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Abstract This work studies boundedness properties of the fractional maximal opera-

tor on metric measure spaces under standard assumptions on the measure. The main

motivation is to show that the fractional maximal operator has similar smoothing and

mapping properties as theRiesz potential. Instead of the usual fractionalmaximal oper-

ator, we also consider a so-called discrete maximal operator which has better regular-

ity. We study the boundedness of the discrete fractional maximal operator in Sobolev,

Hölder, Morrey, and Campanato spaces. We also prove a version of the Coifman–

Rochberg lemma for the fractional maximal function.

1. Introduction

The fractional maximal function is a standard tool in partial differential equa-

tions, potential theory and harmonic analysis (see [2]–[4]). It is also closely related

to the definition of Morrey spaces. This class of functions can be used, for exam-

ple, to show that weak solutions to certain partial differential equations are locally

Hölder continuous. Hölder continuity can also be characterized through the Cam-

panato spaces. For some values of parameters, Morrey and Campanato spaces

coincide (see [6], [22], [25]). However, the main difference is that the Morrey-type

condition gives a bound for the growth of the integral average of a function,

but the Campanato-type condition gives a similar bound for the mean oscilla-

tion. Boundedness of the classical operators in harmonic analysis in Morrey and

Campanato spaces has been studied in [6], [9], and [27].

This work studies boundedness properties of the fractional maximal operator

in Sobolev, Hölder, Morrey, and Campanato spaces on metric measure spaces.

The main motivation is to show that the fractional maximal operator has sim-

ilar smoothing and mapping properties to those of the Riesz potential (see [2],

[3], [12]–[14], [24]–[26]). Note that the Campanato estimates for the Riesz poten-

tials do not immediately imply the corresponding oscillation estimates for the

fractional maximal function. The Morrey estimates are probably known by the
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experts at least in special cases, but the main contribution of this work is to

provide results in Sobolev, Hölder, and Campanato spaces. There is also an unex-

pected obstruction in the metric case, as the examples in [8] show. Indeed, it may

happen that even the standard Hardy–Littlewood maximal function of a Lips-

chitz continuous function may fail to be continuous. For this reason, we consider

a so-called discrete maximal function, which is constructed in terms of coverings

and partitions of unities as in [1], [18], and [20]. The discrete fractional maximal

function is comparable to the standard fractional maximal function provided the

measure is doubling. Hence for all practical purposes, it does not matter which

one we choose. However, the discrete maximal function seems to behave better

as far as regularity is concerned.

The main purpose of this work is to extend the Euclidean result with the

Lebesgue measure in [19] to metric measure spaces. We show that under rela-

tively mild conditions on the measure, the discrete fractional maximal function

of an Lp-function belongs to a Sobolev space. Another example of a smoothing

property is shown by the result that the discrete fractional maximal operator

maps Sobolev, Morrey, and Campanato spaces to a slightly better similar space.

As a special case, we obtain a result which implies that the discrete fractional

maximal operator maps Hölder continuous functions to Hölder continuous func-

tions with a better exponent. The example in [8] can be modified to show that

corresponding results do not hold for the standard fractional maximal function.

Our arguments also apply in a more general context of spaces of homogeneous

type (see [11], [13]–[15], [21], [22], [29]), but we have chosen to work in the metric

space setting for expository purposes.

We discuss Lp-estimates for the fractional maximal function also in the case

when the measure is not necessarily doubling. This is closely related to [28],

[29], and [30]. The new aspects in our work compared with earlier results, for

example, in [6] and [25], are that our main focus is on the fractional maximal

function instead of the standard Hardy–Littlewood maximal function, and we

also consider Sobolev and Campanato spaces. In addition, we prove a version of

a result of Coifman and Rochberg [10] for the fractional maximal function. In

the classical case the result states that the Hardy–Littlewood maximal function

raised to the power γ, with 0< γ < 1, is the so-called Muckenhoupt’s A1-weight

provided it is finite almost everywhere. We show that the same result holds true

for the fractional maximal function even without taking the power.

2. The fractional maximal function

We assume that X = (X,d, μ) is a separable metric measure space equipped with

a metric d and a Borel regular outer measure μ, which satisfies 0 < μ(U) <∞
whenever U is nonempty, open, and bounded.

The measure is doubling if there is a fixed constant cd > 0, called a doubling

constant of μ, such that
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(2.1) μ
(
B(x,2r)

)
≤ cdμ

(
B(x, r)

)
for every ball B(x, r) = {y ∈X : d(y,x)< r}.

The doubling condition implies that

(2.2)
μ(B(y, r))

μ(B(x,R))
≥C

( r

R

)Q

for every 0 < r ≤ R and y ∈ B(x,R) for some C and Q > 1 that only depend

on cd. In fact, we may take Q= log2 cd.

Throughout the paper, the characteristic function of a set E ⊂X is denoted

as χE . In general, C will denote a positive constant whose value is not necessarily

the same at each occurrence. The integral average of a function u ∈ L1(A) over

a μ-measurable set A with finite and positive measure is denoted by

uA =

∫
−
A

udμ=
1

μ(A)

∫
A

udμ.

Let 0≤ α≤Q. The fractional maximal function of u ∈ L1
loc(X) is

(2.3) Mαu(x) = sup
r>0

rα
∫
−
B(x,r)

|u|dμ.

For α= 0, we have the usual Hardy–Littlewood maximal function

Mu(x) = sup
r>0

∫
−
B(x,r)

|u|dμ.

By the Hardy–Littlewood maximal function theorem for doubling measures (see

[11]), we see that the Hardy–Littlewood maximal operator is bounded on Lp(X)

when 1< p≤∞ and maps L1(X) to the weak L1(X). In our definition, we con-

sider balls that are centered at x, but we obtain a noncentered maximal function

by taking the supremum over all balls containing x. For doubling measures, these

maximal functions are comparable, and it does not matter which one we choose.

Another way to define the fractional maximal function is

(2.4) M̃αu(x) = sup
r>0

μ
(
B(x, r)

)α∫−
B(x,r)

|u|dμ,

where 0≤ α≤ 1. If the measure is Ahlfors Q-regular, that is,

C−1rQ ≤ μ
(
B(x, r)

)
≤CrQ

for every x ∈X and r > 0, then Mαu and M̃α/Qu are comparable in the sense

that there exists a constant C ≥ 1, depending only on the doubling constant,

such that

C−1Mαu≤ M̃α/Qu≤CMαu.

In the case when only the lower bound holds in the Alhfors regularity condition,

then we say that the measure satisfies the measure lower bound condition.
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3. Lebesgue spaces

In this section, we study the action of fractional maximal operators on Lp-spaces.

We do not assume that μ is doubling. In this generality, the Hardy–Littlewood

maximal function theorem does not hold for the standard maximal operator.

Therefore, we consider a modified version of the fractional maximal operator as

in [28] and [30]. For κ≥ 1, define

(3.1) Mκ
αu(x) = sup

r>0

rα

μ(B(x,κr))

∫
B(x,r)

|u|dμ

and

(3.2) M̃κ
αu(x) = sup

r>0
μ
(
B(x,κr)

)α−1
∫
B(x,r)

|u|dμ.

When α= 0, we denote Mκ =Mκ
α = M̃κ

α. Sawano [28] proved that the estimates

(3.3) μ
({

x ∈X :Mκu(x)> λ
})

≤ λ−1‖u‖L1(X)

for every λ > 0 and

(3.4) ‖Mκu‖Lp(X) ≤C‖u‖Lp(X),

1 < p ≤∞, hold if κ ≥ 2. He also showed that they are not true, in general, if

1≤ κ < 2.

Using these estimates and some simple pointwise inequalities, we obtain

Sobolev-type theorems for modified fractional maximal operators (3.1) and (3.2).

THEOREM 3.1

Let 0≤ α< 1. Then

(3.5) μ
({

x ∈X : M̃2
αu(x)> λ

})
≤
(
λ−1‖u‖L1(X)

)1/(1−α)

for every λ > 0 and u ∈ L1(X).

Proof

Fix x ∈X . Then for every ball B(x, r), we have

μ
(
B(x,2r)

)α−1
∫
B(x,r)

|u|dμ

=
( 1

μ(B(x,2r))

∫
B(x,r)

|u|dμ
)1−α(∫

B(x,r)

|u|dμ
)α

≤
(
M2u(x)

)1−α‖u‖αL1(X),

which implies that

M̃2
αu(x)≤

(
M2u(x)

)1−α‖u‖αL1(X).

Using this and (3.3), we obtain (3.5). �

The proof of the following bound for the modified fractional maximal function is

similar to one in [16].
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THEOREM 3.2

Let p > 1 and αp≤ 1. Then

‖M̃2
αu‖Lp/(1−αp)(X) ≤C‖u‖Lp(X)

for every u ∈ Lp(X).

Proof

Let x ∈X . Using Hölder’s inequality, we have

μ
(
B(x,2r)

)α−1
∫
B(x,r)

|u|dμ

= μ
(
B(x,2r)

)α−1
(∫

B(x,r)

|u|dμ
)αp(∫

B(x,r)

|u|dμ
)1−αp

≤ μ
(
B(x,2r)

)α−1
μ
(
B(x, r)

)(1−1/p)αp‖u‖αpLp(X)

(∫
B(x,r)

|u|dμ
)1−αp

≤ ‖u‖αpLp(X)

(
μ
(
B(x,2r)

)−1
∫
B(x,r)

|u|dμ
)1−αp

≤ ‖u‖αpLp(X)

(
M2u(x)

)1−αp
,

for every ball B(x, r), which implies that

M̃2
αu(x)≤ ‖u‖αpLp(X)

(
M2u(x)

)1−αp
.

Using this and (3.4), we obtain

‖M̃2
αu‖Lp/(1−αp)(X) ≤ ‖u‖αpLp(X)

∥∥(M2u)1−αp
∥∥
Lp/(1−αp)(X)

= ‖u‖αpLp(X)‖M
2u‖1−αp

Lp(X)

≤ C‖u‖Lp(X). �

If the measure lower bound condition holds, then

Mκ
αu≤CM̃κ

α/Qu,

where the constant C depends on α, κ and on the constant of the lower bound

condition. Thus, Theorems 3.1 and 3.2 imply the following results.

THEOREM 3.3

Assume that the measure lower bound condition holds. Let 0<α<Q. Then there

is a constant C > 0, depending only on the constant in the measure lower bound

and α, such that

μ
(
{M2

αu > λ}
)
≤C

(
λ−1‖u‖L1(X)

)Q/(Q−α)
,

for every λ > 0 and u ∈ L1(X).

THEOREM 3.4

Assume that the measure lower bound condition holds. Let p > 1, and assume that
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0<α≤Q/p. Then there is a constant C > 0, depending only on the constant of

the measure lower bound condition, p, and α, such that

‖M2
αu‖Lp∗ (X) ≤C‖u‖Lp(X),

for every u ∈ Lp(X) with p∗ =Qp/(Q− αp).

Observe, that if the measure is doubling, then the results in this section hold for

the standard maximal functions with κ= 1.

4. Morrey spaces

In this section, we study the behavior of the fractional maximal operator on

Morrey spaces. Let 1≤ p <∞ and β ∈R. A function u ∈ L1
loc(X) belongs to the

Morrey space Mp,β,κ(X), if

‖u‖Mp,β,κ(X) = sup r−β
( 1

μ(B(x,κr))

∫
B(x,r)

|u|p dμ
)1/p

<∞,

where the supremum is taken over all x ∈X and r > 0 (see [24]). Observe that

for β ≤ 0, this is equivalent to the requirement

Mκ
−βp

(
|u|p

)
∈ L∞(X).

A result of Chiarenza and Frasca [9] says that the Hardy–Littlewood maxi-

mal operator is bounded on Mp,β,1(Rn), when p > 1. This was extended to the

nondoubling metric space setting in [24], where it was shown that

(4.1) ‖M2u‖Mp,β,4(X) ≤C‖u‖Mp,β,2(X),

for p > 1.

Our next result is a Sobolev-type inequality for the modified fractional max-

imal operator acting on Morrey spaces. This could be deduced from the corre-

sponding result for the Riesz potential (see [24]), but we provide a simple direct

proof.

THEOREM 4.1

Let α > 0 and α + β < 0. Let u ∈ Mp,β,2(X) with 1 < p <∞. Then there is a

constant C > 0, depending only p, α, and β, such that

‖M2
αu‖Mp/(1+α/β),α+β,4(X) ≤C‖u‖Mp,β,2(X).

Proof

Let α> 0. Let x ∈X and r > 0. Using Hölder’s inequality, we have

rα

μ(B(x,2r))

∫
B(x,r)

|u|dμ

=
( 1

μ(B(x,2r))

∫
B(x,r)

|u|dμ
)1+α/β( r−β

μ(B(x,2r))

∫
B(x,r)

|u|dμ
)−α/β

≤
(
M2u(x)

)1+α/β‖u‖−α/β

Mp,β,2(X)
.
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Because the right-hand side above does not depend on r, we obtain

M2
αu(x)≤

(
M2u(x)

)1+α/β‖u‖−α/β

Mp,β,2(X)
.

Using this and (4.1), we obtain

r−(α+β)
( 1

μ(B(x,4r))

∫
B(x,r)

(M2
αu)

p/(1+α/β) dμ
)(1+α/β)/p

≤
(
r−β

( 1

μ(B(x,4r))

∫
B(x,r)

(M2u)p dμ
)1/p)1+α/β

‖u‖−α/β

Mp,β,2(X)

≤ ‖M2u‖1+α/β

Mp,β,4(X)
‖u‖−α/β

Mp,β,2(X)
≤C‖u‖Mp,β,2(X). �

REMARK 4.2

If we define the Morrey space with the norm

‖u‖M̃p,β,κ(X)
= supμ

(
B(x,κr)

)−β
( 1

μ(B(x,κr))

∫
B(x,r)

|u|p dμ
)1/p

,

where the supremum is taken over all x ∈X and r > 0, then the same proof as

above gives

‖M̃2
αu‖M̃p/(1+α/β),α+β,4(X)

≤C‖u‖M̃p,β,2(X)
.

5. The discrete fractional maximal function

From now on, we assume that the measure is doubling. We begin the construction

of the discrete maximal function with a covering of the space. Let r > 0. Since

the measure is doubling, there are balls B(xi, r), i= 1,2, . . . , such that

X =

∞⋃
i=1

B(xi, r) and

∞∑
i=1

χB(xi,6r) ≤N <∞.

This means that the dilated balls B(xi,6r), i= 1,2, . . . , are of bounded overlap.

The constant N depends only on the doubling constant, and, in particular, it is

independent of r.

Then we construct a partition of unity subordinate to the covering B(xi, r),

i = 1,2, . . . , of X . Indeed, there is a family of functions ϕi, i = 1,2, . . . , such

that 0≤ ϕi ≤ 1, ϕi = 0 in X \B(xi,6r), ϕi ≥ ν in B(xi,3r), ϕi is Lipschitz with

constant L/r with ν and L depending only on the doubling constant, and

∞∑
i=1

ϕi(x) = 1

for every x ∈X .

The discrete convolution of u ∈ L1
loc(X) at the scale 3r is

ur(x) =

∞∑
i=1

ϕi(x)uB(xi,3r)

for every x ∈X , and we write uα
r = rαur. Observe that the kernel of the integral

operator in the definition of the discrete convolution is not symmetric. Coverings,



700 Heikkinen, Kinnunen, Nuutinen, and Tuominen

partitions of unity, and discrete convolutions are standard tools in harmonic

analysis on metric measure spaces (see [11], [21]).

Let rj , j = 1,2, . . . , be an enumeration of the positive rationals, and let

balls B(xi, rj), i= 1,2, . . . , be a covering of X as above. The discrete fractional

maximal function of u in X is

M∗
αu(x) = sup

j
|u|αrj (x)

for every x ∈X . For α= 0, we obtain the Hardy–Littlewood-type discrete maxi-

mal function studied in [1], [18], and [20]. Observe that the construction depends

on the choice of the coverings, but our goal is to derive estimates that are inde-

pendent of the chosen coverings.

The discrete fractional maximal function is comparable to the standard frac-

tional maximal function. The proof is similar to that for the discrete maximal

function and Hardy–Littlewood maximal function in [18, Lemma 3.1].

LEMMA 5.1

Assume that the measure is doubling. Let u ∈ L1
loc(X). Then there is a constant

C ≥ 1, depending only on the doubling constant, such that

C−1Mαu(x)≤M∗
αu(x)≤CMαu(x),

for every x ∈X.

Proof

We begin by proving the second inequality. Let x ∈X , and let rj be a positive

rational number. Since ϕi = 0 on X \ B(xi,6rj) and B(xi,3rj) ⊂ B(x,9rj) for

every x ∈B(xi,6rj), we have by the doubling condition that

|u|αrj (x) = rαj

∞∑
i=1

ϕi(x)|u|B(xi,3rj)

≤ rαj

∞∑
i=1

ϕi(x)
μ(B(x,9rj))

μ(B(xi,3rj))

∫
−
B(x,9rj)

|u|dμ≤CMαu(x),

where C depends only on the doubling constant. The required inequality follows

by taking the supremum on the left-hand side.

To prove the first inequality, we observe that for each x ∈ X there exists

i= ix such that x ∈B(xi, rj). This implies that B(x, rj)⊂B(xi,2rj) and hence

rαj

∫
−
B(x,rj)

|u|dμ ≤ Crαj

∫
−
B(xi,3rj)

|u|dμ

≤ Crαj ϕi(x)

∫
−
B(xi,3rj)

|u|dμ≤CM∗
αu(x),

where C depends only on the doubling constant. In the second inequality, we

used the fact that ϕi ≥ ν on B(xi, rj). Again the claim follows by taking the

supremum on the left-hand side. �
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Since the discrete and the standard maximal functions are comparable, the

Sobolev and the weak-type estimates hold for the discrete fractional maximal

function as well (see Theorems 3.4, 3.3).

6. Sobolev spaces

A nonnegative Borel function g on X is said to be an upper gradient of a function

u : X → [−∞,∞] if for all rectifiable paths γ : [0,1]→X , we have

(6.1)
∣∣u(γ(0))− u

(
γ(1)

)∣∣≤ ∫
γ

g ds,

whenever both u(γ(0)) and u(γ(1)) are finite, and
∫
γ
g ds =∞ otherwise. The

assumption that g is a Borel function is needed in the definition of the path

integral. If g is merely a μ-measurable function and (6.1) holds for p-almost

every path, then g is said to be a p-weak upper gradient of u. By saying that

(6.1) holds for p-almost every path we mean that it fails only for a path family

with zero p-modulus. A family Γ of curves is of zero p-modulus if there is a

nonnegative Borel measurable function ρ ∈ Lp(X) such that for all curves γ ∈ Γ,

the path integral
∫
γ
ρds is infinite. If we redefine a p-weak upper gradient on a

set of measure zero we obtain an upper gradient of the same function. If g is

a p-weak upper gradient of u, then there is a sequence gi, i= 1,2, . . . , of upper

gradients of u such that ∫
X

|gi − g|p dμ→ 0

as i → ∞. Hence every p-weak upper gradient can be approximated by upper

gradients in the Lp(X)-norm. If u has an upper gradient that belongs to Lp(X)

with p≥ 1, then it has a minimal p-weak upper gradient gu in the sense that for

every p-weak upper gradient g of u, gu ≤ g almost everywhere.

We define the first-order Sobolev spaces on the metric space X by using

the p-weak upper gradients. These spaces are called Newtonian spaces. For u ∈
Lp(X), let

‖u‖N1,p(X) =
(∫

X

|u|p dμ+ inf
g

∫
X

gp dμ
)1/p

,

where the infimum is taken over all p-weak upper gradients of u. The Newtonian

space on X is the quotient space

N1,p(X) =
{
u : ‖u‖N1,p(X) <∞

}
/∼,

where u ∼ v if and only if ‖u − v‖N1,p(X) = 0. The same definition applies to

subsets of X as well. The notion of a p-weak upper gradient is used to prove that

N1,p(X) is a Banach space. For the properties of Newtonian spaces, we refer to

[7], [31], and [32].

We say that X supports a (weak) (1, p)-Poincaré inequality if there exist

constants c > 0 and τ ≥ 1 such that for all balls B(x, r) ⊂ X , for all locally
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integrable functions u on X , and for all p-weak upper gradients g of u,

(6.2)

∫
−
B(x,r)

|u− uB(x,r)|dμ≤ cr
(∫
−
B(x,τr)

gp dμ
)1/p

.

Note that since p-weak upper gradients can be approximated by upper gradients

in the Lp(X)-norm, it would be enough to require the Poincaré inequality for

upper gradients only.

By Hölder’s inequality it is easy to see that if X supports a (1, p)-Poincaré

inequality, then it supports a (1, q)-Poincaré inequality for every q > p. It is shown

in [17] that if X is complete and μ doubling, then a (1, p)-Poincaré inequality

implies a (1, p′)-Poincaré inequality for some p′ < p. Hence the (1, p)-Poincaré

inequality is a self-improving condition.

The following Sobolev-type theorem is a generalization of the main result of

[19] to the metric setting. It shows that the discrete fractional maximal operator

is a smoothing operator. More precisely, the discrete fractional maximal function

of an Lp-function has a weak upper gradient, and both u and the weak upper

gradient belong to a higher Lebesgue space than u.

We use the following simple fact in the proof. Suppose that ui, i= 1,2, . . . ,

are functions and gi, i= 1,2, . . . , are p-weak upper gradients of ui, respectively.

Let u= supi ui and g = supi gi. If u is finite almost everywhere, then g is a p-weak

upper gradient of u. For the proof, we refer to [7].

THEOREM 6.1

Assume that the measure is doubling and that the measure lower bound condition

holds. Assume that u ∈ Lp(X) with 1< p<Q. Let

1≤ α<Q/p, p∗ =Qp/(Q− αp), and q =Qp/
(
Q− (α− 1)p

)
.

Then M∗
α−1u is a weak upper gradient of M∗

αu. Moreover, there is a constant

C > 0, depending only on the doubling constant, the constant in the measure

lower bound, p, and α, such that

‖CM∗
αu‖Lp∗ (X) ≤C‖u‖Lp(X) and ‖M∗

α−1u‖Lq(X) ≤C‖u‖Lp(X).

Proof

We begin by considering |u|αr . By Lemma 5.1, we have

|u|αr (x) = rα|u|r(x)≤M∗
αu(x)≤CMαu(x)

for every x ∈X . Then we consider the weak upper gradient of |u|αr . Since

|u|αr (x) = rα
∞∑
i=1

ϕi(x)|u|B(xi,3r),

each ϕi is L/r-Lipschitz continuous and has a support in B(xi,6r), the function

gr(x) = Lrα−1
∞∑
i=1

|u|B(xi,3r)χB(xi,6r)(x)
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is a weak upper gradient of |u|αr . If x ∈ B(xi, r), then B(xi,3r) ⊂ B(x,9r) ⊂
B(xi,15r) and

|u|B(xi,3r) ≤C

∫
−
B(x,9r)

|u|dμ.

The bounded overlap property of the balls B(xi,6r), i= 1,2, . . . , implies that

gr(x)≤Crα−1

∫
−
B(x,9r)

|u|dμ≤CMα−1u(x)≤CM∗
α−1u(x),

and consequently CM∗
α−1u is a weak upper gradient of |u|αr as well.

By Lemma 5.1 and Theorem 3.4, M∗
αu belongs to Lp∗

(X), and hence M∗
αu

is finite almost everywhere. As

M∗
αu(x) = sup

j
|u|αrj (x),

and because CM∗
α−1u is an upper gradient of |u|αrj for every j = 1,2, . . . , we

conclude that it is an upper gradient of M∗
αu as well. The norm bounds follow

from Theorem 3.4. �

REMARK 6.2

With the assumptions of Theorem 6.1, M∗
αu ∈N1,q

loc (X) and

‖M∗
αu‖N1,q(A) ≤ μ(A)1/q−1/p∗‖u‖Lp(A)

for all open sets A⊂X with μ(A)<∞.

Next we study the behavior of the discrete fractional maximal function in New-

tonian spaces. The first result shows that if the function u is a Sobolev function,

then its discrete fractional maximal function belongs to a Sobolev space with the

Sobolev conjugate exponent.

THEOREM 6.3

Assume that the measure is doubling and that the measure lower bound condition

holds and that X is a complete metric space which supports a (1, p)-Poincaré

inequality with 1 < p < ∞. Assume that u ∈ N1,p(X) and that 0 < α < Q/p.

Then M∗
αu ∈ N1,p∗

(X) with p∗ = Qp/(Q − αp). Moreover, there is a constant

C > 0, depending only on the doubling constant, the constant in the measure

lower bound, p, and α, such that

‖M∗
αu‖N1,p∗ (X) ≤C‖u‖N1,p(X).

Proof

Let u ∈ N1,p(X), and let g ∈ Lp(X) be a weak upper gradient of u. By Theo-

rem 3.4, we have

‖M∗
αu‖Lp∗ (X) ≤C‖u‖Lp(X).
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For the weak upper gradient, let x, y ∈B(xj , r), and let

Ij =
{
i :B(xi,6r)∩B(xj , r) �= ∅

}
.

By the bounded overlap of the balls B(xi,6r), the set Ij is finite and the car-

dinality does not depend on j. By the (L/r)-Lipschitz continuity of functions

ϕi and by the (1, p′)-Poincaré inequality, which follows from the (1, p)-Poincaré

inequality for some 1< p′ < p, we have

∣∣|u|αr (x)− |u|αr (y)
∣∣ = rα

∣∣∣ ∞∑
i=1

(
|u|B(xi,3r) − |u|B(xj ,3r)

)(
ϕi(x)− ϕi(y)

)∣∣∣
≤ Crα−1d(x, y)

∑
i∈Ij

∣∣|u|B(xi,3r) − |u|B(xj ,3r)

∣∣

≤ Crα−1d(x, y)

∫
−
B(xj ,10r)

∣∣|u| − |u|B(xj ,10r)

∣∣dμ
≤ Crαd(x, y)

(∫
−
B(xj ,10λr)

gp
′
dμ

)1/p′

.

Since the pointwise Lipschitz constant of a function is a weak upper gradient, we

see that

gr(x) =Crα
∞∑
j=1

(∫
−
B(xj ,10λr)

gp
′
dμ

)1/p′

χB(xj ,6r)(x)

is a weak upper gradient of |u|αr . Moreover, by the bounded overlap of the balls,

gr(x) ≤ C

∞∑
j=1

(
rαp

′
∫
−
B(xj ,10λr)

gp
′
dμ

)1/p′

χB(xj ,6r)(x)

≤ C
(
M∗

αp′gp
′
(x)

)1/p′
.

By the same argument as in the proof of Theorem 6.1, we conclude that

(M∗
αp′gp

′
)1/p

′
is a weak upper gradient of M∗

αu. Since gp
′ ∈ Lp/p′

(X) and p/

p′ > 1, Theorem 3.4 implies that∥∥(M∗
αp′gp

′
)1/p

′∥∥
Lp∗ (X)

≤C‖g‖Lp(X),

and the claim follows. �

7. Campanato spaces

In this section, we study the behavior of the discrete fractional maximal operator

on Campanato spaces. Let 1≤ p <∞ and β ∈R. A function u ∈ L1
loc(X) belongs

to the Campanato space Lp,β(X) if

‖u‖Lp,β(X) = sup r−β
(∫
−
B(x,r)

|u− uB(x,r)|p dμ
)1/p

<∞.
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Here the supremum is taken over all x ∈X and r > 0. We denote the standard

Morrey space as Mp,β(X) =Mp,β,1(X). Observe, that ‖ · ‖Mp,β(X) is a norm in

the Morrey space, but ‖ · ‖Lp,β(X) is merely a seminorm in the Campanato space.

Morrey spaces, Campanato spaces, functions of bounded mean oscillation

(BMO), and functions in C0,β(X) have the following connections (see [5], [6],

[22], [23], [25], [27]):

• Mp,β(X)⊂Lp,β(X),

• Lp,β(X) =Mp,β(X) if −Q/p < β < 0 (here we identify functions that differ

only by an additive constant),

• L1,0(X) = BMO(X), and

• Lp,β(X) =C0,β(X) if 0< β ≤ 1.

Recall that u ∈ C0,β(X) means that u is a Hölder continuous function with

exponent 0< β ≤ 1, that is,∣∣u(x)− u(y)
∣∣≤Cd(x, y)β

for all x, y ∈X .

The following technical lemma will be useful for us.

LEMMA 7.1

Assume that the measure is doubling. Assume that u ∈ Lp,β(X). Let x ∈X, 0<

2r < R, and y ∈B(x,2R). If β < 0, then

(7.1) |uB(y,r) − uB(x,R)| ≤Crβ‖u‖Lp,β(X).

If β = 0, then

(7.2) |uB(y,r) − uB(x,R)| ≤C log
6R

r
‖u‖Lp,0(X).

The constant C depends only on the doubling constant.

Proof

Let k be the smallest index such that 2kr ≥ 3R. Then B(x,R)⊂B(y,2kr) and

|uB(y,r) − uB(x,R)|

≤
k∑

i=1

|uB(y,2ir) − uB(y,2i−1r)|+ |uB(y,2kr) − uB(x,R)|

≤
k∑

i=1

∫
−
B(y,2i−1r)

|u− uB(y,2ir)|dμ+

∫
−
B(x,R)

|u− uB(y,2kr)|dμ

≤C
k∑

i=1

∫
−
B(y,2ir)

|u− uB(y,2ir)|dμ+C

∫
−
B(y,2kr)

|u− uB(y,2kr)|dμ

≤Crβ‖u‖Lp,β(X)

( ∞∑
i=1

2iβ + 2kβ
)
≤Crβ‖u‖Lp,β(X),
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where C depends only on the doubling constant and the sum converges since

β < 0. This proves (7.1).

The proof of (7.2) is quite similar. Indeed, by the choice of k, we have 2kr ≤
6R and consequently

|uB(y,r) − uB(x,R)|

≤C

k∑
i=1

∫
−
B(y,2ir)

|u− uB(y,2ir)|dμ+C

∫
−
B(y,2kr)

|u− uB(y,2kr)|dμ

≤Ck‖u‖Lp,0(X) ≤C log
6R

r
‖u‖Lp,0(X). �

The next results show that the fractional maximal function of a Hölder continuous

function is Hölder continuous with a better exponent or a Lipschitz function.

A similar result for the fractional integral operator can be found in [13] and [14].

Recall that Lp,β(X) =C0,β(X) for 0< β ≤ 1.

THEOREM 7.2

Assume that the measure is doubling. Let u ∈C0,β(X) with 0< β ≤ 1. If α+β ≤
1, then M∗

αu ∈C0,α+β(X).

Proof

Let r > 0. We begin by proving the claim for |u|αr . Let x, y ∈ X . Assume first

that d(x, y)> r. Then

∣∣|u|αr (x)− |u|αr (y)
∣∣ ≤ rα

(∣∣u(x)− u(y)
∣∣+ ∞∑

i=1

ϕi(x)
∣∣|u|B(xi,3r) −

∣∣u(x)∣∣∣∣

+

∞∑
i=1

ϕi(y)
∣∣|u|B(xi,3r) −

∣∣u(y)∣∣∣∣).
In the first sum, ϕi(x) �= 0 only if x ∈B(xi,6r). For such i, by the Hölder conti-

nuity of u, we have∣∣|u|B(xi,3r) −
∣∣u(x)∣∣∣∣≤ ∫

−
B(xi,3r)

∣∣u(z)− u(x)
∣∣dμ≤Crβ .

A similar estimate holds for terms of the second sum when y ∈ B(xi,6r). The

bounded overlap of the balls B(xi,6r), i= 1,2, . . . , and the Hölder continuity of

u imply that∣∣|u|αr (x)− |u|αr (y)
∣∣≤Crα

(
d(x, y)β + rβ

)
≤Cd(x, y)α+β .

Assume then that d(x, y)≤ r. Now

∣∣|u|αr (x)− |u|αr (y)
∣∣≤ rα

( ∞∑
i=1

∣∣ϕi(x)−ϕi(y)
∣∣∣∣|u|B(xi,3r) −

∣∣u(x)∣∣∣∣),
where ϕi(x) − ϕi(y) �= 0 only if x ∈ B(xi,6r) or y ∈ B(xi,6r). If y ∈ B(xi,6r),

then the assumption d(x, y)≤ r implies that x ∈B(xi,7r). Hence for such i, as
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above, ∣∣|u|B(xi,3r) −
∣∣u(x)∣∣∣∣≤Crβ .

By the L/r-Lipschitz continuity of the functions ϕi and the bounded overlap of

the balls B(xi,6r), we have∣∣|u|αr (x)− |u|αr (y)
∣∣≤Crαd(x, y)rβ−1,

where, if α+ β ≤ 1,

rαd(x, y)rβ−1 ≤ d(x, y)α+β .

The claim for |u|αr follows from this.

Then we prove the claim for M∗
αu. We may assume that M∗

αu(x)≥M∗
αu(y).

Let ε > 0, and let rε > 0 be such that

|u|αrε(x)>M∗
αu(x)− ε.

Then, by the first part of the proof,

M∗
αu(x)−M∗

αu(y)≤ |u|αrε(x)− |u|αrε(y) + ε≤Cd(x, y)α+β + ε,

if α+ β < 1. By letting ε→ 0, we obtain∣∣M∗
αu(x)−M∗

αu(y)
∣∣≤Cd(x, y)α+β . �

According to the next result, the fractional maximal operator maps functions in

Campanato spaces to Hölder continuous functions. For a related result concerning

the fractional integral operator (see [26]).

THEOREM 7.3

Assume that the measure is doubling. Let α > 0, 0 ≤ α + β ≤ 1, and let u ∈
Lp,β(X). Then there is a constant C > 0, depending only on the doubling constant

p and α and β, such that

‖M∗
αu‖C0,α+β(X) ≤C‖u‖Lp,β(X).

Proof

Let r > 0. We begin by proving the claim for |u|αr . Let x, y ∈ X . Assume first

that r < d(x, y). Let B =B(x,4d(x, y)). Then∣∣|u|αr (x)− |u|αr (y)
∣∣

≤
∣∣|u|αr (x)− rα|u|B

∣∣+ ∣∣rα|u|B − |u|αr (y)
∣∣

≤ rα
( ∞∑
i=1

ϕi(x)
∣∣|u|B(xi,3r) − |u|B

∣∣+ ∞∑
i=1

ϕi(y)
∣∣|u|B(xi,3r) − |u|B

∣∣).
In the first sum, ϕi(x) �= 0 only if x ∈ B(xi,6r) and in the second sum, only

if y ∈ B(xi,6r). If β < 0, we use the bounded overlap of the balls B(xi,6r),

i= 1,2, . . . , and (7.1), and we have∣∣|u|αr (x)− |u|αr (y)
∣∣≤Crα+β‖u‖Lp,β(X) ≤Cd(x, y)α+β‖u‖Lp,β(X).
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Similarly, if β = 0, estimate (7.2) implies that

∣∣|u|αr (x)− |u|αr (y)
∣∣ ≤ Crα log

Cd(x, y)

r
‖u‖Lp,β(X)

= Cd(x, y)α
( r

Cd(x, y)

)α

log
Cd(x, y)

r
‖u‖Lp,β(X)

≤ Cd(x, y)α‖u‖Lp,β(X).

If r ≥ d(x, y), then

∣∣|u|αr (x)− |u|αr (y)
∣∣ ≤ rα

( ∞∑
i=1

∣∣ϕi(x)−ϕi(y)
∣∣∣∣|u|B(xi,3r) − |u|B(x,10r)

∣∣)

≤ Crα+β−1d(x, y)‖u‖Lp,β(X)

≤ Cd(x, y)α+β‖u‖Lp,β(X).

The claim for M∗
αu follows as in the proof of Theorem 7.2.

If β > 0, then Lp,β(X) = C0,β(X) and the result follows from Theorem 7.2.

This completes the proof. �

8. The Coifman–Rochberg lemma

By the classical theorem by Coifman and Rochberg [10], (Mu)γ , the Hardy–

Littlewood maximal function of u raised to any power 0 < γ < 1, is a Muck-

enhoupt A1-weight whenever Mu is finite almost everywhere. This means that

there exists a constant C such that∫
−
B(x,r)

(Mu)γ dμ≤C ess inf
B(x,r)

(Mu)γ

for every ball B(x, r) in X (see also [6], [33] for the corresponding result in the

metric setting with a doubling measure). For the fractional maximal function,

we obtain the result even without taking the power. In this section, we consider

the uncentered fractional maximal function, which is comparable to the centered

fractional maximal function.

THEOREM 8.1

Let 0<α<Q. Assume that u ∈ L1
loc(X) is such that Mαu is finite almost every-

where. Then Mαu is a Muckenhoupt A1-weight; that is,∫
−
B(x,r)

Mαudμ≤C ess inf
B(x,r)

Mαu

for every ball B(x, r) in X. The constant C does not depend on u.

Proof

Let B(x0, r)⊂X be a ball. We have to show that

(8.1)

∫
−
B(x0,r)

Mαudμ≤CMαu(x)
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for almost all x ∈B(x0, r). We divide |u| in two parts by setting v1 = |u|χB(x0,3r)

and v2 = |u|χX\B(x0,3r). Then, for each x ∈B(x0, r), we have

(8.2) Mαu(x)≤Mαv1(x) +Mαv2(x).

Since we also have

(8.3) Mαvi(x)≤Mαu(x)

for i= 1,2, it suffices to prove inequality (8.1) for v1 and v2.

Let x ∈B(x0, r). Then∫
−
B(x0,r)

Mαv1 dμ

=
1

μ(B(x0, r))

∫ ∞

0

μ
({

y ∈B(x0, r) :Mαv1(x)> λ
})

dλ

=
1

μ(B(x0, r))

(∫ a

0

+

∫ ∞

a

)
,

where a > 0 will be determined later. For the first integral, we use a trivial

estimate

1

μ(B(x0, r))

∫ a

0

μ
({

x ∈B(x0, r) :Mαv1(x)> λ
})

dλ≤ a.

For the second integral, we use Theorem 3.3 and obtain∫ ∞

a

μ
({

x ∈B(x0, r) :Mαv1(x)> λ
})

dλ

≤C

∫ ∞

a

(‖v1‖1
λ

)Q/(Q−α)

dλ

≤C‖v1‖Q/(Q−α)
1

Q− α

α
λ−α/(Q−α),

and hence ∫
−
B(x0,r)

Mαv1 dμ≤ a+C
‖v1‖Q/(Q−α)

1

μ(B(x0, r))
λ−α/(Q−α).

By choosing

a=
‖v1‖1

μ(B(x0, r))1−α/Q
,

we obtain∫
−
B(x0,r)

Mαv1 dμ ≤ C
‖v1‖1

μ(B(x0, r))1−α/Q

=
C

μ(B(x0, r))1−α/Q

∫
B(x0,3r)

v1 dμ≤CMαv1(x).

Inequality (8.1) for v2 follows immediately if we can show that

Mαv2(y)≤CMαv2(x)
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for all y ∈ B(x0, r). Let y ∈ B(x0, r), and let B(x′, r′) be a ball such that y ∈
B(x′, r′) and B(x′, r′) ∩ (X \ B(x0,3r)) �= ∅. Then B(x0, r) ⊂ B(x′,3r′). Using

the doubling property of μ and the fact that x ∈B(x′,3r′), we obtain

1

μ(B(x′, r′))1−α/Q

∫
B(x′,r′)

v2 dμ ≤ C
1

μ(B(x′,3r′))1−α/Q

∫
B(x′,3r′)

v2 dμ

≤ CMαv2(x).

The claim follows because the right-hand side does not depend on y.

To complete the proof, we use (8.2), the estimates above, and (8.3) to obtain∫
−
B(x0,r)

Mαudμ≤CMαv1(x) +CMαv2(x)≤CMαu(x). �

REMARK 8.2

Under the assumptions of the previous theorem, we also have∫
−
B(x,r)

(Mαu)
γ dμ≤C ess inf

B(x,r)
(Mαu)

γ

for 0< γ ≤ 1 by Hölder’s inequality.

Acknowledgment. Part of this research was conducted during the visit of the

fourth author to Forschungsinstitut für Mathematik of Eidgenössische Technische
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Math. Soc. 15 (1964), 717–721. MR 0168712.

http://www.ams.org/mathscinet-getitem?mr=1724375
http://www.ams.org/mathscinet-getitem?mr=0985999
http://www.ams.org/mathscinet-getitem?mr=0565349
http://dx.doi.org/10.2307/2043245
http://www.ams.org/mathscinet-getitem?mr=0499948
http://www.ams.org/mathscinet-getitem?mr=1920969
http://www.ams.org/mathscinet-getitem?mr=1387588
http://dx.doi.org/10.4171/RMI/196
http://www.ams.org/mathscinet-getitem?mr=1044788
http://www.ams.org/mathscinet-getitem?mr=1791462
http://www.ams.org/mathscinet-getitem?mr=2987152
http://www.ams.org/mathscinet-getitem?mr=2415381
http://dx.doi.org/10.4007/annals.2008.167.575
http://www.ams.org/mathscinet-getitem?mr=1954868
http://dx.doi.org/10.4171/RMI/332
http://www.ams.org/mathscinet-getitem?mr=1979008
http://dx.doi.org/10.1112/S0024609303002017
http://www.ams.org/mathscinet-getitem?mr=2328816
http://dx.doi.org/10.1007/s00209-007-0139-y
http://www.ams.org/mathscinet-getitem?mr=0546296
http://dx.doi.org/10.1016/0001-8708(79)90013-6
http://www.ams.org/mathscinet-getitem?mr=0546295
http://dx.doi.org/10.1016/0001-8708(79)90012-4
http://www.ams.org/mathscinet-getitem?mr=0168712


712 Heikkinen, Kinnunen, Nuutinen, and Tuominen

[24] Y. Mizuta, T. Shimomura, and T. Sobukawa, Sobolev’s inequality for Riesz

potentials on functions in non-doubling Morrey spaces, Osaka J. Math. 46

(2009), 255–271. MR 2531149.

[25] E. Nakai, The Campanato, Morrey and Hölder spaces on spaces of homogeneous
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