ has no even cycle and PG is unimodu-

larly equivalent to P for any centrally symmetric SFP P , proving (a). �

4. Examples of SFPs PG

In this section, we provide some interesting examples of SFPs arising from directed

graphs.

EXAMPLE 4.1

Let G be a directed cycle of length d+1. Then PG is an SFP whose corresponding

toric Fano variety is a d-dimensional projective space Pd. The left-hand side

(resp., right-hand side) of the graph in Figure 2 yields an SFP which corresponds

to P5 (resp., P3 × P3). Here each two-connected component of a directed graph

corresponds to each direct factor of the corresponding toric Fano variety.

EXAMPLE 4.2

(a) When G is a symmetric directed graph without even cycles, PG is an

SFP whose corresponding toric Fano variety is a direct product of copies of P1

or del Pezzo variety V 2k (see Section 3). For example, the left-hand side (resp.,

Figure 2. Directed graphs yielding P
5 and P

3 × P
3.
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Figure 3. Directed graphs yielding V 4 and P
1 × P

1 × V 2.

Figure 4. Directed graphs yielding Ṽ 4 and P
1 × V 2 × Ṽ 2.

right-hand side) of the graph in Figure 3 yields an SFP which corresponds to V 4

(resp., P1 × P1 × V 2).

(b) The left-hand side (resp., right-hand side) of the graph in Figure 4 yields

an SFP which corresponds to Ṽ 4 (resp., P1 × V 2 × Ṽ 2).

EXAMPLE 4.3

In [1], the definition of a so-called symmetric smooth toric Fano variety is given,

which is important from the viewpoint of whether a smooth toric Fano vari-

ety admits a Kähler–Einstein metric, and some examples of symmetric smooth

toric Fano varieties are provided in [1, Examples 4.2–4.4] (see also [12], which

gives examples of nonsymmetric smooth toric Fano varieties admitting a Kähler–

Einstein metric). Note that smooth toric Fano varieties corresponding to centrally

symmetric SFPs and direct products of copies of projective spaces are symmetric.

Let m be a positive integer, and let G1 be a directed graph with arrow set

A(G1) =
{
(1,2), (2,3), . . . , (2m+ 1,2m+ 2), (2m+ 2,1), (1,m+ 2), (m+ 2,1)

}
.

Then PG1 is an SFP of dimension 2m+ 1, which corresponds to the example of

the case with k = 1 described in [1, Example 4.2].

Let G2 be a directed graph with arrow set

A(G2) =A(G1)∪
{
(1,2m+ 3), (2m+ 3,1), (m+ 2,2m+ 3), (2m+ 3,m+ 2)

}
.

Then PG2 is an SFP of dimension 2m+2, which is the example of the case with

k = 1 described in [1, Example 4.3].

EXAMPLE 4.4

By generalizing the above graphsG1 andG2, we obtain a new family of symmetric

smooth toric Fano varieties. For a positive integer m and nonnegative integers p,
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q with p≥ q, let Gm,p,q denote the directed graph on the vertex set {1, . . . ,2m+

p+ q} with arrow set

A(Gm,p,q) =
{
(1,2), (2,3), . . . , (2m+ 1,2m+ 2), (2m+ 2,1)

}
∪
{
(ik, ik+1), (ik+1, ik) : 1≤ k ≤ p

}
∪
{
(j�, j�+1), (j�+1, j�) : 1≤ �≤ q

}
,

where

ik =

⎧⎪⎪⎨⎪⎪⎩
1 if k = 1,

2m+ 1+ k if k = 2, . . . , p,

m+ 2 if k = p+ 1,

and j� =

⎧⎪⎪⎨⎪⎪⎩
1 if �= 1,

2m+ p+ � if �= 2, . . . , q,

m+ 2 if �= q+ 1.

Notice that Gm,1,0 =G1 and Gm,2,1 =G2. It then follows from Theorem 2.2 that

PGm,p,q is an SFP of dimension 2m+ p+ q− 1 if and only if the integers m, p, q

satisfy one of the following conditions:

p+ q is odd and m≥ q > 0 or m≥ p and q = 0.(3)

Here, it is easy to see that PGm,p,q is unimodularly equivalent to the convex hull

of

e1,e2, . . . ,e2m,

−(e1 + e2 + · · ·+ em + e2m+1),−(em+1 + em+2 + · · ·+ e2m − e2m+1),

±e2m+2,±e2m+3, . . . ,±e2m+p,±(e2m+1 + e2m+2 + e2m+3 + · · ·+ e2m+p),

±e2m+p+1,±e2m+p+2, . . . ,±e2m+p+q−1,

±(e2m+1 + e2m+p+1 + · · ·+ e2m+p+q−1).

Then there exists an automorphism σ1 of order 2 defined by

σ1(ei) = ei+m, σ1(em+i) = ei for 1≤ i≤m,

σ1(ej) = −ej for 2m+ 1≤ j ≤ 2m+ p+ q− 1.

There also exists an automorphism σ2 of order m+ 1 defined by

σ2(ei) = ei+1, σ2(em+i) = em+i+1 for 1≤ i≤m− 1,

σ2(em) = −(e1 + · · ·+ em + e2m+1),

σ2(e2m) = −(em+1 + · · ·+ e2m − e2m+1),

σ2(ej) = ej for 2m+ 1≤ j ≤ 2m+ p+ q− 1.

Since the common fixed point set of σ1 and σ2 is only the origin, the smooth

toric Fano varieties corresponding to PGm,p,q , where m, p, q satisfy (3), are

symmetric by [1, Proposition 3.1]. Thus, those admit Kähler–Einstein metrics by

[1, Theorem 1.1].
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[18] V. E. Voskresenskǐi and A. A. Klyachko, Toroidal Fano varieties and root

systems, Math. USSR Izv. 24 (1985), 221–244.

[19] R. J. Wilson, Introduction to Graph Theory, 4th ed., Longman, Harlow, 1996.

MR 2590569.

Department of Mathematics, Kyoto Sangyo University, Motoyama, Kamigamo,

Kita-ku, Kyoto, Japan; ahigashi@cc.kyoto-su.ac.jp

http://www.ams.org/mathscinet-getitem?mr=2590569
mailto:ahigashi@cc.kyoto-su.ac.jp

	Introduction
	Fano polytopes arising from ﬁnite directed graphs
	When is PG smooth?
	The case where G possesses no even cycle
	Examples of SFPs PG
	References
	Author's Addresses

