
On isolated log canonical centers
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Abstract In this paper, we show that the depth of an isolated log canonical center is

determined by the cohomology of the −1 discrepancy divisors over it. A similar result

also holds for normal isolated Du Bois singularities.

1. Introduction

Singularities play a significant role in the minimal model program (mmp). Among

the different types of singularities, Kawamata log terminal (klt) and log canoni-

cal (lc) are of particular importance. Many fundamental theorems are first proved

in the klt case, then extended to the lc case. And it is expected that lc should

be the largest class of singularities for which one can run mmp.

One of the major differences between klt and lc is that klt singularities are

rational singularities and lc singularities are Du Bois (see [12]) but in general

not rational. So it is interesting and important to know how far lc is from being

rational. Since rational implies Cohen–Macaulay, we can also ask if the variety

X is Cohen–Macaulay at some given point p. Or more precisely, we can calculate

depthp(OX).

There are some known results regarding this direction. For example, Fujino

shows that given an lc pair (X,Δ) of dimension at least three, then depthp(OX)≥
min{3, codimpX} if p̄ is not an lc center (see [6, Theorem 4.21]), which was

first proved by Alexeev assuming that p is a closed point and X is projective

(see [1, Lemma 3.2]). Kollár and Kovács generalized this result in [10] and [15],

respectively, but still under the assumption that p̄ is not an lc center (see also

[2] for results about closed points).

In this paper, we investigate a case when p̄ is an lc center. Assume that p is an

isolated lc center; after localization we assume that p is a closed point. It turns

out that there is a delicate relation between depthp(OX) and the cohomology

group of the exceptional divisors over p. More precisely, given an lc pair (X,Δ)

and an isolated lc center p ∈X which is a closed point, we take a log resolution

f : Y →X such that

KY = f∗(KX +Δ)+A−B −E.
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Here A,B are effective, �B�= 0, and E is the reduced divisor such that f(E) = p.

Then we have the following.

THEOREM 1.1 (COROLLARY 3.2)

For any integer 3≤ t≤ n, we have depthpOX ≥ t if and only if Hi−1(E,OE) = 0,

∀1< i < t. (Note that by assumption X is normal, so we know that depthpOX

is at least two.)

This result generalizes [4, Proposition 4.7], which gives a necessary and sufficient

condition for an index one isolated lc singularity to be Cohen–Macaulay.

We prove this theorem by showing that the local cohomology Hi
p(OX) is the

Matlis dual of Hn−i(E,KE). The same method applies to isolated Du Bois singu-

larities (see Section 3.2). In the Du Bois case, E denotes the reduced exceptional

divisors.

The most crucial ingredient of the proof is Kovács’s vanishing theorem, which

says that Rif∗OY (−E) = 0,∀i > 0. With this theorem, we see that f∗OY (−E) is

quasi-isomorphic to Rf∗OY (−E). By this quasi-isomorphism and Grothendieck

duality, we are able to see the relation between the local cohomology of X and

the cohomology of OE . Because of the significant role of Kovács’s theorem in

this paper, we give a quick proof of it in the last section. This proof, based on

Fujino’s idea, only uses Grothendieck duality and the Kawamata–Viehweg van-

ishing theorem instead of the notion of Du Bois pairs in Kovács’s original paper.

2. Preliminaries

Given a pair (X,Δ), where X is a normal variety and Δ is a Q-linear combination

of Weil divisors so that KX +Δ is Q-Cartier. Take a log resolution f : Y →X ,

such that the exceptional locus and the strict transform f−1
∗ Δ are simple normal

crossing divisors. We say the pair (X,Δ) is lc if

KY = f∗(KX +Δ)+A−B −E,

where A,B are effective, �B�= 0, and E is reduced. We say that (X,Δ) is log

terminal if E is empty.

In this paper we consider the lc pair (X,Δ). A subvariety W ⊂X is called

the lc center, if there is a log resolution as above and some component E′ ⊂ E

such that f(E′) =W .

We recall Kovács’s vanishing theorem.

THEOREM 2.1 ([14, THEOREM 1.2])

Let (X,Δ) be lc pair, and let f : Y →X be a proper birational morphism from

a smooth variety Y such that Ex(f) ∪ Suppf−1
∗ Δ is a simple normal crossing

divisor on Y . If we write

KY = f∗(KX +Δ)+
∑

i

aiEi
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and put E =
∑

ai=−1Ei, then

Rif∗OY (−E) = 0

for every i > 0.

This theorem is first proved by the notion of Du Bois pairs under the assumption

that X is Q-factorial. The proof is then simplified in [5] without assuming Q-

factorial.

Now we recall the duality theorems which will be used in this paper. First

we recall the Grothendieck duality theorem (see [7, Chapter III Proposition 11.1,

Chapter VII Proposition 3.4]). Let f : Y → X be a proper morphism between

finite-dimensional Noetherian schemes. Suppose that both X and Y admit dual-

izing complexes, for example, when they are quasiprojective varieties. Then for

any F• ∈D−
qcoh(Y ), we have

Rf∗RHomY (F•, ω•
Y )

∼=RHomX(Rf∗F•, ω•
X).

Here ω•
X is dualizing complex. Let n be the dimension of X , and assume that X

is normal; then h−n(ω•
X) := ωX =OX(KX), the extension of regular n-forms on

smooth locus. In this paper we only consider normal varieties, so we will use ωX

and KX interchangeably. If X is Cohen–Macaulay, then hi(ω•
X) = 0, if i �=−n,

and h−n(ω•
X) = ωX . Or equivalently, ω•

X = ωX [n].

Now we recall local duality (see [7, Chapter V, 6.2]). Suppose that (R,p)

is a local ring. An injective hull I of the residue field k = R/p is a an injective

R-module I such that for any nonzero submodule N ⊂ I we have N ∩ k �= 0 (see

[3, Proposition 3.2.2] for more discussion). Matlis duality says that the functor

Hom(·, I) is a faithful exact functor on the category of Noetherian R-modules.

THEOREM 2.2 (LOCAL DUALITY)

Let (R,p) be a local ring, and let F• ∈D+
coh(R). Then

RΓp(F•)→RHom
(
RHom(F•, ω•

R), I
)

is an isomorphism.

In particular, if we take the ith cohomology on both sides, we have

Hi
p(F•)∼=Hom

(
H−i

(
RHom(F•, ω•

R)
)
, I
)
.

The −i comes from switching the cohomology functor Hi(·) and Hom(·, I).

3. Main results

3.1. Depth of LC center
Consider an lc pair (X,Δ) and an isolated lc center p ∈X which is a closed point.

Without loss of generality, we assume that X is an affine space and p is the only

closed point. By definition, we have a log resolution f : Y →X such that

KY = f∗(KX +Δ)+A−B −E.
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Here A,B are effective, �B�= 0, E is the reduced exceptional divisor such that

f(E) = p.

THEOREM 3.1

For 1< i < n, Hi
p(X,OX) is dual to Hn−i(E,KE) by Matlis duality. For i= n,

Hn
p (X,OX) is dual to f∗OY (KY +E).

Proof

Push forward the following exact sequence on Y :

0→KY →KY (E)→KE → 0.

By Grauert–Riemenschneider vanishing, we have Rn−if∗OY (KY + E) ∼=
Hn−i(E,KE) for i < n. So to prove the statement, it suffices to prove the dual-

ity between Hi
p(X,OX) and Rn−if∗OY (KY + E) ∼= Hn−i(E,KE). To this end,

we consider the quasi-isomorphism f∗OY (−E) ∼=quasi Rf∗OY (−E) implied by

Kovács’s vanishing theorem. Applying Grothendieck duality, we have

RHom
(
f∗OY (−E), ω•

X

)∼=quasi RHom
(
Rf∗OY (−E), ω•

X

)∼=quasi Rf∗ω
•
Y (E).

Taking the −ith cohomology, we have

(3.1) Ext−i
(
f∗OY (−E), ω•

X

)∼=Rn−if∗OY (KY +E).

By Matlis duality, the left-hand side is isomorphic to Hom(Hi
p(f∗OY (−E)), I),

where I is the injective hull of k.

To prove the statement, we claim that Hi
p(f∗OY (−E))∼=Hi

p(OX) for i > 1.

This follows from the exact sequence

0→ f∗OY (−E)→OX →Op → 0

and the fact that Hi(Op) = 0 if and only if i > 0. �

COROLLARY 3.2

For any integer 3≤ t≤ n, we have depthpOX ≥ t if and only if Hi−1(E,OE) = 0,

∀1< i < t. (Note that by assumption X is normal, so we know that depthpOX

is at least two.)

Proof

In the proof of Theorem 3.1, we showed Hi
p(f∗OY (−E))∼=Hi

p(OX) for i > 1. So

for any integer 3≤ t≤ n, we have

depthpOX ≥ t ⇔ Hi
p(X,OX) = 0, ∀i < t

⇔ Hi
p

(
X,f∗OY (−E)

)
= 0, ∀1< i < t

⇔ Hn−i(E,KE) = 0, ∀1< i < t
(
Matlis duality and (3.1)

)

⇔ Hi−1(E,OE) = 0, ∀1< i < t (Serre duality). �
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REMARK 3.3

The cohomology group Hi(E,OE) is independent of resolution, because Hi(E,

OE) ∼= Rif∗OY by Kovács’s vanishing theorem. And Rif∗OY is well known to

be independent of resolution.

COROLLARY 3.4 ([4, PROPOSITION 4.7])

Given a closed isolated lc center p of a pair (X,Δ), then X is Cohen–Macauley

at p if and only if Hi(E,OE) = 0,∀0< i < n− 1.

3.2. Normal isolated Du Bois singularity
The notion of Du Bois singularities is a generalization of the notion of rational

singularities. For a proper scheme of finite type X there exists a complex Ω•
X ,

which is an analogue of the de Rham complex. Roughly speaking, X is said to

have Du Bois singularities if the natural map OX →Ω0
X is a quasi-isomorphism.

We refer the reader to [16] and the references therein for more discussions.

In this subsection we consider the case where (X,p) is a normal isolated Du

Bois singularity of dimension n and f : Y →X is a log resolution such that f

is an isomorphism outside of p. We claim that the idea in Section 3.1 can be

applied to this case. The crucial fact we need is the following.

THEOREM 3.5 ([16, THEOREM 6.1])

Take a log resolution f : Y →X as above, and let E be the reduced preimage of p.

Then (X,p) is a normal Du Bois singularity if and only if the natural map

Rif∗OY →Rif∗OE

is an isomorphism for all i > 0.

This theorem implies that Rif∗OY (−E) = o,∀i > 0. That is,

f∗OY (−E)∼=quasi Rf∗OY (−E).

Then exactly the same proof as in Section 3.1 yields the following theorem.

THEOREM 3.6

Given that (X,p) is a normal isolated Du Bois singularity of dimension n, for

1 < i < n, Hi
p(X,OX) is dual to Hn−i(E,KE) by Matlis duality. For i = n,

Hn
p (X,OX) is dual to f∗OY (KY +E). In particular, f∗OY (KY +E)∼=KX .

Then the corollaries in Section 3.1 also hold.

REMARK 3.7

The last statement has been proved in [8, Claim in Theorem 2.3].

4. Kovács’s vanishing theorem

In this section we follow Fujino’s idea to give a simple proof of Kovács’s vanish-

ing theorem. First we prove a similar result for the dlt pair which was proved
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by the notion of rational pairs in [11]. One of the equivalent definitions of dlt

singularities is that there is a log resolution (see Szabó’s resolution in [17]) such

that the discrepancy of any exceptional divisor is strictly bigger than −1 (see

[13, Theorem 2.44]).

THEOREM 4.1

Let (X,ΔX) be a dlt pair, and let f : Y →X be a Szabó resolution. Then we can

write

KY +ΔY = f∗(KX +ΔX) +A−B,

where A,B are effective exceptional divisors, �B�= 0, and ΔY is the strict trans-

form of ΔX . Then for any reduced subset Δ′ ⊆ΔY , we have

Rif∗OY (−Δ′) = 0

for every i > 0.

Proof

Write

KY − f∗(KX +ΔX) +ΔY =A−B.

Then

�A�=KY − f∗(KX +ΔX) +ΔY +B + �A� −A,

which is f -exceptional and effective. Consider the following diagram of complexes:

f∗OY (−Δ′)
α

β

Rf∗OY (−Δ′)

γ

Rf∗OY

(
�A� −Δ′)

Note that

�A� −Δ′ =KY − f∗(KX +ΔX) + strict transform+ δ,

where δ is some effective simple normal crossing divisor such that �δ�= 0. So by

Reid–Fukuda-type vanishing Rif∗OY (�A�−Δ′) = 0 for i > 0. On the other hand,

since �A� is exceptional and Δ′ is strict transform, f∗OY (�A�−Δ′) = f∗OY (−Δ′)

(see [10, Lemma 12]). So β is a quasi-isomorphism.

Dualizing this diagram we have

RHom
(
f∗OY (−Δ′), ω•

X

)
RHom

(
Rf∗OY (−Δ′), ω•

X

)α∗

RHom
(
Rf∗OY

(
�A� −Δ′), ω•

X

)
β∗ γ∗
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Applying Grothendieck duality we get the following composition:

Rf∗ω
•
Y

(
Δ′ − �A�

) γ∗

β∗

Rf∗ω
•
Y (Δ

′)
α∗

RHom
(
f∗OY (−Δ′), ω•

X

)
.

By Reid–Fukuda-type vanishing, the complex Rf∗ω
•
Y (Δ

′) has vanishing

higher cohomology. Note that β∗ is a quasi-isomorphism, so it is in fact a com-

position of sheaf morphisms as follows:

f∗ωY

(
Δ′ − �A�

) γ∗

f∗ωY (Δ
′)

α∗
Hom

(
f∗OY (−Δ′), ωX

)
.

Since �A� is effective, γ∗ is injective. Because f∗ωY (Δ
′) is a rank-one sheaf and

the composition α∗ ◦ γ∗ is an isomorphism, γ∗ is in fact an isomorphism. This

implies that α∗ is a quasi-isomorphism, so α : f∗OY (−Δ′)→Rf∗OY (−Δ′) is also

a quasi-isomorphism. That is, Rif∗OY (−Δ′) = 0,∀i > 0. �

With Theorem 4.1, we can prove Kovács’s vanishing theorem following Fujino’s

[5] idea. Consider the following maps:

Y
h

f

Z
g

X

where g : (Z,ΔZ)→ (X,Δ) is a dlt modification such that KZ +ΔZ = g∗(KX +

Δ). And h : Y → Z is a Szabó resolution such that KY = h∗(KZ +ΔZ) + A−
B −ΔY , where ΔY = h−1

∗ ΔZ .

We claim that Rif∗OY (−�ΔY �) = 0,∀i > 0. By Theorem 4.1,

Rih∗OY (−�ΔY �) = 0,∀i > 0. Also note that h∗OY (�A� − �ΔY �) =

h∗OY (−�ΔY �) = OZ(−�ΔZ�) (see [10, Lemma 12]). So by the Leray spectral

sequence, Rif∗OY (−�ΔY �) =Rig∗OZ(−�ΔZ�). The latter is zero for i > 0 by [9,

Theorem 1.2.5, Remark 1.2.6].

Note that f : Y → X is not a log resolution. To fix the problem, we can

blow up centers with simple normal crossing with Supp(ΔY +A+B). Say the

blowup is π :W → Y . There are two cases that can happen. If we blow up the

klt locus, it is a Szabó resolution and then the divisor with −1 discrepancy

is ΔW = π−1
∗ (ΔY ). Then Riπ∗OW (−ΔW ) = 0 by Theorem 4.1. If we blow up

centers inside the non-klt locus, then the divisor with −1 discrepancy may be

ΔW = π−1
∗ (ΔY )+F , where F is the exceptional divisor produced by the blowup.

Then Riπ∗OW (−ΔW ) = 0 by direct calculation. In any case we have shown that

the higher direct image is not changed by these two kinds of blowing up. So we

can conclude Kovács’s vanishing theorem.
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