$K O$-theory of exceptional flag manifolds

Daisuke Kishimoto and Akihiro Ohsita

Abstract

The $K O$-theory of the flag manifold G / T is determined by calculating the Atiyah-Hirzebruch spectral sequence when G is one of the exceptional Lie groups G_{2}, F_{4}, E_{6}, where T is a maximal torus of G.

1. Introduction

This work is a continuation of the work of $[\mathrm{KH} 1],[\mathrm{KH} 2],[\mathrm{KKO}]$, and $[\mathrm{K}]$ in which the $K O$-theory of various homogeneous spaces are calculated by the AtiyahHirzebruch spectral sequence. In [KKO], Kono and the authors calculated the $K O$-theory of the classical flag manifolds. Here, we mean by the classical (resp., exceptional) flag manifold the compact classical (resp., exceptional) group divided by its maximal torus. We will denote a maximal torus of a compact, connected Lie group G by T. We will calculate the $K O$-theory of the exceptional flag manifold G / T for $G=G_{2}, F_{4}, E_{6}$. Recently, a connection between Witt groups and $K O$-theory of homogeneous spaces such as Grassmannians and flag manifolds was found (see [Z], [Y1], [Y2]), and so our calculation has applications not only in topology but also in this direction. Our main result is the following.

THEOREM 1.1

The KO-theory of G / T for $G=G_{2}, F_{4}, E_{6}$ is given as

$$
K O^{2 n-1}(G / T) \cong(\mathbb{Z} / 2)^{s_{n}} \quad \text { and } \quad K O^{2 n}(G / T) \cong(\mathbb{Z} / 2)^{s_{n+1}} \oplus \mathbb{Z}^{t}
$$

for $n \in \mathbb{Z} / 4$, where t, s_{n} are as in the following table:

G	t	s_{0}	s_{-1}	s_{-2}	s_{-3}
G_{2}	6	1	2	1	0
F_{4}	576	2	4	6	4
E_{6}	25920	2	4	6	4

The organization of the paper is as follows. In Section 2, we recall from [KH1] and [KH2] useful lemmas in calculating the Atiyah-Hirzebruch spectral sequence converging to the $K O$-theory. We also recall some basic facts on the self-conjugate K-theory. In Section 3, we consider the homotopy fiber of a certain cohomology
class $B T^{6}$ studied in [KI1] and related spaces. Results in this section will be used in calculating the $K O$-theory of F_{4} / T and E_{6} / T. In Section 4 , we determine the $K O$-theory of G_{2} / T. In Section 5, we first calculate the $K O$-theory of F_{4} / U for some maximal rank subgroup U of F_{4}. After this, we determine the $K O$-theory of F_{4} / T. In Section 6 , we calculate the $K O$-theory of E_{6} / T by using a method similar to that for F_{4} / T.

2. Atiyah-Hirzebruch spectral sequence

2.1. $K O$-theory

Recall that the coefficient of $K O$-theory is given as

$$
K O^{*}=\mathbb{Z}\left[\eta, \lambda, \beta, \beta^{-1}\right] /\left(2 \eta, \eta^{3}, \eta \lambda, \lambda^{2}-4 \beta\right)
$$

for $|\eta|=-1,|\lambda|=-4,|\beta|=-8$. Let $\left(E_{r}(X), d_{r}\right)$ be the Atiyah-Hirzebruch spectral sequence

$$
E_{2}^{p, q}(X) \cong H^{p}\left(X ; K O^{q}\right) \Longrightarrow K O^{*}(X)
$$

It is shown in [F] that the second differential d_{2} is given as

$$
d_{2}^{p, q}= \begin{cases}\mathrm{Sq}^{2} \pi_{2}, & q \equiv 0 \bmod 8 \tag{2.1}\\ \mathrm{Sq}^{2}, & q \equiv-1 \bmod 8 \\ 0, & \text { otherwise }\end{cases}
$$

where π_{2} is the modulo 2 reduction. We now suppose the following condition of a space X.

$$
\begin{equation*}
H^{2 n}(X ; \mathbb{Z}) \text { is a free abelian group, and } H^{2 n+1}(X ; \mathbb{Z})=0 \text { for } n \geq 0 \tag{2.2}
\end{equation*}
$$

Then for $\mathrm{Sq}^{2} \mathrm{Sq}^{2}=\mathrm{Sq}^{3} \mathrm{Sq}^{1}=0,\left(H^{*}(X ; \mathbb{Z} / 2), \mathrm{Sq}^{2}\right)$ is a chain complex. We denote the cohomology of $\left(H^{*}(X ; \mathbb{Z} / 2), \mathrm{Sq}^{2}\right)$ by $H^{*}\left(X ; \mathrm{Sq}^{2}\right)$ and call it the Sq^{2}-cohomology of X. It follows from (2.1) that there is an isomorphism

$$
\begin{equation*}
\iota: E_{3}^{p,-1}(X) \stackrel{ }{\leftrightarrows} H^{p}\left(X ; \mathrm{Sq}^{2}\right) . \tag{2.3}
\end{equation*}
$$

The following useful lemma is proved in [KH1] and [KH2].

LEMMA 2.1

Let X be a CW-complex satisfying (2.2). Suppose that r is the smallest integer such that $d_{r} \neq 0$ for $r \geq 3$. Then the following hold.
(1) We have $r \equiv 2 \bmod 8$.
(2) If p is the smallest integer such that $d_{r}^{p, q} \neq 0$, there exists $x \in E_{r}^{p, 0}(X)$ satisfying $d_{r}(\eta x) \neq 0$, and $\iota(\eta x)$ is indecomposable in $H^{p}\left(X ; \mathrm{Sq}^{2}\right)$.
(3) Let x be as in (2). Suppose that there is a map $X \times X \rightarrow X$ by which $H^{*}\left(X ; \mathrm{Sq}^{2}\right)$ becomes a Hopf algebra. Then $d_{r} x$ is primitive in $H^{*}\left(X ; \mathrm{Sq}^{2}\right)$.

Let us consider an extension of $E_{\infty}(X)$ to $K O^{*}(X)$.

LEMMA 2.2

Let X be a finite $C W$-complex satisfying (2.2). Then there exist integers s_{n}, t_{n} for $n \in \mathbb{Z} / 4$ and isomorphisms

$$
K O^{2 n-1}(X) \cong(\mathbb{Z} / 2)^{s_{n}} \quad \text { and } \quad K O^{2 n}(X) \cong(\mathbb{Z} / 2)^{s_{n+1}} \oplus \mathbb{Z}^{t_{n}} .
$$

Proof
By assumption, the complex K-theory satisfies $K^{-1}(X)=0$, and by the AtiyahHirzebruch spectral sequence $\left(E_{r}(X), d_{r}\right)$, one sees that $K O^{2 n-1}(X)$ is a torsion group. Then since the composite $K O^{*}(X) \xrightarrow{\mathbf{c}} K^{*}(X) \xrightarrow{\mathbf{r}} K O^{*}(X)$ is the 2-power map for the complexification \mathbf{c} and the realization \mathbf{r}, it follows that $K^{2 n-1}(X) \cong$ $(\mathbb{Z} / 2)^{s_{n}}$ for some integer s_{n}. There is the Bott exact sequence

$$
\cdots \rightarrow K^{*-1}(X) \rightarrow K O^{*+1}(X) \xrightarrow{\eta} K O^{*}(X) \xrightarrow{\mathbf{c}} K^{*}(X) \rightarrow \cdots .
$$

Since $K^{0}(X)$ is a free abelian group and $K^{-1}(X)=0$ by assumption, η : $K O^{2 n-1}(X) \rightarrow K O^{2 n}(X)$ is an isomorphism on the torsion part. Thus the proof is completed.

We calculate integers s_{n}, t_{n} in Lemma 2.2. Define formal series $f_{X}(t)$ and $g_{X}(t)$ as

$$
\begin{equation*}
f_{X}(t)=\sum_{p \geq 0} \operatorname{dim}_{\mathbb{Q}} H^{p}(X ; \mathbb{Q}) t^{p} \quad \text { and } \quad g_{X}(t)=\sum_{p \geq 0} \operatorname{dim}_{\mathbb{Z} / 2} E_{\infty}^{p,-1}(X) t^{p} . \tag{2.4}
\end{equation*}
$$

By [MT], the polynomial $f_{X}(t)$ for $G=G_{2} / T, F_{4} / T, E_{6} / T$ is given as

$$
f_{X}(t)= \begin{cases}\frac{\left(1-t^{4}\right)\left(1-t^{12}\right)}{\left(1-t^{2}\right)^{2}}, & X=G_{2} / T \tag{2.5}\\ \frac{\left(1-t^{4}\right)\left(1-t^{12}\right)\left(1-t^{16}\right)\left(1-t^{24}\right)}{\left.\left(1-t^{2}\right)^{4}\right)}, & X=F_{4} / T \\ \frac{\left(1-t^{4}\right)\left(1-t^{10}\right)\left(1-t^{12}\right)\left(1-t^{16}\right)\left(1-t^{18}\right)\left(1-t^{24}\right)}{\left(1-t^{2}\right)^{6}}, & X=E_{6} / T\end{cases}
$$

LEMMA 2.3
Let X be a finite $C W$-complex satisfying (2.2), and let s_{n}, t_{n} be as in Lemma 2.2. Then it holds that

$$
t_{0}=t_{-2}=\frac{f_{X}(1)+f_{X}(\sqrt{-1})}{2}, \quad t_{-1}=t_{-3}=\frac{f_{X}(1)-f_{X}(\sqrt{-1})}{2},
$$

and

$$
\left(\begin{array}{c}
s_{0} \\
s_{-1} \\
s_{-2} \\
s_{-3}
\end{array}\right)=\frac{1}{4}\left(\begin{array}{cccc}
1 & 1 & 2 & 0 \\
1 & -1 & 0 & -2 \\
1 & 1 & -2 & 0 \\
1 & -1 & 0 & 2
\end{array}\right)\left(\begin{array}{c}
g_{X}(1) \\
g_{X}(\sqrt{-1}) \\
\operatorname{Re} g_{X}\left(\frac{1+\sqrt{-1}}{\sqrt{2}}\right) \\
\operatorname{Im} g_{X}\left(\frac{1+\sqrt{-1}}{\sqrt{2}}\right)
\end{array}\right) .
$$

Proof
Since the Atiyah-Hirzebruch spectral sequences for rationalized cohomology theories are trivial, we have
$t_{0}=t_{-2}=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{Q}} H^{4 n}(X ; \mathbb{Q}) \quad$ and $\quad t_{-1}=t_{-3}=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{Q}} H^{4 n+2}(X ; \mathbb{Q})$,
and then the first two equalities follow. Notice that Lemma 2.2 implies that the extension of $\bigoplus_{p+q=2 n-1} E_{\infty}^{p, q}(X)$ to $K O^{2 n-1}(X)$ is trivial. Then by Bott periodicity and $E_{\infty}^{p, q}(X)=0$ for odd q with $q \not \equiv-1 \bmod 8$, we have

$$
K O^{2 n-1}(X) \cong \bigoplus_{p+q=2 n-1} E_{\infty}^{p, q}(X) \cong \bigoplus_{4 k+n \geq 0} E_{\infty}^{8 k+2 n,-1}(X)
$$

On the other hand, we have

$$
g_{X}(t)=\sum_{n=0}^{3} \sum_{k \geq 0} \operatorname{dim}_{\mathbb{Z} / 2} E_{\infty}^{8 k+2 n,-1}(X) t^{8 k+2 n} .
$$

Then for $\omega=\frac{1+\sqrt{-1}}{\sqrt{2}}$, a primitive 8th root of unity, we get

$$
g_{X}\left(\omega^{\ell}\right)=\sum_{n=0}^{3} \omega^{2 \ell n} s_{n}= \begin{cases}s_{0}+s_{-1}+s_{-2}+s_{-3}, & \ell=0 \\ s_{0}-\sqrt{-1} s_{-1}-s_{-2}+\sqrt{-1} s_{-3}, & \ell=1 \\ s_{0}-s_{-1}+s_{-2}-s_{-3}, & \ell=2\end{cases}
$$

and thus the last equality follows.

2.2. Self-conjugate K-theory

Let us next consider self-conjugate K-theory. Our basic reference is $[\mathrm{A}]$. We denote the self-conjugate K-theory of a space X by $\operatorname{KSC}^{*}(X)$. The coefficient of self conjugate K-theory is periodic by multiplication by a generator of $K S C^{-4}$. Moreover, there is an exact sequence

$$
\cdots \rightarrow K O^{*+2}(X) \xrightarrow{\eta^{2}} K O^{*}(X) \xrightarrow{\mathbf{c}} K S C^{*}(X) \rightarrow K O^{*+3}(X) \rightarrow \cdots,
$$

where \mathbf{c} is the complexification. Then it follows that

$$
K S C^{*} \cong \begin{cases}\mathbb{Z}, & * \equiv 0,-3 \quad \bmod 4 \\ \mathbb{Z} / 2, & * \equiv-1 \quad \bmod 4 \\ 0, & * \equiv-2 \quad \bmod 4\end{cases}
$$

and $\mathbf{c}: K O^{*} \rightarrow K S C^{*}$ is an isomorphism for $* \equiv 0,-1 \bmod 8$. Let (${ }^{\prime} E_{r},{ }^{\prime} d_{r}$) be the Atiyah-Hirzebruch spectral sequence

$$
{ }^{\prime} E_{2}^{p, q} \cong H^{p}\left(X ; K S C^{q}\right) \Longrightarrow K S C^{*}(X)
$$

LEMMA 2.4
Let X be a $C W$-complex satisfying (2.2).
(1) The complexification

$$
\mathbf{c}: E_{3}^{p, q}(X) \rightarrow^{\prime} E_{3}^{p, q}(X)
$$

is an isomorphism for $q \equiv 0 \bmod 8$ and a monomorphism for $q \equiv-1 \bmod 8$.
(2) If r is the least integer such that ' $d_{r} \neq 0$ for $r \geq 3$, then

$$
r \equiv 2 \quad \bmod 8 \quad \text { and } \quad{ }^{\prime} d_{r}^{*, 0} \neq 0 .
$$

Proof
(1) This follows from the above observation on $\mathbf{c}: K O^{*} \rightarrow K S C^{*}$. (2) Quite similarly to the proof of Lemma 2.1, we see that $r \equiv 2 \bmod 4$ and $d_{r}^{*, 0} \neq 0$. By (1), we further see that $r \equiv 2 \bmod 8$, completing the proof.

REMARK 2.5
All results in this section hold if we localize at the prime 2 and will be used in the proof of Theorem 3.7 below.

3. $K O$-theory of a space related with a torus

In [KI1], the cohomology of $B T^{6}$ in connection with the Weyl group action of E_{6} is given as

$$
H^{*}\left(B T^{6} ; \mathbb{Z}\right)=\mathbb{Z}\left[t, t_{1}, \ldots, t_{6}\right] /\left(t_{1}+\cdots+t_{6}-3 t\right), \quad|t|=\left|t_{i}\right|=2
$$

Generalizing, we may put

$$
H^{*}\left(B T^{N} ; \mathbb{Z}\right)=\mathbb{Z}\left[t, t_{1}, \ldots, t_{N}\right] /\left(t_{1}+\cdots+t_{N}-3 t\right), \quad|t|=\left|t_{i}\right|=2,
$$

for $N \geq 6$, which respects the above case of $N=6$. Let c_{i} be the elementary symmetric function in t_{1}, \ldots, t_{N}, and let $y_{4}=c_{2}-4 t^{2} \in H^{4}\left(B T^{N} ; \mathbb{Z}\right)$. Define $B \widetilde{T}^{N}$ as the homotopy fiber of

$$
y_{4}: B T^{N} \rightarrow K(\mathbb{Z}, 4),
$$

where $B \widetilde{T}^{6}$ is the 4 -connective cover of $B T^{6}$ in the sense of [KI1]. Let us calculate the $\bmod 2$ cohomology of $B \widetilde{T}^{N}$ following [KI1]. Define $\bar{c}_{2^{i}+1} \in \mathbb{Z} / 2\left[t_{1}, \ldots, t_{N}\right]$ for $i \geq 0$ inductively as

$$
\bar{c}_{2}=c_{2} \quad \text { and } \quad \bar{c}_{2^{i}+1}=\mathrm{Sq}^{2^{i}} \bar{c}_{2^{i-1}+1} .
$$

PROPOSITION 3.1

The mod 2 cohomology of $B \widetilde{T}^{N}$ is given as

$$
H^{*}\left(B \widetilde{T}^{N} ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[t_{1}, \ldots, t_{N}, \gamma_{2^{i}+1} \mid i \geq 1\right] /\left(\bar{c}_{2^{i}+1} \mid i \geq 0\right)
$$

for $* \leq 2 N$, where $\left|\gamma_{2^{i}+1}\right|=2\left(2^{i}+1\right)$.
Proof
Let us consider the Serre spectral sequence of a homotopy fiber sequence

$$
K(\mathbb{Z}, 3) \rightarrow B \widetilde{T}^{N} \rightarrow B T^{N}
$$

Recall that the $\bmod 2$ cohomology of $K(\mathbb{Z}, 3)$ is given as

$$
H^{*}(K(\mathbb{Z}, 3) ; \mathbb{Z} / 2)=\mathbb{Z} / 2\left[u_{2^{i}+1} \mid i \geq 1\right]
$$

where u_{3} is the modulo 2 reduction of the fundamental class and $u_{2^{i}+1}=$ $\mathrm{Sq}^{2^{i-1}} u_{2^{i-1}+1}$ for $i \geq 2$. By the definition of $B \widetilde{T}^{N}$, the transgression τ satisfies $\tau\left(u_{3}\right)=c_{2}\left(=\bar{c}_{2}\right)$, and then $\tau\left(u_{2^{i}+1}\right)=\bar{c}_{2^{i}+1}$ for $i \geq 0$. Inductively, one sees that $\bar{c}_{2^{i}+1}$ includes the term $c_{2^{i}+1}$, implying that $\left\{\bar{c}_{2^{i}+1} \mid 2 \leq 2^{i}+1 \leq n\right\}$ is a regular sequence in $\mathbb{Z} / 2\left[t_{1}, \ldots, t_{N}\right]$. On the other hand, since u_{3}^{2} is a permanent cycle, there exists $\gamma_{3} \in H^{6}\left(B \widetilde{T}^{N} ; \mathbb{Z} / 2\right)$ which restricts to u_{3}^{2}. Put

$$
\gamma_{2^{i}+1}=\mathrm{Sq}^{2^{i}} \gamma_{2^{i-1}+1}
$$

for $i \geq 2$. By the Cartan formula, we have that $\gamma_{2^{i}+1}$ restricts to $u_{2^{i}+1}^{2}$. Summarizing the above calculation, we obtain the desired result, where we need the condition $* \leq N$ for regularity of $\left\{\bar{c}_{2^{i}+1} \mid i \geq 0\right\}$.

There is a sequence of natural maps

$$
B \widetilde{T}^{N} \rightarrow B \widetilde{T}^{N+1} \rightarrow B \widetilde{T}^{N+2} \rightarrow \cdots .
$$

We denote the colimit of this sequence by $B \widetilde{T}^{\infty}$. Then by Proposition 3.1, the Milnor exact sequence shows the following. Let R be a graded algebra over $\mathbb{Z} / 2$ consisting of finite sums of homogeneous formal power series in t_{1}, t_{2}, \ldots with $\left|t_{i}\right|=2$.

COROLLARY 3.2
The mod 2 cohomology $B \widetilde{T}^{\infty}$ is given as

$$
H^{*}\left(B \widetilde{T}^{\infty} ; \mathbb{Z} / 2\right)=R \otimes \mathbb{Z} / 2\left[\gamma_{2^{i}+1} \mid i \geq 1\right] /\left(\bar{c}_{2^{i}+1} \mid i \geq 0\right)
$$

In particular, for $n \geq 0, H^{2 n}\left(B \widetilde{T}^{\infty} ; \mathbb{Z}_{(2)}\right)$ is a free $\mathbb{Z}_{(2)}$-module and $H^{2 n+1}\left(B \widetilde{T}^{\infty}\right.$; $\left.\mathbb{Z}_{(2)}\right)=0$.

Let us next calculate the Sq^{2}-cohomology of $B \widetilde{T}^{N}$ up to a certain dimension. To this end, we recall from [KH1] a special cohomology calculation.

LEMMA 3.3
Let (A, d) be a differential graded algebra over a field.
(1) Suppose that for $a \in A^{n}$, da is a nonzero divisor and $a^{2}=d b$ for some $b \in A^{2 n-1}$. Then it holds that

$$
H^{*}(A /(d a)) \cong \Lambda(a) \otimes H^{*}(A) .
$$

(2) Suppose that for $a \in A^{n},\{a, d a\}$ is a regular sequence and $a^{2}=d b, b^{2}=d c$ for some $b \in A^{2 n-1}, c \in A^{4 n-3}$. Then it holds that

$$
H^{*}(A /(a, d a)) \cong \Lambda(b) \otimes H^{*}(A) .
$$

Proof
(1) Since $d a$ is a nonzero divisor, there is a short exact sequence

$$
0 \rightarrow A \xrightarrow{\cdot d a} A \rightarrow A /(d a) \rightarrow 0
$$

which induces a long exact sequence

$$
\cdots \rightarrow H^{*}(A) \xrightarrow{\cdot H^{*}(d a)} H^{*+n+1}(A) \rightarrow H^{*+n+1}(A /(d a)) \xrightarrow{\delta} H^{*+1}(A) \rightarrow \cdots,
$$

where $A /(d a)$ is, of course, a differential graded algebra. Obviously, $H^{*}(d a)=0$ and $\delta(a)=1$. Then it follows that $H^{*}(A /(d a))$ is a free $H^{*}(A)$-module with a basis $\{1, a\}$. Since $a^{2}=d b$, we obtain the desired result.
(2) Since $\{a, d a\}$ is a regular sequence, there is an exact sequence

$$
\begin{aligned}
\cdots & \rightarrow H^{*}(A /(d a)) \xrightarrow{\cdot H^{*}(a)} H^{*+n}(A /(d a)) \\
& \rightarrow H^{*+n}(A /(a, d a)) \xrightarrow{\delta} H^{*+1}(A /(d a)) \rightarrow \cdots
\end{aligned}
$$

as well as that in (1), in which $\delta(b)=a$. Since $H^{*}(A /(d a)) \cong \Lambda(a) \otimes H^{*}(A)$ by (1), we see that $H^{*}(A /(a, d a))$ is a free $H^{*}(A)$-module with a basis $\{1, b\}$. For $b^{2}=d c$, the proof is completed.

PROPOSITION 3.4
For $* \leq 2 N-2$,

$$
H^{*}\left(B \widetilde{T}^{N} ; \mathrm{Sq}^{2}\right)=\Lambda\left(x_{3}, x_{7}, x_{2^{i}} \mid i \geq 3\right), \quad\left|x_{j}\right|=2 j
$$

where N can be ∞.
Proof
Put $A=\mathbb{Z} / 2\left[t_{1}, \ldots, t_{N}\right]$ (or the above R for $N=\infty$). Notice that since A is acyclic under Sq^{2}, for any $x \in A^{+}$, there exists $y \in A$ satisfying $x^{2}=d y$.

By Lemma 3.3, we have

$$
H^{*}\left(A /\left(\bar{c}_{2}, \bar{c}_{3}\right)\right)=\Lambda\left(x_{3}\right),
$$

where $x_{3}=\sum_{i<j} t_{i} t_{j}^{2}$ satisfying $\mathrm{Sq}^{2} x_{3}=c_{2}^{2}$. The Adem relation $\mathrm{Sq}^{2} \mathrm{Sq}^{2^{i}}=$ $\mathrm{Sq}^{2^{i}+2}+\mathrm{Sq}^{2^{i}+1} \mathrm{Sq}^{1}$ implies that

$$
\begin{equation*}
\mathrm{Sq}^{2} \bar{c}_{2^{i}+1}=\bar{c}_{2^{i-1}+1}^{2} \tag{3.1}
\end{equation*}
$$

for $i \geq 2$. On the other hand, as is noted in the proof of Proposition 3.1, $\left\{\bar{c}_{2^{i}+1} \mid\right.$ $\left.2 \leq 2^{i}+1 \leq N\right\}$ is a regular sequence in A. Then, applying Lemma 3.3 repeatedly, one gets

$$
H^{*}\left(A /\left(\bar{c}_{2^{i}+1} \mid i \geq 0\right)\right)=\Lambda\left(x_{3}, x_{2^{i}} \mid i \geq 2\right)
$$

for $* \leq 2 N$, where $\mathrm{Sq}^{2} x_{2^{i}} \equiv \bar{c}_{2^{i}+1} \bmod \left(\bar{c}_{2^{j}+1} \mid 0 \leq j \leq i-1\right)$. Notice here that since $H^{2\left(2^{i+1}+1\right)}\left(A /\left(\bar{c}_{2^{j}+1} \mid j \geq 0\right)\right)=0$, we can apply Lemma 3.3 repeatedly. Since $\mathrm{Sq}^{2} c_{4}=\bar{c}_{5} \bmod \left(\bar{c}_{2}, \bar{c}_{3}\right)$, we may take $x_{4}=c_{4}$.

Put $F_{0}=A /\left(\bar{c}_{2^{i}+1} \mid i \geq 0\right)$ and $F_{n}=A /\left(\bar{c}_{2^{i}+1} \mid i \geq 0\right) \otimes \mathbb{Z} / 2\left[\gamma_{2^{i}+1} \mid i \leq n-1\right]$ for $n \geq 1$. It is proved in [KI1] that $\mathrm{Sq}^{2} \gamma_{3}=c_{4}$. Consider the spectral sequence associated with a filtration $F_{0} \subset F_{1}$. Then we get

$$
H^{*}\left(F_{1}\right)=\Lambda\left(x_{3}, x_{7}, x_{2^{i}} \mid i \geq 3\right) \otimes \mathbb{Z} / 2\left[\gamma_{3}^{2}\right]
$$

where $x_{7}=\gamma_{3} c_{4}+d_{7}$ for $d_{7} \in A$ with $\mathrm{Sq}^{2} d_{7}=c_{4}^{2}$. Similarly to (3.1), we have $\mathrm{Sq}^{2} \gamma_{2^{i}+1}=\gamma_{2^{i-1}+1}$. Then by considering the spectral sequence associated with a filtration $F_{n} \subset F_{n+1}$ for $n \geq 1$ inductively, we obtain

$$
H^{*}\left(F_{n+1}\right)=\Lambda\left(x_{3}, x_{7}, x_{2^{i}} \mid i \geq 3\right) \otimes \mathbb{Z} / 2\left[\gamma_{2^{n}+1}^{2}\right]
$$

Thus the proof is completed.
Let us next consider the homotopy fiber F of the cohomology class $t: B \widetilde{T}^{\infty} \rightarrow$ $K(\mathbb{Z}, 2)$. Let $\alpha: F \rightarrow B \widetilde{T}^{\infty}$ be the natural map.

PROPOSITION 3.5
For $n \geq 0, H^{2 n}\left(F ; \mathbb{Z}_{(2)}\right)$ is a free $\mathbb{Z}_{(2)}$-module and $H^{2 n+1}\left(F ; \mathbb{Z}_{(2)}\right)=0$.
Proof
By Proposition 3.1, for $* \leq 2 N$, the same claim is true for $B \widetilde{T}^{N}$ and then also for $B \widetilde{T}^{\infty}$ by sending N to ∞. Since the map $t: B \widetilde{T}^{\infty} \rightarrow K(\mathbb{Z}, 2)$ is injective in the $\mathbb{Z}_{(2)}$-cohomology, $\alpha^{*}: H^{*}\left(B \widetilde{T}^{\infty} ; \mathbb{Z}_{(2)}\right) \rightarrow H^{*}\left(F ; \mathbb{Z}_{(2)}\right)$ is surjective, and thus the proof is completed.

Define a map $\mu: B T^{\infty} \times B T^{\infty} \rightarrow B T^{\infty}$ by the equations

$$
\mu^{*}\left(t_{2 i}\right)=1 \otimes t_{i} \quad \text { and } \quad \mu^{*}\left(t_{2 i-1}\right)=t_{i} \otimes 1
$$

for $i \geq 1$ in cohomology. Then by an easy inspection we see that μ lifts to a map $\tilde{\mu}: F \times F \rightarrow F$.

PROPOSITION 3.6

The natural map $\alpha: F \rightarrow B \widetilde{T}^{\infty}$ induces an isomorphism in the Sq^{2}-cohomology. Moreover, $H^{*}\left(F ; \mathrm{Sq}^{2}\right)$ becomes a Hopf algebra by $\tilde{\mu}$ in which $\alpha^{*}\left(x_{2^{i}}\right)$ is not primitive for $i \geq 4$, where x_{j} is as in Proposition 3.4.

Proof
The first assertion easily follows from a direct calculation.
Computing the Sq^{2}-cohomology of the subring $\mathbb{Z} / 2\left[c_{1}, c_{2}, c_{3}, \ldots\right] /\left(c_{1}, \bar{c}_{2}, \bar{c}_{3}\right.$, \ldots..) of $H^{*}(F ; \mathbb{Z} / 2)$, we see that $\alpha^{*}\left(x_{2^{i}}\right)$ can be chosen as an element of this subring for $i \geq 3$. Then for

$$
\begin{equation*}
\tilde{\mu}^{*}\left(\alpha^{*}\left(c_{n}\right)\right)=\sum_{i=0}^{n} \alpha^{*}\left(c_{i}\right) \otimes \alpha^{*}\left(c_{n-i}\right), \tag{3.2}
\end{equation*}
$$

we obtain

$$
\tilde{\mu}^{*}\left(\alpha^{*}\left(x_{2^{i}}\right)\right)=\alpha^{*}\left(x_{2^{i}}\right) \otimes 1+1 \otimes \alpha^{*}\left(x_{2^{i}}\right)+\cdots .
$$

Choose representatives of x_{3}, x_{7} as in the proof of Proposition 3.4. As in [KKO], it is straightforward to see that $\tilde{\mu}^{*}\left(\alpha^{*}\left(x_{3}\right)\right)=x_{3} \otimes 1+1 \otimes x_{3}$. By definition, we have $\tilde{\mu}^{*}\left(\alpha^{*}\left(\gamma_{3}\right)\right)=\alpha^{*}\left(\gamma_{3}\right) \otimes 1+1 \otimes \alpha^{*}\left(\gamma_{3}\right)+\cdots$. Then by an easy calculation
analogous to $\alpha^{*}\left(x_{3}\right)$, we see that $\tilde{\mu}^{*}\left(\alpha^{*}\left(x_{7}\right)\right)=\alpha^{*}\left(x_{7}\right) \otimes 1+1 \otimes \alpha^{*}\left(x_{7}\right)$. Thus we have obtained that $H^{*}\left(F ; \mathrm{Sq}^{2}\right)$ is a Hopf algebra by the map $\tilde{\mu}$.

Since $\bar{c}_{2^{i}+1}=c_{2^{i}+1}+\cdots$ as above, we have $x_{2^{i}}=c_{2^{i}}+\cdots$ for $i \geq 3$. Then by (3.2), the last assertion follows.

We now aim at proving the following.

THEOREM 3.7

The Atiyah-Hirzebruch spectral sequence $E_{r}\left(B \widetilde{T}^{\infty}\right)_{(2)}$ collapses at the E_{3}-term.

Proof

By Corollary 3.2, $B \widetilde{T}^{\infty}$ satisfies the condition (2.2) at the prime 2. Let \bar{x}_{j} be an element of $\operatorname{Ker}\left\{\mathrm{Sq}^{2}: H^{*}\left(B \widetilde{T}^{\infty} ; \mathbb{Z}_{(2)}\right) \rightarrow H^{*}\left(B \widetilde{T}^{\infty} ; \mathbb{Z} / 2\right)\right\} \cong E_{3}^{*, 0}\left(B \widetilde{T}^{\infty}\right)_{(2)}$ whose modulo 2 reduction is $x_{j} \in H^{*}\left(B \widetilde{T}^{\infty} ; \mathrm{Sq}^{2}\right)$ for $j=3,7,2^{i}(i \geq 3)$. Then by Lemma 2.1, our aim is to prove that \bar{x}_{j} is a permanent cycle for $j=3,7,2^{i}(i \geq 3)$.

Consider the natural map $\alpha: F \rightarrow B \widetilde{T}^{\infty}$. Then it follows from Lemma 2.1, Proposition 3.5, and Proposition 3.6 that it is sufficient to show that $\alpha^{*}\left(\bar{x}_{3}\right) \in$ $\operatorname{Ker}\left\{\mathrm{Sq}^{2}: H^{*}\left(F ; \mathbb{Z}_{(2)}\right) \rightarrow H^{*}(F ; \mathbb{Z} / 2)\right\} \cong E_{3}^{*, 0}(F)_{(2)}$ is a permanent cycle. We next consider the complexification $\mathbf{c}: E_{r}(F)_{(2)} \rightarrow{ }^{\prime} E_{r}(F)_{(2)}$. Then by Lemma 2.4, we only have to prove that $\mathbf{c}\left(\alpha^{*}\left(\bar{x}_{3}\right)\right) \in^{\prime} E_{3}(F)_{(2)}$ is a permanent cycle.

Let u be a generator of $K_{(2)}^{-2}$ satisfying $(1-\mathbf{t})(u)=0$ for the complex conjugation \mathbf{t}, and let H_{i} be the pullback of the Hopf bundle on $B T^{1}$ by the composite $F \rightarrow B T^{\infty} \rightarrow B T^{1}$ in which the first arrow is the natural map and the second arrow corresponds to the cohomology class t_{i}. Put $\xi_{3}=u^{-3} \sum_{i<j} H_{i} H_{j}^{2} \in$ $K^{6}\left(B \widetilde{T}^{\infty}\right)_{(2)}$. Then for $(1-\mathbf{t})\left(\xi_{3}\right)=0, \xi_{3}$ lies in $K S C^{6}(F)_{(2)}$. Obviously, ξ_{3} corresponds to $\mathbf{c}\left(\alpha^{*}\left(\bar{x}_{3}\right)\right)$, and thus $\mathbf{c}\left(\alpha^{*}\left(\bar{x}_{3}\right)\right)$ is a permanent cycle, as is desired.

4. $K O$-theory of G_{2} / T

The $\bmod 2$ cohomology of G_{2} / T including the action of the Steenrod operations is calculated as

$$
H^{*}\left(G_{2} / T ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[t_{1}, t_{2}, \gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \gamma_{3}^{2}\right), \quad\left|t_{i}\right|=2,\left|\gamma_{3}\right|=6, \mathrm{Sq}^{2} \gamma_{3}=0
$$

where

$$
\rho_{2}=t_{1}^{2}+t_{1} t_{2}+t_{2}^{2} \quad \text { and } \quad \rho_{3}=t_{1}^{2} t_{2}+t_{1} t_{2}^{2} .
$$

PROPOSITION 4.1
The Sq^{2}-cohomology of G_{2} / T is given as

$$
H^{*}\left(G_{2} / T ; \mathrm{Sq}^{2}\right)=\Lambda\left(x_{3}, \gamma_{3}\right)
$$

where $x_{3}=t_{1}^{3}+t_{1} t_{2}^{2}+t_{2}^{3}$.
Proof
Since $\mathrm{Sq}^{2} \rho_{2}=\rho_{3}$, we obtain the desired result by Lemma 3.3.

COROLLARY 4.2
The Atiyah-Hirzebruch spectral sequence $E_{r}\left(G_{2} / T\right)$ collapses at the E_{3}-term. In particular, we have

$$
g_{G_{2} / T}(t)=\left(1+t^{6}\right)^{2}
$$

Proof
The result follows from Lemma 2.1 and Proposition 4.1.

Proof of Theorem 1.1 for G_{2}
The result follows from (2.5), Lemma 2.2(1), and Corollary 4.2.
5. $K O$-theory of F_{4} / T

Recall that the Dynkin diagram of F_{4} is given as follows:

It is shown in [IT] that the centralizer of the circle in F_{4} defined by $\alpha_{2}=\alpha_{3}=$ $\alpha_{4}=0$ is isomorphic to $T^{1} \cdot \operatorname{Sp}(3)$. Let U be the centralizer of the torus defined by $\alpha_{2}=0$. Then $U \cong T^{3} \times \operatorname{Sp}(1)$ as a space, implying that the homology of U is torsion-free. Note that F_{4} / U satisfies the condition (2.2). Then we calculate the Atiyah-Hirzebruch spectral sequence converging to $K O^{*}\left(F_{4} / U\right)$ from which we deduce the one converging to $K O^{*}\left(F_{4} / T\right)$.

5.1. $K O$-theory of F_{4} / U

We first calculate the $\bmod 2$ cohomology of F_{4} / U. Let $\omega_{i}(i=1,2,3,4)$ be the fundamental weight of F_{4} as in [TW], and put

$$
t=\omega_{1}, \quad y_{1}=\omega_{2}-\omega_{3}, \quad y_{2}=\omega_{3}-\omega_{4}, \quad y_{4}=\omega_{4}
$$

Then it is clear that

$$
H^{*}(B T ; \mathbb{Z})=\mathbb{Z}\left[t, y_{1}, y_{2}, y_{3}\right]
$$

As in [IT], the Weyl group of U is generated by a single element R satisfying

$$
R(t)=t, \quad R\left(y_{1}\right)=t-y_{1}, \quad R\left(y_{2}\right)=y_{2}, \quad R\left(y_{3}\right)=y_{3}
$$

Since $H^{*}(B U ; \mathbb{Z})$ is torsion-free as noted above, $H^{*}(B U ; \mathbb{Z})$ is the invariant ring of $H^{*}(B T ; \mathbb{Z})$ under the action of the Weyl group of U. Then one gets

$$
H^{*}(B U ; \mathbb{Z})=\mathbb{Z}\left[t, y_{2}, y_{3}, q\right], \quad q=y_{1}\left(t-y_{1}\right)
$$

On the other hand, the mod 2 cohomology of F_{4} is given as

$$
H^{*}\left(F_{4} ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[a_{3}\right] /\left(a_{3}^{4}\right) \otimes \Lambda\left(a_{5}, a_{15}, a_{23}\right), \quad\left|a_{i}\right|=i, \beta a_{5}=a_{3}^{2}
$$

Then by a result of Toda $[\mathrm{T}]$, we can calculate the $\mathbb{Z}_{(2)}$-coefficient cohomology of F_{4} / U as follows.

PROPOSITION 5.1

There is a regular sequence $\bar{\rho}_{2}, \bar{\rho}_{6}, \bar{\rho}_{8}, \bar{\rho}_{12}$ in $\mathbb{Z}_{(2)}\left[t, y_{2}, y_{3}, q\right]$ with $\left|\bar{\rho}_{i}\right|=2 i$ such that

$$
H^{*}\left(F_{4} / U ; \mathbb{Z}_{(2)}\right)=\mathbb{Z}_{(2)}\left[t, y_{2}, y_{3}, q, \gamma_{3}\right] /\left(\bar{\rho}_{2}, \bar{\rho}_{6}, \bar{\rho}_{8}, \bar{\rho}_{12}, 2 \gamma_{3}+\bar{\rho}_{3}\right)
$$

where $\bar{\rho}_{3}$ is defined by the equation $\mathrm{Sq}^{2} \bar{\rho}_{2}=\bar{\rho}_{3}$.

We now determine the $\bmod 2$ cohomology of F_{4} / U. Define $q_{i} \in \mathbb{Z}\left[t, y_{2}, y_{3}, q\right]\left(\left|q_{i}\right|=\right.$ 4i) as

$$
1+q_{1}+q_{2}+q_{3}=(1+q)\left(1+y_{2}\left(t-y_{2}\right)\right)\left(1+y_{3}\left(t-y_{3}\right)\right)
$$

By definition, one has

$$
\begin{equation*}
\mathrm{Sq}^{2} q_{1}=t q_{1}, \quad \mathrm{Sq}^{2} q_{2}=0, \quad \mathrm{Sq}^{2} q_{3}=t q_{3} \tag{5.1}
\end{equation*}
$$

A calculation in [IT] implies that the rational cohomology of F_{4} / U is given as

$$
\begin{equation*}
H^{*}\left(F_{4} / U ; \mathbb{Q}\right)=\mathbb{Q}\left[t, y_{2}, y_{3}, q\right] /\left(\sigma_{2}, \sigma_{6}, \sigma_{8}, \sigma_{12}\right) \tag{5.2}
\end{equation*}
$$

where

$$
\begin{array}{lc}
\sigma_{2}=-t^{2}+q_{1}, & \sigma_{6}=-t^{6}+4 t^{2} q_{2}-8 q_{3} \\
\sigma_{8}=3 t^{2} q_{3}-q_{2}^{2}, & \sigma_{12}=-q_{2}^{3}+27 q_{3}^{2} \tag{5.3}
\end{array}
$$

Let $\bar{\rho}_{i}(i=2,6,8,12)$ be as in Proposition 5.1. Then by (5.1) and (5.3), we may put

$$
\bar{\rho}_{2}=-t^{2}+q_{1} \quad \text { and } \quad \bar{\rho}_{3}=t q_{1}
$$

Put

$$
R=\mathbb{Z}_{(2)}\left[t, y_{2}, y_{3}, q, \gamma_{3}\right] /\left(\bar{\rho}_{2}, \bar{\rho}_{3},-\gamma_{3}^{2}+t^{2} q_{2}-2 q_{3}, \sigma_{8}, \sigma_{12}\right)
$$

Since $\sigma_{6} \equiv 4\left(-\gamma_{3}^{2}+t^{2} q_{2}-2 q_{3}\right) \bmod \left(\bar{\rho}_{2}, \bar{\rho}_{3}\right)$ and the natural map $H^{*}\left(F_{4} / U\right.$; $\left.\mathbb{Z}_{(2)}\right) \rightarrow H^{*}\left(F_{4} / U ; \mathbb{Q}\right)$ is injective, there is a surjection $R \rightarrow H^{*}\left(F_{4} / U ; \mathbb{Z}_{(2)}\right)$ which induces a surjection

$$
\phi: R / 2 \rightarrow H^{*}\left(F_{4} / U ; \mathbb{Z} / 2\right)
$$

We now put

$$
\begin{align*}
& \rho_{2}=t^{2}+q_{1}, \quad \rho_{3}=t q_{1}, \quad \rho_{6}=\gamma_{3}^{2}+t^{2} q_{2} \tag{5.4}\\
& \rho_{8}=t^{2} q_{3}+q_{2}^{2}, \quad \rho_{12}=q_{2}^{3}+q_{3}^{2}
\end{align*}
$$

Then since the Poincaré series of F_{4} / U over \mathbb{Q} and $\mathbb{Z} / 2$ are the same, we have

$$
R / 2=\mathbb{Z} / 2\left[t, y_{2}, y_{3}, q, \gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{6}, \rho_{8}, \rho_{12}\right)
$$

here in the Poincaré series, and γ_{3} is cancelled by ρ_{3}. One can easily verify that $\rho_{2}, \rho_{3}, \rho_{6}, \rho_{8}, \rho_{12}$ is a regular sequence in $\mathbb{Z} / 2\left[t, y_{2}, y_{3}, q, \gamma_{3}\right]$, implying that the Poincaré series of $R / 2$ is $\left(\left(1-t^{12}\right)\left(1-t^{16}\right)\left(1-t^{24}\right)\right) /\left(1-t^{2}\right)^{3}$. On the other hand, the Poincaré series of $H^{*}\left(F_{4} / U ; \mathbb{Z} / 2\right)$ is equal to that of $H^{*}\left(F_{4} / U ; \mathbb{Q}\right)$
which is $\left(\left(1-t^{12}\right)\left(1-t^{16}\right)\left(1-t^{24}\right)\right) /\left(1-t^{2}\right)^{3}$ by (5.2). Then we conclude that Poincaré series of $R / 2$ and $H^{*}\left(F_{4} / U ; \mathbb{Z} / 2\right)$ are the same, and thus the map ϕ is an isomorphism. Summarizing, we obtain the following.

PROPOSITION 5.2

The mod 2 cohomology of F_{4} / U is given as

$$
H^{*}\left(F_{4} / U ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[t, y_{2}, y_{3}, q, \gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{6}, \rho_{8}, \rho_{12}\right),
$$

where $|t|=\left|y_{2}\right|=\left|y_{3}\right|=2,|q|=4,\left|\gamma_{3}\right|=6$, and ρ_{i} is as in (5.4).

COROLLARY 5.3
The Sq^{2}-cohomology of F_{4} / U is given as

$$
H^{*}\left(F_{4} / U ; \mathrm{Sq}^{2}\right)=\Lambda\left(x_{7}, x_{11}, \bar{\gamma}_{3}\right), \quad\left|x_{i}\right|=2 i,\left|\bar{\gamma}_{3}\right|=6
$$

where $\mathrm{Sq}^{2} x_{7} \equiv \rho_{8} \bmod \left(\rho_{2}, \rho_{3}\right), \mathrm{Sq}^{2} x_{11}=\rho_{12}, \bar{\gamma}_{3}=\gamma_{3}+\delta_{3}$, and $\mathrm{Sq}^{2} \delta_{3}=q_{2}$ for $\delta_{3} \in \mathbb{Z} / 2\left[t, y_{2}, y_{3}, q\right]$.

Proof

Considering the projection $F_{4} / T \rightarrow F_{4} / U$, one sees from [KI2] that

$$
\mathrm{Sq}^{2} \gamma_{3}=q_{2}
$$

Let A be a differential graded algebra $\mathbb{Z} / 2\left[t, y_{2}, y_{3}, q\right]$ with $|t|=\left|y_{i}\right|=2,|q|=4$, and $d t=t^{2}, d y_{i}=y_{i}^{2}, d q=t q$, where the degree of the differential is 2 . Then by Proposition 5.2, our aim is to determine the cohomology of a differential graded algebra

$$
A \otimes \mathbb{Z} / 2\left[\gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{6}, \rho_{8}, \rho_{12}\right),
$$

where $\left|\gamma_{3}\right|=6, d \gamma_{3}=q_{2}$, and ρ_{i} is as in (5.4). By definition, we have

$$
A /\left(\rho_{2}, \rho_{3}\right)=\mathbb{Z} / 2\left[y_{2}, y_{3}\right] \otimes\left\langle 1, t, t^{2}\right\rangle
$$

as a $\mathbb{Z} / 2\left[y_{2}, y_{3}\right]$-module, and then $H^{*}\left(A /\left(\rho_{2}, \rho_{3}\right)\right)=0$. Hence for $d \rho_{8} \equiv$ $0 \bmod \left(\rho_{2}, \rho_{3}\right)$ and $d \rho_{12}=0$, it follows from (3.3) that

$$
H^{*}\left(A /\left(\rho_{2}, \rho_{3}, \rho_{8}, \rho_{12}\right)\right)=\Lambda\left(x_{7}, x_{11}\right), \quad\left|x_{i}\right|=2 i .
$$

Since $d q_{2}=0$ and $H^{*}(A)=0$, there exists $\delta_{3} \in H^{6}(A)$ satisfying $d \delta_{3}=q_{2}$. Put $\bar{\gamma}_{3}=\gamma_{3}+\delta_{3}$. Then one has

$$
A \otimes \mathbb{Z} / 2\left[\gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{8}, \rho_{12}\right)=A \otimes \mathbb{Z} / 2\left[\bar{\gamma}_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{8}, \rho_{12}\right)
$$

and $\rho_{6} \equiv \bar{\gamma}_{3}^{2}+d\left(t^{2} \delta_{3}+\delta_{5}\right) \bmod \left(\rho_{2}, \rho_{3}\right)$, where $\delta_{5} \in H^{10}(A)$ is given by $d \delta_{5}=\delta_{3}^{2}$. Thus for $d \bar{\gamma}_{3}=0$, we obtain

$$
H^{*}\left(A \otimes \mathbb{Z} / 2\left[\gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{6}, \rho_{8}, \rho_{12}\right)\right)=\Lambda\left(x_{7}, x_{11}, \bar{\gamma}_{3}\right),
$$

completing the proof.
particular, we have

$$
g_{F_{4} / U}(t)=\left(1+t^{6}\right)\left(1+t^{14}\right)\left(1+t^{22}\right) .
$$

Proof
The result follows from Lemma 2.1(1), (2) and Corollary 5.3.

THEOREM 5.5

The KO-theory of F_{4} / U is given as

$$
K O^{2 n-1}\left(F_{4} / U\right) \cong(\mathbb{Z} / 2)^{s_{n}} \quad \text { and } \quad K O^{2 n}\left(F_{4} / U\right) \cong(\mathbb{Z} / 2)^{s_{n+1}} \oplus \mathbb{Z}^{t}
$$

for $n \in \mathbb{Z} / 4$, where

$$
t=144, \quad s_{0}=s_{-3}=1, \quad s_{-1}=s_{-2}=3 .
$$

Proof
As is noted above, we have $f_{F_{4} / U}(t)=\left(\left(1-t^{12}\right)\left(1-t^{16}\right)\left(1-t^{24}\right)\right) /\left(1-t^{2}\right)^{3}$. Then the proof is completed by Lemma 2.2, 2.3, and Theorem 5.4.

5.2. $K O$-theory of F_{4} / T

Let $\rho_{i} \in \mathbb{Z} / 2\left[t, y_{1}, y_{2}, y_{3}, \gamma_{3}\right]$ be as in (5.4), where $q=y_{1}\left(t-y_{1}\right)$. In [KI2], the $\bmod 2$ cohomology of F_{4} / T is calculated as

$$
H^{*}\left(F_{4} / T ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[t, y_{1}, y_{2}, y_{3}, \gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{6}, \rho_{8}, \rho_{12}\right)
$$

and $\mathrm{Sq}^{2} \gamma_{3}=q_{2}$. Then the induced map from the projection $\pi: F_{4} / T \rightarrow F_{4} / U$ in the mod 2 cohomology satisfies

$$
\begin{equation*}
\pi^{*}(t)=t \quad \text { and } \quad \pi^{*}\left(y_{i}\right)=y_{i} \quad(i=1,2,3) \tag{5.5}
\end{equation*}
$$

Define a map $\lambda: F_{4} / T \rightarrow B T^{6}$ by $\lambda^{*}\left(t_{i}\right)=t-y_{4-i}$ and $\lambda^{*}\left(t_{i+3}\right)=y_{i}$ for $i=1,2,3$. Then $\lambda^{*}\left(c_{2}-4 t^{2}\right)=-t^{2}+q_{1}=0$, implying that there is a lift $\tilde{\lambda}: F_{4} / T \rightarrow B \widetilde{T}^{6}$ satisfying

$$
\begin{equation*}
\tilde{\lambda}^{*}\left(t_{i}\right)=t-y_{4-i}, \quad \tilde{\lambda}^{*}\left(t_{i+3}\right)=y_{i} \quad(i=1,2,3), \quad \text { and } \quad \tilde{\lambda}^{*}\left(\gamma_{3}\right)=\gamma_{3}, \tag{5.6}
\end{equation*}
$$

where the last equality is shown in [KI2].

PROPOSITION 5.6

The Sq^{2}-cohomology of F_{4} / T is given as

$$
H^{*}\left(F_{4} / T ; \mathrm{Sq}^{2}\right)=\Lambda\left(x_{3}, x_{7}, x_{11}, \bar{\gamma}_{3}\right), \quad\left|x_{i}\right|=2 i,\left|\bar{\gamma}_{3}\right|=6,
$$

where $\tilde{\lambda}^{*}\left(x_{3}\right)=x_{3}, \pi^{*}\left(x_{7}\right)=x_{7}, \pi^{*}\left(x_{11}\right)=x_{11}$, and $\pi^{*}\left(\bar{\gamma}_{3}\right)=\bar{\gamma}_{3}$.
Proof
Let A be a differential graded algebra $\mathbb{Z} / 2\left[t, y_{1}, y_{2}, y_{3}\right]$ with $|t|=\left|y_{i}\right|=2$ and $d t=t^{2}, d y_{i}=y_{i}^{2}$. Then the desired Sq^{2}-cohomology is equal to the cohomology of $A \otimes \mathbb{Z} / 2\left[\gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{6}, \rho_{8}, \rho_{12}\right)$,
where $d \gamma_{3}=q_{2}$. Since $H^{*}(A)=0, d \rho_{2}=\rho_{3}, d \rho_{8} \equiv 0 \bmod \left(\rho_{2}, \rho_{3}\right)$, and $d \rho_{12}=0$, it follows from Lemma 3.3 that

$$
H^{*}\left(A /\left(\rho_{2}, \rho_{3}, \rho_{8}, \rho_{12}\right)\right)=\Lambda\left(x_{3}, x_{7}, x_{11}\right),
$$

where $d x_{3}=q_{2}$ and x_{7}, x_{11} are as in Proposition 5.3. Then by defining $\bar{\gamma}_{3}$ as in the proof of Proposition 5.3, the first assertion follows. The second assertion follows from (5.5) and (5.6).

REMARK 5.7
Since $H^{*}\left(F_{4} / T ; \mathrm{Sq}^{2}\right)$ is an exterior algebra generated by four generators of degree $-2 \bmod 8$ as in Proposition 5.6, we cannot directly see that $E_{r}\left(F_{4} / T\right)$ collapses at the E_{3}-term by Lemma 2.1. On the other hand, $H^{*}\left(F_{4} / U ; \mathrm{Sq}^{2}\right)$ can be thought of as a subalgebra of $H^{*}\left(F_{4} / T ; \mathrm{Sq}^{2}\right)$ generated by three of its four generators, and then we can apply Lemma 2.1 to see that $E_{r}\left(F_{4} / U\right)$ collapses at the E_{3}-term as above.

THEOREM 5.8

The Atiyah-Hirzebruch spectral sequence $E_{r}\left(F_{4} / T\right)$ collapses at the E_{3}-term. In particular, we have

$$
g_{F_{4} / T}(t)=\left(1+t^{6}\right)^{2}\left(1+t^{14}\right)\left(1+t^{22}\right) .
$$

Proof
By Theorem 3.7 and Proposition 5.6, $\iota^{-1}\left(x_{3}\right)$ in the 2-localized spectral sequence $E_{3}^{6,-1}\left(F_{4} / T\right)_{(2)}$ is a permanent cycle. Then since the 2-localization $E_{3}^{p, q}\left(F_{4} / T\right) \rightarrow$ $E_{3}^{p, q}\left(F_{4} / T\right)_{(2)}$ is injective, $\iota^{-1}\left(x_{3}\right)$ in the integral spectral sequence $E_{3}^{6,-1}\left(F_{4} / T\right)$ is also a permanent cycle. By Theorem 5.4 and Proposition 5.6, $\iota^{-1}\left(x_{7}\right), \iota^{-1}\left(x_{11}\right)$, $\iota^{-1}\left(\bar{\gamma}_{3}\right) \in E_{3}^{*,-1}\left(F_{4} / T\right)$ are also permanent cycles. Thus the proof is completed by Lemma 2.1(2).

Proof of Theorem 1.1 for F_{4}
The result follows from (2.5), Lemma 2.2, and Corollary 5.8.

6. $K O$-theory of E_{6} / T

Our method of computing the Atiyah-Hirzebruch spectral sequence $E_{r}\left(E_{6} / T\right)$ is similar to the case of F_{4} / T. Namely, we first calculate the Atiyah-Hirzebruch spectral sequence converging to $K O^{*}\left(E_{6} / U\right)$ for an appropriate maximal rank subgroup U and then deduce that of $K O^{*}\left(E_{6} / T\right)$.

We know that the Dynkin diagram of E_{6} is given as follows:

In [IT], it is proved that the centralizer of the circle in E_{6} defined by $\alpha_{1}=\alpha_{3}=$ $\alpha_{4}=\alpha_{5}=\alpha_{6}=0$ is isomorphic to $T^{1} \cdot \mathrm{SU}(6)$. Then the identity component of the
centralizer of the torus defined by $\alpha_{5}=\alpha_{6}=0$ is isomorphic to $T^{1} \cdot\left(T^{2} \times \mathrm{U}(3)\right)$ which we denote by U. It is clear that the homology of U is torsion-free and E_{6} / U satisfies the condition (2.2).

6.1. $K O$-theory of E_{6} / U

Let us calculate the $\mathbb{Z}_{(2)}$-coefficient cohomology of F_{4} / U. We set some notation. Let $\omega_{i}(i=1, \ldots, 6)$ be the fundamental weight of E_{6} as in [TW]. Put

$$
\begin{aligned}
& t_{1}=-\omega_{1}+\omega_{2}, \quad t_{2}=\omega_{1}+\omega_{2}-\omega_{3}, \quad t_{3}=\omega_{2}+\omega_{3}-\omega_{4}, \\
& t_{4}=\omega_{4}-\omega_{5}, \quad t_{5}=\omega_{5}-\omega_{6}, \quad t_{6}=\omega_{6} .
\end{aligned}
$$

Then as in Section 2, we have

$$
H^{*}(B T ; \mathbb{Z})=\mathbb{Z}_{(2)}\left[t, t_{1}, \ldots, t_{6}\right] /\left(c_{1}-3 t\right)
$$

As in [TW], the Weyl group of U is generated by two elements R_{1}, R_{2} satisfying

$$
\begin{array}{llll}
R_{1}\left(t_{i}\right)=t_{i} & (i=1,2,3,6), & R_{1}\left(t_{4}\right)=t_{5}, & R_{1}\left(t_{5}\right)=t_{4}, \\
R_{2}\left(t_{i}\right)=t_{i} & (i=1,2,3,4), & R_{2}\left(t_{5}\right)=t_{6}, & R_{2}\left(t_{6}\right)=t_{5} .
\end{array}
$$

Then it follows that

$$
H^{*}\left(B U ; \mathbb{Z}_{(2)}\right)=\mathbb{Z}_{(2)}\left[t_{1}, t_{2}, t_{3}, \hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}\right],
$$

where $\hat{c}_{1}=t_{4}+t_{5}+t_{6}, \hat{c}_{2}=t_{4} t_{5}+t_{5} t_{6}+t_{6} t_{4}$, and $\hat{c}_{3}=t_{4} t_{5} t_{6}$.
As in [MT], the mod 2 cohomology of E_{6} is given as

$$
H^{*}\left(E_{6} ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[a_{3}\right] /\left(a_{3}^{4}\right) \otimes \Lambda\left(a_{5}, a_{9}, a_{15}, a_{17}, a_{23}\right), \quad\left|a_{i}\right|=i, \beta a_{5}=a_{3}^{2}
$$

Then by $[\mathrm{T}]$, we obtain the following.

PROPOSITION 6.1

There is a regular sequence $\bar{\rho}_{2}, \bar{\rho}_{5}, \bar{\rho}_{6}, \bar{\rho}_{8}, \bar{\rho}_{9}, \bar{\rho}_{12}$ in $\mathbb{Z}_{(2)}\left[t_{1}, t_{2}, t_{3}, \hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}\right]$ with $\left|\bar{\rho}_{i}\right|=2 i$ satisfying

$$
H^{*}\left(E_{6} / U ; \mathbb{Z}_{(2)}\right)=\mathbb{Z}_{(2)}\left[t_{1}, t_{2}, t_{3}, \hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}, \gamma_{3}\right] /\left(\bar{\rho}_{2}, \bar{\rho}_{5}, \bar{\rho}_{6}, \bar{\rho}_{8}, \bar{\rho}_{9}, \bar{\rho}_{12}, 2 \gamma_{3}+\bar{\rho}_{3}\right),
$$

where $\bar{\rho}_{3}$ is defined by the equation $\mathrm{Sq}^{2} \bar{\rho}_{2}=\bar{\rho}_{3}$.
Let us compute the $\bmod 2$ cohomology of E_{6} / U. Let c_{i} be the i th symmetric function in t_{1}, \ldots, t_{6} for $i=1, \ldots, 6$. Obviously, c_{i} is a polynomial in $t_{1}, t_{2}, t_{3}, \hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}$. A calculation in [TW] implies that the rational cohomology of E_{6} / U is given as

$$
\begin{equation*}
H^{*}\left(E_{6} / U ; \mathbb{Q}\right)=\mathbb{Q}\left[t_{1}, t_{2}, t_{3}, \hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}\right] /\left(\sigma_{2}, \sigma_{5}, \sigma_{6}, \sigma_{8}, \sigma_{9}, \sigma_{12}\right) \tag{6.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \sigma_{2}=c_{2}-\frac{4}{3^{2}} c_{1}^{2}, \quad \sigma_{5}=c_{5}-\frac{1}{3} c_{4} c_{1}+\frac{1}{3^{2}} c_{3} c_{1}^{2}-\frac{2}{3^{5}} c_{1}^{5}, \\
& \sigma_{6}=8 c_{6}+c_{3}^{2}-\frac{4}{3^{2}} c_{4} c_{1}^{2}-\frac{4}{3^{6}} c_{1}^{6}, \\
& \sigma_{8}=-3 c_{6} c_{1}^{2}+c_{4}^{2}-c_{4} c_{3} c_{1}+\frac{19}{3^{4}} c_{4} c_{1}^{4}-\frac{5}{3^{4}} c_{3} c_{1}^{5}+\frac{31}{3^{8}} c_{1}^{8} .
\end{aligned}
$$

By Proposition 6.1, we may put

$$
\bar{\rho}_{2}=c_{2}-\frac{4}{3^{2}} c_{1}^{2} \quad \text { and } \quad \bar{\rho}_{3}=c_{3}+c_{2} c_{1}
$$

Put

$$
R_{1}=\mathbb{Z}_{(2)}\left[t_{1}, t_{2}, t_{3}, \hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}, \gamma_{3}\right] /\left(\bar{\rho}_{2}, \bar{\rho}_{5}, 2 \gamma_{3}+\bar{\rho}_{3}\right) .
$$

Then since the natural map $H^{*}\left(E_{6} / U ; \mathbb{Z}_{(2)}\right) \rightarrow H^{*}\left(E_{6} / U ; \mathbb{Q}\right)$ is injective, there is a surjection $R_{1} \rightarrow H^{*}\left(E_{6} / U ; \mathbb{Z}_{(2)}\right)$ which reduces to a surjection

$$
\phi_{1}: R_{1} / 2 \rightarrow H^{*}\left(E_{6} / U ; \mathbb{Z} / 2\right) .
$$

Put

$$
\begin{equation*}
\rho_{2}=c_{2}, \quad \rho_{3}=c_{3}+c_{2} c_{1}, \quad \rho_{5}=c_{5}+c_{4} c_{1} . \tag{6.2}
\end{equation*}
$$

Then $\rho_{2}, \rho_{3}, \rho_{5}$ is a regular sequence in $\mathbb{Z} / 2\left[t_{1}, t_{2}, t_{3}, \hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}\right]$ and

$$
R_{1} / 2=\mathbb{Z} / 2\left[t_{1}, t_{2}, t_{3}, \hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}, \gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{5}\right),
$$

implying that the Poincaré series of $R_{1} / 2$ is $\left(1-t^{10}\right) /\left(\left(1-t^{2}\right)^{4}\left(1-t^{6}\right)\right)$. On the other hand, the Poincaré series of $H^{*}\left(E_{6} / U ; \mathbb{Z} / 2\right)$ and $H^{*}\left(E_{6} / U ; \mathbb{Q}\right)$ are the same, which is $\frac{\left(1-t^{10}\right)\left(1-t^{12}\right)\left(1-t^{16}\right)\left(1-t^{18}\right)\left(1-t^{24}\right)}{\left(1-t^{2}\right)^{4}\left(1-t^{6}\right)}$ by (6.1). Then ϕ_{1} is an isomorphism in dimension ≤ 11.

Note that $\sigma_{6} \equiv 4\left(2 c_{6}+\gamma_{3}^{2}+\frac{4}{3^{2}} \gamma_{3} c_{1}^{3}-\frac{1}{3^{2}} c_{4} c_{1}^{2}+\frac{35}{3^{6}} c_{1}^{6}\right) \bmod \left(\bar{\rho}_{2}, 2 \gamma_{3}+\bar{\rho}_{3}\right)$. Then since $H^{*}\left(E_{6} / U ; \mathbb{Z}_{(2)}\right) \rightarrow H^{*}\left(E_{6} / U ; \mathbb{Q}\right)$ is injective, if we put

$$
R_{2}=R_{1} /\left(2 c_{6}+\gamma_{3}^{2}+\frac{4}{3^{2}} \gamma_{3} c_{1}^{3}-\frac{1}{3^{2}} c_{4} c_{1}^{2}+\frac{35}{3^{6}} c_{1}^{6}, \sigma_{8}\right)
$$

ϕ_{1} induces a surjection

$$
\phi_{2}: R_{2} / 2 \rightarrow H^{*}\left(E_{6} / U ; \mathbb{Z} / 2\right) .
$$

Put

$$
\begin{equation*}
\rho_{6}=\gamma_{3}^{2}+c_{4} c_{1}^{2}+c_{1}^{6}, \quad \rho_{8}=c_{6} c_{1}^{2}+c_{4}^{2}+c_{4} c_{1}^{4}+c_{1}^{8} . \tag{6.3}
\end{equation*}
$$

Then one sees that

$$
R_{2} / 2=\mathbb{Z} / 2\left[t_{1}, t_{2}, t_{3}, \hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}, \gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{5}, \rho_{6}, \rho_{8}\right) .
$$

Since $\rho_{2}, \rho_{3}, \rho_{5}, \rho_{6}, \rho_{8}$ is a regular sequence in $\mathbb{Z} / 2\left[t_{1}, t_{2}, t_{3}, \hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}, \gamma_{3}\right]$, one can calculate the Poincaré series of $R_{2} / 2$. Then comparing the Poincaré series as above, we obtain that ϕ_{2} is an isomorphism in dimension ≤ 35.

Put

$$
\begin{equation*}
\rho_{9}=c_{6} c_{1}^{3}, \quad \rho_{12}=c_{6}^{2}+c_{6} c_{4} c_{1}^{2}+c_{4}^{2} c_{1}^{4}+c_{4} c_{1}^{8} . \tag{6.4}
\end{equation*}
$$

Since $\mathrm{Sq}^{2} \phi_{2}\left(\rho_{8}\right)=\phi_{2}\left(\rho_{9}\right)$ and $\mathrm{Sq}^{8} \phi_{2}\left(\rho_{8}\right)=\phi_{2}\left(\rho_{12}\right)$, there is also a surjection

$$
\phi_{3}: R_{3} \rightarrow H^{*}\left(E_{6} / U ; \mathbb{Z} / 2\right),
$$

where

$$
R_{3}=R_{2} /\left(2, \rho_{8}, \rho_{12}\right)
$$

Since $\rho_{2}, \rho_{3}, \rho_{5}, \rho_{6}, \rho_{8}, \rho_{9}, \rho_{12}$ is a regular sequence in $\mathbb{Z} / 2\left[t_{1}, t_{2}, t_{3}, \hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}, \gamma_{3}\right]$, one can calculate the Poincaré series of R_{3}. Comparing it with the Poincaré series of $H^{*}\left(E_{6} / U ; \mathbb{Z} / 2\right)$, we conclude that ϕ_{3} is an isomorphism. Summarizing, we obtain the following.

PROPOSITION 6.2

The mod 2 cohomology of E_{6} / U is given as

$$
H^{*}\left(E_{6} / U ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[t_{1}, t_{2}, t_{3}, \hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}, \gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{5}, \rho_{6}, \rho_{8}, \rho_{9}, \rho_{12}\right)
$$

where $\left|t_{i}\right|=2,\left|\hat{c}_{i}\right|=2 i,\left|\gamma_{3}\right|=6$ and ρ_{i} is as in (6.2), (6.3), and (6.4).

COROLLARY 6.3
The Sq^{2}-cohomology of E_{6} / U is given as

$$
H^{*}\left(E_{6} / U ; \mathrm{Sq}^{2}\right)=\Lambda\left(x_{7}, x_{11}, x_{15}\right), \quad\left|x_{i}\right|=2 i
$$

where $\mathrm{Sq}^{2} x_{11} \equiv \rho_{12} \bmod \left(\rho_{2}, \rho_{3}, \rho_{5}, \rho_{9}\right), \mathrm{Sq}^{2} x_{15}=\rho_{8}^{2}, x_{7}=\gamma_{3} c_{4}+\delta_{7}$, and $\mathrm{Sq}^{2} \delta_{7}=$ c_{4}^{2} for $\delta_{7} \in \mathbb{Z} / 2\left[t_{1}, t_{2}, t_{3}, \hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}\right]$.

Proof

As in the proof of Corollary 5.3, we see that $\mathrm{Sq}^{2} \gamma_{3}=c_{4}$. Put $A=\mathbb{Z} / 2\left[t_{1}, t_{2}, t_{3}, \hat{c}_{1}\right.$, $\left.\hat{c}_{2}, \hat{c}_{3}\right]$. Then our aim is to calculate the cohomology of a differential graded algebra

$$
A \otimes \mathbb{Z} / 2\left[\gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{5}, \rho_{6}, \rho_{8}, \rho_{9}, \rho_{12}\right)
$$

Obviously, $A /\left(\rho_{2}, \rho_{3}\right) \cong \mathbb{Z} / 2\left[t_{1}, t_{2}, t_{3}\right] \otimes\left\langle 1, \hat{c}_{1}, \hat{c}_{1}^{2}\right\rangle$ as a $\mathbb{Z} / 2\left[t_{1}, t_{2}, t_{3}\right]$-module, implying $H^{*}\left(A /\left(\rho_{2}, \rho_{3}\right)\right)=0$. Then since $d c_{4}=\rho_{5}$ and $d \rho_{8}=\rho_{9}$, it follows from Lemma 3.3 that

$$
H^{*}\left(A /\left(\rho_{2}, \rho_{3}, \rho_{5}, \rho_{8}, \rho_{9}\right)\right)=\Lambda\left(c_{4}, x_{15}\right), \quad\left|x_{i}\right|=2 i
$$

where $\mathrm{Sq}^{2} x_{15}=\rho_{8}^{2}$. For $d \rho_{12} \equiv 0 \bmod \left(\rho_{5}, \rho_{9}\right)$ and $H^{24}\left(A /\left(\rho_{2}, \rho_{3}, \rho_{5}, \rho_{8}, \rho_{9}\right)\right)=0$, we get

$$
H^{*}\left(A /\left(\rho_{2}, \rho_{3}, \rho_{5}, \rho_{8}, \rho_{9}, \rho_{12}\right)\right)=\Lambda\left(c_{4}, x_{11}, x_{15}\right), \quad\left|x_{i}\right|=2 i,
$$

where $\mathrm{Sq}^{2} x_{11} \equiv \rho_{12} \bmod \left(\rho_{2}, \rho_{3}, \rho_{5}, \rho_{9}\right)$. By the spectral sequence associated with a filtration

$$
A /\left(\rho_{2}, \rho_{3}, \rho_{5}, \rho_{8}, \rho_{12}\right) \subset A \otimes \mathbb{Z} / 2\left[\gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{5}, \rho_{8}, \rho_{9}, \rho_{12}\right),
$$

we get

$$
H^{*}\left(A \otimes \mathbb{Z} / 2\left[\gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{5}, \rho_{8}, \rho_{9}, \rho_{12}\right)\right)=\Lambda\left(x_{7}, x_{11}, x_{15}\right) \otimes \mathbb{Z} / 2\left[\gamma_{3}^{2}\right]
$$

where $x_{7}=\gamma_{3} c_{4}+\delta_{7}$ and $\delta_{7} \in \mathbb{Z} / 2\left[t_{1}, t_{2}, t_{3}, \hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}\right]$ is given by $d \delta_{7}=c_{4}^{2}$. Since $\rho_{6}=\gamma_{3}^{2}+d\left(\gamma_{3} c_{1}^{2}+c_{1}^{5}\right)$, we obtain

$$
H^{*}\left(A \otimes \mathbb{Z} / 2\left[\gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{5}, \rho_{6}, \rho_{8}, \rho_{9}, \rho_{12}\right)\right)=\Lambda\left(x_{7}, x_{11}, x_{15}\right)
$$

completing the proof.

THEOREM 6.4
The Atiyah-Hirzebruch spectral sequence $E_{r}\left(E_{6} / U\right)$ collapses at the E_{3}-term. In particular, we have

$$
g_{E_{6} / U}(t)=\left(1+t^{14}\right)\left(1+t^{22}\right)\left(1+t^{30}\right)
$$

Proof
From Lemma 2.1 and Proposition 6.3, the result follows.

THEOREM 6.5

The KO-theory of E_{6} / U is given as

$$
K O^{2 n-1}\left(E_{6} / U\right) \cong(\mathbb{Z} / 2)^{s_{n}} \quad \text { and } \quad K O^{2 n}\left(E_{6} / U\right) \cong(\mathbb{Z} / 2)^{s_{n+1}} \oplus \mathbb{Z}^{t}
$$

for $n \in \mathbb{Z} / 4$, where

$$
t=4320, \quad s_{0}=s_{-3}=1, \quad s_{-1}=s_{-2}=3
$$

Proof
By (6.1), we have $f_{E_{6} / U}(t)=\frac{\left(1-t^{10}\right)\left(1-t^{12}\right)\left(1-t^{16}\right)\left(1-t^{18}\right)\left(1-t^{24}\right)}{\left(1-t^{2}\right)^{4}\left(1-t^{6}\right)}$. Then the proof is completed by Lemma 2.2 and Theorem 6.4.

6.2. $K O$-theory of E_{6} / T

Let $\rho_{i} \in \mathbb{Z} / 2\left[t_{1}, \ldots, t_{6}, \gamma_{3}\right]$ be as in (6.2), (6.3), and (6.4). The $\bmod 2$ cohomology of E_{6} / T is calculated in [KI2] as

$$
H^{*}\left(E_{6} / T ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[t_{1}, \ldots, t_{6}, \gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{5}, \rho_{6}, \rho_{8}, \rho_{9}, \rho_{12}\right)
$$

where $\mathrm{Sq}^{2} \gamma_{3}=c_{4}$. For the projection $\pi: E_{6} / T \rightarrow E_{6} / U$, we have

$$
\begin{array}{ll}
\pi^{*}\left(t_{i}\right)=t_{i} \quad(i=1,2,3), & \pi^{*}\left(\hat{c}_{1}\right)=t_{4}+t_{5}+t_{6} \\
\pi^{*}\left(\hat{c}_{2}\right)=t_{4} t_{5}+t_{5} t_{6}+t_{6} t_{4}, & \pi^{*}\left(\hat{c}_{3}\right)=t_{4} t_{5} t_{6} \tag{6.5}
\end{array}
$$

Define a map $\lambda:\left(E_{6} / T\right)_{(2)} \rightarrow B T_{(2)}^{6}$ by $\lambda^{*}\left(t_{i}=t_{i}\right)$ for $i=1, \ldots, 6$. Then there is a lift $\tilde{\lambda}:\left(E_{6} / T\right)_{(2)} \rightarrow B \widetilde{T}_{(2)}^{6}$ satisfying

$$
\begin{equation*}
\tilde{\lambda}^{*}\left(t_{i}\right)=t_{i} \quad(i=1, \ldots, 6), \quad \tilde{\lambda}^{*}\left(\gamma_{3}\right)=\gamma_{3}, \tag{6.6}
\end{equation*}
$$

where the second equality is shown in [KI1].

PROPOSITION 6.6

The Sq^{2}-cohomology of E_{6} / T is given as

$$
H^{*}\left(E_{6} / T ; \mathrm{Sq}^{2}\right)=\Lambda\left(x_{3}, x_{7}, x_{11}, x_{15}\right), \quad\left|x_{i}\right|=2 i,
$$

where $\tilde{\lambda}^{*}\left(x_{3}\right)=x_{3}, \pi^{*}\left(x_{7}\right)=x_{7}, \pi^{*}\left(x_{11}\right)=x_{11}$, and $\pi^{*}\left(x_{15}\right)=x_{15}$.

Proof
Define a differential graded algebra A as $A=\mathbb{Z} / 2\left[t_{1}, \ldots, t_{6}\right]$ with $\left|t_{i}\right|=2$ and $d t_{i}=t_{i}^{2}$. Then we calculate the cohomology of a differential graded algebra $A \otimes$
$\mathbb{Z} / 2\left[\gamma_{3}\right] /\left(\rho_{2}, \rho_{3}, \rho_{5}, \rho_{6}, \rho_{8}, \rho_{9}, \rho_{12}\right)$, where $d \gamma_{3}=c_{4}$. This is done quite similarly to the proof of Proposition 6.3. The second assertion follows from (6.5) and (6.6).

THEOREM 6.7

The spectral sequence $E_{r}\left(E_{6} / T\right)$ collapses at the E_{3}-term. In particular, we have

$$
g_{E_{6} / T}(t)=\left(1+t^{6}\right)\left(1+t^{14}\right)\left(1+t^{22}\right)\left(1+t^{30}\right) .
$$

Proof
By Theorem 3.7 and Proposition 6.6, $\iota^{-1}\left(x_{3}\right)$ in the 2-localized spectral sequence $E_{3}^{6,-1}\left(E_{6} / T\right)_{(2)}$ is a permanent cycle, implying that $\iota^{-1}\left(x_{3}\right)$ in the integral spectral sequence $E_{3}^{6,-1}\left(E_{6} / T\right)$ is also a permanent cycle since the 2-localization $E_{3}^{p, q}\left(E_{6} / T\right) \rightarrow E_{3}^{p, q}\left(E_{6} / T\right)$ is injective. By Theorem 6.4 and Proposition 6.6, $\iota^{-1}\left(x_{i}\right) \in E_{3}^{*,-1}\left(E_{6} / T\right)$ is also a permanent cycle for $i=7,11,15$. Thus the result follows from Lemma 2.1.

Proof of Theorem 1.1 for E_{6}

The result follows from (2.5), Lemma 2.2, and Corollary 6.7.

REMARK 6.8

We cannot apply the same calculation method to E_{7} / T and E_{8} / T for which there is no control on elements γ_{5}, γ_{9} in their $\bmod 2$ cohomology (see [KI2]).

References

[A] M. F. Atiyah, K-theory and reality, Quart. J. Math. Oxford Ser. (2) 17 (1966), 367-386. MR 0206940.
[F] M. Fujii, Ko-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149. MR 0219060.
[IT] K. Ishitoya and H. Toda, On the cohomology of irreducible symmetric spaces of exceptional type, J. Math. Kyoto Univ. 17 (1977), 225-243. MR 0442958.
[K] D. Kishimoto, KO-theory of complex Stiefel manifolds, J. Math. Kyoto Univ. 44 (2004), 669-674. MR 2103788.
[KKO] D. Kishimoto, A. Kono, and A. Ohsita, KO-theory of flag manifolds, J. Math. Kyoto Univ. 44 (2004), 217-227. MR 2062716.
[KH1] A. Kono and S. Hara, KO-theory of complex Grassmannians, J. Math. Kyoto Univ. 31 (1991), 827-833. MR 1127102.
[KH2] , KO-theory of Hermitian symmetric spaces, Hokkaido Math. J. 21 (1992), 103-116. MR 1153756.
[KI1] A. Kono and K. Ishitoya, Squaring operations in the 4-connective fibre spaces over the classifying spaces of the exceptional Lie groups, Publ. Res.

Inst. Math. Sci. 21 (1985), 1299-1310. MR 0842420.
DOI 10.2977/prims/1195178517.
[KI2] , "Squaring operations in mod 2 cohomology of quotients of compact Lie groups by maximal tori" in Algebraic Topology (Barcelona, 1986), Lecture Notes in Math. 1298, Springer, Berlin, 1987, 192-206. MR 0928833. DOI 10.1007/BFb0083010.
[MT] M. Mimura and H. Toda, Topology of Lie Groups, I, II, Trans. Math. Monogr. 91, Amer. Math. Soc., Providence, 1991. MR 1122592.
[T] H. Toda, On the cohomology ring of some homogeneous spaces, J. Math. Kyoto Univ. 15 (1975), 185-199. MR 0380856.
[TW] H. Toda and T. Watanabe, The integral cohomology ring of $\mathbf{F}_{4} / \mathbf{T}$ and $\mathbf{E}_{6} / \mathbf{T}$, J. Math. Kyoto Univ. 14 (1974), 257-286. MR 0358847.
[Y1] N. Yagita, A note on the Witt group and the KO-theory of complex Grassmannians, J. K-theory 9 (2012), 161-175. MR 2887204. DOI 10.1017/is011003005jkt142.
[Y2] , Witt groups of algebraic groups, preprint.
[Z] M. Zibrowius, Witt groups of complex cellular varieties, Doc. Math. 16 (2011), 465-511. MR 2823367.

Kishimoto: Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan; kishi@math.kyoto-u.ac.jp

Ohsita: Faculty of Economics, Osaka University of Economics, Osaka 533-8533, Japan; ohsita@osaka-ue.ac.jp

