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Abstract The KO-theory of the flag manifold G/T is determined by calculating the

Atiyah–Hirzebruch spectral sequence when G is one of the exceptional Lie groups G2,

F4, E6, where T is a maximal torus of G.

1. Introduction

This work is a continuation of the work of [KH1], [KH2], [KKO], and [K] in which

the KO-theory of various homogeneous spaces are calculated by the Atiyah–

Hirzebruch spectral sequence. In [KKO], Kono and the authors calculated the

KO-theory of the classical flag manifolds. Here, we mean by the classical (resp.,

exceptional) flag manifold the compact classical (resp., exceptional) group divided

by its maximal torus. We will denote a maximal torus of a compact, connected

Lie group G by T . We will calculate the KO-theory of the exceptional flag man-

ifold G/T for G=G2, F4,E6. Recently, a connection between Witt groups and

KO-theory of homogeneous spaces such as Grassmannians and flag manifolds

was found (see [Z], [Y1], [Y2]), and so our calculation has applications not only

in topology but also in this direction. Our main result is the following.

THEOREM 1.1

The KO-theory of G/T for G=G2, F4,E6 is given as

KO2n−1(G/T )∼= (Z/2)sn and KO2n(G/T )∼= (Z/2)sn+1 ⊕Zt

for n ∈ Z/4, where t, sn are as in the following table:

G t s0 s−1 s−2 s−3

G2 6 1 2 1 0

F4 576 2 4 6 4

E6 25920 2 4 6 4

The organization of the paper is as follows. In Section 2, we recall from [KH1]

and [KH2] useful lemmas in calculating the Atiyah–Hirzebruch spectral sequence

converging to theKO-theory. We also recall some basic facts on the self-conjugate

K-theory. In Section 3, we consider the homotopy fiber of a certain cohomology
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class BT 6 studied in [KI1] and related spaces. Results in this section will be used

in calculating the KO-theory of F4/T and E6/T . In Section 4, we determine the

KO-theory of G2/T . In Section 5, we first calculate the KO-theory of F4/U for

some maximal rank subgroup U of F4. After this, we determine the KO-theory

of F4/T . In Section 6, we calculate the KO-theory of E6/T by using a method

similar to that for F4/T .

2. Atiyah–Hirzebruch spectral sequence

2.1. KO-theory
Recall that the coefficient of KO-theory is given as

KO∗ = Z[η,λ,β,β−1]/(2η, η3, ηλ,λ2 − 4β)

for |η|=−1, |λ|=−4, |β|=−8. Let (Er(X), dr) be the Atiyah–Hirzebruch spec-

tral sequence

Ep,q
2 (X)∼=Hp(X;KOq) =⇒KO∗(X).

It is shown in [F] that the second differential d2 is given as

(2.1) dp,q2 =

⎧⎪⎪⎨
⎪⎪⎩
Sq2π2, q ≡ 0 mod 8,

Sq2, q ≡−1 mod 8,

0, otherwise,

where π2 is the modulo 2 reduction. We now suppose the following condition of

a space X .

(2.2) H2n(X;Z) is a free abelian group, and H2n+1(X;Z) = 0 for n≥ 0.

Then for Sq2Sq2 = Sq3Sq1 = 0, (H∗(X;Z/2),Sq2) is a chain complex. We

denote the cohomology of (H∗(X;Z/2),Sq2) by H∗(X; Sq2) and call it the

Sq2-cohomology of X . It follows from (2.1) that there is an isomorphism

(2.3) ι :Ep,−1
3 (X)

∼=−→Hp(X; Sq2).

The following useful lemma is proved in [KH1] and [KH2].

LEMMA 2.1

Let X be a CW-complex satisfying (2.2). Suppose that r is the smallest integer

such that dr 	= 0 for r ≥ 3. Then the following hold.

(1) We have r ≡ 2 mod 8.

(2) If p is the smallest integer such that dp,qr 	= 0, there exists x ∈ Ep,0
r (X)

satisfying dr(ηx) 	= 0, and ι(ηx) is indecomposable in Hp(X; Sq2).

(3) Let x be as in (2). Suppose that there is a map X ×X →X by which

H∗(X; Sq2) becomes a Hopf algebra. Then drx is primitive in H∗(X; Sq2).

Let us consider an extension of E∞(X) to KO∗(X).
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LEMMA 2.2

Let X be a finite CW-complex satisfying (2.2). Then there exist integers sn, tn
for n ∈ Z/4 and isomorphisms

KO2n−1(X)∼= (Z/2)sn and KO2n(X)∼= (Z/2)sn+1 ⊕Ztn .

Proof

By assumption, the complex K-theory satisfies K−1(X) = 0, and by the Atiyah–

Hirzebruch spectral sequence (Er(X), dr), one sees that KO2n−1(X) is a torsion

group. Then since the composite KO∗(X)
c−→K∗(X)

r−→KO∗(X) is the 2-power

map for the complexification c and the realization r, it follows thatKO2n−1(X)∼=
(Z/2)sn for some integer sn. There is the Bott exact sequence

· · · →K∗−1(X)→KO∗+1(X)
η−→KO∗(X)

c−→K∗(X)→ · · · .

Since K0(X) is a free abelian group and K−1(X) = 0 by assumption, η :

KO2n−1(X)→KO2n(X) is an isomorphism on the torsion part. Thus the proof

is completed. �

We calculate integers sn, tn in Lemma 2.2. Define formal series fX(t) and gX(t)

as

(2.4) fX(t) =
∑
p≥0

dimQHp(X;Q)tp and gX(t) =
∑
p≥0

dimZ/2E
p,−1
∞ (X)tp.

By [MT], the polynomial fX(t) for G=G2/T,F4/T,E6/T is given as

(2.5) fX(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1−t4)(1−t12)
(1−t2)2 , X =G2/T,

(1−t4)(1−t12)(1−t16)(1−t24)
(1−t2)4 , X = F4/T,

(1−t4)(1−t10)(1−t12)(1−t16)(1−t18)(1−t24)
(1−t2)6 , X =E6/T.

LEMMA 2.3

Let X be a finite CW-complex satisfying (2.2), and let sn, tn be as in Lemma

2.2. Then it holds that

t0 = t−2 =
fX(1) + fX(

√
−1)

2
, t−1 = t−3 =

fX(1)− fX(
√
−1)

2
,

and ⎛
⎜⎜⎝

s0
s−1

s−2

s−3

⎞
⎟⎟⎠=

1

4

⎛
⎜⎜⎝
1 1 2 0

1 −1 0 −2

1 1 −2 0

1 −1 0 2

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

gX(1)

gX(
√
−1)

RegX( 1+
√
−1√
2

)

ImgX( 1+
√
−1√
2

)

⎞
⎟⎟⎟⎠ .

Proof

Since the Atiyah–Hirzebruch spectral sequences for rationalized cohomology the-

ories are trivial, we have
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t0 = t−2 =
∑
n≥0

dimQH4n(X;Q) and t−1 = t−3 =
∑
n≥0

dimQH4n+2(X;Q),

and then the first two equalities follow. Notice that Lemma 2.2 implies that

the extension of
⊕

p+q=2n−1E
p,q
∞ (X) to KO2n−1(X) is trivial. Then by Bott

periodicity and Ep,q
∞ (X) = 0 for odd q with q 	≡ −1 mod 8, we have

KO2n−1(X)∼=
⊕

p+q=2n−1

Ep,q
∞ (X)∼=

⊕
4k+n≥0

E8k+2n,−1
∞ (X).

On the other hand, we have

gX(t) =

3∑
n=0

∑
k≥0

dimZ/2E
8k+2n,−1
∞ (X)t8k+2n.

Then for ω = 1+
√
−1√
2

, a primitive 8th root of unity, we get

gX(ω�) =
3∑

n=0

ω2�nsn =

⎧⎪⎪⎨
⎪⎪⎩
s0 + s−1 + s−2 + s−3, �= 0,

s0 −
√
−1s−1 − s−2 +

√
−1s−3, �= 1,

s0 − s−1 + s−2 − s−3, �= 2,

and thus the last equality follows. �

2.2. Self-conjugate K-theory
Let us next consider self-conjugate K-theory. Our basic reference is [A]. We

denote the self-conjugate K-theory of a space X by KSC ∗(X). The coefficient of

self conjugate K-theory is periodic by multiplication by a generator of KSC−4.

Moreover, there is an exact sequence

· · · →KO∗+2(X)
η2

−→KO∗(X)
c−→KSC ∗(X)→KO∗+3(X)→ · · · ,

where c is the complexification. Then it follows that

KSC ∗ ∼=

⎧⎪⎪⎨
⎪⎪⎩
Z, ∗ ≡ 0,−3 mod 4,

Z/2, ∗ ≡−1 mod 4,

0, ∗ ≡−2 mod 4,

and c :KO∗ → KSC ∗ is an isomorphism for ∗ ≡ 0,−1 mod 8. Let (′Er,
′dr) be

the Atiyah–Hirzebruch spectral sequence

′Ep,q
2

∼=Hp(X;KSC q) =⇒KSC ∗(X).

LEMMA 2.4

Let X be a CW-complex satisfying (2.2).

(1) The complexification

c :Ep,q
3 (X)→ ′Ep,q

3 (X)

is an isomorphism for q ≡ 0 mod 8 and a monomorphism for q ≡−1 mod 8.
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(2) If r is the least integer such that ′dr 	= 0 for r ≥ 3, then

r ≡ 2 mod 8 and ′d∗,0r 	= 0.

Proof

(1) This follows from the above observation on c : KO∗ → KSC ∗. (2) Quite

similarly to the proof of Lemma 2.1, we see that r ≡ 2 mod 4 and ′d∗,0r 	= 0. By

(1), we further see that r ≡ 2 mod 8, completing the proof. �

REMARK 2.5

All results in this section hold if we localize at the prime 2 and will be used in

the proof of Theorem 3.7 below.

3. KO-theory of a space related with a torus

In [KI1], the cohomology of BT 6 in connection with the Weyl group action of

E6 is given as

H∗(BT 6;Z) = Z[t, t1, . . . , t6]/(t1 + · · ·+ t6 − 3t), |t|= |ti|= 2.

Generalizing, we may put

H∗(BTN ;Z) = Z[t, t1, . . . , tN ]/(t1 + · · ·+ tN − 3t), |t|= |ti|= 2,

for N ≥ 6, which respects the above case of N = 6. Let ci be the elementary

symmetric function in t1, . . . , tN , and let y4 = c2 − 4t2 ∈ H4(BTN ;Z). Define

BT̃N as the homotopy fiber of

y4 :BTN →K(Z,4),

where BT̃ 6 is the 4-connective cover of BT 6 in the sense of [KI1]. Let us calculate

the mod2 cohomology of BT̃N following [KI1]. Define c̄2i+1 ∈ Z/2[t1, . . . , tN ] for

i≥ 0 inductively as

c̄2 = c2 and c̄2i+1 = Sq2
i

c̄2i−1+1.

PROPOSITION 3.1

The mod 2 cohomology of BT̃N is given as

H∗(BT̃N ;Z/2) = Z/2[t1, . . . , tN , γ2i+1 | i≥ 1]/(c̄2i+1 | i≥ 0)

for ∗ ≤ 2N , where |γ2i+1|= 2(2i + 1).

Proof

Let us consider the Serre spectral sequence of a homotopy fiber sequence

K(Z,3)→BT̃N →BTN .

Recall that the mod2 cohomology of K(Z,3) is given as

H∗(K(Z,3);Z/2
)
= Z/2[u2i+1 | i≥ 1],
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where u3 is the modulo 2 reduction of the fundamental class and u2i+1 =

Sq2
i−1

u2i−1+1 for i ≥ 2. By the definition of BT̃N , the transgression τ satis-

fies τ(u3) = c2 (= c̄2), and then τ(u2i+1) = c̄2i+1 for i≥ 0. Inductively, one sees

that c̄2i+1 includes the term c2i+1, implying that {c̄2i+1 | 2 ≤ 2i + 1 ≤ n} is a

regular sequence in Z/2[t1, . . . , tN ]. On the other hand, since u2
3 is a permanent

cycle, there exists γ3 ∈H6(BT̃N ;Z/2) which restricts to u2
3. Put

γ2i+1 = Sq2
i

γ2i−1+1

for i ≥ 2. By the Cartan formula, we have that γ2i+1 restricts to u2
2i+1. Sum-

marizing the above calculation, we obtain the desired result, where we need the

condition ∗ ≤N for regularity of {c̄2i+1 | i≥ 0}. �

There is a sequence of natural maps

BT̃N →BT̃N+1 →BT̃N+2 → · · · .

We denote the colimit of this sequence by BT̃∞. Then by Proposition 3.1, the

Milnor exact sequence shows the following. Let R be a graded algebra over Z/2

consisting of finite sums of homogeneous formal power series in t1, t2, . . . with

|ti|= 2.

COROLLARY 3.2

The mod 2 cohomology BT̃∞ is given as

H∗(BT̃∞;Z/2) =R⊗Z/2[γ2i+1 | i≥ 1]/(c̄2i+1 | i≥ 0).

In particular, for n≥ 0, H2n(BT̃∞;Z(2)) is a free Z(2)-module and H2n+1(BT̃∞;

Z(2)) = 0.

Let us next calculate the Sq2-cohomology of BT̃N up to a certain dimension. To

this end, we recall from [KH1] a special cohomology calculation.

LEMMA 3.3

Let (A,d) be a differential graded algebra over a field.

(1) Suppose that for a ∈ An, da is a nonzero divisor and a2 = db for some

b ∈A2n−1. Then it holds that

H∗(A/(da))∼=Λ(a)⊗H∗(A).

(2) Suppose that for a ∈An, {a, da} is a regular sequence and a2 = db, b2 = dc

for some b ∈A2n−1, c ∈A4n−3. Then it holds that

H∗(A/(a, da))∼=Λ(b)⊗H∗(A).

Proof

(1) Since da is a nonzero divisor, there is a short exact sequence

0→A
·da−−→A→A/(da)→ 0



KO-theory of exceptional flag manifolds 679

which induces a long exact sequence

· · · →H∗(A)
·H∗(da)−−−−−→H∗+n+1(A)→H∗+n+1

(
A/(da)

) δ−→H∗+1(A)→ · · · ,

where A/(da) is, of course, a differential graded algebra. Obviously, H∗(da) = 0

and δ(a) = 1. Then it follows that H∗(A/(da)) is a free H∗(A)-module with a

basis {1, a}. Since a2 = db, we obtain the desired result.

(2) Since {a, da} is a regular sequence, there is an exact sequence

· · · →H∗(A/(da)) ·H∗(a)−−−−→H∗+n
(
A/(da)

)
→H∗+n

(
A/(a, da)

) δ−→H∗+1
(
A/(da)

)
→ · · ·

as well as that in (1), in which δ(b) = a. Since H∗(A/(da))∼= Λ(a)⊗H∗(A) by

(1), we see that H∗(A/(a, da)) is a free H∗(A)-module with a basis {1, b}. For
b2 = dc, the proof is completed. �

PROPOSITION 3.4

For ∗ ≤ 2N − 2,

H∗(BT̃N ; Sq2) = Λ(x3, x7, x2i | i≥ 3), |xj |= 2j,

where N can be ∞.

Proof

Put A = Z/2[t1, . . . , tN ] (or the above R for N = ∞). Notice that since A is

acyclic under Sq2, for any x ∈A+, there exists y ∈A satisfying x2 = dy.

By Lemma 3.3, we have

H∗(A/(c̄2, c̄3))=Λ(x3),

where x3 =
∑

i<j tit
2
j satisfying Sq2x3 = c22. The Adem relation Sq2Sq2

i

=

Sq2
i+2 +Sq2

i+1Sq1 implies that

(3.1) Sq2c̄2i+1 = c̄22i−1+1

for i≥ 2. On the other hand, as is noted in the proof of Proposition 3.1, {c̄2i+1 |
2≤ 2i+1≤N} is a regular sequence in A. Then, applying Lemma 3.3 repeatedly,

one gets

H∗(A/(c̄2i+1 | i≥ 0)
)
=Λ(x3, x2i | i≥ 2)

for ∗ ≤ 2N , where Sq2x2i ≡ c̄2i+1 mod (c̄2j+1 | 0 ≤ j ≤ i− 1). Notice here that

since H2(2i+1+1)(A/(c̄2j+1 | j ≥ 0)) = 0, we can apply Lemma 3.3 repeatedly.

Since Sq2c4 = c̄5 mod (c̄2, c̄3), we may take x4 = c4.

Put F0 =A/(c̄2i+1 | i≥ 0) and Fn =A/(c̄2i+1 | i≥ 0)⊗Z/2[γ2i+1 | i≤ n− 1]

for n≥ 1. It is proved in [KI1] that Sq2γ3 = c4. Consider the spectral sequence

associated with a filtration F0 ⊂ F1. Then we get

H∗(F1) = Λ(x3, x7, x2i | i≥ 3)⊗Z/2[γ2
3 ],
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where x7 = γ3c4 + d7 for d7 ∈ A with Sq2d7 = c24. Similarly to (3.1), we have

Sq2γ2i+1 = γ2i−1+1. Then by considering the spectral sequence associated with a

filtration Fn ⊂ Fn+1 for n≥ 1 inductively, we obtain

H∗(Fn+1) = Λ(x3, x7, x2i | i≥ 3)⊗Z/2[γ2
2n+1].

Thus the proof is completed. �

Let us next consider the homotopy fiber F of the cohomology class t : BT̃∞ →
K(Z,2). Let α : F →BT̃∞ be the natural map.

PROPOSITION 3.5

For n≥ 0, H2n(F ;Z(2)) is a free Z(2)-module and H2n+1(F ;Z(2)) = 0.

Proof

By Proposition 3.1, for ∗ ≤ 2N , the same claim is true for BT̃N and then also

for BT̃∞ by sending N to ∞. Since the map t : BT̃∞ →K(Z,2) is injective in

the Z(2)-cohomology, α∗ :H∗(BT̃∞;Z(2))→H∗(F ;Z(2)) is surjective, and thus

the proof is completed. �

Define a map μ :BT∞ ×BT∞ →BT∞ by the equations

μ∗(t2i) = 1⊗ ti and μ∗(t2i−1) = ti ⊗ 1

for i≥ 1 in cohomology. Then by an easy inspection we see that μ lifts to a map

μ̃ : F × F → F .

PROPOSITION 3.6

The natural map α : F →BT̃∞ induces an isomorphism in the Sq2-cohomology.

Moreover, H∗(F ; Sq2) becomes a Hopf algebra by μ̃ in which α∗(x2i) is not prim-

itive for i≥ 4, where xj is as in Proposition 3.4.

Proof

The first assertion easily follows from a direct calculation.

Computing the Sq2-cohomology of the subring Z/2[c1, c2, c3, . . .]/(c1, c̄2, c̄3,

. . .) of H∗(F ;Z/2), we see that α∗(x2i) can be chosen as an element of this

subring for i≥ 3. Then for

(3.2) μ̃∗(α∗(cn)
)
=

n∑
i=0

α∗(ci)⊗ α∗(cn−i),

we obtain

μ̃∗(α∗(x2i)
)
= α∗(x2i)⊗ 1 + 1⊗ α∗(x2i) + · · · .

Choose representatives of x3, x7 as in the proof of Proposition 3.4. As in [KKO],

it is straightforward to see that μ̃∗(α∗(x3)) = x3 ⊗ 1 + 1⊗ x3. By definition, we

have μ̃∗(α∗(γ3)) = α∗(γ3) ⊗ 1 + 1 ⊗ α∗(γ3) + · · · . Then by an easy calculation
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analogous to α∗(x3), we see that μ̃∗(α∗(x7)) = α∗(x7)⊗ 1+ 1⊗α∗(x7). Thus we

have obtained that H∗(F ; Sq2) is a Hopf algebra by the map μ̃.

Since c̄2i+1 = c2i+1 + · · · as above, we have x2i = c2i + · · · for i≥ 3. Then by

(3.2), the last assertion follows. �

We now aim at proving the following.

THEOREM 3.7

The Atiyah–Hirzebruch spectral sequence Er(BT̃∞)(2) collapses at the E3-term.

Proof

By Corollary 3.2, BT̃∞ satisfies the condition (2.2) at the prime 2. Let x̄j be an

element of Ker{Sq2 :H∗(BT̃∞;Z(2))→H∗(BT̃∞;Z/2)} ∼= E∗,0
3 (BT̃∞)(2) whose

modulo 2 reduction is xj ∈H∗(BT̃∞; Sq2) for j = 3,7,2i (i≥ 3). Then by Lemma

2.1, our aim is to prove that x̄j is a permanent cycle for j = 3,7,2i (i≥ 3).

Consider the natural map α : F → BT̃∞. Then it follows from Lemma 2.1,

Proposition 3.5, and Proposition 3.6 that it is sufficient to show that α∗(x̄3) ∈
Ker{Sq2 : H∗(F ;Z(2)) → H∗(F ;Z/2)} ∼= E∗,0

3 (F )(2) is a permanent cycle. We

next consider the complexification c : Er(F )(2) → ′Er(F )(2). Then by Lemma

2.4, we only have to prove that c(α∗(x̄3)) ∈ ′E3(F )(2) is a permanent cycle.

Let u be a generator of K−2
(2) satisfying (1− t)(u) = 0 for the complex con-

jugation t, and let Hi be the pullback of the Hopf bundle on BT 1 by the com-

posite F → BT∞ → BT 1 in which the first arrow is the natural map and the

second arrow corresponds to the cohomology class ti. Put ξ3 = u−3
∑

i<j HiH
2
j ∈

K6(BT̃∞)(2). Then for (1− t)(ξ3) = 0, ξ3 lies in KSC 6(F )(2). Obviously, ξ3 cor-

responds to c(α∗(x̄3)), and thus c(α∗(x̄3)) is a permanent cycle, as is desired. �

4. KO-theory of G2/T

The mod2 cohomology of G2/T including the action of the Steenrod operations

is calculated as

H∗(G2/T ;Z/2) = Z/2[t1, t2, γ3]/(ρ2, ρ3, γ
2
3), |ti|= 2, |γ3|= 6,Sq2γ3 = 0,

where

ρ2 = t21 + t1t2 + t22 and ρ3 = t21t2 + t1t
2
2.

PROPOSITION 4.1

The Sq2-cohomology of G2/T is given as

H∗(G2/T ; Sq
2) = Λ(x3, γ3),

where x3 = t31 + t1t
2
2 + t32.

Proof

Since Sq2ρ2 = ρ3, we obtain the desired result by Lemma 3.3. �
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COROLLARY 4.2

The Atiyah–Hirzebruch spectral sequence Er(G2/T ) collapses at the E3-term. In

particular, we have

gG2/T (t) = (1 + t6)2.

Proof

The result follows from Lemma 2.1 and Proposition 4.1. �

Proof of Theorem 1.1 for G2

The result follows from (2.5), Lemma 2.2(1), and Corollary 4.2. �

5. KO-theory of F4/T

Recall that the Dynkin diagram of F4 is given as follows:

� � � �

α1 α2 α3 α4

〉

It is shown in [IT] that the centralizer of the circle in F4 defined by α2 = α3 =

α4 = 0 is isomorphic to T 1 · Sp(3). Let U be the centralizer of the torus defined

by α2 = 0. Then U ∼= T 3 × Sp(1) as a space, implying that the homology of U is

torsion-free. Note that F4/U satisfies the condition (2.2). Then we calculate the

Atiyah–Hirzebruch spectral sequence converging to KO∗(F4/U) from which we

deduce the one converging to KO∗(F4/T ).

5.1. KO-theory of F4/U

We first calculate the mod2 cohomology of F4/U . Let ωi (i = 1,2,3,4) be the

fundamental weight of F4 as in [TW], and put

t= ω1, y1 = ω2 − ω3, y2 = ω3 − ω4, y4 = ω4.

Then it is clear that

H∗(BT ;Z) = Z[t, y1, y2, y3].

As in [IT], the Weyl group of U is generated by a single element R satisfying

R(t) = t, R(y1) = t− y1, R(y2) = y2, R(y3) = y3.

Since H∗(BU ;Z) is torsion-free as noted above, H∗(BU ;Z) is the invariant ring

of H∗(BT ;Z) under the action of the Weyl group of U . Then one gets

H∗(BU ;Z) = Z[t, y2, y3, q], q = y1(t− y1).

On the other hand, the mod2 cohomology of F4 is given as

H∗(F4;Z/2) = Z/2[a3]/(a
4
3)⊗Λ(a5, a15, a23), |ai|= i, βa5 = a23.

Then by a result of Toda [T], we can calculate the Z(2)-coefficient cohomology

of F4/U as follows.
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PROPOSITION 5.1

There is a regular sequence ρ̄2, ρ̄6, ρ̄8, ρ̄12 in Z(2)[t, y2, y3, q] with |ρ̄i| = 2i such

that

H∗(F4/U ;Z(2)) = Z(2)[t, y2, y3, q, γ3]/(ρ̄2, ρ̄6, ρ̄8, ρ̄12,2γ3 + ρ̄3),

where ρ̄3 is defined by the equation Sq2ρ̄2 = ρ̄3.

We now determine the mod2 cohomology of F4/U . Define qi ∈ Z[t, y2, y3, q] (|qi|=
4i) as

1 + q1 + q2 + q3 = (1+ q)
(
1 + y2(t− y2)

)(
1 + y3(t− y3)

)
.

By definition, one has

(5.1) Sq2q1 = tq1, Sq2q2 = 0, Sq2q3 = tq3.

A calculation in [IT] implies that the rational cohomology of F4/U is given as

(5.2) H∗(F4/U ;Q) =Q[t, y2, y3, q]/(σ2, σ6, σ8, σ12),

where

σ2 = −t2 + q1, σ6 =−t6 + 4t2q2 − 8q3,
(5.3)

σ8 = 3t2q3 − q22 , σ12 =−q32 + 27q23 .

Let ρ̄i (i= 2,6,8,12) be as in Proposition 5.1. Then by (5.1) and (5.3), we may

put

ρ̄2 =−t2 + q1 and ρ̄3 = tq1.

Put

R= Z(2)[t, y2, y3, q, γ3]/(ρ̄2, ρ̄3,−γ2
3 + t2q2 − 2q3, σ8, σ12).

Since σ6 ≡ 4(−γ2
3 + t2q2 − 2q3) mod (ρ̄2, ρ̄3) and the natural map H∗(F4/U ;

Z(2))→H∗(F4/U ;Q) is injective, there is a surjection R→H∗(F4/U ;Z(2)) which

induces a surjection

φ :R/2→H∗(F4/U ;Z/2).

We now put

ρ2 = t2 + q1, ρ3 = tq1, ρ6 = γ2
3 + t2q2,

(5.4)
ρ8 = t2q3 + q22 , ρ12 = q32 + q23 .

Then since the Poincaré series of F4/U over Q and Z/2 are the same, we have

R/2 = Z/2[t, y2, y3, q, γ3]/(ρ2, ρ3, ρ6, ρ8, ρ12),

here in the Poincaré series, and γ3 is cancelled by ρ3. One can easily verify

that ρ2, ρ3, ρ6, ρ8, ρ12 is a regular sequence in Z/2[t, y2, y3, q, γ3], implying that

the Poincaré series of R/2 is ((1− t12)(1− t16)(1− t24))/(1− t2)3. On the other

hand, the Poincaré series of H∗(F4/U ;Z/2) is equal to that of H∗(F4/U ;Q)
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which is ((1− t12)(1− t16)(1− t24))/(1− t2)3 by (5.2). Then we conclude that

Poincaré series of R/2 and H∗(F4/U ;Z/2) are the same, and thus the map φ is

an isomorphism. Summarizing, we obtain the following.

PROPOSITION 5.2

The mod 2 cohomology of F4/U is given as

H∗(F4/U ;Z/2) = Z/2[t, y2, y3, q, γ3]/(ρ2, ρ3, ρ6, ρ8, ρ12),

where |t|= |y2|= |y3|= 2, |q|= 4, |γ3|= 6, and ρi is as in (5.4).

COROLLARY 5.3

The Sq2-cohomology of F4/U is given as

H∗(F4/U ; Sq2) = Λ(x7, x11, γ̄3), |xi|= 2i, |γ̄3|= 6,

where Sq2x7 ≡ ρ8 mod (ρ2, ρ3), Sq
2x11 = ρ12, γ̄3 = γ3 + δ3, and Sq2δ3 = q2 for

δ3 ∈ Z/2[t, y2, y3, q].

Proof

Considering the projection F4/T → F4/U , one sees from [KI2] that

Sq2γ3 = q2.

Let A be a differential graded algebra Z/2[t, y2, y3, q] with |t| = |yi| = 2, |q|= 4,

and dt = t2, dyi = y2i , dq = tq, where the degree of the differential is 2. Then by

Proposition 5.2, our aim is to determine the cohomology of a differential graded

algebra

A⊗Z/2[γ3]/(ρ2, ρ3, ρ6, ρ8, ρ12),

where |γ3|= 6, dγ3 = q2, and ρi is as in (5.4). By definition, we have

A/(ρ2, ρ3) = Z/2[y2, y3]⊗ 〈1, t, t2〉

as a Z/2[y2, y3]-module, and then H∗(A/(ρ2, ρ3)) = 0. Hence for dρ8 ≡
0 mod (ρ2, ρ3) and dρ12 = 0, it follows from (3.3) that

H∗(A/(ρ2, ρ3, ρ8, ρ12))=Λ(x7, x11), |xi|= 2i.

Since dq2 = 0 and H∗(A) = 0, there exists δ3 ∈H6(A) satisfying dδ3 = q2. Put

γ̄3 = γ3 + δ3. Then one has

A⊗Z/2[γ3]/(ρ2, ρ3, ρ8, ρ12) =A⊗Z/2[γ̄3]/(ρ2, ρ3, ρ8, ρ12)

and ρ6 ≡ γ̄2
3 + d(t2δ3+ δ5) mod (ρ2, ρ3), where δ5 ∈H10(A) is given by dδ5 = δ23 .

Thus for dγ̄3 = 0, we obtain

H∗(A⊗Z/2[γ3]/(ρ2, ρ3, ρ6, ρ8, ρ12)
)
=Λ(x7, x11, γ̄3),

completing the proof. �

THEOREM 5.4

The Atiyah–Hirzebruch spectral sequence Er(F4/U) collapses at the E3-term. In
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particular, we have

gF4/U (t) = (1 + t6)(1 + t14)(1 + t22).

Proof

The result follows from Lemma 2.1(1), (2) and Corollary 5.3. �

THEOREM 5.5

The KO-theory of F4/U is given as

KO2n−1(F4/U)∼= (Z/2)sn and KO2n(F4/U)∼= (Z/2)sn+1 ⊕Zt

for n ∈ Z/4, where

t= 144, s0 = s−3 = 1, s−1 = s−2 = 3.

Proof

As is noted above, we have fF4/U (t) = ((1− t12)(1− t16)(1− t24))/(1− t2)3. Then

the proof is completed by Lemma 2.2, 2.3, and Theorem 5.4. �

5.2. KO-theory of F4/T

Let ρi ∈ Z/2[t, y1, y2, y3, γ3] be as in (5.4), where q = y1(t − y1). In [KI2], the

mod2 cohomology of F4/T is calculated as

H∗(F4/T ;Z/2) = Z/2[t, y1, y2, y3, γ3]/(ρ2, ρ3, ρ6, ρ8, ρ12)

and Sq2γ3 = q2. Then the induced map from the projection π : F4/T → F4/U in

the mod2 cohomology satisfies

(5.5) π∗(t) = t and π∗(yi) = yi (i= 1,2,3).

Define a map λ : F4/T →BT 6 by λ∗(ti) = t−y4−i and λ∗(ti+3) = yi for i= 1,2,3.

Then λ∗(c2 − 4t2) =−t2 + q1 = 0, implying that there is a lift λ̃ : F4/T → BT̃ 6

satisfying

(5.6) λ̃∗(ti) = t− y4−i, λ̃∗(ti+3) = yi (i= 1,2,3), and λ̃∗(γ3) = γ3,

where the last equality is shown in [KI2].

PROPOSITION 5.6

The Sq2-cohomology of F4/T is given as

H∗(F4/T ; Sq
2) = Λ(x3, x7, x11, γ̄3), |xi|= 2i, |γ̄3|= 6,

where λ̃∗(x3) = x3, π
∗(x7) = x7, π

∗(x11) = x11, and π∗(γ̄3) = γ̄3.

Proof

Let A be a differential graded algebra Z/2[t, y1, y2, y3] with |t| = |yi| = 2 and

dt= t2, dyi = y2i . Then the desired Sq2-cohomology is equal to the cohomology of

A⊗Z/2[γ3]/(ρ2, ρ3, ρ6, ρ8, ρ12),

where dγ3 = q2. Since H∗(A) = 0, dρ2 = ρ3, dρ8 ≡ 0 mod (ρ2, ρ3), and dρ12 = 0,

it follows from Lemma 3.3 that
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H∗(A/(ρ2, ρ3, ρ8, ρ12))=Λ(x3, x7, x11),

where dx3 = q2 and x7, x11 are as in Proposition 5.3. Then by defining γ̄3 as

in the proof of Proposition 5.3, the first assertion follows. The second assertion

follows from (5.5) and (5.6). �

REMARK 5.7

Since H∗(F4/T ; Sq
2) is an exterior algebra generated by four generators of degree

−2 mod 8 as in Proposition 5.6, we cannot directly see that Er(F4/T ) collapses

at the E3-term by Lemma 2.1. On the other hand, H∗(F4/U ; Sq2) can be thought

of as a subalgebra of H∗(F4/T ; Sq
2) generated by three of its four generators,

and then we can apply Lemma 2.1 to see that Er(F4/U) collapses at the E3-term

as above.

THEOREM 5.8

The Atiyah–Hirzebruch spectral sequence Er(F4/T ) collapses at the E3-term. In

particular, we have

gF4/T (t) = (1 + t6)2(1 + t14)(1 + t22).

Proof

By Theorem 3.7 and Proposition 5.6, ι−1(x3) in the 2-localized spectral sequence

E6,−1
3 (F4/T )(2) is a permanent cycle. Then since the 2-localization Ep,q

3 (F4/T )→
Ep,q

3 (F4/T )(2) is injective, ι
−1(x3) in the integral spectral sequence E6,−1

3 (F4/T )

is also a permanent cycle. By Theorem 5.4 and Proposition 5.6, ι−1(x7), ι
−1(x11),

ι−1(γ̄3) ∈ E∗,−1
3 (F4/T ) are also permanent cycles. Thus the proof is completed

by Lemma 2.1(2). �

Proof of Theorem 1.1 for F4

The result follows from (2.5), Lemma 2.2, and Corollary 5.8. �

6. KO-theory of E6/T

Our method of computing the Atiyah–Hirzebruch spectral sequence Er(E6/T )

is similar to the case of F4/T . Namely, we first calculate the Atiyah–Hirzebruch

spectral sequence converging to KO∗(E6/U) for an appropriate maximal rank

subgroup U and then deduce that of KO∗(E6/T ).

We know that the Dynkin diagram of E6 is given as follows:

� � � � �

�

α1 α3 α4 α5 α6

α2

In [IT], it is proved that the centralizer of the circle in E6 defined by α1 = α3 =

α4 = α5 = α6 = 0 is isomorphic to T 1 ·SU(6). Then the identity component of the
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centralizer of the torus defined by α5 = α6 = 0 is isomorphic to T 1 · (T 2 ×U(3))

which we denote by U . It is clear that the homology of U is torsion-free and

E6/U satisfies the condition (2.2).

6.1. KO-theory of E6/U

Let us calculate the Z(2)-coefficient cohomology of F4/U . We set some notation.

Let ωi (i= 1, . . . ,6) be the fundamental weight of E6 as in [TW]. Put

t1 = −ω1 + ω2, t2 = ω1 + ω2 − ω3, t3 = ω2 + ω3 − ω4,

t4 = ω4 − ω5, t5 = ω5 − ω6, t6 = ω6.

Then as in Section 2, we have

H∗(BT ;Z) = Z(2)[t, t1, . . . , t6]/(c1 − 3t).

As in [TW], the Weyl group of U is generated by two elements R1,R2 satisfying

R1(ti) = ti (i= 1,2,3,6), R1(t4) = t5, R1(t5) = t4,

R2(ti) = ti (i= 1,2,3,4), R2(t5) = t6, R2(t6) = t5.

Then it follows that

H∗(BU ;Z(2)) = Z(2)[t1, t2, t3, ĉ1, ĉ2, ĉ3],

where ĉ1 = t4 + t5 + t6, ĉ2 = t4t5 + t5t6 + t6t4, and ĉ3 = t4t5t6.

As in [MT], the mod2 cohomology of E6 is given as

H∗(E6;Z/2) = Z/2[a3]/(a
4
3)⊗Λ(a5, a9, a15, a17, a23), |ai|= i, βa5 = a23.

Then by [T], we obtain the following.

PROPOSITION 6.1

There is a regular sequence ρ̄2, ρ̄5, ρ̄6, ρ̄8, ρ̄9, ρ̄12 in Z(2)[t1, t2, t3, ĉ1, ĉ2, ĉ3] with

|ρ̄i|= 2i satisfying

H∗(E6/U ;Z(2)) = Z(2)[t1, t2, t3, ĉ1, ĉ2, ĉ3, γ3]/(ρ̄2, ρ̄5, ρ̄6, ρ̄8, ρ̄9, ρ̄12,2γ3 + ρ̄3),

where ρ̄3 is defined by the equation Sq2ρ̄2 = ρ̄3.

Let us compute the mod2 cohomology of E6/U . Let ci be the ith symmetric func-

tion in t1, . . . , t6 for i= 1, . . . ,6. Obviously, ci is a polynomial in t1, t2, t3, ĉ1, ĉ2, ĉ3.

A calculation in [TW] implies that the rational cohomology of E6/U is given as

(6.1) H∗(E6/U ;Q) =Q[t1, t2, t3, ĉ1, ĉ2, ĉ3]/(σ2, σ5, σ6, σ8, σ9, σ12),

where

σ2 = c2 −
4

32
c21, σ5 = c5 −

1

3
c4c1 +

1

32
c3c

2
1 −

2

35
c51,

σ6 = 8c6 + c23 −
4

32
c4c

2
1 −

4

36
c61,

σ8 = −3c6c
2
1 + c24 − c4c3c1 +

19

34
c4c

4
1 −

5

34
c3c

5
1 +

31

38
c81.
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By Proposition 6.1, we may put

ρ̄2 = c2 −
4

32
c21 and ρ̄3 = c3 + c2c1.

Put

R1 = Z(2)[t1, t2, t3, ĉ1, ĉ2, ĉ3, γ3]/(ρ̄2, ρ̄5,2γ3 + ρ̄3).

Then since the natural map H∗(E6/U ;Z(2))→H∗(E6/U ;Q) is injective, there

is a surjection R1 →H∗(E6/U ;Z(2)) which reduces to a surjection

φ1 :R1/2→H∗(E6/U ;Z/2).

Put

(6.2) ρ2 = c2, ρ3 = c3 + c2c1, ρ5 = c5 + c4c1.

Then ρ2, ρ3, ρ5 is a regular sequence in Z/2[t1, t2, t3, ĉ1, ĉ2, ĉ3] and

R1/2 = Z/2[t1, t2, t3, ĉ1, ĉ2, ĉ3, γ3]/(ρ2, ρ3, ρ5),

implying that the Poincaré series of R1/2 is (1− t10)/((1− t2)4(1− t6)). On the

other hand, the Poincaré series ofH∗(E6/U ;Z/2) andH∗(E6/U ;Q) are the same,

which is (1−t10)(1−t12)(1−t16)(1−t18)(1−t24)
(1−t2)4(1−t6) by (6.1). Then φ1 is an isomorphism in

dimension ≤ 11.

Note that σ6 ≡ 4(2c6+γ2
3+

4
32 γ3c

3
1− 1

32 c4c
2
1+

35
36 c

6
1) mod (ρ̄2,2γ3+ ρ̄3). Then

since H∗(E6/U ;Z(2))→H∗(E6/U ;Q) is injective, if we put

R2 =R1/
(
2c6 + γ2

3 +
4

32
γ3c

3
1 −

1

32
c4c

2
1 +

35

36
c61, σ8

)
,

φ1 induces a surjection

φ2 :R2/2→H∗(E6/U ;Z/2).

Put

(6.3) ρ6 = γ2
3 + c4c

2
1 + c61, ρ8 = c6c

2
1 + c24 + c4c

4
1 + c81.

Then one sees that

R2/2 = Z/2[t1, t2, t3, ĉ1, ĉ2, ĉ3, γ3]/(ρ2, ρ3, ρ5, ρ6, ρ8).

Since ρ2, ρ3, ρ5, ρ6, ρ8 is a regular sequence in Z/2[t1, t2, t3, ĉ1, ĉ2, ĉ3, γ3], one can

calculate the Poincaré series of R2/2. Then comparing the Poincaré series as

above, we obtain that φ2 is an isomorphism in dimension ≤ 35.

Put

(6.4) ρ9 = c6c
3
1, ρ12 = c26 + c6c4c

2
1 + c24c

4
1 + c4c

8
1.

Since Sq2φ2(ρ8) = φ2(ρ9) and Sq8φ2(ρ8) = φ2(ρ12), there is also a surjection

φ3 :R3 →H∗(E6/U ;Z/2),

where

R3 =R2/(2, ρ8, ρ12).
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Since ρ2, ρ3, ρ5, ρ6, ρ8, ρ9, ρ12 is a regular sequence in Z/2[t1, t2, t3, ĉ1, ĉ2, ĉ3, γ3],

one can calculate the Poincaré series of R3. Comparing it with the Poincaré

series of H∗(E6/U ;Z/2), we conclude that φ3 is an isomorphism. Summarizing,

we obtain the following.

PROPOSITION 6.2

The mod 2 cohomology of E6/U is given as

H∗(E6/U ;Z/2) = Z/2[t1, t2, t3, ĉ1, ĉ2, ĉ3, γ3]/(ρ2, ρ3, ρ5, ρ6, ρ8, ρ9, ρ12),

where |ti|= 2, |ĉi|= 2i, |γ3|= 6 and ρi is as in (6.2), (6.3), and (6.4).

COROLLARY 6.3

The Sq2-cohomology of E6/U is given as

H∗(E6/U ; Sq2) = Λ(x7, x11, x15), |xi|= 2i,

where Sq2x11 ≡ ρ12 mod (ρ2, ρ3, ρ5, ρ9), Sq
2x15 = ρ28, x7 = γ3c4+δ7, and Sq2δ7 =

c24 for δ7 ∈ Z/2[t1, t2, t3, ĉ1, ĉ2, ĉ3].

Proof

As in the proof of Corollary 5.3, we see that Sq2γ3 = c4. Put A= Z/2[t1, t2, t3, ĉ1,

ĉ2, ĉ3]. Then our aim is to calculate the cohomology of a differential graded

algebra

A⊗Z/2[γ3]/(ρ2, ρ3, ρ5, ρ6, ρ8, ρ9, ρ12).

Obviously, A/(ρ2, ρ3) ∼= Z/2[t1, t2, t3] ⊗ 〈1, ĉ1, ĉ21〉 as a Z/2[t1, t2, t3]-module,

implying H∗(A/(ρ2, ρ3)) = 0. Then since dc4 = ρ5 and dρ8 = ρ9, it follows from

Lemma 3.3 that

H∗(A/(ρ2, ρ3, ρ5, ρ8, ρ9))=Λ(c4, x15), |xi|= 2i,

where Sq2x15 = ρ28. For dρ12 ≡ 0 mod (ρ5, ρ9) and H24(A/(ρ2, ρ3, ρ5, ρ8, ρ9)) = 0,

we get

H∗(A/(ρ2, ρ3, ρ5, ρ8, ρ9, ρ12))=Λ(c4, x11, x15), |xi|= 2i,

where Sq2x11 ≡ ρ12 mod (ρ2, ρ3, ρ5, ρ9). By the spectral sequence associated with

a filtration

A/(ρ2, ρ3, ρ5, ρ8, ρ12)⊂A⊗Z/2[γ3]/(ρ2, ρ3, ρ5, ρ8, ρ9, ρ12),

we get

H∗(A⊗Z/2[γ3]/(ρ2, ρ3, ρ5, ρ8, ρ9, ρ12)
)
=Λ(x7, x11, x15)⊗Z/2[γ2

3 ],

where x7 = γ3c4 + δ7 and δ7 ∈ Z/2[t1, t2, t3, ĉ1, ĉ2, ĉ3] is given by dδ7 = c24. Since

ρ6 = γ2
3 + d(γ3c

2
1 + c51), we obtain

H∗(A⊗Z/2[γ3]/(ρ2, ρ3, ρ5, ρ6, ρ8, ρ9, ρ12)
)
=Λ(x7, x11, x15),

completing the proof. �
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THEOREM 6.4

The Atiyah–Hirzebruch spectral sequence Er(E6/U) collapses at the E3-term. In

particular, we have

gE6/U (t) = (1 + t14)(1 + t22)(1 + t30).

Proof

From Lemma 2.1 and Proposition 6.3, the result follows. �

THEOREM 6.5

The KO-theory of E6/U is given as

KO2n−1(E6/U)∼= (Z/2)sn and KO2n(E6/U)∼= (Z/2)sn+1 ⊕Zt

for n ∈ Z/4, where

t= 4320, s0 = s−3 = 1, s−1 = s−2 = 3.

Proof

By (6.1), we have fE6/U (t) =
(1−t10)(1−t12)(1−t16)(1−t18)(1−t24)

(1−t2)4(1−t6) . Then the proof is

completed by Lemma 2.2 and Theorem 6.4. �

6.2. KO-theory of E6/T

Let ρi ∈ Z/2[t1, . . . , t6, γ3] be as in (6.2), (6.3), and (6.4). The mod2 cohomology

of E6/T is calculated in [KI2] as

H∗(E6/T ;Z/2) = Z/2[t1, . . . , t6, γ3]/(ρ2, ρ3, ρ5, ρ6, ρ8, ρ9, ρ12),

where Sq2γ3 = c4. For the projection π :E6/T →E6/U , we have

π∗(ti) = ti (i= 1,2,3), π∗(ĉ1) = t4 + t5 + t6,
(6.5)

π∗(ĉ2) = t4t5 + t5t6 + t6t4, π∗(ĉ3) = t4t5t6.

Define a map λ : (E6/T )(2) →BT 6
(2) by λ∗(ti = ti) for i= 1, . . . ,6. Then there is

a lift λ̃ : (E6/T )(2) →BT̃ 6
(2) satisfying

(6.6) λ̃∗(ti) = ti (i= 1, . . . ,6), λ̃∗(γ3) = γ3,

where the second equality is shown in [KI1].

PROPOSITION 6.6

The Sq2-cohomology of E6/T is given as

H∗(E6/T ; Sq
2) = Λ(x3, x7, x11, x15), |xi|= 2i,

where λ̃∗(x3) = x3, π
∗(x7) = x7, π

∗(x11) = x11, and π∗(x15) = x15.

Proof

Define a differential graded algebra A as A = Z/2[t1, . . . , t6] with |ti| = 2 and

dti = t2i . Then we calculate the cohomology of a differential graded algebra A⊗
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Z/2[γ3]/(ρ2, ρ3, ρ5, ρ6, ρ8, ρ9, ρ12), where dγ3 = c4. This is done quite similarly to

the proof of Proposition 6.3. The second assertion follows from (6.5) and (6.6).

�

THEOREM 6.7

The spectral sequence Er(E6/T ) collapses at the E3-term. In particular, we have

gE6/T (t) = (1 + t6)(1 + t14)(1 + t22)(1 + t30).

Proof

By Theorem 3.7 and Proposition 6.6, ι−1(x3) in the 2-localized spectral sequence

E6,−1
3 (E6/T )(2) is a permanent cycle, implying that ι−1(x3) in the integral spec-

tral sequence E6,−1
3 (E6/T ) is also a permanent cycle since the 2-localization

Ep,q
3 (E6/T ) → Ep,q

3 (E6/T ) is injective. By Theorem 6.4 and Proposition 6.6,

ι−1(xi) ∈E∗,−1
3 (E6/T ) is also a permanent cycle for i= 7,11,15. Thus the result

follows from Lemma 2.1. �

Proof of Theorem 1.1 for E6

The result follows from (2.5), Lemma 2.2, and Corollary 6.7. �

REMARK 6.8

We cannot apply the same calculation method to E7/T and E8/T for which there

is no control on elements γ5, γ9 in their mod2 cohomology (see [KI2]).
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