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Abstract Lambrechts, Turchin, and Volić proved the Bousfield–Kan-type rational

homology spectral sequence associated to the dth Kontsevich operad collapses at

E2-page if d≥ 4. The key of their proof is formality of the operad. In this paper, we sim-

plify their proof by using amodel category of operads.As by-productswe obtain twonew

consequences. One is collapse of the spectral sequence in the case of d= 3 (and the coef-

ficients being rational numbers). The other says there is no nontrivial extension for the

Gerstenhaber algebra structure on the spectral sequence.

1. Introduction

The dth Kontsevich operad Kd is defined as a certain compactification of the

configuration space of ordered points in R
d for each d≥ 1 (see [13]). It is weak

equivalent to the little d-cubes operad, but it has the technical advantage that it

admits a morphism of non-Σ-operads from the associative operad. So we may con-

sider the associated cosimplicial space K•
d via the construction of Gerstenhaber–

Voronov [2] and McClure–Smith [9]. Sinha [13] proved that the homotopy total-

ization of K•
d is weak homotopy equivalent to the space of long knots modulo

immersions Embd if d ≥ 4 (see [13] or [7] for the definition). He also proved

that the Bousfield–Kan-type homology spectral sequence associated with K•
d con-

verges to the homology of Embd if d≥ 4. We simply call this spectral sequence

Sinha’s spectral sequence.

Lambrechts, Turchin, and Volić [7] proved that Sinha’s spectral sequence with

rational coefficients collapses at E2-page if d≥ 4. As the E2-page is isomorphic

to the Hochschild cohomology of the Poisson operad of degree d− 1, we get a

good algebraic presentation of the homology of Embd by this collapse. The key

of their proof is the formality of the Kontsevich operad.

The main purpose of this paper is to simplify their proof by using Quillen’s

theory of model categories. As by-products we obtain some new consequences

(the case of d = 3 in Theorem 1.4 and Corollaries 1.6 and 1.7). To explain the

situation more precisely, we prepare some notation and terminologies. In the rest

of the paper, an operad means a non-Σ-operad. Let CH≥0 denote the category
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of nonnegatively graded chain complexes over a fixed field k (with differentials

decreasing degree), and let OPER be the category of operads over CH≥0. Let

A∈OPER denote the associative operad.

DEFINITION 1.1

A morphism f : O → P ∈ OPER is called a weak equivalence if the chain map

fn : O(n) → P(n) at each arity n ≥ 0 is a quasi-isomorphism. For an operad

O ∈OPER we define an operadH∗(O) as follows. We putH∗(O)(n) =H∗(O(n)),

where the right-hand side is the usual homology group considered as a complex

with the zero differential. The composition of H∗(O) is induced by that of O.

The construction O �→H∗(O) is natural for a morphism of operads. We say that

a morphism f : O → P ∈ OPER is relatively formal if there exists a chain of

commutative squares in OPER

O

f

O1 · · · ON H∗(O)

H∗(f)

P P1 · · · PN H∗(P)

where each horizontal arrow is a weak equivalence. A multiplicative operad is

an operad O equipped with a morphism A → O. A morphism of multiplica-

tive operads is a morphism of operads under A. We say a multiplicative operad

f : A → O ∈ OPER is multiplicatively formal if it is relatively formal and one

can take a chain of commutative squares connecting f and H∗(f) such that

each horizontal morphism between sources is the identity (under the canonical

identification H∗(A) =A).

Let C∗(Kd) denote the chain operad of the Kontsevich operad with k-coefficients.

A fixed linear embedding R → R
d induces a morphism K1 → Kd of operads.

Composing this morphism with the morphism from the (topological) associative

operad Atop to K1 which takes the unique point to the configuration whose

numbering is consistent with the order of R, we obtain a morphism Atop →Kd.

This morphism naturally induces a morphism A → C∗(Kd) in OPER and we

regard C∗(Kd) as a multiplicative operad with this morphism. The following

theorem is a special case of the main theorem of Lambrechts and Volić [8].

THEOREM 1.2 ([8])

When d≥ 3 and k=R, the morphism A→C∗(Kd) is relatively formal.

More precisely speaking, in [8] the relative formality of the Fulton–MacPherson

operad is proved but Theorem 1.2 immediately follows from it using [7, Dia-

gram (2.5)].

The usual (absolute) formality of C∗(Kd) (or the little d-cubes operad) was

proved first by Tamarkin [16] for d = 2 and later by Kontsevich [6] for general
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d (see [8] and [3] for detailed descriptions of Kontsevich’s proof). The relative

version in the above theorem was proved by Lambrechts and Volić [8], verifying

that the quasi-isomorphisms sketched by Kontsevich commute with the mor-

phisms of operads. But their diagram does not show the multiplicative formality

of Kontsevich operads as it contains the chain operad of Stasheff’s associahedra.

To obtain the collapse from Theorem 1.2, Lambrechts, Turchin, and Volić [7]

introduced a partial generalization of the construction of Gerstenhaber–Voronov

and McClure–Smith applicable to any morphism of operads. Though it is a very

general construction and should have other applications, their proof is somewhat

complicated and does not work for d= 3. On the other hand, as pointed out in

[7], if C∗(Kd) is multiplicatively formal, then the collapse easily follows from it.

We prove that this is true. (The proof is given in Section 2.)

THEOREM 1.3

When d≥ 3 and k=R, C∗(Kd) is multiplicatively formal.

When d is equal to or greater than 4, the following theorem is the main result

of [7].

THEOREM 1.4

For d ≥ 3, Sinha’s spectral sequence with rational coefficients collapses at E2-

page.

Proof

By Theorem 1.3, there is a diagram of the following form:

A A · · · A A

C∗(Kd) P1 · · · PN H∗(Kd)

where each horizontal arrow is a weak equivalence. As the construction of

Gerstenhaber–Voronov and McClure–Smith is natural for morphisms of mul-

tiplicative operads, this diagram induces a chain of termwise quasi-isomorphisms

of cosimplicial chain complexes as follows:

C∗(K•
d) P•

1 · · · P•
N H∗(K•

d).

Here, P• denotes the cosimplicial chain complex associated to an operad P , and

a termwise quasi-isomorphism is a morphism which induces a quasi-isomorphism

at each cosimplicial degree. In turn, this chain induces a chain of homomorphisms

of spectral sequences

Er
∗,∗

(
C∗(K•

d)
)

Er
∗,∗(P•

1 ) · · · Er
∗,∗(P•

N ) Er
∗,∗

(
H∗(K•

d)
)
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for each r ≥ 0. As all differentials of H∗(K•
d) are zero at each cosimplicial degree,

the spectral sequence {Er
∗,∗(H∗(K•

d))}r≥0 collapses at E2-page. As a termwise

quasi-isomorphism of cosimplicial complexes induces an isomorphism between

E2-pages, all arrows in the above chain are isomorphisms for each r ≥ 2. Thus

we see that the spectral sequence {Er
∗,∗(C∗(K•

d))}r≥0 collapses at E2-page. �

REMARK 1.5

When d= 3, it is not known whether Sinha’s spectral sequence converges to the

homology of Emb3 but it is still worth studying as its E2-page is isomorphic to

the E1-page of Vassiliev’s spectral sequence for long knots modulo immersions

in R
3 (see [17]). In particular, its diagonal part (the part of total degree zero) is

isomorphic to the space of all finite-type invariants of framed long knots. See also

Volić [18] for identification between the diagonal and invariants by using Sinha’s

cosimplicial model and the Bott–Taubes integral.

Lambrechts, Turchin, and Volić [7] deduced the collapse of Vassiliev’s spectral

sequence which converges to the homology of the space of long knots in R
d from

the collapse of Sinha’s spectral sequence for each d≥ 4. A similar argument does

not seem to work for d= 3 because in this case these two spectral sequences are

not known to converge to the same module.

Besides simplification of the proof, Theorem 1.3 has an immediate application to

the multiplicative structure on the spectral sequence. The Hochschild cohomology

HH∗(O) of a chain multiplicative operad O is by definition the homology of the

total complex of the associated cosimplicial chain complex O•, and HH∗(O)

carries a natural Gerstenhaber algebra structure whose product and Lie bracket

are defined similarly to those on the Hochschild cohomology of an associative

algebra (see [2], [12]).

COROLLARY 1.6

When k=R and d≥ 3, there exists an isomorphism of Gerstenhaber algebras:

HH∗(C∗(Kd)
)∼=HH∗(Poissd−1).

Here, Poissd−1 is the Poisson operad of degree d− 1 (see [13, Definition 4.10]).

Proof

As the construction of the Gerstenhaber algebra from a multiplicative operad

is natural for morphisms of multiplicative operads, the chain of termwise quasi-

isomorphisms in the proof of Theorem 1.4 induces an isomorphism of Gersten-

haber algebras HH∗(C∗(Kd))∼=HH∗(H∗(Kd)). Since the operad H∗(Kd) is iso-

morphic to Poissd−1 as a multiplicative operad, we have proved the corollary. �

This corollary says there is no extension problem in Sinha’s spectral sequence as

the right-hand side is isomorphic to the E2-page with the induced operations.
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The utility of formality for the extension problem was pointed out by Salvatore

[12] (but a proof was not given).

McClure and Smith [9] invented a topological version of the above construc-

tion. For a topological multiplicative operad, they defined a little squares action

on its (homotopy) totalization. In particular, for d≥ 4 the homologyH∗(Embd)∼=
H∗(T̃ot(K•

d)) carries an induced Gerstenhaber structure whose product and

bracket are given by the Pontryagin product and Browder operation. (Here T̃ot

denotes the homotopy totalization, that is, the homotopy limit over the cate-

gory of simplices Δ.) We obtain an algebraic interpretation of this ‘topological’

Gerstenhaber algebra.

COROLLARY 1.7

When k=R and d≥ 4, there exists an isomorphism of Gerstenhaber algebras:

H∗(Embd)∼=HH∗(Poissd−1).

Proof

Combine Corollary 1.6 with [11, Theorem 4.6] or [12, Proposition 22]. �

REMARK 1.8

Songhafouo Tsopméné [14] also obtained the results stated above independently

and simultaneously.

2. Proof of Theorem 1.3

Besides Theorem 1.2, the other key to the proof of Theorem 1.3 is the following.

THEOREM 2.1 ([4], [15], [1], [10])

The category OPER of non-Σ-operads over CH≥0 admits a left proper model

category structure where

• weak equivalences are those defined in Definition 1.1, and

• fibrations are those morphisms f : O → P such that, for each n ≥ 0 and

k ≥ 1, the linear map fn,k :O(n)k →P(n)k at arity n and degree k is an epimor-

phism.

Our notion of a model category is that of Hovey [5]. Recall that a model category

M is said to be left proper if a pushout of a weak equivalence by a cofibration is

also a weak equivalence. Theorem 2.1 is not new. For the case of Σ-operads, the

existence of a (semi-) model category structure was proved first by Hinich [4] for

chain complexes and later by Spitzweck [15] and Berger–Moerdijk [1] for general

model categories, and left properness was also proved in [15] and [1]. For the case

of non-Σ-operads, Muro [10] proved the existence of a model category structure

for general model categories. In our simple case the proof is somewhat shorter.

For the reader’s convenience we give a proof of Theorem 2.1 in Section 3.
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For a model category M and a morphism f :X → Y ∈M, a Quillen adjoint

pair

Pf :X/M Y/M : Uf

between under categories (with the comma model structures; see [5, the para-

graph below Proposition 1.1.8]) is defined by Pf (Z) = Y ∪X Z and Uf (Z) is the

composition X → Y → Z. The following proposition is well known and can be

easily proved using [5, Corollary 1.3.16].

PROPOSITION 2.2

Under the above notations, if M is left proper, then for any weak equivalence

f the induced adjunction (Pf ,Uf ) is a Quillen equivalence. In particular, the

derived adjunction (LPf ,Uf ) induces an equivalence between the homotopy cate-

gory.

An operad weak equivalent to A is called an A∞-operad. Let Ho(M) denote the

homotopy category of a model category M.

LEMMA 2.3

(a) Let B0 and B1 be two A∞-operads, and suppose that B0 is cofibrant.

There exists a bijection [B0,B1]∼= k×. Here, [·, ·] denotes the set of (left or right)

homotopy classes of morphisms. If one fixes a morphism f : B0 →B1, the bijection

is given by k× � a �→ a ∗ f ∈ [B0,B1], (a ∗ f)n = an−1fn.

(b) Let

B0

f1

B0

f2

B1
α

g1

B2

g2

O1
β O2

be a commutative diagram in OPER where B0, B1, and B2 are A∞-operads, B0

is cofibrant, and β is a weak equivalence. Then the compositions g1 ◦f1 and g2 ◦f2
are isomorphic as objects of Ho(B0/OPER).

Proof

(a) As any object of OPER is fibrant, by homotopy invariance of the set

of homotopy classes, we may replace B1 with the associative operad A. As a

morphism f : B0 →A uniquely factors through the morphism H∗(f) :H∗(B0)→
H∗(A)∼=A, the set [B0,A] is bijective to the set of endomorphisms on A. This

latter set is bijective to k× since an endomorphism of A is determined by its

image of a generator of A(2).
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(b) We shall consider the case where α and β are the identities. If f1 and

f2 are homotopic, by standard properties of left and right homotopies, g1 ◦ f1
and g2 ◦ f2 (= g1 ◦ f2) are right homotopic. This implies the claim by definition.

So we may assume that f2 = a ∗ f1 for some a ∈ k× by (a). Define a morphism

φa : O1 → O1 as φa,n = an−1 : O1(n) → O1(n). Clearly φa is an isomorphism

between g1 ◦ f1 and g2 ◦ f2 in B0/OPER and hence in Ho(B0/OPER).

We shall consider the general case. Clearly g1 ◦ f1 and g2 ◦α ◦ f1 are isomor-

phic in Ho(B0/OPER). By applying the above case to f2 and α ◦ f1, we get the

claim in the general case. �

Proof of Theorem 1.3

By relative formality (Theorem 1.2), there exists a commutative diagram in

OPER:

A

g

B1

g1

· · · BN

gN

A

H∗(g)

C∗(Kd) O1 · · · ON H∗(Kd)

where all horizontal arrows are weak equivalences. Let f : B0 →A be a cofibrant

replacement of the associative operad. We can pick a morphism fi : B0 →Bi ∈
OPER for each i= 1, . . . ,N as each Bi is a (fibrant) A∞-operad. So we obtain

the following diagram:

B0

f

B0

f1

· · · B0

fN

B0

f

A

g

B1

g1

· · · BN

gN

A

H∗(g)

C∗(Kd) O1 · · · ON H∗(Kd)

By applying Lemma 2.3(b) to each part of this diagram, we see that g ◦
f, g1 ◦ f1, g2 ◦ f2, . . . ,H∗(g) ◦ f are all isomorphic in Ho(B0/OPER). In other

words, Uf (C∗(Kd)) and Uf (H∗(Kd)) are isomorphic in Ho(B0/OPER). By this

and Proposition 2.2 we have isomorphisms C∗(Kd) ∼= LPfUf (C∗(Kd)) ∼=
LPfUf (H∗(Kd)) ∼= H∗(Kd) in Ho(A/OPER). This implies that C∗(Kd) and

H∗(Kd) can be connected by a chain of weak equivalences under A, which means

that C∗(Kd) is multiplicatively formal. �

3. Proof of Theorem 2.1

To prove Theorem 2.1, we use [5, Theorem 2.1.19]. So we need two sets I and J of

morphisms of OPER, which play the roles of sets of generating cofibrations and
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trivial cofibrations, respectively. To define I and J , we use the free construction

in OPER, and to describe this construction, we shall recall the language of trees.

A tree is a finite connected acyclic graph. Let T be a tree, and let φ : |T | →
R× [0,1] be an embedding of the geometric realization of T such that Im(φ) ∩
R× {0} consists of only one vertex (or 0-cell), which we call the root of T and

Im(φ) ∩ R× {1} consists of univalent vertices. Let n≥ 0 be an integer, and let

α : {1, . . . , n} → Im(φ) ∩ R× {1} be an order-preserving monomorphism, where

the linear order on Im(φ)∩R×{1} is induced by the usual order on R×{1}=R.

We call a vertex in Im(α) a leaf of T and a vertex in Im(φ) ∩R× {1} − Im(α)

a null vertex of T . For an edge e of T , the vertex of e farther from the root is

called the source of e, and the other is called the target.

DEFINITION 3.1

For each n≥ 0 consider isotopy classes of triples (T,φ,α) which satisfy the above

conditions, where an isotopy is assumed to respect the map α. We call such an

isotopy class {(T,φ,α)} a regular planer n-tree if each vertex in Im(φ)∩R× (0,1)

is at least bivalent. By abuse of notations, a regular planar n-tree is denoted by

the same notation as the underlying tree.

Let T be a regular planar n-tree, and let v be a vertex of T . We define a num-

ber In(v) as 0 if v is a null vertex, and as the number of the edges whose targets

are v otherwise. The set of vertices which are not leaves is denoted by Vin(T ).

The level of a vertex v is one less than the number of vertices on the shortest

path connecting the root and v. For example, the level of the root is 0. We put

V 0
in(T ) =

{
v ∈ Vin(T )

∣∣ the level of v is even
}
, V 1

in(T ) = Vin(T )− V 0
in(T ).

We say that T is odd if the level of each vertex in Im(α) is odd. Let Tn (resp., T 1
n )

denote the set of all regular planar n-trees (resp., odd regular planar n-trees).

REMARK 3.2

For each n ≥ 0, Tn is bijective to the set of all isomorphism classes of planted

planar trees with n leaves defined in [10, Definition 3.4].

Let SEQ be the category of sequences in CH≥0. An object of SEQ is a sequence

S(0),S(1), . . . of chain complexes, and a morphism is a sequence of chain maps.

The free construction (or free functor) F : SEQ −→ OPER; that is, the left

adjoint of the forgetful functor U :OPER−→SEQ is defined by

F(S)(n) = k · δ1,n ⊕
⊕
T∈Tn

⊗
v∈Vin(T )

S
(
In(v)

)
.

Here, k · δ1,n is the module generated by a formal unit if n = 1 and the zero

module otherwise.

To define the sets of morphisms I and J , we shall recall a set of generating

(trivial) cofibrations of CH≥0. For p≥ 1 we define a complex Dp as follows: Dp
l =

k if l= p, p−1; Dp
l = 0 otherwise. The differential dp is the identity. For p≥ 0 we

define another complex Sp by Sp
p = k and Sp

l = 0 for l = p. Let ip : Sp−1 →Dp
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be the chain map which is the identity on Sp−1
p−1 , and let jp : 0 → Dp be the

unique chain map. Put I0 = {ip | p≥ 1}, and put J0 = {jp | p≥ 1}. The following

proposition is well known and can be proved in a way analogous to the proof of

[5, Theorem 2.3.11].

PROPOSITION 3.3

We have that CH≥0 admits a cofibrantly generated model category structure with

I0 (resp., J0) being a set of generating cofibrations (resp., trivial cofibrations),

where

• weak equivalences are quasi-isomorphisms,

• fibrations are those morphisms f : C → D such that the linear map fk :

Ck →Dk is an epimorphism for each k ≥ 1.

Let Dp,q and Sp,q be two objects of SEQ defined by Dp,q(q) =Dp, Dp,q(n) = 0

for n = q, and Sp,q(q) = Sp, Sp,q(n) = 0 for n = q, respectively. Let ip,q : Sp−1,q →
Dp,q and jp,q : 0→Dp,q be the morphisms induced by ip and jp, respectively.

Put I1 = {ip,q | p≥ 1, q ≥ 0}, and put J1 = {jp,q | p≥ 1, q ≥ 0}.
We define two sets of morphisms I and J as the image of I1 and J1 by F ,

respectively.

Proof of Theorem 2.1

We apply [5, Theorem 2.1.19] to the sets I and J defined above and the class of

weak equivalences given in Theorem 2.1. We must verify the six conditions stated

in the theorem. The first condition (2-out-of-3 and closedness under retraction

of W) is clear. The second and third conditions (smallness of the domains of

I and J) follow from [5, Lemma 2.3.2] and the adjointness of the pair (F ,U).
By adjointness, the class I-inj (resp., J -inj) is equal to the class of morphisms

f : O → O′ such that U(f) : U(O) → U(O′) is I1-inj (resp., J1-inj). This and

Proposition 3.3 imply the fifth and sixth conditions (I-inj⊂W∩J -inj and W∩J -

inj⊂ I-inj).

We shall prove the fourth condition (J -cell ⊂ W ∩ I-cof). First, J -cell ⊂
I-cof is clear by adjointness. To prove J -cell ⊂ W , as quasi-isomorphisms are

closed under transfinite composition, it is enough to prove that a pushout by a

morphism in J is in W . Take a morphism F(jp,q) : F(0)→F(Dp,q) ∈ J and an

operad O. The pushout P =F(Dp,q)
⋃

F(0)O (=F(Dp,q)�O) has the following

presentation:

P(n) =
⊕
T∈T 1

n

( ⊗
v∈V 0

in(T )

O
(
In(v)

)
⊗

⊗
v∈V 1

in(T )

Dp,q
(
In(v)

))
.

(In this presentation, the unit of O serves as the unit of P , and for x, y ∈Dp,q ,

a composition x ◦i y is equal to ((1 ◦ x ◦i 1) ◦i y) ◦ 1⊗m for some m, so we do not

need even trees or other partitions of the set Vin(T ).) As the tensor product over

a field preserves quasi-isomorphisms, we see that the pushout morphism O→P
is in the class W from this presentation.
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We shall prove left properness. As any cofibration is a retract of a rela-

tive I-cell, it is enough to prove that a pushout by a generating cofibration

preserves weak equivalences. Take a morphism F(ip,q) : F(Sp−1,q) → F(Dp,q).

Let f : O → O′ be a weak equivalence, and let g : F(Sp−1,q) → O be a mor-

phism. As a graded operad, that is, if we forget the differentials, the pushout

P̃O =O
⋃

F(Sp−1,q)F(Dp,q) has a presentation analogous to the above presenta-

tion of P . It is given by replacing Dp,q with Sp,q in the above one. By the Leipniz

rule, the differential is determined by its restrictions to O and to Sp,q . On O it

is equal to the original differential of O, and on Sp,q it is given by the compo-

sition Sp,q(q)p =Dp
p

dp

−→Dp
p−1 = Sp−1,q(q)p−1

g−→O(q)p−1. What we have to prove

is that the induced morphism P̃O → P̃O′ is a weak equivalence. For each l≥ 0 let

F l
O ⊂ P̃O be the subsequence which is spanned by the summands corresponding

to regular planer trees with �V 1
in(T ) ≤ l. As F l+1

O (n)/F l
O(n) is isomorphic to a

sum of tensors of O(m)’s and Sp’s (as chain complexes), the induced morphism

F l+1
O (n)/F l

O(n)→ F l+1
O′ (n)/F l

O′(n) is a quasi-isomorphism. By an inductive argu-

ment, using a long exact sequence, we see that the morphism F l
O(n)→ F l

O′(n)

is a quasi-isomorphism for each l ≥ 0. As P̃O =
⋃

l F
l
O, we obtain the desired

claim. �
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