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Abstract We show that the graded maximal ideal of a graded K-algebra R has linear

quotients for a suitable choice and order of its generators if the defining ideal of R has

a quadratic Gröbner basis with respect to the reverse lexicographic order, and we show

that this linear quotient property for algebras defined by binomial edge ideals character-

izes closed graphs. Furthermore, for algebras defined by binomial edge ideals attached to

a closed graph and for join-meet rings attached to a finite distributive lattice we present

explicit Koszul filtrations.

Introduction

Let K be a field. In this paper we consider standard graded K-algebras. Any such

algebra is isomorphic to a K-algebra of the form S/I where S =K[x1, . . . , xn] is

the polynomial ring in the indeterminates x1, . . . , xn and I ⊂ S is a graded ideal

with I ⊂ (x1, . . . , xn)
2. Let m be the graded maximal ideal of S/I . The K-algebra

R= S/I is called Koszul if K =R/m has a linear resolution. In other words, R is

Koszul if the chain maps in the minimal graded free R-resolution of the residue

class field of R are given by matrices whose entries are linear forms.

Obviously, the polynomial ring S itself is a Koszul algebra since the Koszul

complex attached to the sequence x1, . . . , xn provides a linear (and finite) reso-

lution of K. For R= S/I with I �= 0 the graded minimal free R-resolution F of

the residue class field R/m is infinite, and there are examples by Roos [13] which

show that F may be linear up to any given homological degree and then becomes

nonlinear. Thus, it is not surprising that no algorithm for testing Koszulness is

known, and in fact, there may not exist any such algorithm. It is of more interest

to have some necessary conditions and also some sufficient conditions for Koszul-

ness at hand. It is well known that I must be quadratically generated if S/I is

Koszul, and that S/I is indeed Koszul if I has a quadratic Gröbner basis.

More recently, filtrations have been considered to check whether a standard

graded K-algebra is Koszul. This strategy has first been applied in the paper [9]

in which the authors introduced strongly Koszul algebras which are defined via

sequential conditions. Inspired by this concept, Conca, Trung, and Valla [3] intro-
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duced the more flexible notion of Koszul filtration, which is defined as follows.

Let R be a standard graded K-algebra with graded maximal ideal m. A Koszul

filtration of R is a family F of ideals generated by linear forms with the property

that m ∈ F and that for each I ∈ F with I �= 0 there exists J ∈ F with J ⊂ I

such that I/J is a cyclic module whose annihilator belongs to F . It is shown

in [3, Proposition 1.2] that all the ideals I belonging to a Koszul filtration have

a linear resolution. In particular, any standard graded K-algebra admitting a

Koszul filtration is Koszul. It has been shown by an example on [2, p. 101] that

not each Koszul algebra has a Koszul filtration.

The question is how the property of a standard graded K-algebra to admit

a Koszul filtration is related to the property that its defining ideal admits a

quadratic Gröbner basis. In this paper we will be mainly concerned with this

question. At present it seems to us that none of these properties implies the

other one. Indeed, in Section 2 we give an example (Example 2.4) of a binomial

edge ideal whose residue class ring has a Koszul filtration, while in the given

coordinates the ideal has no quadratic Gröbner basis for any monomial order.

Other examples arise from the work of Ohsugi and Hibi [11]. On the other hand, if

the Koszul filtration F is of a very special nature, namely, if F is a flag, then the

defining ideal of the algebra has a quadratic Gröbner basis (see [2, Theorem 2.4]).

For the moment we do not know any example of a standard graded K-algebra

which does not admit a Koszul filtration, even though its defining ideal has a

quadratic Gröbner basis. As a generalization of [14, Lemma 12.1] of Sturmfels

([14, Chapter 12]) we prove in Section 1 the following result (Theorem 1.1).

Let I ⊂ S be a graded ideal which has a quadratic Gröbner basis with respect

to the reverse lexicographic order induced by x1 > · · · > xn. Then, for all i,

the colon ideals (I, xi+1, . . . , xn) : xi are generated, modulo I , by linear forms.

Thus, the flag of ideals 0 ⊂ (x̄n) ⊂ (x̄n, x̄n−1) ⊂ · · · ⊂ (x̄n, x̄n−1, . . . , x̄1) has the

potential to belong to a Koszul filtration of S/I . Here f̄ denotes the residue

class of a polynomial f ∈ S modulo I . We call any chain of ideals (0) = I0 ⊂
I1 ⊂ I2 ⊂ · · · ⊂ In = (x̄1, . . . , x̄n) generated by linear forms a linear flag if, for all

j, Ij+1/Ij is cyclic and the annihilator of Ij+1/Ij is generated by linear forms.

Thus, Theorem 1.1 says that if I has a quadratic Gröbner basis with respect to

the reverse lexicographic order, then S/I admits a linear flag.

In general, even if I is a binomial ideal with quadratic Gröbner basis with

respect to the reverse lexicographic order, the colon ideals (x̄i+1, . . . , x̄n) : x̄i are

not generated by subsets of {x̄1, x̄2, . . . , x̄n}. However, this is the case in various

combinatorial contexts and, in particular, for toric ideals. This is the content of

Theorem 1.3 in which we give an algebraic condition for binomial ideals which

ensures that all the colon ideals under consideration are generated by variables.

There we also show that, under the given conditions, the colon ideals modulo

I and modulo in<(I) are generated by the residue classes of the same sets of

variables. This observation makes it much easier to compute these colon ideals

and, in some cases, allows a combinatorial interpretation.
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Suppose now that 0⊂ (x̄n)⊂ (x̄n, x̄n−1)⊂ · · · ⊂ (x̄n, x̄n−1, . . . , x̄1) is a linear

flag. One may ask whether under this assumption I has a quadratic Gröbner

basis with respect to the reverse lexicographic order induced by x1 > · · · > xn.

In general, this is not the case. Indeed, let R5,2 = K[x1, . . . , x10]/I be the K-

algebra generated by all squarefree monomials titj ⊂K[t1, . . . , t5] in 5 variables

with x̄k = tiktjk and such that k < � if tiktjk > ti�tj� in the lexicographic order.

Then I does not have a quadratic Gröbner basis with respect to the reverse

lexicographic order induced by x1 > x2 > · · · > xn. Nevertheless, the sequence

xn, xn−1, . . . , x1 has linear quotients modulo I and hence defines a linear flag.

Actually, it is shown in [10] that Rm,2, the algebra generated by all squarefree

monomials of degree 2 in m variables, even has a Koszul filtration.

On the other hand, in Theorem 1.6 we show that if G is a finite simple graph

on the vertex set [n] and JG ⊂K[x1, . . . , xn, y1, . . . , yn] is its binomial edge ideal,

then G is closed, that is, JG has a quadratic Gröbner basis with respect to the

reverse lexicographic order induced by y1 > y2 > · · · > yn > x1 > x2 > · · · > xn

if and only if all the colon ideals (x̄i+1, . . . , x̄n) : x̄i have linear quotients. In

Section 2 we then show in Theorem 2.1 that, for a closed graph, the linear flag

0⊂ (x̄n)⊂ · · · ⊂ (x̄n, x̄n−1, . . . , x̄1) can be extended to a Koszul filtration of S/JG.

We close this section by proving in Corollary 2.6 that the family of poset ideals

of a finite distributive lattice defines a Koszul filtration of the join-meet ring

attached to the lattice. As a consequence one obtains that all the poset ideals

generate ideals with linear resolution in the join-meet ring.

1. Gröbner bases and linear quotients

Let K be a field, and let S =K[x1, . . . , xn] be the polynomial ring in the vari-

ables x1, . . . , xn. Any standard graded K-algebra R of embedding dimension n is

isomorphic to S/I where I is a graded ideal with I ⊂ (x1, . . . , xn)
2. Let m be the

graded maximal ideal of R. As explained in the introduction, a Koszul filtration

of R is a finite set F of ideals generated by linear forms such that

(1) m ∈ F ;

(2) for any I ∈ F with I �= 0, there exists J ∈ F with J ⊂ I such that I/J is

cyclic and J : I ∈ F .

As shown in [3, Proposition 1.2], any I ∈ F has a linear resolution and, in

particular, R is Koszul if it admits a Koszul filtration. Obviously, if F is a Koszul

filtration, then F contains a flag of ideals

0 = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In =m,

where Ij ∈ F for all j (and Ij/Ij+1 is cyclic for all j). If it happens that for

all j there exists k such that Ij+1 : Ij = Ik, then {I0, I1, . . . , In} is a Koszul

filtration. Such Koszul filtrations are called Koszul flags. Conca, Rossi, and Valla

[2, Theorem 2.4] showed that if S/I has a Koszul flag, then I has a quadratic

Gröbner basis. The following theorem is a partial converse of this result.
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THEOREM 1.1

Let I ⊂ S be a graded ideal which has a quadratic Gröbner basis with respect to

the reverse lexicographic order induced by x1 > · · ·> xn. Then, for all i, the colon

ideals

(I, xi+1, . . . , xn) : xi

are generated, modulo I, by linear forms.

For the proof of the theorem we need to recall the following result from [14,

Chapter 12].

LEMMA 1.2

Let G be the reduced Gröbner basis of the graded ideal I ⊂ S with respect to the

reverse lexicographic order induced by x1 > · · ·> xn. Then

G′ = {f ∈ G : xn � f} ∪ {f/xn : f ∈ G and xn | f}

is a Gröbner basis of I : xn.

Proof of Theorem 1.1

Let G = {g1, . . . , gm} be the reduced Gröbner basis of I with respect to the

reverse lexicographic order, and fix i ≤ n. Let fj = gj mod(xi+1, . . . , xn), fj ∈
K[x1, . . . , xi] for all j. We may assume that in<(g1)> · · ·> in<(gm) and, there-

fore, that there exists an s ≤ m such that fs �= 0 and fs+1 = · · · = fm = 0. In

addition, we have in<(fj) = in<(gj) for 1≤ j ≤ s. It then follows that (I, xi+1, . . . ,

xn) = (f1, . . . , fs, xi+1, . . . , xn) and the set F = {f1, . . . , fs, xi+1, . . . , xn} is a

Gröbner basis since by [7, Lemma 4.3.7]

in<(I, xi+1, . . . , xn) =
(
in<(I), xi+1, . . . , xn

)
.

Moreover, F is reduced since G is reduced. Let J = (f1, . . . , fs). Then

(I, xi+1, . . . , xn) : xi = (J,xi+1, . . . , xn) : xi = (J : xi) + (xi+1, . . . , xn).

By applying Lemma 1.2 for J ∩K[x1, . . . , xi], it follows that, modulo J , (J : xi)

is generated by linear forms in K[x1, . . . , xi], which implies that (I, xi+1, . . . , xn)

is also generated by linear forms modulo I . �

Consider the ideal I which is generated by the binomial x1x3 − x2x3. Then

I : x3 = (I, x1 − x2) = (x1 − x2). Thus, in general, one cannot expect that under

the assumptions of Theorem 1.1 the ideals (I, xi+1, . . . , xn) : xi are generated by a

subset of the variables modulo I , even when I is a binomial ideal. Therefore some

additional assumptions on the Gröbner basis of I are required to have monomial

colon ideals.

For a graded ideal J ⊂ S = K[x1, . . . , xn] we denote by Jj the jth graded

component of J .
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THEOREM 1.3

Let I ⊂ S =K[x1, . . . , xn] be an ideal generated by quadratic binomials, and let

< be the reverse lexicographic order induced by x1 > x2 > · · ·> xn. Let f1, . . . , fm
be the degree 2 binomials of the reduced Gröbner basis of I with respect to <. Let

fi = ui − vi for i= 1, . . . ,m, and assume that gcd(ui, vi) = 1 for all i. Then, for

all i, we have the following.

(a) [(I, xi+1, . . . , xn) : xi]1 = [(in<(I), xi+1, . . . , xn) : xi]1.

(b) Suppose that I has a quadratic Gröbner basis with respect to <. Then

(I, xi+1, . . . , xn) : xi =
(
I, xi+1, . . . , xn,

{
xj : j ≤ i, xjxi ∈ in<(I)

})
,

(
in<(I), xi+1, . . . , xn

)
: xi =

(
in<(I), xi+1, . . . , xn,

{
xj : j ≤ i, xjxi ∈ in<(I)

})
.

Proof

(a) Let � =
∑n

k=1 akxk be a linear form with �xi ∈ (I, xi+1, . . . , xn). We may

assume that ak = 0 for k > i. Let xj = in<(�). Then j ≤ i and xjxi ∈ in<(I, xi+1,

. . . , xn) = (in<(I), xi+1, . . . , xn). Therefore, there exists fk with in<(fk) = xjxi.

Thus, if fk = xjxi −xrxs, then s≥ i. However, since gcd(uk, vk) = 1, we see that

s > i. This implies that xjxi ∈ (I, xi+1, . . . , xn) and, consequently, (�− ajxj)xi ∈
(I, xi+1, . . . , xn). Since xj ∈ (in<(I), xi+1, . . . , xn) : xi, induction on in<(�) shows

that � ∈ (in<(I), xi+1, . . . , xn) : xi.

Conversely, suppose that � ∈ (in<(I), xi+1, . . . , xn) : xi. Since (in<(I), xi+1,

. . . , xn) is a monomial ideal, we may assume that � is a monomial and � /∈
(in<(I), xi+1, . . . , xn), say, � = xj . Then j ≤ i and xjxi ∈ (in<(I), xi+1, . . . , xn).

Then, as before, there exists fk = xjxi − xrxs with r ≤ s and s > i. It follows

that xjxi ∈ (I, xi+1, . . . , xn), and hence xj ∈ (I, xi+1, . . . , xn) : xi.

(b) Suppose that G = {f1, . . . , fm} is the reduced Gröbner basis of I with

respect to <. Let Ji = (I, xi+1, . . . , xn) : xi, and let

J ′
i =

(
I, xi+1, . . . , xn,

{
xj : j ≤ i, xjxi ∈ in<(I)

})
.

One has that J ′
i ⊂ Ji. To see why this is true, suppose that xjxi ∈ in<(I) with

j ≤ i. Then there is fk = xjxi − xpxq ∈ G with in<(f) = xjxi. Since j ≤ i, it

follows that either p > i or q > i. Hence xpxq ∈ (I, xi+1, . . . , xn). Thus xjxi ∈
(I, xi+1, . . . , xn) and xj ∈ Ji, as required.

Now, let A denote the set of homogeneous polynomials f ∈ S of degree at

least 1 which belong to Ji with the property that none of the monomials appear-

ing in f belongs to J ′
i . Suppose that A �= ∅. Among the polynomials belonging

to A, we choose f ∈ A such that in<(f)≤ in<(g) for all g ∈ A. Let u= in<(f).

Since xif ∈ (I, xi+1, . . . , xn), one has that xiu ∈ (in<(I), xi+1, . . . , xn). Since u /∈
J ′
i , it follows that xiu ∈ in<(I). Thus there is f� = xpxq−xrxs with in<(f) = xpxq

such that xpxq divides xiu. If, say, p = i, then xq divides u. Thus q ≤ i. Since

xixq ∈ in<(I), one has xq ∈ J ′
i . This contradicts that u /∈ J ′

i . Thus p �= i, q �= i,

and xpxq divides u. Let w = (u/xpxq)xrxs, and let f ′ = f−a(u−w), where a �= 0

is the coefficient of u in f . Since u−w ∈ I , one has f ′ ∈ Ji. Since u /∈ J ′
i , one has
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w /∈ J ′
i . Thus f

′ ∈A and in<(f
′)< in<(f). This contradicts the choice of f ∈A.

Hence A= ∅ and Ji = J ′
i , as desired.

The proof of the corresponding statement for in<(I) is obvious. �

In [1] a standard graded K-algebra R is called universally Koszul if the set

consisting of all ideals generated by linear forms is a Koszul filtration of R. In

combinatorial contexts it is natural to consider standard graded K-algebras R

whose set of ideals consists of all ideals which are generated by subsets of the

variables as a Koszul filtration of R. We call such algebras c-universally Koszul.

It is clear that any universally Koszul algebra or any strongly Koszul algebra is

c-universally Koszul.

COROLLARY 1.4

Let I ⊂ S =K[x1, . . . , xn] be a toric ideal with the property that I has a quadratic

Gröbner basis with respect to the reverse lexicographic order induced by any given

order of the variables. Then S/I is c-universally Koszul.

Proof

The binomials in a minimal set of binomial generators of a toric ideal are all

irreducible, since I is a prime ideal. Hence, the conclusion follows immediately

from Theorem 1.3. �

REMARK 1.5

In view of Theorems 1.1 and 1.3 one may expect that the following more general

statement may be true. Let I ⊂ S =K[x1, . . . , xn] be a graded ideal. Then the

following are equivalent: (a) I has a quadratic Gröbner basis with respect to

the reverse lexicographic order induced by x1 > x2 > · · ·> xn; (b) the sequence

xn, xn−1, . . . , x1 has linear quotients modulo I . In general, however, (b) does

not imply (a). Indeed, let R5,2 = K[x1, . . . , x10]/I be the K-algebra generated

by all squarefree monomials titj ⊂ K[t1, . . . , t5] in 5 variables with x̄k = tiktjk
and such that k < � if tiktjk > ti�tj� in the lexicographic order. Then I does not

have a quadratic Gröbner basis with respect to the reverse lexicographic order

induced by x1 > x2 > · · · > xn. Nevertheless, the sequence xn, xn−1, . . . , x1 has

linear quotients modulo I .

Surprisingly, for any binomial edge ideal, Remarks 1.5(a) and 1.5(b) turn out to

be equivalent, as will be shown in the next theorem.

Let G be a finite simple graph on the vertex set [n]. The binomial edge ideal

JG associated with G is the ideal generated by the quadrics fij = xiyj − xjyi
in S =K[x1, . . . , xn, y1, . . . , yn] with {i, j} an edge of G. This class of ideals was

introduced in [8] and [12].

The graph G is called closed with respect to the given labeling if G satisfies

the following condition: whenever {i, j} and {i, k} are edges of G and either i < j,

i < k or i > j, i > k, then {j, k} is also an edge of G. It is shown in [8, Theorem 1.1]

that G is closed with respect to the given labeling if and only if JG has a quadratic
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Gröbner basis with respect to the lexicographic order induced by x1 > · · ·> xn >

y1 > · · ·> yn. It is easily seen that any binomial ideal JG has the same reduced

Gröbner basis with respect to the lexicographic order induced by the natural

order of the variables and with respect to the reverse lexicographic order induced

by y1 > · · ·> yn > x1 > · · ·> xn. Therefore, G is closed with respect to the given

labeling if and only if JG has a quadratic Gröbner basis with respect to the

reverse lexicographic order induced by y1 > · · ·> yn > x1 > · · ·> xn.

One calls a graph G closed if it is closed with respect to some labeling of

its vertices. D. A. Cox and A. Erskine [4, Theorem 1.4] showed that a connected

graph G is closed if and only if G is chordal, claw-free, and narrow.

We will often use the following notation. For k ∈ [n], we let

N<(k) =
{
j : j < k,{j, k} ∈E(G)

}
and

N>(k) =
{
j : j > k,{k, j} ∈E(G)

}
.

For some of the following proofs it will be useful to note that, provided that

they are nonempty, each of these sets is an interval if the graph G is closed

with respect to its labeling. Indeed, let us take i ∈ N<(k). In particular, we

have {i, k} ∈ E(G). Then, as all the maximal cliques of G are intervals (see [5,

Theorem 2.2]), it follows that, for any i≤ j < k, {j, k} ∈E(G); thus, j ∈N<(k).

A similar argument works for N>(k).

THEOREM 1.6

Let G be a connected finite simple graph on the vertex set [n]. The following

conditions are equivalent:

(a) G is closed with respect to the given labeling;

(b) the sequence xn, xn−1, . . . , x1 has linear quotients modulo JG.

Proof

(a) ⇒ (b). Let G be closed with respect to the given labeling. It follows that

the generators of JG form the reduced Gröbner basis of JG with respect to the

reverse lexicographic order induced by y1 > · · ·> yn > x1 > · · · > xn. Let i ≤ n.

The generators of in<(JG) which are divisible by xi are exactly xiyj where i < j

and {i, j} ∈E(G). Hence, by using Theorem 1.3(b), we get that

(1) (x̄n, x̄n−1, . . . , x̄i+1) : x̄i =
(
x̄n, x̄n−1, . . . , x̄i+1,

{
ȳj : j ∈N>(i)

})
.

Here f̄ denotes the residue class for a polynomial f ∈ S modulo JG.

(b) ⇒ (a). We may suppose that x̄n, x̄n−1, . . . , x̄1 has linear quotients and

show that G is closed with respect to the given labeling. In fact, assume that

G is not closed. Then there exist {i, j},{i, k} ∈E(G) with i < j < k or i > j > k

and such that {j, k} /∈E(G).

Let us first consider the case in which i < j < k. Since

x̄j ȳiȳk = x̄iȳj ȳk = x̄kȳiȳj ,

we see that ȳiȳk ∈ (x̄n, . . . , x̄j+1) : x̄j .
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We claim that ȳiȳk is a minimal generator of (x̄n, . . . , x̄j+1) : x̄j , contradicting

the assumption that x̄n, x̄n−1, . . . , x̄1 has linear quotients. Indeed, suppose that

ȳiȳk is not a minimal generator of (x̄n, . . . , x̄j+1) : x̄j ; then there exist linear forms

�1 and �2 in S such that �̄1�̄2 = ȳiȳk and at least one of the forms �̄1, �̄2 belongs

to (x̄n, . . . , x̄j+1) : x̄j .

Now we observe that JG is Zn-graded with degxi = deg yi = εi for all i,

where εi is the ith canonical unit vector of Zn. It follows that the �̄i’s are multi-

homogeneous as well with deg �̄1�̄2 = εi + εk, say, deg �̄1 = εi and deg �̄2 = εk.

Thus �1 = axi + byi and �2 = cxk + dyk with a, b, c, d ∈ K. Let us first assume

that �̄1 ∈ (x̄n, . . . , x̄j+1) : x̄j . We get that

axixj + bxjyi ∈ (JG, xn, . . . , xj+1),

which implies that

in<(axixj + bxjyi) ∈ in<(JG, xn, . . . , xj+1) =
(
(in< JG), xn, . . . , xj+1

)
.

Here < denotes the reverse lexicographic order induced by y1 > · · ·> yn > x1 >

· · · > xn. It follows that xixj ∈ in<(JG) or xjyi ∈ in<(JG), which is impossible

since the generators of degree 2 of in<(JG) are of the form xky� with {k, �} ∈E(G)

and k < �.

Let us consider now that �̄2 ∈ (x̄n, . . . , x̄j+1) : x̄j . We get cxkxj + dxjyk ∈
(JG, xn, . . . , xj+1). If d �= 0, then we obtain xjyk ∈ (JG, xn, . . . , xj+1) and, there-

fore, xjyk ∈ (in<(JG), xn, . . . , xj+1), which implies that xjyk ∈ in<(JG), a contra-

diction since {j, k} /∈E(G) by assumption. Therefore, we must have �2 = cxk for

some c ∈K \ {0}. The equation �̄1�̄2 = ȳiȳk implies that cxk(axi + byi)− yiyk ∈
JG. It follows that one of the monomials xixk, xkyi, yiyk belongs to in<(JG), a

contradiction.

Finally, we consider the case in which i > j > k. Then xifjk ∈ JG, and so

f̄jk ∈ (x̄n, . . . , x̄i+1) : x̄i. By similar arguments as above, we show that f̄jk is a

minimal generator of (x̄n, . . . , x̄i+1) : x̄i. Suppose that there exist linear forms

�1 = axj + byj and �2 = cxk + dyk such that g = fjk − �1�2 ∈ JG. Since no mono-

mial in the support of g belongs to in<(G) (with the monomial order as in the

previous paragraph), it follows that g /∈ JG, a contradiction. Hence, we see that

(x̄n, . . . , x̄i+1) : x̄i is not generated by linear forms. �

2. Classes of ideals with Koszul filtration

In this section we present two large classes of K-algebras which admit Koszul

filtrations. In both cases their defining ideal also admits a quadratic Gröbner

basis.

THEOREM 2.1

Let G be a closed graph. Then R= S/JG has a Koszul filtration.

For the proof of this theorem we need a preparatory result.



Linear flags and Koszul filtrations 525

LEMMA 2.2

Let 0≤ k ≤ n− 1, let N>(k) = {k+1, . . . , �} for some �≥ k+1, and let N<(k+

1) = {i, i+ 1, . . . , k} for some i≤ k. Then:

(a) (JG, xn, . . . , xk+1, yk+2, . . . , y�) : yk+1 = (JG, xn, . . . , xk+1, xk, . . . , xi,

yk+2, . . . , y�),

(b) for k+ 2≤ s≤ �, ys is regular on (JG, xn, . . . , xi, ys+1, . . . , y�).

Proof

(a) Let r ∈ N<(k + 1). Then xryk+1 = (xryk+1 − xk+1yr) + xk+1yr ∈ (JG, xn,

. . . , xk+1). This shows the inclusion ⊇.

For the other inclusion, let f ∈ S be such that fyk+1 ∈ (JG, xn, . . . , xk+1, yk+2,

. . . , y�). If H is the restriction of G to the set [k], then (JG, xn, . . . , xk+1, yk+2, . . . ,

y�) = (JH , xn, . . . , xk+1, yk+2, . . . , y�,{xryj : r ≤ k < j,{r, j} ∈ E(G)}). Let us

observe that if {r, j} ∈ E(G) with r ≤ k < j, then, as G is closed, we have

{k, j} ∈E(G); thus, j ∈ {k+ 1, . . . , �}. Therefore, we get that

(JG, xn, . . . , xk+1, yk+2, . . . , y�)

= (JH , xn, . . . , xk+1, yk+2, . . . , y�, xiyk+1, . . . , xkyk+1).

By inspecting the S-polynomials of the generators on the right-hand side of the

above equality of ideals, it follows that

in<(JG, xn, . . . , xk+1, yk+2, . . . , y�)

=
(
in<(JH), xn, . . . , xk+1, yk+2, . . . , y�, xiyk+1, . . . , xkyk+1

)
.

Here < denotes the lexicographic order on S =K[x1, . . . , xn, y1, . . . , yn] induced

by the natural order of the variables.

It follows that in<(f)yk+1 ∈ (in<(JH), xn, . . . , xk+1, yk+2, . . . , y�, xiyk+1, . . . ,

xkyk+1), which implies that in<(f) ∈ (in<(JH), xn, . . . , xk+1, xk, . . . , xi, yk+2,

. . . , y�). Hence, either in<(f) ∈ (xn, . . . , xk+1, xk, . . . , xi, yk+2, . . . , y�) or in<(f) ∈
in<(JH). In both cases we may proceed by induction on in<(f). In the first case,

let a be the coefficient of in<(f) in f . Then g = f −a in<(f) has in<(g)< in<(f)

and gyk+1 ∈ (JG, xn, . . . , xk+1, yk+2, . . . , y�). In the second case, let h ∈ JH and

c ∈K \{0} be such that in<(h− cf)< in<(f). Thus, if g = h− cf , then it follows

that gyk+1 ∈ (JG, xn, . . . , xk+1, yk+2, . . . , y�) as well.

(b) Let k + 2 ≤ s≤ �. It is enough to show that ys is regular on the initial

ideal of (JG, xn, . . . , xi, ys+1, . . . , y�). If H is the restriction of G to the set [i],

then we get that

in<(JG, xn, . . . , xi, ys+1, . . . , y�)

= in<
(
JH , xn, . . . , xi, ys+1, . . . , y�,

{
xryj : r < i < j,{r, j} ∈E(G)

})

=
(
in<(JH), xn, . . . , xi, ys+1, . . . , y�,

{
xryj : r < i < j,{r, j} ∈E(G)

})
.

The last equality from above may be easily checked by observing that the S-

polynomials S(fr�, xryj) reduce to 0 for any r < �≤ i < j with {r, �} ∈E(H). We
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claim that ys does not divide any of the generators of
(
in<(JH), xn, . . . , xi, ys+1, . . . , y�,

{
xryj : r < i < j,{r, j} ∈E(G)

})
.

Obviously, ys does not divide any of the generators of in<(JH). Next, if {r, s} ∈
E(G) for some r < i < k + 1< s, then, as G is closed, we get {r, k + 1} ∈E(G),

contradicting the fact that i=minN<(k+ 1). This shows that none of the gen-

erators xryj is divisible by ys. �

Proof of Theorem 2.1

Let G be closed with respect to its labeling. We set f̄ for fmod(JG) ∈R= S/JG.

For k ∈ [n− 1], let N>(k) = {k+ 1, . . . , �k} and N<(k+ 1) = {ik, ik + 1, . . . , k}.
Let us consider the following families of ideals:

F1 =
{
(x̄n, . . . , x̄1, ȳn, . . . , ȳk) : 1≤ k ≤ n

}
∪
{
(x̄n, . . . , x̄k) : 1≤ k ≤ n

}
,

F2 =

n−1⋃

k=1

{
(x̄n, . . . , x̄k+1, ȳk+1, . . . , ȳ�k), (x̄n, . . . , x̄k+1, ȳk+2, . . . , ȳ�k)

}
,

and

F3 =

n−1⋃

k=1

{
(x̄n, . . . , x̄ik , ȳs, . . . , ȳ�k) : k+ 2≤ s≤ �k

}
.

We claim that the family F =F1∪F2∪F3∪{(0)} is a Koszul filtration of R.

We have to check that, for every I ∈ F , there exists J ∈ F such that I/J is cyclic

and J : I ∈ F .

Let us consider I = (x̄n, . . . , x̄1, ȳn, . . . , ȳk) ∈ F1. Then, for J = (x̄n, . . . , x̄1,

ȳn, . . . , ȳk+1) ∈ F1, we have J : I = J since ȳk is obviously regular on R/J .

For I = (x̄n, . . . , x̄k) ∈ F1 with 1≤ k ≤ n−1, we take J = (x̄n, . . . , x̄k+1) ∈ F1.

Then, by (1), we get J : I = (x̄n, . . . , x̄k+1, ȳk+1, . . . , ȳ�k) ∈ F2. In addition, for

I = (x̄n), we have (0) : I = (0) since x̄n is regular on R.

Let us now choose I ∈ F2, I = (x̄n, . . . , x̄k+1, ȳk+1, . . . , ȳ�k) for some 1≤ k ≤
n − 1. Then, J = (x̄n, . . . , x̄k+1, ȳk+2, . . . , ȳ�k) ∈ F2 and, by Lemma 2.2(a), we

have J : I = (x̄n, . . . , x̄ik , ȳk+2, . . . , ȳ�k) ∈ F3.

Finally, if I ∈ F3, I = (x̄n, . . . , x̄ik , ȳs, . . . , ȳ�k) for some k+2≤ s≤ �k, then we

take J = (x̄n, . . . , x̄ik , ȳs+1, . . . , ȳ�k) ∈ F3. By Lemma 2.2(b), we get that J : I = J

since ȳs is regular on R/J . �

One may ask for which binomial edge ideals JG is the K-algebra S/JG
c-universally Koszul? The following result answers this question.

PROPOSITION 2.3

Let G be a finite simple graph. Then S/JG is c-universally Koszul if and only if

G is a complete graph.

Proof

In [9, Example 1.6] it has been shown that S/JG is strongly Koszul if G is a com-

plete graph. In particular, G is c-universally Koszul. For the converse implication,
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Figure 1.

assume that G is not complete. Then there exist edges {i, j} and {i, k} of G such

that {j, k} /∈E(G). This implies that xjyk−xkyj /∈ JG. On the other hand, xjyk−
xkyj ∈ JG : xi, because xi(xjyk − xkyj) = xj(xiyk − xkyi)− xk(xiyj − xjyi). �

The following example shows that the converse of Theorem 2.1 is not true. In

other words, there exist Koszul nonclosed graphs G such that R = S/JG has a

Koszul filtration.

EXAMPLE 2.4

Let G be the graph given in Figure 1. Then G is not closed, but it is Koszul

(see [6]).

The ring R =K[x1, . . . , x6, y1, . . . , y6]/JG possesses the following Koszul fil-

tration:

(0), (y6), (y6, x6),

(y6, y3), (y6, x6, x5), (y6, x6, y5, x5),

(y6, x6, x5, x4), (y6, y4, x6, x5, x4), (y6, x6, x5, x4, x3),

(y6, x6, x5, x4, x3, x2), (y6, y4, x6, x5, x4, x3), (y6, y4, y3, x6, x5, x4, x3),

(y6, x6, x5, . . . , x1), (y6, y2, x6, x5, . . . , x2), (y6, y4, x6, x5, . . . , x2),

(y6, y5, x6, x5, . . . , x1), (y6, y5, y4, x6, x5, . . . , x1), (y6, y5, y4, y3, x6, x5, . . . , x1),

(y6, y5, . . . , y2, x6, x5, . . . , x1), (y6, y5, . . . , y1, x6, x5, . . . , x1).

In view of this example it would be of interest to classify all finite simple graphs

for which S/JG has a Koszul filtration.

Let K be field, and let L be a finite distributive lattice. We denote by K[L]

the polynomial ring over K whose variables are the elements of L, and we denote

by IL the binomial ideal in K[L] generated by the binomials ab− (a ∧ b)(a ∨ b)

with a, b ∈ L incomparable. The ideal IL is called the join-meet ideal, and A(L) =

K[L]/IL is called the join-meet ring of L (also known as the Hibi ring). The

residue class f + IL ∈A(L) of a polynomial f ∈K[L] will be denoted by f̄ . Let

I ⊂ L be a poset ideal of L. We denote by Ī the ideal in A(L) generated by the

elements ā with a ∈ I .

THEOREM 2.5

Let I ⊂ J be poset ideals of L with J \ I = {a}. Then Ī : J̄ = H̄ , where H is the

poset ideal {b ∈ L : b≯ a}.
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Proof

Let b ∈ L with b≯ a. Then āb̄= (ā∧ b̄)(ā∨ b̄) ∈ Ī , since a∧ b < a. This shows that

H̄ ⊂ Ī : (ā) = Ī : J̄ . In order to prove the converse inclusion, we let f̄ ∈ Ī : (ā) and

may assume that f̄ /∈ Ī . Thus, af ∈ (IL, I) and f /∈ (IL, I). Now we choose a total

order ≺ of the variables such that a≺ b if a > b in L and such that a≺ b if a /∈ I

and b ∈ I , and we denote again by ≺ the reverse lexicographic order induced

by ≺. Then in≺(IL, I) = (in≺(IL), I), and it follows that a in≺(f) ∈ (in≺(IL), I).

By a classical result of Hibi (see [7, Theorem 10.1.3], in≺(IL) is generated by all

monomials bc with b, c ∈ L incomparable. Thus,
(
in≺(IL), I

)
=
(
{bc : b, c ∈ L \ I with b, c incomparable}, I

)
.

Since f /∈ (IL, I), we may assume that f is in standard form with respect to (IL, I)

and ≺. In other words, we may assume that no monomial in the support of f

belongs to (in≺(IL), I). On the other hand, since a in(f) ∈ (in≺(IL), I) it follows

that one of the generating monomials of (in≺(IL), I) divides a in<(f). The only

monomials among the monomial generators which can divide a in≺(f) must be

of the form ab with a and b incomparable. Thus b divides in≺(f) and b ∈ H .

Let g = f − λ in≺(f) where λ is the leading coefficient of f . Since ḡ ∈ Ī : (ā) and

in≺(g)≺ in≺(f), induction completes the proof. �

COROLLARY 2.6

Let L be a finite distributive lattice. Then the family

F = {Ī : I is a poset ideal of L}

of ideals is a Koszul filtration of A(L). In particular, for each poset ideal I of L,

the ideal Ī ⊂A(L) has a linear resolution.

In [9] all finite distributive lattices L for which A(L) is strongly Koszul are

classified. Among them are the Boolean lattices. Thus, if B is a Boolean lattice,

then B admits the Koszul filtration consisting of all ideals of the form Ū with U a

subset of B, and by Corollary 2.6, B also admits the Koszul filtration consisting

of all poset ideals of B. These are already two different Koszul filtrations of A(B).

An upset in a partially ordered set P is a subset J with the property that if

x ∈ J and y ≥ x, then y ∈ J . Since reversion of the partial order in a distributive

lattice L defines again a distributive lattice, it follows from Corollary 2.6 that the

collection of ideals J̄ with J ⊂ L an upset forms a Koszul filtration. So for any

Boolean lattice we have now three different Koszul filtrations. One obtains even

more Koszul filtrations by observing that if F1 and F2 are Koszul filtrations of

a standard graded K-algebra R, then F1 ∪F2 is a Koszul filtration of R as well.

Thus, any standard graded K-algebra R which admits a Koszul filtration also

admits a Koszul filtration which among all Koszul filtrations of R is maximal

with respect to inclusion. The maximal Koszul filtration is of interest because it

gives a large family of ideals of linear forms with linear resolution.

We say a Koszul filtration F of R is minimal if no proper subset of F
is a Koszul filtration of R. In general, the Koszul filtration of A(L) given in
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Corollary 2.6 is not minimal. To see this, first notice that each of the poset

ideals H in Theorem 2.5 is cogenerated by a single element. Thus, the following

observation is immediate. Suppose that I is a set of poset ideals of L satisfying

the following conditions:

(1) all poset ideals are cogenerated by an element of L, and L belongs to I;
(2) for all I ∈ I there exists J ⊂ I such that |I \ J |= 1.

Then F = {Ī : I ∈ I} is a Koszul filtration of A(L).

In general a set I of poset ideals of L satisfying (1) and (2) may be different

from the set of all poset ideals of L. For example, let B3 be the Boolean lattice

of rank 3 whose elements we may identify with the subsets of [2]. Then the set

F consisting of all poset ideals of B3 except the poset ideal {{3},∅} satisfies (1)

and (2).
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[8] J. Herzog, T. Hibi, F. Hreinsdóttir, T. Kahle, and J. Rauh, Binomial edge

ideals and conditional independence statements, Adv. in Appl. Math. 45 (2010),

317–333. MR 2669070. DOI 10.1016/j.aam.2010.01.003.

[9] J. Herzog, T. Hibi, and G. Restuccia, Strongly Koszul algebra, Math. Scand. 86

(2000), 161–178. MR 1754992.

[10] T. Hibi, A. A. Qureshi, and A. Shikama, A Koszul filtration for the second

squarefree Veronese subring, Int. J. Algebra 9 (2015), 7–14.

http://dx.doi.org/10.12988/ija.2015.410102.

[11] H. Ohsugi and T. Hibi, Toric ideals generated by quadratic binomials, J.

Algebra 218 (1999), 509–527. MR 1705794. DOI 10.1006/jabr.1999.7918.

http://www.ams.org/mathscinet-getitem?mr=1764242
http://dx.doi.org/10.1007/s002080000100
http://dx.doi.org/10.1007/s002080000100
http://www.ams.org/mathscinet-getitem?mr=1856025
http://dx.doi.org/10.1023/A:1013160203998
http://dx.doi.org/10.1023/A:1013160203998
http://www.ams.org/mathscinet-getitem?mr=1868173
http://arxiv.org/abs/arXiv:1306.5149v2
http://www.ams.org/mathscinet-getitem?mr=2863365
http://dx.doi.org/10.1007/978-3-319-09186-0_8
http://dx.doi.org/10.1007/978-3-319-09186-0_8
http://www.ams.org/mathscinet-getitem?mr=2724673
http://dx.doi.org/10.1007/978-0-85729-106-6
http://dx.doi.org/10.1007/978-0-85729-106-6
http://www.ams.org/mathscinet-getitem?mr=2669070
http://dx.doi.org/10.1016/j.aam.2010.01.003
http://dx.doi.org/10.1016/j.aam.2010.01.003
http://www.ams.org/mathscinet-getitem?mr=1754992
http://dx.doi.org/10.12988/ija.2015.410102
http://www.ams.org/mathscinet-getitem?mr=1705794
http://dx.doi.org/10.1006/jabr.1999.7918
http://dx.doi.org/10.1006/jabr.1999.7918


530 Ene, Herzog, and Hibi

[12] M. Ohtani, Graphs and ideals generated by some 2-minors, Comm. Algebra 39

(2011), 905–917. MR 2782571. DOI 10.1080/00927870903527584.

[13] J.-E. Roos, Commutative non-Koszul algebras having a linear resolution of

arbitrarily high order. Applications to torsion in loop space homology, C. R.

Acad. Sci. Paris Sér. I Math. 316 (1993), 1123–1128. MR 1221635.
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