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Abstract For topological semigroups S, we consider Tannaka-type duality theorems,

which are extensions of the notion of weak Tannaka duality theorem for topological

groups. In the case of topological semigroups, we must set as the dual object of S all iso-

metric representations of S instead of all unitary representations. We define a property

T-type forS. After arguments analogous to previous work from the author, we can prove

that our Tannaka-type duality theorem is valid if and only if S is a T-type semigroup.

1. Tannaka-type duality theorem

A topological semigroup S is a semigroup with unit e which is simultaneously

a topological space and whose semigroup operation is continuous. An isometric

representation of S is a continuous homomorphism from g ∈ S to the semigroup

{Tg} of isometric operators on a Hilbert space H with weak topology. In this

paper, hereafter we call an isometric representation simply a representation.

For an isometric operator J on H and ∀c ∈C, ∀v,u, v⊥u ∈H,

‖v‖2 + |c|2‖u‖2 = ‖v+ cu‖2 =
∥∥J(v + cu)

∥∥2

= ‖Jv‖2 + |c|2‖Ju‖2 + 2�
(
c〈Jv,Ju〉

)

= ‖v‖2 + |c|2‖u‖2 + 2�
(
c〈Jv,Ju〉

)
,

where � shows the real part. This implies that (Jv,Ju) = 0 and Jv ⊥ Ju. Hence,

for an orthonormal system {vα}, {Jvα} gives an orthonormal system too.

Let H1 and H2 be Hilbert spaces, and take complete orthonormal systems

{v1α} in H1 and {v2α} in H2; {v1α ⊗ v2β} is an orthonormal system in H1 ⊗H2.

Therefore we can define the tensor product J1 ⊗ J2 for any isometric operators

Jk on Hk (k = 1,2) as an isometric operator in H1 ⊗H2.

Let Ω≡ {D = (HD, TD
g )} be the set of all representations of a given topolog-

ical semigroup S whose dimensions are bounded by max(ℵ0,#S), and consider

operations between elements of Ω as

(1) unitary equivalence: D1 ∼W D2 (W : intertwining unitary operator),

(2) subrepresentation: D1 D2,

Kyoto Journal of Mathematics, Vol. 55, No. 3 (2015), 543–554

DOI 10.1215/21562261-3089046, © 2015 by Kyoto University

Received September 18, 2012. Revised January 21, 2014. Accepted June 3, 2014.

2010 Mathematics Subject Classification: 22A25, 22D35.

http://dx.doi.org/10.1215/21562261-3089046
http://www.ams.org/msc/


544 Nobuhiko Tatsuuma

(3) tensor product: D1 ⊗D2,

(4) contragradient representation: D→D.†

Consider an operator field A≡ {AD}D∈Ω on Ω satisfying

(Cd-0) for each D ∈ Ω, AD is an isometric operator on the representation

space HD ,

(Cd-1) D1 ∼W D2 ⇒WAD1W−1 =AD2 ,

(Cd-2) D1 D2 ⇒AD1 |HD2 =AD2 ,

(Cd-3) AD1 ⊗AD2 =AD1⊗D2 ,

(Cd-4) AD =AD.

We call such an operator field A a birepresentation of S, and we write J for

the set of all birepresentations. On the space J , induce a topology, the product

of weak topologies τD (D ∈Ω) on each component operator space on the Hilbert

space HD . It is easy to see that, for any two birepresentations Aj ≡ {AD
j } (j =

1,2), their product A1A2 ≡ {AD
1 AD

2 } is also a birepresentation. This product

operation is continuous with respect to the above topology. So J is a topological

semigroup.

Obviously for any g ∈ S the operator field Tg ≡ {TD
g }D∈Ω gives a birepre-

sentation. Our weak Tannaka-type duality theorems assert the converses.

ASSERTION

For any birepresentation A ≡ {AD}D∈Ω, there exists a unique g ∈ S such that

AD = TD
g ( ∀D ∈Ω). Moreover, the topology on J given above coincides with the

original topology of S under the correspondence g �→Tg.

2. Separating system of isometric representations, completeness, and T-type
semigroups

Hereafter, S is a Hausdorff (i.e., T2-)topological semigroup.

DEFINITION 2.1

A set Ω0 ≡ {Dα ≡ {HDα , TDα
g , vDα} | vDα is a normalized cyclic vector, α ∈ A}

of cyclic isometric representations of S gives a separating system of isometric

representations (SSIR) if and only if, for any neighborhood V of any element g0
in S, there exist D ∈Ω0 and ε > 0 such that

(2.1) F (D,ε, g0)≡
{
g ∈ S

∣∣ ∣∣1− 〈TD
g vD, TD

g0v
D〉

∣∣< ε
}
⊂ V.

We denote by J(H) the space of all isometric operators on a Hilbert space H and

introduce the weak topology on it.

For any J0, J ∈ J(H),

(2.2) ‖Jv− J0v‖2 =−2�
(
〈Jv− J0v, J0v〉

)
.

† For definitions and some properties of contragradient representations, we refer the reader

to [4, Section 1].
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So, on J(H) the weak topology coincides with the strong topology. Moreover,

J(H) becomes a topological semigroup with the multiplication of operators and

this topology.

Let D ≡ {HD, TD
g } be any representation of S. The map S � g �→ TD

g ∈
J(HD) is continuous for each D, by definition.

Construct J(Ω)≡
∏

D∈Ω J(HD) with the natural product topology. The map

(2.3) S � g �→ (TD
g )D∈Ω ∈ J ⊂

∏

D∈Ω

J(HD) = J(Ω)

is into-homomorphisms as topological semigroups.

Write SJ as the image of S in J(Ω). The existence of an SSIR for a T2-

topological semigroup S shows that

(a) the map (2.3) is a one-to-one map from S to SJ ,

(b) the inverse map of (2.3) from SJ (with restricted topology from J(Ω))

to S is continuous.

So S is embedded as a topological semigroup in J(Ω). The following lemma is

then obvious.

LEMMA 2.1

Let S be a T2-topological semigroup with an SSIR. Our weak Tannaka-type duality

theorem is equivalent to SJ = J and the map (2.3) being an isomorphism between

S and its image SJ = J as topological semigroups.

On a T2-topological semigroup S with an SSIR Ω0, put

W ≡
{
W (D,ε)≡

{
(g1, g2) ∈ S × S

∣∣ ‖TD
g1v

D − TD
g2v

D‖< ε
}
(D ∈Ω0, ε > 0)

}
.

It is easy to see that W gives a fundamental system of entourages on S×S,

and defines a uniform structure on S (see [1]).

DEFINITION 2.2

A filter base F ≡ {Fα}α∈Γ (where Γ is a partially ordered set) on S is called

Cauchy if, for any entourage W (D,ε), there exists an α ∈ Γ such that

∀β  α, ∀g1, g2 ∈ Fβ , (g1, g2) ∈W (D,ε).

We consider the topological semigroup S≡ J(Ω) =
∏

D∈Ω J(HD). The identical

representation of J(HD) is cyclic, so S has an SSIR. Let F ≡ {Fα} be a Cauchy

filter base on S. The projection image FD ≡ {FD
α ≡ ProjHDFα} for any D ∈ Ω

gives a Cauchy filter base on J(HD). Conversely, for a filter base F ≡ {Fα}α∈Γ

on J(Ω) to be Cauchy, it is enough that, for any D in Ω, FD is Cauchy. Since

on J(Ω) the weak topology is equivalent to the strong topology, we can consider

these Cauchy properties in the sense of strong topology on J(Ω).
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For any v ∈HD for a fixed D, a Cauchy filter base {FD
α v}α∈Γ converges to a

vector u(v) in the Hilbert space HD; that is, for any JD
α ∈ FD

α and any v ∈HD ,

strong-lim
α

JD
α v = u(v).

Moreover, for any a, b ∈C,

(2.4) lim
α

JD
α (av1 + bv2) = au(v1) + bu(v2),

∥∥u(v)
∥∥= lim

α
‖JD

α v‖= ‖v‖.

Therefore, the map HD � v �→ u(v) ∈ HD is linear and isometric. Thus there

exists an isometric operator BD such that u(v) =BDv.

LEMMA 2.2

Any Cauchy filter base on J(Ω) =
∏

D∈Ω J(HD) converges to a B≡ (BD)D∈Ω ∈
J(Ω), where the BD’s are isometric operators.

For a topological semigroup S, any filter base F on it is mapped to a filter base

FJ in SJ . And if F is Cauchy, then FJ in J(Ω) is also Cauchy.

LEMMA 2.3

A Cauchy filter base FJ on a semigroup SJ converges to an element B ≡
(BD)D∈Ω in J(Ω).

DEFINITION 2.3

We say that a T2-topological semigroup S is of T-type if

(T-1) S has an SSIR,

(T-2) S is complete.

3. Birepresentations of S

A birepresentation A ≡ {AD}D∈Ω of S with an SSIR has analogous properties

to a birepresentation in the case of groups. We argue similarly as in [4, Section 6]

and [5, Section 2].

Consider the contragradient representation D of D, consider the vector v in

HD corresponding to v in HD , and consider A the operator on HD corresponding

to A on HD . By the condition (Cd-4) of the definition of birepresentation,

(3.1) AD =AD.

From this, by the same calculations as in [5, Lemma 2.1 and Corollary 2.1.1], we

can obtain the following.

(1) 〈AD⊕D(u⊕ u), v⊕ v〉 is real valued.
(2) Denote by I ≡ {C, Ig, v0} the trivial representation of S, and put Dp ≡

I ⊕D ⊕D. Take vectors w0 ∈ HI and w ∈ HD such that 21/2‖w0‖= 2‖w‖= 1,

and put vp ≡ w0 ⊕ w ⊕ w in HI ⊕ HD ⊕ HD . Then for any g ∈ S the matrix
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element

(3.2) 〈TDp
g vp,A

Dpvp〉=
〈
TDp
g (w0 ⊕w⊕w),ADp(w0 ⊕w⊕w)

〉
≥ 0.

By an argument analogous to [4, Corollary 1.2.2], we get the following.

LEMMA 3.1

Let D and Dp be as above. Then 1> ∀ε > 0, ∀g0 ∈ S, ∃δ > 0,

(3.3) F (Dp, δ, g0)⊂ F (D,ε, g0).

Proof

Put η(g)≡ 〈TD
g vD, TD

g0v
D〉, and put ηp(g)≡ 〈TDp

g vDp , T
Dp
g0 vDp〉. Then 1−ηp(g) =

2−1(1−�η(g)) and
∥∥1− η(g)

∥∥2 =
(
1−�η(g)

)2
+
(
�η(g)

)2

≤
(
1−�η(g)

)2
+
(
1−�η(g)

)(
1 +�η(g)

)

≤ 3
(
1−�η(g)

)
= 6

(
1− ηp(g)

)
.

This shows that if 6δ < ε2, then F (Dp, δ, g0)⊂ F (D,ε, g0). �

We get also the following result.

COROLLARY 3.1.1

If {D} gives an SSIR of S, then {Dp} is also an SSIR of S.

Take D = {HD, TD
g , vD} a cyclic representation of S, and put KD(g)≡ 〈TD

g vD,

ADvD〉.

LEMMA 3.2

Let A≡ {AD}D∈Ω be a birepresentation of S with an SSIR. Then for any cyclic

D ≡ {HD, TD
g , vD} ( ‖vD‖= 1) in Ω,

(3.4) sup
g∈S

∣∣KD(g)
∣∣= 1.

Proof

The arguments are similar to the proof of [4, Lemma 2.2]. At first, obviously

|KD(g)| ≤ 1. The relations for ζD(g) = 〈TD
g vD, uD〉,

ζD(g) = ζD(g),(3.5)

ζD1(g) + ζD2(g) = ζD1⊕D2(g),(3.6)

ζD1(g)× ζD2(g) = ζD1⊗D2(g),(3.7)

show that, when D runs over Ω and u, v run over any vectors in HD , the family

F≡ {ζD(g)} of matrix elements gives a ∗-algebra contained in the ∗-algebra Cb(S)

of all bounded continuous functions on S with the norm ‖ζD‖ ≡ supg∈S |ζD(g)|.
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The completion FC of F with respect to this norm is a C∗-algebra of continuous

functions on S.

By Gelfand’s representation theorem, FC is isomorphic to the space Cb(X)

of all bounded continuous functions on a locally compact space X under the

correspondence FC � f �→ f∼ ∈ Cb(X). A point x of X is a homomorphic map

such that

ψx : Cb(X)→C,(3.8)

ψx(ϕ) ≡ ϕ(x)
(
ϕ ∈ Cb(X)

)
.(3.9)

For any element g in S and f in FC ,

(3.10) f �→ f(g)

gives a homomorphic map from FC to C. So there exists a unique element xg in

X as

f(g) = f∼(xg).

The existence of an SSIR ensures that the map g �→ xg is one-to-one. So by

this map, S is embedded into X . But Cb(X) is given as the space of {f∼ | f ∈ FC}
and FC ⊂ Cb(S). This implies that the image of S is dense in X . So for any x ∈X ,

δ > 0, and f∼ ∈ FC , there exists g0 ∈ S such that

(3.11)
∣∣f∼(g0)− f∼(x)

∣∣< δ.

For a given birepresentation A≡ {AD}D∈Ω, consider the map

(3.12) ζD(g) = 〈TD
g vD, uD〉 �→ 〈ADvD, uD〉 ≡ θA(ζD).

By considerations analogous to those in (3.5), (3.6), and (3.7), we get that

θA(ζD) = 〈ADvD, uD〉= 〈ADvD, uD〉= θA(ζD),

θA(ζD1) + θA(ζD2) = 〈AD1vD1 , uD1〉+ 〈AD2vD2 , uD2〉

=
〈
(AD1vD1 ⊕AD2vD2), (uD1 ⊕ uD2)

〉
= θA(ζD1⊕D2),

θA(ζD1)× θA(ζD2) = 〈AD1vD1 , uD1〉 × 〈AD2vD2 , uD2〉

=
〈
(AD1vD1 ⊗AD2vD2), (uD1 ⊗ uD2)

〉
= θA(ζD1⊗D2).

Consider the case in which
∑

j〈T
Dj
g vDj , uDj 〉 ≡ 0 as a function on S for

some countable set {Dj} ⊂ Ω and {vDj , uDj ∈ HDj} such that
∑

j ‖vDj‖2,∑
j ‖uDj‖2 <∞.

Put D ≡
∑⊕

j Dj , put vD ≡
∑⊕

j vDj , and put uD ≡
∑⊕

j uDj . Then for any

g ∈ S, 〈TD
g vD, uD〉 ≡ 0.

The condition (Cd-2) of the definition of birepresentation A ≡ {AD}D∈Ω

shows that the operator AD keeps the invariant subspace H spanned by

{TD
g vD(g ∈G)}, that is, ADH⊥uD, and

(3.13) 0 = 〈ADvD, uD〉=
∑

j

〈ADjvDj , uDj 〉.
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Therefore, map (3.12) generates a ∗-algebra homomorphism

(3.14) f∼(g) �→ θA(f∼)≡ f∼(xA)

of the space F and of FC to C; that is, it gives an element xA ∈X by the above

equation.

Put f∼(g)≡ 〈TD
g vD,ADvD〉, and apply (3.11). We obtain that

∣∣f∼(g0)− f∼(xA)
∣∣ =

∣∣〈TD
g0v

D,ADvD〉 − 〈ADvD,ADvD〉
∣∣

(3.15)
=

∣∣〈TD
g0v

D,ADvD〉 − 1
∣∣=

∣∣1−KD(g0)
∣∣< δ.

This proves (3.4). �

Let Ω+ be the set of all cyclic representations D = (HD, TD
g , vD) (‖vD‖ = 1)

satisfying

KD(g) = 〈TD
g vD,ADvD〉 ≥ 0 (g ∈ S).

Then, by Lemma 3.2, for D ∈Ω+,

(3.16) inf
g∈S

(
1−KDp(g)

)
= 0.

And Ω+ contains cyclic representations of type (Dp). Put

E(D,ε) ≡
{
g
∣∣ 1−KD(g)< ε

}
,(3.17)

Z ≡
{
E(D,ε)

}
D∈Ω+,ε>0

.(3.18)

LEMMA 3.3

For a birepresentation A= (AD)D∈Ω of S with an SSIR, Z gives a Cauchy filter

base on S.

Proof

Lemma 3.2 shows that E(D,ε) is not empty and

(3.19) ε1 > ε2 ⇒E(D,ε1)⊇E(D,ε2).

Let D0 ≡ (D1 ⊗D2) (the cyclic part in D1 ⊗D2) with D1,D2 ∈Ω+. Then

1−KD0

(g) ≥ 1−KD1

(g), 1−KD0

(g)≥ 1−KD2

(g),(3.20)

E(D1, ε)∩E(D2, ε) ⊇ E(D0, ε) �= φ.(3.21)

So Z is a filter base.

Analogous calculations to [4, (7.8)] show that 1−KD(g)< ε leads to

(3.22) ‖ADvD − TD
g vD‖ ≤ (2ε)1/2.

Hence, for any g,h ∈E(D,ε),

(3.23) ‖TD
g vD − TD

h vD‖ ≤ 2(2ε)1/2.
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For an arbitrary given entourage W (D,2(2ε)1/2) in S × S, if we take the

above E(D,ε), then

(3.24) ∀g,h ∈E(D,ε), (g,h) ∈W
(
D,2(2ε)1/2

)

that is, Z is Cauchy. �

4. Proof of Tannaka-type duality theorem for T-type semigroup

THEOREM 4.1

For a T-type semigroup S, the Tannaka-type duality theorem is valid.

Proof

For any given birepresentation A≡ {AD}, we show that there exists a unique g

in S such that

(4.1) {AD}= {TD
g }.

The T-type semigroup S is complete by definition, and Z ≡ {E(D,

ε)}D∈Ω+,ε>0 is a Cauchy filter base. So there exists a limit point gA and

(4.2)
⋂

(D,ε)

E(D,ε) = {gA}.

Therefore, 1 =KD(gA) = 〈TD
gAv

D,ADvD〉, that is,

(4.3) ∀D ∈Ω+, ADvD = TD
gAv

D.

For a general cyclic representation D, consider (Dp) ∈ Ω+ as in Section 3;

then we get from ADpvp = T
Dp
gA vp that

(4.4) Iw0 ⊕ADw⊕ADw = Iw0 ⊕ TD
gAw⊕ TD

gAw.

So we get, for any D in Ω, that ADw = TD
gAw. This concludes the proof. �

5. Converse of Theorem 4.1

LEMMA 5.1

For a T2-topological semigroup S, if a weak Tannaka-type duality theorem holds,

then S has an SSIR.

Proof

By Lemma 2.1, the inverse map of (2.3) from SJ to S must be continuous.

A fundamental system of neighborhoods V of (TD
g0 ) in SJ is given as the collection

of

(5.1) V1 ≡
⋂

1≤j≤n

{
Tg = (TD

g )D∈Ω

∣∣ ‖TDj
g vj − TDj

g0 vj‖2 < εj
}

for a finite set {(Dj , vj , εj)}, where Dj ∈ Ω, vj ∈ HDj (‖vj‖ = 1), εj > 0 (j =

1,2, . . . , n).
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Consider the representation D0 ≡
∑⊕

j Dj , consider v0 = n−(1/2)
∑⊕

j vj , and

consider ε0 =minjεj . Then

(5.2) V1 ⊇ V2(ε0)≡
{
Tg = (TD

g )D∈Ω

∣∣ ‖v0 − TD0
g v0‖2 < ε0

}
.

The evaluation

‖TD0
g v0 − TD0

g0 v0‖2 = 2
(
1−�

(
〈TD0

g v0, T
D0
g0 v0〉

))

(5.3)
≤ 2

∣∣1− 〈TD0
g v0, T

D0
g0 v0〉

∣∣

shows that if we take δ < 2−1ε0, then

(5.4) V2(ε0)⊃ Vδ ≡
{
Tg = (TD

g )D∈Ω

∣∣ ∣∣1− 〈TD0
g v0, T

D0
g0 v0〉

∣∣< δ
}
.

For any neighborhood V of g0 in G, there exist V , V1, V2(ε0), and Vδ such

that

(5.5) V ⊇ V1 ⊇ V2(ε0)⊇ Vδ.

This shows the separating condition of the existence of an SSIR in Definition 2.3.

�

LEMMA 5.2

For a T2-topological semigroup S, if the Tannaka-type duality theorem holds, then

S must be complete.

Proof

For any Cauchy filter base F on S, its image FJ in SJ ⊂ J(Ω) is also Cauchy.

And by Lemma 2.2, it converges to an isometric operator field A0 ≡ {AD
0 }. We

can easily confirm that A0 gives a birepresentation, that is,

(5.6) A0 ∈ SJ .

From the assumption that the Tannaka-type duality theorem is valid, F must

converge to a point in S, the inverse image of A0. �

Summarizing the results of Lemmas 5.1 and 5.2, we have the following.

THEOREM 5.1

For a T2-topological semigroup S, if the Tannaka-type duality theorem holds, then

S must be a T-type semigroup.

6. Main theorem and example

Summarizing Theorems 4.1 and 5.1, we obtain the following.

MAIN THEOREM

Let S be a T2-topological semigroup. For S, the Tannaka-type duality theorem

holds if and only if S is a T-type semigroup.
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EXAMPLE 1

Let H be a Hilbert space of infinite dimension, and let S ≡ J(H) be the semigroup

of all isometric operators on H with the weak (=strong) topology of operator

space.

LEMMA 6.1

The semigroup S ≡ J(H) is a T2-topological semigroup and has an SSIR.

Proof

As we showed in Section 2, S is a complete T2-topological semigroup. Consider

the identical representation D0 ≡ {H, TJ},

(6.1) S � J �→ TJ(≡ J) ∈ J(H).

The family of all cyclic subrepresentations gives an SSIR of S. �

Lemma 2.3 claims that S is complete, so S is of T-type. And the Tannaka-type

duality theorem holds for S.

7. Extension to a topological group

LEMMA 7.1

Let S1 be a semigroup of isometric operators on a Hilbert space H with the

weak (= strong) topology of operator space. Then S1 is a topological semigroup.

Moreover, if S1 is a group of unitary operators, then S1 is a topological group.

Proof

The relation for T1, T2 ∈ S1,

(7.1) ‖T1T2v− v‖ ≤ ‖T1T2v− T1v‖+ ‖T1v− v‖= ‖T2v− v‖+ ‖T1v− v‖,

shows the continuity of multiplication on S1 with respect to the strong topology.

�

We denote by U(H) the space of all unitary operators on a Hilbert space H,

and introduce the weak topologies on it. Let Ω0 ≡ {D = (HD, TD
g )} be a set of

unitary representations of some topological semigroup S. Construct U(Ω0) ≡∏
D∈Ω0

U(HD) with the natural product topology.

COROLLARY 7.1.1

We have that U(Ω0) is a topological group.

Proof

As the product of topological groups U(HD), U(Ω0) is a topological group. �
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LEMMA 7.2

Any subgroup with the relative topology of a topological group is a topological

group.

Proof

The proof is obvious. �

PROPOSITION 7.1

Let S be a T-type T2-topological semigroup. If S has an SSIR Ω1 ≡ {Dα ≡
{HDα , TDα

g , vDα} | vDα is a normalized cyclic vector, α ∈A}, all elements Dα of

which are unitary representations, then there exists a topological group G which

contains S as a topological subsemigroup.

Proof

Write Ω0 as the set of all unitary representations of S. From the assumption, Ω0

gives an SSIR of S.

For a given birepresentation Tg ≡ {TD
g }D∈Ω of S, we consider the operator

field (Tg)
−1 ≡ {(TD

g )−1}D∈Ω0 on Ω0 and take the group G generated by the

family {Tg, (Tg)
−1 | g ∈ S}. Then, G is in U(Ω0). So the above lemmata show

that G is a topological group with the topology in U(Ω0), containing S.

But Ω0 gives an SSIR of S. So the topology of S just coincides with the

restricted one of G. �

COROLLARY

Let S be a T-type T2-topological semigroup. If all representations of S are unitary

representations, then S must be a topological group.

Proof

In this case, Ω = Ω0. So G is the set of all birepresentations of S. Therefore, the

Tannaka-type duality theorem claims that S =G. �

EXAMPLE 2

Consider the case where S is the additive semigroup R+ of all nonnegative real

numbers. Let μ be the ordinary Lebesgue measure on S, and let H be the space

L2(S,μ).

The right translation operator Tg0 defined by

Tg0f(g) = 0 (g /∈ g0 + S)

= f(g1) (g = g0 + g1 ∈ g0 + S)

gives an isometric operator on H. Let R≡ {H, Tg} define a nonunitary but iso-

metric representation of S. It is easy to see that {R} is an SSIR, and S is

complete. Thus, S is a T-type semigroup, and the Tannaka-type duality theorem

is valid.
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Now we consider the space H0 ≡ L2(R, μ0) (where μ0 is the ordinary Lebesgue

measure on R) and the representation R0 ≡ (H0, T 0
g ) (where T

0
g is the translation

by g). Note that R0 is a unitary representation. And S is embedded in the addi-

tive group of real numbers R which has a representation R0 on H0, extending R.

Thus, if we treat only unitary representations, then we get the whole additive

group R as the set of birepresentations of S.
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