
Generic flows on 3-manifolds
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Abstract A 3-dimensional generic flow is a pair (M,v)withM a smooth compact ori-

ented 3-manifold and v a smooth nowhere-zero vector field onM having generic behav-

ior along ∂M ; on the set of such pairs we consider the equivalence relation generated by

topological equivalence (homeomorphism mapping oriented orbits to oriented orbits)

and by homotopywith fixed configuration on the boundary, andwe denote byF the quo-

tient set. In this paper we provide a combinatorial presentation of F . To do so we intro-

duce a certain class S of finite 2-dimensional polyhedra with extra combinatorial struc-

tures, and some moves on S, exhibiting a surjection ϕ : S →F such that ϕ(P0) = ϕ(P1)

if and only if P0 and P1 are related by the moves. To obtain this result we first consider

the subsetF0 ofF consisting of flows having all orbits homeomorphic to closed segments

or points, constructing a combinatorial counterpartS0 forF0, and then adapting it toF .

Combinatorial presentations of 3-dimensional topological categories, such as the

description of closed oriented 3-manifolds via surgery along framed links in S3,

and many more, have proved crucial for the theory of quantum invariants, ini-

tiated in [10] and [13] and now one of the main themes of geometric topology.

In this paper we provide one such presentation for the set F of pairs (M,v)

with M a smooth 3-manifold and v a smooth flow having generic behavior on

∂M , viewed up to homotopy with fixed configuration on ∂M . This extends the

presentation of closed combed 3-manifolds contained in [5], and it is based on a

generalization of the notion of branched spine, introduced there as a combination

of the definition of special spine due to Matveev [8] with the concept of branched

surface introduced by Williams [14], already partially investigated by Ishii [7] and

Christy [6]. A presentation here is, as usual, meant as a constructive surjection

onto F from a set of finite combinatorial objects, together with a finite set of

combinatorial moves on the objects generating the equivalence relation induced

by the surjection.

To get our presentation we will initially restrict to generic flows having all

orbits homeomorphic to points or to segments, viewed first up to topological

equivalence (homeomorphism mapping oriented orbits to oriented orbits, see [11,

Section 4.7 and p. 115]) and then up to homotopy through flows having all orbits

homeomorphic to points or to segments, and we will carefully describe their

combinatorial counterparts.
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A restricted type of generic flows on manifolds with boundary was actu-

ally already considered in [5], but two such flows could never be glued together

along boundary components. On the contrary, as we will point out in detail in

Remark 3.4, using the flows we consider here one can develop a theory of cobor-

dism and hence, hopefully, a topological quantum field theory (TQFT) in the

spirit of [12]. Another reason why we expect that our encoding of generic flows

might have nontrivial applications is that the notion of branched spine was one of

the combinatorial tools underlying the theory of quantum hyperbolic invariants

of Baseilhac and Benedetti [1]–[3].

1. Generic flows, streams, and stream spines

In this section we define the topological objects that we will deal with in the

paper and we introduce the combinatorial objects that we will use to encode

them. We then describe our first representation result, for manifolds with generic

traversing flows (which we call streams) viewed up to topological equivalence

(homeomorphism mapping oriented orbits to oriented orbits).

1.1. Generic flows
Let M be a smooth, compact, and oriented 3-manifold with nonempty boundary,

and let v be a vector field on M . We will always assume in this paper that v is

smooth and nowhere vanishing. We also stipulate the following genericity of the

tangency of v to ∂M , first discussed by Morin [9].

(G1) – The field v is tangent to ∂M only along a union Γ of circles.

– Each component of Γ separates a region on which v points inside

M from a region on which v points outside M .

– The field v is tangent to Γ at isolated points only.

– At the two sides on Γ of each tangency point of v to Γ, one has

that v is directed to opposite sides of Γ on ∂M .

We now graphically illustrate all the local configurations compatible with

this genericity condition, and at the same time we introduce some terminology

that we will repeatedly employ in the rest of the paper. The models are viewed up

to topological equivalence (see [11]; analytic descriptions of these local models

and a hint toward a formal proof that there are no other models is provided

below).

• We call in-region (resp., out-region) the union of the components of (∂M)\
Γ on which v points towards the interior (resp., the exterior) of M ;

• If A is a point of Γ we will say that A is concave if at A the field v points

from the out-region to the in-region and convex if it points from the in-region

to the out-region; this terminology is borrowed from [5] and is motivated by the

shape of the orbits of v near A (see Figure 1).

• A point A of Γ at which v is tangent to Γ will be termed the transition
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Figure 1. Orbits of v near a concave (left) and near a convex (right) point of Γ. All pictures represent a

cross section transverse to Γ. The top pictures show v; the bottom ones show its orbits.

Figure 2. Types of transition points: on the left v points from the concave to the convex portion of Γ; on

the right v points from the convex to the concave portion of Γ; note that mirror images in 3-space of these

configurations should also be taken into account (namely, the figures are unoriented).

point and, more exactly, a convex-to-concave or a concave-to-convex transition

point, depending on the direction of v at A (see Figure 2).

The next result records obvious facts and two less obvious ones.

PROPOSITION 1.1

Let A be a point of ∂M . Then, depending on where A lies, the orbit of v through

A extends as shown in Table 1.

Table 1

A in the in-region only forward

A in the out-region only backward

A a concave point both forward and backward

A a convex point neither forward nor backward

A a concave-to-convex transition point only backward

A a convex-to-concave transition point only forward

Proof

The result is evident except for orbits through the transition points. To deal with

them we first analyze what the orbits would be if v were projected to ∂M , which

we do in Figure 3. The picture shows that at the concave-to-convex transition

points the orbit of the projection of v lies in the out-region, which implies that



146 Carlo Petronio

Figure 3. Orbits through the transition points for the field obtained by projecting v to a vector field tangent

to ∂M .

the orbit of v extends backward but not forward, while at the convex-to-concave

transition points the opposite happens. �

From now on an orbit of v reaching a concave-to-convex transition point or

leaving from a convex-to-concave transition point will be termed transition orbit.

1.2. Explicit local models
For the sake of completeness we provide here explicit local models for a vector

field v on a manifold M satisfying the genericity condition (G1), and we prove

that these models are essentially unique.

We begin by assuming that near a boundary point A the manifold M is

identified with (−1,1)×(−1,1)×(−1,0]⊂R
3, so ∂M is locally (−1,1)×(−1,1)×

{0}, with A corresponding to the origin. For A in the out-region or in the in-region

we take the constant fields v =
(

0
0
1

)
and v =

(
0
0
−1

)
, respectively. For A a concave,

convex, or transition point we assume that Γ is locally (−1,1)× {0} × {0}, and
we take the following:

• for A a concave tangency point, vcc

(
x
y
z

)
=

(
0

1−y2

−y

)
;

• for A a convex tangency point, vcv

(
x
y
z

)
=

(
0

y2−1
−y

)
;

• for A a convex-to-concave transition point,

vcv→cc

⎛
⎝x

y

z

⎞
⎠=

⎛
⎝(1− x2)(1− y2)

x(1− y2)

−y

⎞
⎠;

• for A a concave-to-convex transition point,

vcc→cv

⎛
⎝x

y

z

⎞
⎠=

⎛
⎝(1− x2)(1− y2)

x(y2 − 1)

−y

⎞
⎠.

The analytic expressions just provided correspond exactly to the pictures of the

local models shown above. However, since only the behavior in a neighborhood
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of 0 is relevant, we can also employ the following simpler vector fields:

ṽcc

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 0

1

−y

⎞
⎠, ṽcv

⎛
⎝x

y

z

⎞
⎠=

⎛
⎝ 0

−1

−y

⎞
⎠,

ṽcv→cc

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 1

x

−y

⎞
⎠, ṽcc→cv

⎛
⎝x

y

z

⎞
⎠=

⎛
⎝ 1

−x

−y

⎞
⎠.

One advantage of these alternative expressions is that one readily sees that they

are generic up to perturbation within smooth vector fields: starting from a vector

field v = (X,Y,Z) with Z(0) = 0 one can choose coordinates and perturb v so

that

• ∂Z
∂x (0) = 0 and ∂Z

∂y (0)< 0;

• either Y (0) �= 0 (whence ṽcc for Y (0)> 0 and ṽcv for Y (0)< 0) or ∂Y
∂x (0) �= 0

(whence ṽcv→cc for ∂Y
∂x (0)> 0 and ṽvc→cc for ∂Y

∂x (0)< 0).

Local models of an alternative nature are described by assuming that M is a

portion of R3 depending on the model, with A ∈ ∂M corresponding to the origin,

while v is the constant vertical field
(

0
0
1

)
. In this framework,

• A is in the out-region for M = {z ≤ 0};
• A is in the in-region for M = {z ≥ 0};
• A is a concave tangency point for M = {x≤ y2};
• A is a convex tangency point for M = {x≥ y2};
• A is a convex-to-concave transition point for M = {y ≥ xz − z3};
• A is a concave-to-convex transition point for M = {y ≤ xz − z3}.

We conclude this subsection by illustrating the proof of the uniqueness of

the models up to topological equivalence. We do this explicitly for a concave

or convex tangency point A (a similar argument applies to a transition point,

but the details are more elaborate). In every case we assume that locally M is

(−1,1)× (−1,1)× (−1,0]⊂ R
3, with Γ = (−1,1)× {0} × {0} and A the origin.

We also take two smooth vector fields v0 and v1, and we denote by ϕ
(j)
t (q) the

point reached at time t by the flow generated by vj with initial point q.

• If v0 and v1 turn Γ into a concave tangency line, then vj(x, y, z) has van-

ishing third component and positive second component for y = z = 0, while it

has third component concordant with −y for z = 0 and y �= 0. We now fix some

arbitrary positive δ < 1 (e.g., δ = 1
2 would do); for small enough ε > 0 we can

define

U (j)
ε =

{
ϕ
(j)
t (q) : q ∈ (−δ, δ)× (−δ,0)× {0},−ε < t≤ 0

}
∪
{
ϕ
(j)
t (q) : q ∈ (−δ, δ)× {0} × (−δ,0],−ε < t < ε

}
∪
{
ϕ
(j)
t (q) : q ∈ (−δ, δ)× (0, δ)× {0},0≤ t < ε

}
,
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and we note the following:

(A) U
(j)
ε is a neighborhood of A;

(B) Every point of U
(j)
ε has a unique expression ϕ

(j)
t (q) as in the definition.

We then get an orbit-preserving homeomorphism U
(0)
ε → U

(1)
ε by mapping each

ϕ
(0)
t (q) to ϕ

(1)
t (q).

• Suppose instead that v0 and v1 turn Γ into a convex tangency line. Then

vj(x, y, z) has vanishing third component and negative second component for

y = z = 0, while it has third component concordant with −y for z = 0 and y �= 0.

We now choose a small enough ε > 0 and for q ∈ (−ε, ε)× (0, ε)×{0} we denote

by τj(q) the smallest t > 0 such that ϕ
(j)
t (q) belongs to (−1,1)× (−1,0)× {0},

noting that τj extends as a continuous function on (−ε, ε)× [0, ε)×{0} if we set

τj(q) = 0 on (−ε, ε)× {0} × {0}. We can now define

U (j)
ε =

{
q = ϕ

(j)
0 (q) : q ∈ (−ε, ε)× {0} × {0}

}
∪
{
ϕ
(j)
t (q) : q ∈ (−ε, ε)× (0, ε)× {0},0≤ t≤ τj(q)

}
and note that the above conditions (A) and (B) hold in this case too. We can

then define an orbit-preserving homeomorphism U
(0)
ε → U

(1)
ε by mapping each

ϕ
(0)
t (q) to ϕ

(1)
t·τ1(q)/τ0(q)(q).

1.3. Streams
Our main aim in this paper is to provide a combinatorial presentation of the set

of generic flows on 3-manifolds up to homotopy with fixed configuration on the

boundary, but to achieve this aim we first need to somewhat restrict the class

of flows we consider and the equivalence relation on them. Informally, we call a

stream on a 3-manifold M a vector field v satisfying (G1) such that, in addition,

all the orbits of v start and end on ∂M , and the orbits of v tangent to ∂M

are generic with respect to each other. More precisely, v is a stream on M if it

satisfies the conditions (G1)–(G4) defined as follows.

(G2) Every orbit of v is either a single point (a convex point of Γ) or a closed

arc with both ends on ∂M ;

(G3) The transition orbits are tangent to ∂M at their transition point only.

For the next and last condition we note that if an arc of an orbit of v has

ends A and B, then the parallel transport along v defines a linear bijection from

the tangent space to M at A to that at B. We then require the following.

(G4) Each orbit of v is tangent to ∂M at two points at most; if an orbit of

v is tangent to ∂M at two points A and B that necessarily are concave points of

Γ by conditions (G2) and (G3), then the tangent directions to Γ at A and at B

are transverse to each other under the bijection defined by the parallel transport

along v.

This last condition is illustrated in Figure 4. We will henceforth denote by
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Figure 4. If an orbit of v is tangent to ∂M at two points of Γ, the two involved arcs of Γ are transverse to

each other under the parallel transport along v.

Figure 5. Local aspect of a stream spine.

F∗
0 the set of pairs (M,v) with M an oriented, compact, connected 3-manifold

and v a stream on M , up to topological equivalence.

1.4. Stream spines
We now introduce the objects that will eventually be shown to be the combina-

torial counterparts of streams on smooth oriented 3-manifolds. As above, stating

all the requirements takes some time and involves some new terminology. We

will then stepwise introduce 3 conditions (S1), (S2), (S3) for a compact and con-

nected 2-dimensional polyhedron P , the combination of which will constitute the

definition of a stream spine. We begin with the following.

(S1) A neighborhood of each point of P is homeomorphic to one of the 5

models of Figure 5.

This condition implies that P consists of

(1) some open surfaces, called regions, each having a closure in P which is

a compact surface with possibly immersed boundary;

(2) some triple lines, to which three regions are locally incident;

(3) some single lines, to which only one region is locally incident;

(4) a finite number of points, called vertices, to which six regions are locally

incident;

(5) a finite number of points, called spikes, to which both a triple and a

single line are incident.
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Figure 6. Screw orientation along a triple line and compatibility at vertices.

We note that a polyhedron satisfying condition (S1) is simple according to

Matveev [8] but not almost special if single lines exist. Our next condition was

first introduced in [4]; to state it we define a screw orientation along an arc of

a triple line of P as an orientation of the arc together with a cyclic ordering of

the three germs of regions of P incident to the arc, viewed up to simultaneous

reversal of both, as in the left-hand side of Figure 6.

(S2) Along each triple line of P a screw-orientation is defined in such a

way that at each vertex the screw-orientations are as in the right-hand side of

Figure 6.

We now give the last condition of the definition of stream “spine.”

(S3) Each region of P is orientable, and it is endowed with a specific orienta-

tion, in such a way that no triple line is induced three times the same orientation

by the regions incident to it.

We will say that two stream spines are isomorphic if they are related by a

piecewise linear (PL) homeomorphism respecting the screw orientations along

triple lines and the orientations of the regions, and we will denote by S0 the set

of all stream spines up to isomorphism.

1.5. Stream carried by a stream spine
In this subsection we will show that each stream spine uniquely defines an ori-

ented smooth manifold and a stream on it. To begin we take a compact polyhe-

dron P satisfying condition (S1) of the definition of stream-spine, namely locally

appearing as in Figure 5. We will say that an embedding of P in a 3-manifold

M is branched if the following happens upon identifying P with its image in M

(see Figure 7).

• Each region of P has a well-defined tangent plane at every point.

• If a point A of P lies on a triple line but is neither a vertex nor a spike,

the tangent planes at A to the 3 regions of P locally incident to A coincide, and

not all the 3 regions of P locally project to one and the same half-plane of this

tangent plane.
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Figure 7. A polyhedron locally as in Figure 5 sitting in a branched fashion in a 3-manifold. Any mirror

image in 3-space of these figures is also allowed.

• At a vertex A of P the tangent planes at A to the 6 regions of P locally

incident to A coincide.

• At a spike A of P the tangent planes at A to the 2 regions of P locally

incident to A coincide.

PROPOSITION 1.2

To any stream spine P there correspond a smooth compact oriented 3-manifold

M and a stream v on M such that P embeds in a branched fashion in M , the

field v is everywhere positively transversal to P , and M is homeomorphic to a

regular neighborhood of P in M ; the pair (M,v) is well defined up to oriented

topological equivalence, therefore setting ϕ(P ) = (M,v) one gets a well-defined

map ϕ∗
0 : S0 →F∗

0 .

Proof

Our first task is to show that P thickens in a PL sense to a well-defined oriented

manifold M . (Later we will need to describe a smooth structure for M and

the field v.) This argument extends that of [4]. Let us denote by U a regular

neighborhood in P of the union of the triple lines. We observe that U can be

seen as a union of fragments as in the top row of Figure 8, that we thicken as

shown in the bottom row of the same figure, giving each block the orientation

such that the screw orientations along the portions of triple lines of P within

each block are positive. Note that on the boundary of each block there are some

T-shaped regions and that some rectangles are highlighted. Following the way

U is reassembled from the fragments into which it was decomposed, we can now

assemble the blocks by gluing together the T’s on their boundary. (Note that the

gluing between two T’s need not identify the vertical legs to each other, so each

T should actually be thought of as a Y: the three legs play symmetric rôles.)

Since the gluings automatically reverse the orientation, the result is an oriented

manifold, on the boundary of which we have some highlighted strips, each having

the shape of a rectangle or of an annulus. Now we turn to the closure in P of the

complement of U , which we denote by S. Of course S is a surface with boundary,

and on ∂S we can highlight the arcs and circles shared with U . (The rest of ∂S

consists of arcs lying on single lines of P .) We then take the product S× I—this

is a crucial choice that will be discussed below—and note that the highlighted

arcs and circles on ∂S give highlighted rectangles and annuli on ∂(S × I). We
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Figure 8. Blocks obtained by thickening fragments of a neighborhood of the union of the triple lines.

Figure 9. The stream along triple and single lines.

are only left to glue these rectangles and annuli to those on the boundary of

the assembled blocks, respecting the way S is glued to U and making sure the

orientation is reversed. The result is the required manifold M .

We must now explain how to smoothen M and how to choose the stream v.

Away from the triple and single lines of P the manifold M is the product S × I

with S a surface, so it is sufficient to smoothen S and to define v to be parallel to

the I factor and positively transversal to S. (This justifies our choice of thickening

S as a trivial rather than some other I-bundle.) Along the triple and single lines

of P we extend this construction as suggested in a cross section in Figure 9.

Note that a triple line of P gives rise to a concave tangency line of v to ∂M

and that a single line of P gives rise to a convex tangency line. To conclude

we must illustrate the extension of the construction of v near vertices and near

spikes, which we do in two examples in Figure 10. In the figure we represent v

by showing some of its orbits. Note the following.
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Figure 10. Stream carried by a stream spine near a vertex and near a spike.

• In both cases the local configurations of v near ∂M are as in condition

(G1) of the definition of stream.

• The orbits of v are closed arcs or points, as in condition (G2).

• To a vertex of P there corresponds an orbit of v that is tangent to ∂M at

two points, in a concave fashion and respecting the transversality condition (G4).

• To a spike of P there corresponds a transition orbit of v satisfying condi-

tion (G3).

This shows that v is indeed a stream on M . Since the construction of (M,v) is

uniquely determined by P , the proof is complete. �

1.6. The in-backward and the out-forward stream spines of a stream
In this subsection we prove that the construction of Proposition 1.2 can be

reversed, namely, that the map ϕ∗
0 : S0 →F∗

0 is bijective. More exactly, we will

see that the topological construction has two inverses that are equivalent to each

other—but not obviously so. If v is a stream on a 3-manifold M we define:

• the in-backward polyhedron associated to (M,v) as the closure of the union

of the in-region of ∂M with the set of all points A such that there is an orbit of

v going from A to a concave or transition point of ∂M ;

• the out-forward polyhedron associated to (M,v) as the closure of the union

of the out-region of ∂M with the set of all points A such that there is an orbit

of v going from a concave or transition point of ∂M to A.
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Figure 11. From a stream spine to a manifold-stream pair to its in-backward and out-forward polyhedra;

cross-section away from the vertices and spikes of the stream-spine and away from the special orbits of the

stream.

PROPOSITION 1.3

• Let v be a stream on M . Then the in-backward and out-forward polyhe-

dra associated to (M,v) satisfy condition (S1) of the definition of stream spine;

moreover, each of their regions shares some point with the in-region or with the

out-region of ∂M , and it can be oriented so that at these points the field v is pos-

itive transversal to it; with this orientation on each region, the in-backward and

out-forward polyhedra associated to (M,v) are stream spines, they are isomorphic

to each other and via Proposition 1.2 they both define the pair (M,v).

• If P is a stream spine and (M,v) is the associated manifold-stream pair as

in Proposition 1.2, then the in-backward and out-forward polyhedra associated to

(M,v) are isomorphic to P .

Proof

Most of the assertions are easy, so we confine ourselves to the main points. It

is first of all obvious that away from the special orbits of v as in conditions

(G3) and (G4) the concave tangency lines of v to ∂M generate triple lines in

the in-backward and out-forward polyhedra associated to (M,v), while convex

tangency lines generate single lines. Moreover, if from a stream-spine P we go

to (M,v) and then to the associated in-backward and out-forward polyhedra,

away from the vertices and spikes of P we see that these polyhedra are naturally

isomorphic to P , as shown in a cross section in Figure 11.

The fact that an orbit of v as in condition (G4) generates a vertex in the

in-backward and out-forward polyhedra associated to (M,v) was already shown

in [5], but we reproduce the argument here for the sake of completeness, show-

ing on the left-hand side of Figure 12, top and bottom, the in-backward and

the out-forward spines near the orbit of Figure 4. Both these spines are locally

isomorphic to the stream-spine shown on the right-hand side, to which Proposi-

tion 1.2 associates precisely an orbit as in Figure 4.
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Figure 12. An orbit of a stream doubly tangent to the boundary in a concave fashion generates a vertex in

the in-backward and in the out-forward stream-spines.

We are left to deal with transition points and with spikes. Let us concentrate

on a concave-to-convex transition point as on the left-hand side of Figure 2 but

mirrored and rotated in 3-space for convenience. In this case the transition orbit

extends backward (and not forward), and the locally associated in-backward

polyhedron is easy to describe, which we do at the top of Figure 13. The out-

forward polyhedron is instead slightly more complicated to understand, since the

orbits of v starting from the concave line near the transition point finish on points

close to the transition one, as illustrated at the bottom of Figure 13. The picture

shows that the spikes thus generated are indeed locally the same. Moreover, the

concave-to-convex configuration of v near ∂M is precisely that generated by a

spike as on the right-hand side of Figure 10, which is again of the same type.

This concludes the proof. �

Combining Propositions 1.2 and 1.3 we get the following main result of this

section.

THEOREM 1.4

The map ϕ∗
0 : S0 →F∗

0 from the set of stream spines up to isomorphism to the

set of streams on 3-manifolds up to topological equivalence.

2. Stream homotopy and sliding moves on stream spines

In this section we consider a natural equivalence relation on streams, and we

translate it into combinatorial moves on stream spines.
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Figure 13. From a transition point to a spike in the in-backward and in the out-forward associated polyhedra.

Figure 14. Catastrophes corresponding to an orbit being twice concavely tangent to the boundary but not

in a transverse fashion. The pictures show portions of the concave tangency line as seen looking in the

direction of the vector field, and they suggest to what part of it the boundary of the manifold bends.

2.1. Elementary homotopy catastrophes
Let M be an oriented 3-manifold with nonempty boundary. On the set F∗

0 of

streams onM we define stream homotopy as the equivalence relation of homotopy

through vector fields with fixed configuration on ∂M and all orbits homeomorphic

to closed intervals or to points. We then define F0 as the quotient of F∗
0 under

the equivalence relation of stream homotopy. (Recall that the elements of F∗
0

itself are viewed up to topological equivalence.) The next result shows how to

factor this relation into easier ones.

PROPOSITION 2.1

Stream homotopy is generated by the elementary moves shown in Figures 14–16.
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Figure 15. Catastrophes corresponding to an orbit being thrice concavely tangent to the boundary in a

transverse fashion.

Proof

Let (vt)t∈[0,1] be a stream homotopy as just defined (so that conditions (G1) and

(G2) hold or all vt’s). Up to small perturbation we can assume the following.

• The genericity conditions (G3) and (G4) are violated at isolated times

0< t1 < · · ·< tN < 1 only.

• At each tj there is a single orbit γj violating condition (G3) or (G4), and

one of the following catastrophes happens:

(a) γj is twice concavely tangent to ∂M but not transversely;

(b) γj is thrice concavely tangent to ∂M , and transversely;

(c) One end of γj is a transition point, and one internal point of γj is con-

cavely tangent to ∂M ;
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Figure 16. Catastrophes corresponding to a transition orbit being also once concavely tangent to the bound-

ary, with an obvious transversality condition. These pictures refer to an incoming transition orbit, but the

analogue catastrophes involving outgoing transition orbits must also be taken into account.

(d) Both ends of γj are transition points, and no internal point of γj is

tangent to ∂M .

Since the topological equivalence class of vt does not change for t ∈ (tj−1, tj), we

only need to analyze the effect of the catastrophes. Let us first assume that there

is no catastrophe of type (d); then we can assume that for some small enough

ε > 0 the field vt on [tj − ε, tj + ε] changes only near γj as described in Figure 14

for type (a), Figure 15 for type (b), and Figure 16 for type (c). Taking into account

condition (G2) we then see that on each interval [0, t1 − ε], [tj + ε, tj+1 − ε],

[tN + ε,1] the orbits of vt evolve homeomorphically. This implies the statement

when there is no type-(d) catastrophe. To conclude we must then show that

this type of catastrophe can be generically avoided during a homotopy. To do

so we carefully analyze in Figure 17 the initial portions of the orbits close to an

incoming transition orbit. In a catastrophe of type (d) we would have a concave-

to-convex transition point A such that the orbit through A traces backward to,

say, orbit 1 just before the catastrophe, to orbit 0 at the catastrophe, and to
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Figure 17. Initial portions of orbits near an incoming transition orbit.

orbit 8 just after the catastrophe, with numbers as in Figure 17. We can now

modify the homotopy so that the orbit through A traces back to either

• orbit 1, then 2, then 3, then 4, then 8, or

• orbit 1, then 5, then 6, then 7, then 8.

Note that at A with the first choice we obviously create a catastrophe of type

(c) but for an outgoing transition orbit, while with the second choice we do not

create any catastrophe at A. On the other hand at the starting point of orbit 0

in Figure 17 we could create a catastrophe of type (c) with one of the two choices

and no catastrophe with the other choice, but we cannot predict which is which.

This shows that we can always get rid of a doubly transition orbit either at no

cost or by inserting one catastrophe of type (c). �

2.2. Sliding moves on stream spines
In this subsection we introduce certain combinatorial moves on stream spines.

We do so showing pictures and always meaning that the mirror images in 3-space

of the moves that we represent are also allowed and named in the same way. The

list is as follows:

• a sliding 0↔ 2 move is any move as in Figure 18;

• a sliding 2↔ 3 move is any move as in Figure 19;

• a spike-sliding move is any move as in Figure 20;

• a sliding move is any move of the types just described.

The following result is evident.

PROPOSITION 2.2

If two stream spines P1 and P2 in S0 are related by a sliding move, then the

corresponding streams ϕ∗
0(P1) and ϕ∗

0(P2) are stream-homotopic to each other.
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Figure 18. The 0↔ 2 sliding moves.

Figure 19. The 2↔ 3 sliding moves.
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Figure 20. The spike-sliding moves.

2.3. Translating catastrophes into moves
In this subsection we establish the following.

THEOREM 2.3

Let ϕ0 : S0 → F0 be the surjection from the set of stream spines to the set of

streams on 3-manifolds up to homotopy. Then ϕ0(P1) and ϕ0(P2) coincide in F0

if and only if P1 and P2 are related by sliding moves.

Proof

We must show that the elementary catastrophes along a generic stream homo-

topy, as described in Proposition 2.1, correspond at the level of stream spines to

the sliding moves. Checking that the catastrophes of Figures 14 and 15 corre-

spond to the 0↔ 2 and 2↔ 3 sliding moves is easy and already described in [5],

so we do not reproduce the argument.

We then concentrate on the catastrophes of Figure 16, showing that on the

associated out-forward spines their effect is that of a spike-sliding. This is done

in Figure 21 for the catastrophe in the top portion of Figure 16, which is then

easily recognized to give the first spike-sliding move of Figure 20; a very similar

picture shows that the bottom portion of Figure 16 gives the second spike-sliding

move of Figure 20.

The proof is now complete, and the isomorphism of the in-backward and

out-forward stream spines implies that the effect of the catastrophes of Figure 16

is that of a spike-sliding also on the in-backward stream spine. It is, however,

instructive to analyze the effect directly on the in-backward stream spine—in fact,

it is not even obvious at first sight that the catastrophes of Figure 16 have any

impact on the in-backward stream spine, given that there is no transition orbit to

follow backward anyway. But the catastrophes of Figure 16 do have an impact on

the in-backward stream-spine, because at the catastrophe time there is an orbit
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Figure 21. From a catastrophe involving concave tangency of an incoming transition orbit to a spike-sliding

in the associated out-forward stream spine.

Figure 22. From a catastrophe involving concave tangency of an incoming transition orbit to a spike-sliding

in the associated in-backward stream spine.

that from a concave tangency point traces back to a transition point. To analyze

what the impact exactly is, we restrict to the top portion of Figure 16 and we

employ Figure 17 in a crucial fashion. We do this in Figure 22, where we show the

exact time of the catastrophe (top), the situation before (middle-left) and after
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(middle-right) the catastrophe, and the corresponding in-backward stream spines

(bottom). In the middle figures we show how the concave tangency lines trace

back to the in-region, showing for some points Q the boundary point Q′ obtained

by following the orbit backward through Q; note that after the catastrophe one

point P traces back first to a point P ′ of the concave tangency line and then

to a point P ′′ of the in-region. Using the information of the middle figures one

indeed sees that the corresponding stream spines are as in the bottom figures,

where one recognizes the first spike-sliding of Figure 20. �

3. Combinatorial presentation of generic flows

As already anticipated, let us now define F as the set of pairs (M,v) where M

is a compact, connected, oriented 3-manifold (possibly without boundary) and v

is a generic flow on M , viewed up to the equivalence relation generated by the

following:

• (M0, v0) is equivalent to (M1, v1) if there exists a homeomorphism of M0

onto M1 mapping the oriented orbits of v0 to those of v1;

• (M,v0) is equivalent to (M,v1) if there exists a continuous homotopy

(vt)t∈[0,1] with fixed (in/out/convex/concave/transition) configuration on ∂M .

(So F is a quotient of F0.) To provide a combinatorial presentation of F we

define

• a trivial sphere on the boundary of some (N,w) as one that is split into

one in-disc and one out-disc by one concave tangency circle;

• a trivial ball as a ball (B3, u) with u a stream on B3 and ∂B3 split into

one in-disc and one out-disc by one convex tangency circle.

Note that a trivial ball can be glued to a trivial sphere matching the vector fields.

We now define S as the subset of S0 consisting of stream spines P such that the

boundary of ϕ0(P ) contains at least one trivial sphere. We will establish the

following.

THEOREM 3.1

For P ∈ S let ϕ(P ) be obtained from ϕ0(P ) by attaching a trivial ball to a triv-

ial sphere in the boundary of ϕ0(P ). This gives a well-defined surjective map

ϕ : S →F , and ϕ(P0) = ϕ(P1) if an only if P0 and P1 are obtained from each

other by the sliding moves of Figures 18–20.

3.1. Equivalence of trivial balls
In this subsection we will show that the map ϕ of Theorem 3.1 is well defined.

To this end choose P ∈ S , and set (N,w) = ϕ0(P ). To define ϕ(P ) we must

choose one trivial sphere S ⊂ ∂N , a trivial ball (B3, u), and a diffeomorphism

f : ∂B3 → S matching u to w. The manifold M resulting from the gluing is of

course independent of S, and the resulting flow v on M is of course independent

of f up to homotopy. However, when the boundary of ϕ0(P ) contains more than
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Figure 23. Homotoping a field so that removing either of two trivial balls gives the same result.

one trivial sphere, it is not obvious that the pair (M,v) as an element of F is

independent of S. This will be a consequence of the following.

PROPOSITION 3.2

Let v be a generic flow on M , and let B1 and B2 be disjoint trivial balls contained

in the interior of M . Then there is a flow v′ on M homotopic to v relatively to

(∂M) ∪ B1 ∪ B2 such that there is a homemorphism from M \B1 to M \B2

mapping the oriented orbits of v′ restricted to M \B1 to the oriented orbits of v′

restricted to M \B2.

Proof

Choose a smooth path α : [0,1] → M with α(j) ∈ ∂Bj and α̇(j) = v(α(j)) not

tangent to ∂Bj for j = 0,1, and α(t) /∈ B1 ∪B2 for 0 < t < 1. Up to small per-

turbation we can assume that α̇(t) �=−v(α(t)) for t ∈ [0,1], and then homotope

v on a neighborhood of α to a flow v′′ such that v′′(α(t)) = α̇(t) for t ∈ [0,1].

Now we can homotope v′′ to v′ in a neighborhood of B1 ∪B2 ∪ α as suggested

in Figure 23, which gives the desired conclusion. �

3.2. Normal sections
Let us now show that the map ϕ of Theorem 3.1 is surjective. To this end we adapt

a definition from [5] and [7], defining a normal section for a manifold M with

generic flow v as a smooth disc Δ in the interior of M such that v is transverse

to Δ, every orbit of v meets Δ ∪ ∂M in both positive and negative time, and
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Figure 24. From a normal section to a stream on the complement of a trivial ball.

the orbits of v tangent to ∂M or intersecting ∂Δ are generic with respect to

each other, with the obvious meaning. The existence of normal sections is rather

easily established in [5], and Figure 24 suggests how, given a normal section Δ

of (M,v), to remove a trivial ball B from (M,v) so that the restriction w of v to

N =M \B is a stream on N . By construction if P is a stream spine such that

ϕ∗
0(P ) = (N,w), we have that ϕ(P ) represents (M,v), whence the surjectivity

of ϕ. Let us also note, since we will need this to prove injectivity, that P can be

directly recovered from (M,v) and Δ, taking the union of Δ with the in-region of

∂M and with the set of points A such that there exists an orbit of v going from

A to ∂Δ or to the concave tangency line of v to ∂M , with the obvious branching

along triple lines.

3.3. Homotopy
We are left to establish injectivity of the map ϕ of Theorem 3.1. Recalling that

the elements (M,v) of F are regarded up to an orbit-preserving homeomorphism

of M and a homotopy of v on M with fixed configuration on ∂M , we see that

injectivity is a consequence of the following.

PROPOSITION 3.3

Let (vt)t∈[0,1] be a homotopy of generic flows on M , with fixed configuration

on ∂M . For j = 0,1 let Δj be a normal section for (M,vj), and let Pj be the

stream-spine defined by Δj and vj as at the end of Section 3.2. Then P0 and P1

are related by the sliding moves of Figures 18–20.

Proof

We first prove the result for constant (vt). Namely, we prove that if Σ0 and Σ1 are

normal sections for the same (M,v), then the associated stream spines are related

by the sliding moves of Figures 18–20. This is proved, as in [5], by constructing

normal sections Θ0 and Θ1 for (M,v) such that Σ0∩Θ0 =Θ0∩Θ1 =Θ1∩Σ1 = ∅,
which is easily done. The conclusion now comes from the fact that given two

disjoint normal sections X and Y of (M,v) one can join them by a small strip

constructing a normal section Z that contains X ∪ Y , and then one can view

the transformation of X into Y as first the smooth expansion of X to Z and

then the contraction of Z to Y . At the level of the associated stream spines this

transition indeed consists of the elementary sliding moves of Figures 18–20.
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Let us now treat the general case of the statement. For all t ∈ [0,1] we choose a

normal section Δt for vt (with Δ0 and Δ1 the sections we have by assumption).

For all t there exists ε(t) > 0 such that Δt is a normal section of vs for all

s ∈ (t− ε(t), t+ ε(t))∩ [0,1], with associated stream spine independent of s up to

isomorphism. By compactness of [0,1] we can find times 0 = t0 < t1 < · · ·< tN = 1

and discs Δ0 =D0,D1, . . . ,DN−1 =Δ1 such that Dj is a normal section of vs for

all s ∈ [tj , tj+1], with associated stream spine independent of s up to isomorphism.

What is already shown implies that the stream spines of vj defined by Dj−1 and

by Dj are related by the elementary sliding moves of Figures 18–20, and the

conclusion readily follows. �

REMARK 3.4

Suppose for j = 1,2 that Mj is an oriented 3-manifold endowed with a generic

flow vj and that Σj is a boundary component of Mj . Suppose moreover that

one is given a homeomorphism Σ1 →Σ2 mapping the in-region of Σ1 to the out-

region of Σ2 and conversely, the concave line on Σ1 to the convex line on Σ2

and conversely, the concave-to-convex transition points of Σ1 to the convex-to-

concave transition points of Σ2 and conversely. Then one can glue M1 to M2

along this map, getting on the resulting manifold M a generic flow v well defined

up to homotopy. This implies that there exists a natural cobordism theory in the

set F of 3-manifolds endowed with a generic flow, and one could hope to use the

combinatorial encoding ϕ : S →F described in this paper as a technical tool to

develop a TQFT (see [12]) for such manifolds.
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