
A Bertini-type theorem for free arithmetic
linear series
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Abstract In this paper, we prove a version of the arithmetic Bertini theorem asserting

that there exists a strictly small and generically smooth section of a given arithmetically

free graded arithmetic linear series.

0. Introduction

When we generalize results on arithmetic surfaces to those on higher-dimensional

arithmetic varieties, it is sometimes very useful to cut the base scheme by a

“good” global section s of a given Hermitian line bundle and proceed to induction

on dimension. To do this, we have in the context of Arakelov geometry the

following result.

FACT ([5, THEOREMS 4.2 AND 5.3])

Let A be a C∞-Hermitian line bundle on a generically smooth projective arith-

metic variety X , and let x1, . . . , xq be points (not necessarily closed) on X . Sup-

pose that (i) A is ample, (ii) c1(A) is positive definite, and (iii) H0(X,mA)

has a Z-basis consisting of sections with supremum norms less than 1 for every

m� 1. Then there exist a sufficiently large integer m≥ 1 and a nonzero section

s ∈H0(X,mA) such that

(1) div(s)Q is smooth over Q,

(2) s(xi) �= 0 for every i, and

(3) ‖s‖sup < 1.

For example, this technique plays essential roles in the proofs of the arithmetic

Bogomolov–Gieseker inequality on high-dimensional arithmetic varieties (see [5]),

of the arithmetic Hodge index theorem in codimension 1 (see [6], [10]), of the

arithmetic Siu inequality of Yuan [9], and so on. A purpose of this paper is to

give a simple elementary proof of the above fact and to strengthen it to the case

of arithmetically free graded arithmetic linear series.
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Let K be a number field. Let X be a projective arithmetic variety that is

geometrically irreducible over Spec(OK), and let L be an effective line bundle

on X . A graded linear series belonging to L is a subgraded OK -algebra

R• :=
⊕
m≥0

Rm ⊆
⊕
m≥0

H0(X,mL).

We consider norms ‖ · ‖m on Rm ⊗Z R, and assume that the family of norms

‖ · ‖• := (‖ · ‖m)m≥0 is multiplicative, that is,

‖s⊗ t‖m+n ≤ ‖s‖m‖t‖n
holds for every s ∈Rm and t ∈Rn.

THEOREM A

Let X be a generically smooth projective arithmetic variety, and let A be an

effective line bundle on X. We consider a graded linear series

R• :=
⊕
m≥0

Rm

belonging to A and a multiplicative norm ‖ · ‖• on R•⊗ZR. Suppose the following

conditions:

• R1 is base point free,

• R• ⊗Z Q is generated by R1 over Q, and

•
⋂

m≥1{x ∈XQ | t(x) = 0 for every t ∈Rm with ‖t‖m < 1}= ∅.

Let Y 1, . . . , Y p be smooth closed subvarieties of the complex manifold X(C), and

let x1, . . . , xq be points (not necessarily closed) on X. Then, for every sufficiently

large integer m� 1, there exists a nonzero section s ∈Rm such that

(a) div(s|Y 1), . . . ,div(s|Y p) are all smooth,

(b) s(xi) �= 0 for every i, and

(c) ‖s‖m < 1.

Let L be a continuous Hermitian line bundle on X , and let ‖ · ‖(m)
sup be the supre-

mum norm on H0(X,mL)⊗Z R. We define a Z-submodule of H0(X,mL) by

F0+(X,mL) :=
〈
s ∈H0(X,mL)

∣∣ ‖s‖(m)
sup < 1

〉
Z
.

Then
⊕

m≥0F
0+(X,mL) is a graded linear series belonging to L. We denote the

stable base locus of
⊕

m≥0F
0+(X,mL) by SBs0+(L).

COROLLARY B

Let X be a generically smooth projective arithmetic variety, and let A be a con-

tinuous Hermitian line bundle on X. Suppose that SBs(A) = ∅ and SBs0+(A) ∩
XQ = ∅. Let Y 1, . . . , Y p be smooth closed subvarieties of the complex manifold

X(C), and let x1, . . . , xq be points (not necessarily closed) on X. Then there exist

a sufficiently large integer m≥ 1 and a nonzero section s ∈H0(X,mA) such that
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(a) div(s|Y 1), . . . ,div(s|Y p) are all smooth,

(b) s(xi) �= 0 for every i, and

(c) ‖s‖(m)
sup < 1.

COROLLARY C

Let X be a generically smooth normal projective arithmetic variety, let L :=

(L, | · |L) be a continuous Hermitian line bundle on X, and let x1, . . . , xq be points

(not necessarily closed) on X \ SBs0+(L). If SBs0+(L) �X, then there exist a

sufficiently large integer m≥ 1 and a nonzero section s ∈H0(X,mL) such that

(a) div(s)Q is smooth off SBs0+(L),

(b) s(xi) �= 0 for every i, and

(c) ‖s‖(m)
sup < 1.

Notation and conventions. Let k denote a field, and let Pn := P(kn+1) denote the

projective space of one-dimensional quotients of kn+1. Let pr2 : P
n ×k P

m → Pm

denote the second projection. We denote the natural coordinate variables of Pn

(resp., of Pm) by X0, . . . ,Xn (resp., by Y0, . . . , Ym) or simply by X• (resp., by Y•).

Let Y be a smooth variety over k. The singular locus of a morphism ϕ :X →
Y over k is a Zariski-closed subset of X defined as

Sing(ϕ) := {x ∈X | ϕ is not smooth at x}.

A projective arithmetic variety X is a reduced irreducible scheme that is

projective and flat over Spec(Z). We say that X is generically smooth if XQ :=

X ×Spec(Z) Spec(Q)→ Spec(Q) is smooth.

1. Bertini’s theorem with degree estimate

In this section, we consider a geometric case. Let X ⊆ Pn be a projective variety

over an algebraically closed field k that is defined by a homogeneous prime ideal

IX ⊆ k[X0, . . . ,Xn], let OX(1) be the hyperplane line bundle on X , and let

degX := deg
(
c1

(
OX(1)

)·dimX)
be the degree of X in Pn. Let k[X] := k[X0, . . . ,Xn]/IX be the homogeneous

coordinate ring of X , and let k[X]l be the homogeneous part of k[X] of degree l.

There exists a polynomial function ϕX(l) such that degϕX = dimX , all coeffi-

cients are nonnegative, and

(1.1) dimk k[X]l ≤ ϕX(l)

for all l≥ 0. Let Z ⊆X ×k P
m be a Zariski-closed subset defined by a system of

polynomial equations:

u1(X•;Y•) = 0 (mod IX), . . . , uh(X•;Y•) = 0 (mod IX),

where ui ∈ k[X0, . . . ,Xn;Y0, . . . , Ym] has homogeneous degree degX• ui (resp.,

degY• ui) in the set of variables X• (resp., Y•). We recall the following fact from

the elimination theory.
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LEMMA 1.1

Let p := maxi{degX• ui}, and let q := maxi{degY• ui}. If the set-theoretic image

pr2(Z) does not coincide with Pm, then pr2(Z) is contained in a hypersurface of

Pm defined by a single homogeneous polynomial of degree less than or equal to

ϕX(degX · pdimX+1) · q.

Proof

First, we can take a geometric point y0,• = (y0,0 : · · · : y0,m) ∈ Pm \ pr2(Z). By

an effective Nullstellensatz (see [3, Corollary 1.4]), there exists a positive integer

�≤ degX · pdimX+1 such that

(X0, . . . ,Xn)
� ⊆

(
u1(X•;y0,•), . . . , uh(X•;y0,•)

)
(mod IX).

Next, we consider the k-linear maps

T (y•) : k[X]�−degX• u1 ⊕ · · · ⊕ k[X]�−degX• uh
→ k[X]�,

(
f1(X•), . . . , fh(X•)

)
�→

∑
i

ui(X•;y•)fi(X•)

defined for y• = (y0 : · · · : ym) ∈ Pm. By fixing a basis for the above k-vector

spaces, we can represent T (y•) by a matrix whose entries are homogeneous poly-

nomials of y• of degree less than or equal to q. By the choice of �, we can see

that there exists a certain dimk k[X]� × dimk k[X]�-minor of the representation

matrix of T (y•) whose determinant is nonzero (see [8, Theorem 2.23]). Then

the image pr2(Z) is contained in the hypersurface defined by the nonzero deter-

minant, which is homogeneous of degree less than or equal to (dimk k[X]�) · q.
Since

dimk k[X]� ≤ ϕX(�)≤ ϕX(degX · pdimX+1),

we have the result. �

REMARK 1.2

For example, we consider the case where X = Pn. Then dimk k[X]l =
(
l+n
n

)
≤

(l + n)n/n!. Thus, the bound in the above lemma becomes less than or equal

to (pn+1 + n)nq/n!. Moreover, by applying the theory of resultants (see [8, page

35]) to pr2 : P
n ×k A

m →Am, one can obtain a weaker bound less than or equal

to (2p)2
n−1q + 1 in the above lemma (where the added 1 is for the hyperplane

at infinity).

Let A be an effective line bundle on X , and let R• be a subgraded ring of⊕
m≥0H

0(X,mA) with Kodaira–Iitaka dimension κ(R•) := tr.degkR• − 1. Sup-

pose that R1 is base point free. Let φm :X → P(Rm) be a k-morphism associated

to Rm, and set

(1.2) Nm := dimkRm − 1



Bertini-type theorem 535

for m≥ 1. We recall that the rational function field k(X) of X is given by

k(X) =

{
u (mod IX)

v (mod IX)

∣∣∣∣ u, v ∈ k[X0, . . . ,Xn] are homogeneous

of the same degree and v /∈ IX

}
.

Given a nonzero section e ∈ R1, we define the degree of a nonzero section s ∈
H0(X,mA) for m≥ 1 with respect to e by

degX•,e s := min

{
degX• u= degX• v

∣∣∣∣ div s= (u/v (mod IX)) +mdiv e,

u/v (mod IX) ∈ k(X)×

}
.

(Compare the definition with Jelonek’s in [3, Section 2].) Then, for any other

nonzero section s′ ∈H0(X,m′A), we have that

degX•,e(s⊗ s′)≤ degX•,e s+degX•,e s
′.

THEOREM 1.3

Let X ⊆ Pn be a smooth projective variety over k, and let A be a line bundle on

X. Let R• be a graded linear series belonging to A with Kodaira–Iitaka dimension

κ(R•). Suppose that the following three conditions are satisfied.

• R1 is base point free.

• R• is generated by R1.

• (i) char(k) = 0 or (ii) char(k) �= 0 and φm :X → P(Rm) is unramified for

every m≥ 1.

Then one can find a polynomial function P (m) and hypersurfaces Zm ⊆ P(R∨
m)

for m= 1,2, . . . having the following two properties.

(a) degP ≤ dimX(dimX + 1)(κ(R•) + 1).

(b) For every m≥ 1, the hypersurface Zm ⊆ P(R∨
m) contains the set{

H ∈ P(R∨
m)

∣∣ φm(X)⊆H or φ−1
m (H) is not smooth

}
and the homogeneous degree of Zm in P(R∨

m) is less than or equal to P (m).

REMARK 1.4

Throughout this paper, we assume that the empty set ∅ is smooth, so that if

H /∈ Zm, then φ−1
m (H) is empty or smooth of pure dimension dimX − 1.

Proof

Let IX ⊆ k[X0, . . . ,Xn] denote the homogeneous prime ideal defining X . We

consider the universal hyperplane section

(1.3) Wm :=
{
(x,H) ∈X ×k P(R

∨
m)

∣∣ φm(x) ∈H
}

endowed with the reduced induced scheme structure, and consider the restriction

of the second projection pr2 :X ×k P(R
∨
m)→ P(R∨

m) to Wm, which we denote by

(1.4) πm :Wm → P(R∨
m).
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Note that Wm is the inverse image of the canonical bilinear hypersurface in

P(Rm)×k P(R
∨
m) via φm× id :X×k P(R

∨
m)→ P(Rm)×k P(R

∨
m). Since the restric-

tion of the first projection to Wm, Wm →X , is surjective with fiber a projective

space of dimension Nm − 1, Wm is irreducible. The set-theoretic image of the

singular locus of πm is given by

πm

(
Sing(πm)

)
=

{
H ∈ P(R∨

m)
∣∣ φm(X)⊆H or φ−1

m (H) is not smooth
}
.

We fix a basis e0, . . . , eN1 for R1. From now on, we explain a method to

construct an equation w0 that vanishes along Wm from the section e0. First, we

set

(1.5) D1,e0 := max
1≤i≤N1

{degX•,e0 ei}

and take rational functions u
(1)
1 /v

(1)
1 , . . . , u

(1)
N1

/v
(1)
N1

∈ k(X0, . . . ,Xn)
× such that

div ei =
(u

(1)
i

v
(1)
i

(mod IX)
)
+div e0 and degX• u

(1)
i = degX• v

(1)
i ≤D1,e0

for i = 1, . . . ,N1. Next, for m ≥ 2, we can choose sections e
(m)
1 , . . . , e

(m)
Nm

∈ Rm

such that

e
(m)
i ∈ {e⊗α0

0 ⊗ · · · ⊗ e
⊗αN1

N1
| α0 + · · ·+ αN1 =m}

and e⊗m
0 , e

(m)
1 , . . . , e

(m)
Nm

form a basis for Rm. By identifying P(R∨
m) with PNm via

the dual basis of e⊗m
0 , e

(m)
1 , . . . , e

(m)
Nm

, we can write φm :X → P(R∨
m) as

φm :Xe0 → PNm , x �→
(
1 :

u
(m)
1 (x)

v
(m)
1 (x)

: · · · :
u
(m)
Nm

(x)

v
(m)
Nm

(x)

)

over Xe0 := {x ∈X | e0(x) �= 0}, where u
(m)
i /v

(m)
i ∈ k(X0, . . . ,Xn)

× satisfies

div e
(m)
i =

(
u
(m)
i /v

(m)
i (mod IX)

)
+mdiv e0

and

degX• u
(m)
i = degX• v

(m)
i ≤D1,e0m.

We set

(1.6) w0 := v
(m)
1 · · ·v(m)

Nm
Y0 + u

(m)
1 v

(m)
2 · · ·v(m)

Nm
Y1 + · · ·+ v

(m)
1 · · ·v(m)

Nm−1u
(m)
Nm

YNm ,

which is homogeneous inX• (resp., in Y•) of degree less than or equal toD1,e0mNm

(resp., 1). Then w0 (mod IX) vanishes along Wm and defines Wm in Xe0 ×k P
Nm .

By the same method, starting from ej ∈R1, we can construct an equation

wj =
∑

(homogeneous in X• of degree at most D1,ejmNm)× (linear in Y•)

that vanishes along Wm and defines Wm in Xej ×k PNm . Let wN1+1, . . . ,wh ∈
k[X0, . . . ,Xn] be homogeneous polynomials that generate IX . Notice that the

bihomogeneous ideal

(1.7) (w0, . . . ,wN1 ,wN1+1, . . . ,wh)⊆ k[X0, . . . ,Xn;Y0, . . . , Ym]
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may not be prime but the closed subscheme defined by (w0, . . . ,wh) in Pn×k P
Nm

coincides with Wm.

Set

(1.8) D1 := max
0≤i≤N1

{D1,ei}, D2 := max
N1+1≤j≤h

{degX• wj},

which does not depend on m. By the Euler rule together with the Jacobian

criterion in the affine case, we conclude that the singular locus Sing(πm)⊆X ×k

P(R∨
m) is defined by the determinants of certain (n−dimX+1)×(n−dimX+1)-

minors of the Jacobian matrix ( ∂wi

∂Xj
), whose degrees in X• (resp., in Y•) are all

bounded from above by (N1 +1)(D1mNm − 1)+ (n− dimX)(D2 − 1) (resp., by

N1 + 1). We choose a positive constant D′ > 0 such that

(N1 + 1)(D1mNm − 1) + (n− dimX)(D2 − 1)≤D′mκ(R•)+1

for all m≥ 1. Let ϕX(l) be as in (1.1), and set

(1.9) P (m) := ϕX

(
degX(D′mκ(R•)+1)dimX+1

)
· (N1 + 1).

Then degP = dimX(dimX+1)(κ(R•)+1). Since πm(Sing(πm)) is properly con-

tained in P(R∨
m) due to Kleiman [4, Corollaries 5 and 12], we can apply Lemma 1.1

to this situation by setting

p=D′mκ(R•)+1 and q =N1 + 1.

Then we conclude that there exists a hypersurface Zm ⊆ P(R∨
m) having degree

less than or equal to P (m) and containing πm(Sing(πm)). �

By applying Theorem 1.3 to the image of Rm via H0(X,mA)→ H0(Y,mA|Y ),
we have the following.

COROLLARY 1.5

Under the same assumptions as in Theorem 1.3, let Y be a smooth closed subva-

riety of X, and let y1, . . . , yq be closed points on X. Then one can find a polyno-

mial function P (m) and hypersurfaces Zm ⊆ P(R∨
m) for m= 1,2, . . . having the

following two properties.

(a) degP ≤ dimY (dimY + 1)(κ(R•) + 1) + q.

(b) For every m≥ 1, the hypersurface Zm ⊆ P(R∨
m) contains the set{

H ∈ P(R∨
m)

∣∣∣∣ φm(Y )⊆H, φ−1
m (H)∩ Y is not smooth,

or H contains one of y1, . . . , yq

}
,

and the homogeneous degree of Zm in P(R∨
m) is less than or equal to P (m).

2. Proofs

In this section, we turn to the arithmetic case and give proofs of Theorem A and

Corollaries B and C. To prove Theorem A, we use Lemmas 2.1, 2.2, and 2.4.
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LEMMA 2.1 (COMBINATORIAL NULLSTELLENSATZ [5, LEMMA 5.2], [1, THEOREM 1.2])

Let V be a finite-dimensional vector space over a field k, and let

u : V → k

be a nonzero polynomial function with maximal total degree degu. Let e1, . . . , eN
be generators of V over k, and let S1, . . . , SN be subsets of k. If Card(Sj) ≥
degu+ 1 for every j, then there exist a1 ∈ S1, . . . , aN ∈ SN such that

u(a1e1 + · · ·+ aNeN ) �= 0.

LEMMA 2.2

Let X be a projective arithmetic variety, let A be a line bundle on X, and

let R• be a graded linear series belonging to A. Suppose that R1 is base point

free. Let y1, . . . , yl ∈X be distinct closed points on X such that char(k(yi)) �= 0

for every i, and let e
(m)
1 , . . . , e

(m)
Nm

∈ Rm be generators of the Z-module Rm. Set

F :=
∏

p: prime
∃i,p|char(k(yi))

p. Then, for every sufficiently large m, there exist integers

a1, . . . , aNm such that 0≤ aj <F for every j, and

(a1 + Fb1)e
(m)
1 (yi) + · · ·+ (aNm + FbNm)e

(m)
Nm

(yi) �= 0

for every integer b1, . . . , bNm and for every i.

Proof

First, we need the following claim.

CLAIM 2.3

For every sufficiently large m, there exists an s ∈ Rm such that s(yi) �= 0 for

every i.

Proof

Let φ : X → PN1

Z be the morphism associated to R1 such that φ∗Xj = e
(1)
j for

every j, and let O(1) be the hyperplane line bundle on PN1

Z . Then, for every

sufficiently large m, the homomorphism

H0
(
PN1

Z ,O(m)
)
→

⊕
i

O(m)
(
φ(yi)

)

is surjective. Let t ∈H0(PN1

Z ,O(m)) be a section such that t(φ(yi)) �= 0 for every i.

Then s := φ∗t has the desired property. �

Next, let s ∈Rm as above. Since Fe
(m)
j (yi) = 0 for every i, j, we have that

(s+ Ft)(yi) = s(yi) �= 0

for every t ∈Rm and for every i. Thus we conclude the claim. �

LEMMA 2.4 (ZHANG–MORIWAKI [7, THEOREM A AND COROLLARY B])

Under the same assumptions as in Theorem A, take an m0 � 1, and fix e1, . . . ,
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eN ∈Rm0 such that {
x ∈XQ

∣∣ e1(x) = · · ·= eN (x) = 0
}
= ∅

and such that ‖ej‖m0 < 1 for every j. Then there exists a positive constant C > 0

such that, for every sufficiently large m, one can find a Z-basis e
(m)
1 , . . . , e

(m)
Nm

for

Rm such that

max
i

{
‖e(m)

i ‖m
}
≤Cm(dimX+2)(dimX−1)

(
max

j

{
‖ej‖m0

})m/m0
.

Proof of Theorem A

Let r := [K : Q], and let X(C) =X1 ∪ · · · ∪Xr be the decomposition into con-

nected components. Let Rm,α be the image of Rm ⊗Z C via H0(X,A)⊗Z C→
H0(Xα,AC|Xα), and let φm,α :Xα → PMm

C be a morphism associated to Rm,α,

where we set Mm := rkZRm/r. By Lemma 2.4, there exist constants C,Q with

C > 0 and 0 < Q < 1 such that there exists a Z-basis e
(m)
1 , . . . , e

(m)
rMm

for Rm

consisting of the sections with supremum norms less than or equal to

(2.1) Cm(dimX+2)(dimX−1)Qm.

For each Y j , there exists a unique component Xα(j) that contains Y
j . Sup-

pose that char(xi) = 0 for i = 1, . . . , q1 and char(xi) �= 0 for i = q1 + 1, . . . , q =

q1 + q2, and let yi be a closed point in {xi}. By applying Corollary 1.5 to Xα(j),

Y j , y1, . . . , yq1 , and R•,α(j), one can find a polynomial function Pj(m) of degree

less than or equal to dimY j(dimY j − 1)(κ(R•,α(j)) + 1) + q1 and hypersurfaces

Zm,j ⊆ P(R∨
m,α(j)) defined by homogeneous polynomials um,j of degree less than

or equal to Pj(m), respectively, such that Zm,j contains all the hyperplanes H

in P(R∨
m,α(j)) such that φm,α(j)(Y

j) ⊆ H , φ−1
m,α(j)(H) ∩ Y j is not smooth, or

φ−1
m,α(j)(H) contains one of y1, . . . , yq1 . Set

um,α :=
∏

α(j)=α

um,j ,

and consider the homogeneous polynomial function

u :Rm ⊗Z C
∼−→

r⊕
α=1

Rm,α

∏
α um,α−−−−−→C

of degree less than or equal to

(2.2) P (m) := P1(m) + · · ·+ Pp(m).

Set F :=
∏

q: prime
∃i,q|char(yi)

q. Since e
(m)
1 , . . . , e

(m)
rMm

∈ Rm generate Rm ⊗Z C over

C, one can find integers a1, . . . , arMm and b1, . . . , brMm such that 0≤ ai < F for

every i, 0≤ bj ≤ P (m) for every j, and

u
(
(a1 + Fb1)e

(m)
1 + · · ·+ (arMm + FbrMm)e

(m)
rMm

)
�= 0
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by use of Lemmas 2.2 and 2.1. Hence, for each m � 1, there exists a section

tm ∈Rm such that tm|Xα is not contained in any of Zm,j and

‖tm‖m ≤CFrm(dimX+2)(dimX−1)Mm

(
1 + P (m)

)
Qm.

Since the right-hand side tends to zero as m→∞, we conclude the proof. �

Corollary B is a direct consequence of Theorem A.

Proof of Corollary C

We can take a0 � 1 such that BsF0+(X,a0L) = SBs0+(L). Let b0+(a0L) :=

Image(F0+(X,a0L)⊗Z (−a0L)→OX), let μ :X ′ →X be a blowup such that X ′

is generically smooth and such that μ−1b0+(a0L) · OX′ is Cartier, and let E be

an effective Cartier divisor on X ′ such that OX′(−E) = μ−1b0+(a0L) · OX′ . We

can assume that μ is isomorphic over X \SBs0+(L) (see [2]). Set x′
i := μ−1(xi) ∈

X ′ \E for i= 1, . . . , q. Let B :=OX′(E), and let 1B be the canonical section.

LEMMA 2.5

(a) We can endow B with a continuous Hermitian metric | · |B such that

|1B|B(x) = max
e∈H0(X,a0L)

0<‖e‖(a0)
sup <1

{ |e|a0L
(μ(x))

‖e‖(a0)
sup

}
≤ 1

for all x ∈X ′(C).

(b) We set B := (B, | · |B) and A := a0μ
∗L − B. Then A is a continuous

Hermitian line bundle on X ′ such that

BsF0+(X ′,A) = ∅ and c1(A)≥ 0

as a current.

Proof

Set {e ∈H0(X,a0L) \ {0} | ‖e‖(a0)
sup < 1}= {e1, . . . , eN}.

(a) We choose an open covering {Uν} of X ′(C) such that a0μ
∗LC|Uν is trivial

with local frame ην , and EC ∩Uν is defined by a local equation gν . Then we can

write μ∗ej = fj,ν · gν · ην on Uν , where f1,ν , . . . , fN,ν are holomorphic functions

on Uν satisfying {x ∈ Uν | f1,ν(x) = · · ·= fN,ν(x) = 0}= ∅. Since

max
j

{ |ej |a0L
(μ(x))

‖ej‖(a0)
sup

}
=max

j

{ |fj,ν(x)|
‖ej‖(a0)

sup

}
· |ην |a0μ∗L(x) ·

∣∣gν(x)∣∣
on x ∈ Uν , we have (a).

(b) For each x0 ∈ X ′(C), we take indices ν and j0 such that x0 ∈ Uν and

fj0,ν(x0) �= 0. Let εj be the section of A such that μ∗ej = εj ⊗1B , and set hj,ν :=

fj,ν/fj0,ν . Then

− log |εj0 |2A(x) =max
j

{
log

∣∣hj,ν(x)
∣∣2 − log

(
‖ej‖(a0)

sup

)2}

is plurisubharmonic near x0.
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We claim that ‖εj‖sup = ‖ej‖(a0)
sup , so that εj ∈ F0+(X ′,A). The inequality

‖εj‖sup ≥ ‖ej‖(a0)
sup is clear. Since

|εj |A(x) = |ej |a0L

(
μ(x)

)
·min

i

{ ‖ei‖(a0)
sup

|ei|a0L
(μ(x))

}
≤ ‖ej‖(a0)

sup

for all x ∈ (X ′ \E)(C), we have ‖εj‖sup = ‖ej‖(a0)
sup . This means that BsF0+(X ′,

A) = ∅. �

We apply Corollary B to A, and we can find an m� 1 and a σ ∈ H0(X ′,mA)

such that div(σ)Q is smooth, σ(x′
i) �= 0 for every i, and ‖σ‖sup < 1. Since X is

normal, there exists an s ∈ H0(X,ma0L) such that μ∗s = σ ⊗ 1⊗m
B . Since μ is

isomorphic over X \ SBs0+(L), s has the desired properties. �
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