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Abstract In this paper we study a Landau-type operator with an external force. It is a

linear model of the Landau equation near Maxwellian distributions. Making use of mul-

tiplier method, we get the global hypoelliptic estimate under suitable assumptions on

the external potential.

1. Introduction and main results

In this article we are interested in the study of the regularity of solutions of some

kinetic equations. In the linear or linearized equations, the corresponding collision

operator may behave in some cases like a Laplacian—or at least a fractional power

of a Laplacian—and we may hope for some improved smoothness at positive time.

This type of question concerns Fokker–Planck equations, Landau equations, or

Boltzmann equations without angular cut-off.

In the linear homogeneous case these equations have then a parabolic behav-

ior, and the study of the local smoothing properties in the velocity variable is

rather direct. In the nonhomogeneous case, the regularization in space variable

is not so easy, but occurs anyway thanks to the so-called hypoelliptic structure

of the equation. This type of behavior is a subject of intensive recent research in

kinetic theory, coming back to the first results of Hörmander [13] concerning the

Kolmogorov equation, and it is also in the core of averaging lemmas (see e.g., [2]).

In this article we are interested in global estimates of the following Landau-type

operator:

P = i
(
y ·Dx − ∂xV (x) ·Dy

)
+Dy · ν(y)Dy

(1)
+ (y ∧Dy) · μ(y)(y ∧Dy) + F (y),

where Dx = −i∂x, Dy = −i∂y and x ∈ R
3 is the space variable and y ∈ R

3 is

the velocity variable, and X · Y stands for the standard dot product on R
3.

The real-valued function V (x) of space variable x denotes the potential of the

Kyoto Journal of Mathematics, Vol. 53, No. 3 (2013), 533–565

DOI 10.1215/21562261-2265886, © 2013 by Kyoto University

Received November 4, 2011. Revised March 16, 2012. Accepted May 9, 2012.

2010 Mathematics Subject Classification: Primary 35H10; Secondary 35H20, 35B65, 82C40.
Li’s work was supported by Project NONAa of France (No. ANR-08-BLAN- 0228-01) and the NSF

of China (No. 11001207).

http://dx.doi.org/10.1215/21562261-2265886
http://www.ams.org/msc/


534 Frédéric Hérau and Wei-Xi Li

macroscopic external force, and the functions ν(y), μ(y), and F (y) of the variable

y in the diffusion are smooth and real-valued with the properties subsequently

listed below.

(i) There exists a constant c > 0 such that

(2) ∀y ∈R
3, ν(y)≥ c〈y〉γ , μ(y)≥ c〈y〉γ , and F (y)≥ c〈y〉2+γ ,

with γ ∈ [0,1] and 〈y〉= (1+ |y|2)1/2.
(ii) For any α ∈ Z

3
+, there exists a constant Cα such that

∀y ∈R
3, |∂αν(y)|+ |∂αμ(y)| ≤Cα〈y〉γ−|α|, and

(3)
|∂αF (y)| ≤Cα〈y〉2+γ−|α|.

It is sometimes convenient to rewrite the operator as the form

P = i
(
y ·Dx − ∂xV (x) ·Dy

)
+
(
B(y)Dy

)∗ ·B(y)Dy + F (y),

where the matrix B(y) is given by

(4) B(y) =
(
Bjk(y)

)
1≤j,k≤3

=

⎛
⎝

√
ν(y) −y3

√
μ(y) y2

√
μ(y)

−y3
√
μ(y)

√
ν(y) −y1

√
μ(y)

−y2
√
μ(y) y1

√
μ(y)

√
ν(y)

⎞
⎠ ,

and (B(y)Dy)
∗ =DyB(y)T , with BT the transpose of B, is the formal adjoint of

B(y)Dy . By (2) and (3) one has, for any y, η ∈R
3 and any α ∈ Z

3
+,

|∂αBjk(y)| ≤Cα〈y〉1−|α|+γ/2(5)

and

|B(y)η|2 = ν(y)|η|2 + μ(y)|y ∧ η|2
(6)

≥ c|y|γ(|η|2 + |y ∧ η|2).

As a result, observing that i(y ·Dx − ∂xV (x) ·Dy) is skew-adjoint, we have

‖〈y〉1+γ/2u‖2L2 + ‖〈y〉γ/2Dyu‖2L2 + ‖〈y〉γ/2(y ∧Dy)u‖2L2

(7)
≤ c−1‖B(y)Dyu‖2L2 + (Fu,u)L2 ≤ c−1Re(Pu,u)L2 ,

where (·, ·)L2 and ‖ · ‖L2 stand for the inner product and norm in L2(R6
x,y).

Denoting by (ξ, η) the dual variables of (x, y), we notice that the diffusion

only occurs in the variables (y, η) but not in the other directions, and that the

cross-product term y ∧ Dy improves this diffusion in specific directions of the

phase space where the variables y and η are orthogonal. In this work, we aim

to prove that linear Landau-type operators are actually hypoelliptic despite this

lack of diffusion in the spatial derivative Dx. More specifically, we shall be con-

cerned with proving global hypoelliptic estimates with weights in both spatial

and velocity derivatives whose structure is exactly related to the anisotropy of

the diffusion. Our main results can be stated as follows.
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THEOREM 1.1

Let V ∈C2(R3;R) satisfy that

(8) ∀|α|= 2,∃Cα > 0 such that ∀x ∈R
3, |∂α

xV (x)| ≤Cα〈∂xV (x)〉2/3.
Then there exists a constant C such that for any u ∈C∞

0 (R6) one has∥∥〈y〉γ/6|∂xV (x)|2/3u
∥∥
L2 + ‖〈y〉2+5γ/6u‖L2

+ ‖|Dx|2/3u‖L2 + ‖〈y〉γ/2|Dy|2u‖L2 + ‖〈y〉γ/2|y ∧Dy|2u‖L2(9)

≤C(‖Pu‖L2 + ‖u‖L2).

Moreover if V satisfies the condition that

C−1
0 〈x〉M ≤ 〈∂xV (x)〉 ≤C0〈x〉M , and

(10)
∀|α| ≥ 2, |∂α

xV (x)| ≤ Cα < ∂xV (x)〉1/3,
with M,C0 two positive numbers and Cα a constant depending only on α, we

have additionally∥∥(〈∂xV ∧ η+ y ∧ ξ〉2/3)wu
∥∥
L2 +

∥∥(〈∂xV ∧ ξ〉2/5)wu
∥∥
L2

(11)
≤C(‖Pu‖L2 + ‖u‖L2),

where pw stands for the Weyl quantization of the symbol p.

There is a large class of potentials satisfying (8) and (10), for example the qua-

dratic functions of the form V (x1, x2, x3) =
∑

1≤j≤3 ajx
2
j with aj ’s real coeffi-

cients. More generally the potential V appearing in this work is related to an

external force F =−∇V (x) acting on the system of particles whose distribution

we want to study. We refer to, for example, the introduction of [11] for a short

presentation of the linearized Landau model (there without external force, see

also [8] or [23]). We mention here following [11] that for operator P defined in (1),

the Cauchy problem

∂tu+ Pu= 0, u|t=0 = u0,

is a linearization of the full inhomogeneous nonlinear Landau equation

(12) ∂tf + y.∇xf −∇xV (x).∇yf =QL(f, f), f |t=0 = f0,

where the unknown f(t, x, y) is the density of probability of the presence at

time t in (x, y) of the system of particles, and QL is the Landau collision kernel

(see [11, (8)]). The linearization procedure is f =M+M1/2u, where M(x, y) =

e−(|y|2/2+V (x)) is the so-called Maxwellian (which is a stationary solution of (12)).

Here we are interested in the control of the regularity of u by that of Pu.

Estimates of the type given in Theorem 1.1 can be analyzed through different

view points. At first they give at least local regularity estimates in the velocity

direction, according to the term |Dy|2 appearing in (9). Now one of the goals

of this article is to give global estimates to identify the good functional spaces

associated to the problems: here we are able to prove that in the elliptic direction

we have an estimate of type
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‖〈y〉2+5γ/6u‖L2 + ‖〈y〉γ/2|Dy|2u‖L2 + ‖〈y〉γ/2|y ∧Dy|2u‖L2

≤C
{
‖Pu‖L2 + ‖u‖L2

}
.

A priori it does not seem to be optimal, and indeed when V = 0 a similar inequal-

ity was proven in [11] with an exponent γ there instead of 5γ/6 and γ/2 here,

but the study with V �= 0 is harder. Similar to [11], we recover here in (9) some

intrinsic global anisotropy via a term of type y ∧Dy already appearing in the

definition of the original operator.

The second main feature of this result is to reflect the regularizing effect in

the space variable x, thanks to the hypoelliptic structure, which leads to terms

involving, for example, |Dx|2/3. Recall that the exponent 2/3 here is optimal,

according to local estimates coming back to [13] (see also [1]). In this direction

(i.e., concerning local optimal subelliptic estimates for kinetic models), we men-

tion also the works [20], [21], and [18] on the Boltzmann operator without cut-off

and the series of works on Gevrey regularity (see [5], [4], [3]).

Now similar to the case of elliptic directions, it may be interesting to get

global weighted estimates in the space direction. In [10] and [9] the authors

studied the Fokker–Planck case, in particular with a potential, following original

ideas from [7] (see also [6]). In this direction the work [11] also gave a first

subelliptic global (optimal) estimate, concerning the Landau-type operator in

the case when there is no potential; the main feature of that work was to show

that subellipticity in space direction occurred with anisotropic weights of type

〈y〉γy ∧Dx. In the present article we recover the same type of behavior, with

additional terms—also involving wedges—linked with the potential V .

To prove the result, we use the same multiplier method as in [11], which

allows us to obtain a global hypoellipticity result with optimal loss of 4/3 deriva-

tives. This method was first introduced in [12] for the Fokker–Planck equation.

It was then extended to more general doubly characteristic quadratic differen-

tial operators by Pravda-Starov [22] to get optimal hypoelliptic estimates. The

present work is a natural continuation of [11], and as was done there, we will make

strong use of pseudodifferential and Wick calculus, following the presentation by

Lerner [17].

The plan of this article is the following. In the second section we introduce

some notations and facts about the symbolic calculus. In the third section we

prove some weighted estimates in space and velocity, without derivatives, needed

later to complete the proof. In Section 4, we essentially work on the velocity side

after a change of operator through a partial Wick quantization in (x, ξ). This

allows us to treat the space variable (and its dual) as parameters and to get

optimal velocity estimates with parameters. In the last two sections we go back

to the original operator and complete the proof.

2. Notations and some basic facts on symbolic calculus

We first list some notations used throughout the paper. Denote by (·, ·)L2 and
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‖ · ‖ the inner product and the norm in L2(Rn), respectively. For a vector-valued

function U = (u1, . . . , un) the norm ‖U‖L2 stands for
(∑

j ‖uj‖2L2

)1/2
.

To simplify the notation, by A�B we mean there exists a positive constant

C such that A≤CB, and similarly for A�B. While the notation A≈B means

both A�B and B �A hold.

Now we introduce some notation of phase space analysis and recall some basic

properties of symbolic calculus (see [14], [17] for detailed discussions). Through-

out the paper let g be the admissible metric |dz|2+ |dζ|2, and let m be an admis-

sible weight for g (see, e.g., [14], [17] for the definitions of admissible metric and

weight). Given a symbol p(z, ζ), we say p ∈ S(m,g) if

∀α,β ∈ Z
n
+,∀(z, ζ) ∈R

2n, |∂α
z ∂

β
ζ p(z, ζ)| ≤Cα,βm(z, ζ),

with Cα,β a constant depending only on α,β. For such a symbol p we may define

its Weyl quantization pw by

∀u ∈ S(Rn), pwu(z) =

∫
e2iπ(z−v)·ζp

(z + v

2
, ζ
)
u(v)dv dζ.

The L2-continuity theorem in the class S(1, g), which will be used frequently,

says that if p ∈ S(1, g), then

∀u ∈ L2, ‖pwu‖L2 � ‖u‖L2 .

We shall denote by Op(S(m,g)) the set of operators whose symbols are in the

class S(m,g). Finally let us recall some basic properties of the Wick quantization

and refer the reader to the works of Lerner [15]–[17] for thorough and extensive

presentations of this quantization and some of its applications. Using the notation

Z = (z, ζ) ∈ R
2n, the wave-packets transform of a function u ∈ S(Rn) is defined

by

Wu(Z) = (u,ϕZ)L2(Rn) = 2n/4
∫
Rn

u(v)e−π|v−z|2e2iπ(v−z/2)·ζ dv,

with

ϕZ(v) = 2n/4e−π|v−z|2e2iπ(v−z/2)·η, v ∈R
n.

Then one can verify that W is an isometric mapping from L2(Rn) to L2(R2n):

(13) ‖Wu‖L2(R2n) = ‖u‖L2(Rn).

Moreover the operator

πH =WW ∗,

with W ∗ the adjoint of W , is an orthogonal projection on a closed space in L2,

whose kernel is given by

(14) K(Z, Z̃) = e−π/2(|z−z̃|2+|ζ−ζ̃|2)eiπ(z−z̃)·(ζ+ζ̃), Z = (z, ζ), Z̃ = (z̃, ζ̃).

We define the Wick quantization of any L∞-symbol p as

pWick =W ∗pW.
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The main property of the Wick quantization is its positivity; that is,

(15) p(Z)≥ 0 for all Z ∈R
2n implies pWick ≥ 0.

According to [17, Proposition 2.4.3], the Wick andWeyl quantizations of a symbol

p are linked by the following identities

(16) pWick = pw + rw,

with

r(Z) =

∫ 1

0

∫
R2n

(1− θ)p′′(Z + θY )Y 2e−2π|Y |22n dY dθ.

We also recall the following composition formula obtained in the proof of [15,

Proposition 3.4]

pWickqWick =
[
pq− 1

4π
p′ · q′ + 1

4iπ
{p, q}

]Wick

+ T,

with T a bounded operator in L2(R2n), when p ∈ L∞(R2n) and q is a smooth

symbol whose derivatives of order at least 2 are bounded on R
2n. The notation

{p, q} denotes the Poisson bracket defined by

(17) {p, q}= ∂p

∂ζ
· ∂q
∂z

− ∂p

∂z
· ∂q
∂ζ

.

3. First part of the proof of Theorem 1.1: Weighted estimates

In this section we are mainly concerned with the estimate in weighted L2-norms,

that is, Proposition 3.1.

PROPOSITION 3.1

Let V (x) ∈C2(R3;R) satisfy the condition (8). Then

∀u ∈C∞
0 (R6),

∥∥〈y〉γ/6|∂xV (x)|2/3u
∥∥
L2 + ‖〈y〉2+5γ/6u‖L2

(18)
� ‖Pu‖L2 + ‖u‖L2 .

To prove this proposition, we begin with the following lemma.

LEMMA 3.2 ([11, LEMMA 3.7])

Let p ∈ S(1, |dy|2 + |dη|2) and B(y) be the matrix given in (4). We have

∀u ∈C∞
0 (R6),

∣∣(F (y), pwu
)
L2

∣∣+ ∣∣((B(y)Dy)
∗B(y)Dyu, p

wu
)
L2

∣∣
(19)

� |(Pu,u)L2 |.

LEMMA 3.3

For all u ∈C∞
0 (R3) we have

‖〈y〉2+5γ/6u‖L2 + ‖〈y〉1+5γ/6Dyu‖L2 + ‖〈y〉1+5γ/6(y ∧Dy)u‖L2

(20)
� ‖〈y〉γ/6〈∂xV 〉2/3u‖L2 + ‖Pu‖L2 .
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Proof

In the proof we let u ∈C∞
0 (R2n). The conclusion will follow if one can prove

‖〈y〉2+5γ/6u‖2L2 + ‖〈y〉1+γ/3B(y)Dyu‖2L2

(21)
� ‖〈y〉γ/6〈∂xV 〉2/3u‖2L2 + ‖Pu‖2L2 + ‖u‖2L2 ,

since by (6), one has

〈y〉1+γ/3|B(y)Dyu| ≥ 〈y〉1+5γ/6|Dyu|+ 〈y〉1+5γ/6|(y ∧Dy)u|.

As a preliminary step, let us first show that for any ε > 0 there exists a constant

Cε > 0 such that∣∣(P 〈y〉1+γ/3u, 〈y〉1+γ/3u)L2

∣∣
� ε

(
‖〈y〉2+5γ/6u‖2L2 + ‖〈y〉1+γ/3B(y)Dyu‖2L2

)
(22)

+Cε

{∥∥〈y〉γ/6〈∂xV (x)〉2/3u
∥∥2
L2 + ‖Pu‖2L2 + ‖u‖2L2

}
.

In fact, the estimate

〈∂xV (x)〉〈y〉1+2γ/3 ≤ ε〈y〉4+5γ/3 +Cε〈y〉γ/3〈∂xV (x)〉4/3

yields (
〈y〉1+2γ/3〈∂xV (x)〉u,u

)
L2 ≤ ε‖〈y〉2+5γ/6u‖2L2

(23)
+Cε

∥∥〈y〉γ/6〈∂xV (x)〉2/3u
∥∥2
L2 .

Consequently, using (3) we compute∣∣[P, 〈y〉1+γ/3]u
∣∣� |∂xV (x)|〈y〉γ/3|u|+ 〈y〉1+5γ/6|B(y)Dyu|,

and thus∣∣([P, 〈y〉1+γ/3]u, 〈y〉1+γ/3u)L2

∣∣
�
(
|∂xV (x)|〈y〉1+2γ/3u,u

)
L2 +

(
〈y〉γ/3|B(y)Dyu|, 〈y〉2+5γ/6|u|

)
L2

� ε‖〈y〉2+5γ/6u‖2L2 +Cε‖〈y〉γ/6〈∂xV (x)〉2/3u‖2L2 +Cε‖〈y〉γ/3B(y)Dyu‖2L2

� ε‖〈y〉2+5γ/6u‖2L2 + ε‖〈y〉1+γ/3B(y)Dyu‖2L2

+Cε

∥∥〈y〉γ/6〈∂xV (x)〉2/3u
∥∥2
L2 +Cε,γ‖〈y〉−1B(y)Dyu‖2L2

� ε
(
‖〈y〉2+5γ/6u‖2L2 + ‖〈y〉1+γ/3B(y)Dyu‖2L2

)

+Cε

(∥∥〈y〉γ/6〈∂xV (x)〉2/3u
∥∥2
L2 + ‖Pu‖2L2 + ‖u‖2L2

)
,

where the second inequality follows from (23), the third inequality holds because

∀ε̃ > 0, ‖〈y〉γ/3B(y)Dyu‖L2 ≤ ε̃‖〈y〉1+γ/3B(y)Dyu‖L2 +Cε̃‖〈y〉−1B(y)Dyu‖L2 ,

and the last inequality follows from (7) since by (5),

‖〈y〉−1B(y)Dyu‖L2 ≤ ‖〈y〉γ/2Dyu‖L2 .
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As a result, observing∣∣(P 〈y〉1+γ/3u, 〈y〉1+γ/3u)L2

∣∣
≤
∣∣(Pu, 〈y〉2+2γ/3u)L2

∣∣+ ∣∣([P, 〈y〉1+γ/3]u, 〈y〉1+γ/3u
)
L2

∣∣
and ∣∣(Pu, 〈y〉2+2γ/3u)L2

∣∣≤ ε‖〈y〉2+5γ/6u‖2L2 +Cε‖Pu‖2L2

due to the fact that 2γ/3≤ 5γ/6 for γ ≥ 0, we obtain the inequality (22).

Now we prove (21). Let us first write

‖〈y〉2+5γ/6u‖2L2 + ‖〈y〉1+γ/3B(y)Dyu‖2L2

� ‖〈y〉1+γ/2〈y〉1+γ/3u‖2L2 + ‖B(y)Dy〈y〉1+γ/3u‖2L2

+ ‖B(y)[Dy, 〈y〉1+γ/3]u‖2L2

� |(P 〈y〉1+γ/3u, 〈y〉1+γ/3u)L2 |+ ‖B(y)[Dy, 〈y〉1+γ/3]u‖2L2 ,

the last inequality using (7). For the last term, we have

‖B(y)[Dy, 〈y〉1+γ/3]u‖2L2 � ‖〈y〉1+5γ/6u‖2L2 ≤ ε‖〈y〉2+5γ/6u‖2L2 +Cε‖u‖2L2 .

Then the desired estimate (21) follows from the above inequalities and (22),

completing the proof of Lemma 3.3. �

Proof of Proposition 3.1

Let ρ ∈C1(R2n) be a real-valued function given by

ρ= ρ(x, y) =
2〈y〉γ/3∂xV (x) · y

〈∂xV (x)〉4/3 φ(x, y),

with

φ= χ
( 〈y〉2+2γ/3

〈∂xV (x)〉2/3
)
,

where χ ∈C∞
0 (R; [0,1]) such that χ= 1 in [−1,1] and supp χ⊂ [−2,2]. We have,

using the notation Q= y ·Dx − ∂xV (x) ·Dy ,

Re(Pu,ρu)L2 =Re(iQu,ρu)L2 +
(
(B(y)Dy)

∗ ·B(y)Dyu,ρu
)
L2 +

(
F (y)u,ρu

)
L2 ,

which along with (19) yields

Re(iQu,ρu)L2 � |(Pu,u)L2 |+ |(Pu,ρu)L2 |.

Next we want to give a lower bound for the term on the left side. Direct compu-

tation shows that

(24) Re(iQu,ρu)L2 =
i

2
([ρ,Q]u,u)L2 =

3∑
j=1

(Aju,u)L2 ,

with Aj given by
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A1 =
〈y〉γ/3|∂xV (x)|2
〈∂xV (x)〉4/3 φ,

A2 = 〈∂xV (x)〉−4/3
(
∂xV (x) · y

)
∂xV (x) · ∂y[〈y〉γ/3φ(x, y)],

A3 = −〈y〉γ/3y · ∂x
(
〈∂xV (x)〉−4/3(∂xV (x) · yφ(x, y))

)
.

We will proceed to treat the above three terms. First one has

A1 = 〈y〉γ/3〈∂xV (x)〉2/3φ(x, y)− 〈y〉γ/3
〈∂xV (x)〉4/3φ(x, y)

= 〈y〉γ/3〈∂xV (x)〉2/3 − 〈y〉γ/3〈∂xV (x)〉2/3
(
1− φ(x, y)

)
− 〈y〉γ/3

〈∂xV (x)〉4/3φ(x, y),

from which it follows that

(25) (A1u,u)L2 ≥
(
〈y〉γ/3〈∂xV (x)〉2/3u,u

)
L2 − ‖〈y〉1+γ/2u‖2L2 .

Here we used the facts that

〈y〉γ/3
〈∂xV (x)〉4/3 ≤ 1

on the support of φ, and 〈∂xV (x)〉2/3 ≤ 〈y〉2+2γ/3 on the support of 1−φ. As for

the term A2 we make use of the relation

∀σ ∈R, ∂xV (x)∂y(〈y〉σ) = σ〈y〉σ−2∂xV (x) · y,

to compute

A2 = 〈∂xV (x)〉−4/3|∂xV (x) · y|2
[γ
3
〈y〉γ/3−2φ+

(2+ γ)〈y〉γ
〈∂xV (x)〉2/3χ

′
( 〈y〉2+2γ/3

〈∂xV (x)〉2/3
)]

� −〈∂xV (x)〉−4/3|∂xV (x) · y|2〈∂xV (x)〉−2/3〈y〉γ

� −〈y〉2+γ ,

the first inequality using the fact that γ ≥ 0, and hence the term γ
3 〈y〉γ/3−2φ is

nonnegative. As a result we conclude:

(26) (A2u,u)L2 �−(〈y〉2+γu,u)L2 .

For the term A3, using (8) gives

A3 �−〈y〉2+γ/3 �−〈y〉2+γ ,

and thus

(A3u,u)L2 �−(〈y〉2+γu,u)L2 .

This along with (24), (25), and (26) shows that(
〈y〉γ/3〈∂xV (x)〉2/3u,u

)
L2 � ‖〈y〉1+γ/2u‖2L2 + |(Pu,u)L2 |+ |(Pu,ρu)L2 |

� |(Pu,u)L2 |+ |(Pu,ρu)L2 |.
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Now for any u ∈ C∞
0 (R2n), we use the above estimate to the function

〈∂xV (x)〉1/3u; this gives(
〈y〉γ/3〈∂xV (x)〉4/3u,u

)
L2

�
∥∥〈∂xV (x)〉−1/3P 〈∂xV (x)〉1/3u

∥∥
L2

∥∥〈∂xV (x)〉2/3u
∥∥
L2 ,

which, together with the fact that γ ≥ 0, implies∥∥〈y〉γ/6〈∂xV (x)〉2/3u
∥∥
L2 �

∥∥〈∂xV (x)〉−1/3P 〈∂xV (x)〉1/3u
∥∥
L2

� ‖Pu‖L2 +
∥∥〈∂xV (x)〉−1/3

[
P, 〈∂xV (x)〉1/3

]
u
∥∥
L2 .

Moreover in view of (8) we have∥∥〈∂xV (x)〉−1/3
[
P, 〈∂xV (x)〉1/3

]
u
∥∥
L2 � ‖〈y〉u‖L2 � ‖Pu‖L2 + ‖u‖L2 .

Then the desired inequality (18) follows, completing the proof of Proposition 3.1.

�

4. Hypoelliptic estimates for the operator with parameters

In this section we always consider X = (x, ξ) ∈ R
6 as parameters, and we study

the operator acting on the velocity variable y:

(27) PX = iQX +
(
B(y)Dy

)∗ ·B(y)Dy + F (y),

where QX = y · ξ − ∂xV (x) ·Dy and B(y) is the matrix given in (4).

NOTATIONS

Throughout this section, we will use ‖ · ‖L2 and (·, ·)L2 to denote, respectively,

the norm and inner product in the space L2(R3
y). Given a symbol p, we use pWick

and pw to denote the Wick and Weyl quantization of p in the variables (y, η).

The main result of this section is the following proposition.

PROPOSITION 4.1

Let λ be defined by

λ =
(
1 + |∂xV ∧ η+ y ∧ ξ|2 + |∂xV (x)|2 + |ξ|2

(28)
+ |y|6 + |η|6 + 〈∂xV (x)∧ ξ〉6/5

)1/2
.

Then the following estimate(
〈∂xV (x)〉2/3 + 〈ξ〉2/3

)
‖u‖L2

+ ‖〈y〉γ/2|Dy|2u‖L2 + ‖〈y〉γ/2|y ∧Dy|2u‖L2 + ‖(λ2/3)wu‖L2(29)

� ‖PXu‖L2 + ‖u‖L2

holds for all u ∈ S(R3
y) uniformly with respect to X.
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We will make use of the multiplier method introduced in [11] to show the above

proposition through the following subsections.

4.1. Lemmas
Before the proof of Proposition 4.1, we list some lemmas.

LEMMA 4.2

Let λ be defined in (28). Then

(30) ∀σ ∈R, λσ ∈ S(λσ, |dy|2 + |dη|2)

uniformly with respect to X. Moreover if σ ≤ 1, then the inequality

(31) ∀|α|+ |β| ≥ 1, |∂α
y ∂

β
η (λ

σ)|� 〈∂xV (x)〉σ + 〈ξ〉σ

holds uniformly with respect to X, and thus

(32) (λσ)Wick = (λσ)w +
(
〈∂xV (x)〉σ + 〈ξ〉σ

)
rw,

with r ∈ S(1, |dy|2 + |dη|2) uniformly with respect to X.

Proof

By direct verification we see that for all (y, η) ∈R
6 and all α,β ∈ Z

3
+ one has∣∣∂α

y ∂
β
η

(
λ(y, η)2

)∣∣≤ λ(y, η)2,

which implies (30). Moreover note that

∀|α|+ |β| ≥ 1,
∣∣∂α

y ∂
β
η

(
λ(y, η)2

)∣∣≤ (
〈∂xV (x)〉+ 〈ξ〉

)
λ(y, η),

and thus

∀σ ∈R,
∣∣∂α

y ∂
β
η

(
λ(y, η)σ

)∣∣� |σ|λσ−1
(
〈∂xV (x)〉+ 〈ξ〉

)
.

Then we get (31) if σ ≤ 1, and thus (32) in view of (16); we complete the proof

of Lemma 4.2. �

LEMMA 4.3

Let λ be given in (28). Then for all u ∈ S(R3) one has

‖〈y〉γ/2|Dy|2u‖L2 + ‖〈y〉γ/2|y ∧Dy|2u‖L2

(33)
� ‖PXu‖L2 + ‖Φ2/3u‖L2 + ‖(λ2/3)wu‖L2 ,

where Φ is defined by

(34) Φ =Φ(X) =
(
1 + |∂xV (x)|2 + |ξ|2

)1/2
.

Proof

Similar to (7), we have, for any u ∈ S(R3
y),

(35) ‖〈y〉1+γ/2u‖2L2 + ‖〈y〉γ/2Dyu‖2L2 + ‖〈y〉γ/2(y ∧Dy)u‖2L2 �Re(PXu,u)L2 .
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Using the above inequality for Dyju gives

n∑
j,k=1

‖〈y〉γ/2Dyk
·Dyju‖2L2 �

n∑
j=1

|(PXDyju,Dyju)L2 |

� |(PXu,Dy ·Dyu)L2 |+
n∑

j=1

∣∣([PX ,Dyj ]u,Dyju)L2

∣∣,
which, with the fact that γ ≥ 0, implies

(36)
n∑

j,k=1

‖〈y〉γ/2Dyk
·Dyju‖2L2 � ‖PXu‖2L2 +

n∑
j=1

∣∣([PX ,Dyj ]u,Dyju)L2

∣∣.
So we only need to handle the last term in the above inequality. Direct verification

shows that

[PX ,Dyj ] = ξj +
(
(DyjB(y))Dy

)∗ ·B(y)Dy

+
(
B(y)Dy

)∗ · (DyjB(y)
)
Dy +

(
DyjF (y)

)
.

This gives

(37)
n∑

j=1

∣∣([P,Dyj ]u,Dyju)L2

∣∣≤B1 +B2 + B3,

with

B1 =
n∑

j=1

|(ξju,Dyju)L2 |,

B2 =

n∑
j=1

(∣∣(B(y)Dyu, (DyjB)DyDyju
)
L2

∣∣+ ∣∣((DyjB)Dyu,B(y)DyDyju
)
L2

∣∣),

B3 =

n∑
j=1

∣∣((DyjF (y))u,Dyju
)
L2

∣∣.
By Parseval’s theorem, we may write, denoting by û the Fourier transform with

respect to y,

|(ξju,Dyju)L2 |= |(ξj û, ηj û)L2(R6
η)
|,

and hence

B1 ≤ ε‖Dy ·Dyu‖2L2 +Cε‖〈ξ〉2/3u‖2L2 ,

due to the inequality

|ξjηj | ≤ ε|η|4 +Cε〈ξ〉4/3.

From (5) and (3) it follows that

B2 +B3 ≤ ε

3∑
j,k=1

‖〈y〉γ/2Dyk
Dyju‖2L2 +Cε‖〈y〉1+γ/2Dyu‖2L2 .
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Moreover repeating the arguments used in the proof of (21), with P replaced by

PX , gives

‖〈y〉1+γ/2Dyu‖2L2 � ‖〈y〉B(y)Dyu‖2L2 + ‖u‖2L2 � ‖〈∂xV 〉2/3u‖2L2 + ‖Pu‖2L2 .

Combining these inequalities, we have

B2 +B3 � ε

3∑
j,k=1

‖〈y〉γ/2Dyk
Dyju‖2L2 +Cε

(
‖PXu‖2L2 +

∥∥〈∂xV (x)〉2/3u
∥∥2
L2

)
.

Due to the arbitrariness of the number ε, the above inequalities along with (36)

and (37) give the desired upper bound for the first term on the left-hand side of

(33).

It remains to treat the second term. In the following discussion we use the

notation

T = (T1, T2, T3) = y ∧Dy, A= (A1,A2,A3) = y ∧ ξ + ∂xV (x)∧Dy.

From (35) it follows that

3∑
j,k=1

(
‖〈y〉γ/2Tk · Tju‖2L2 + ‖Dyk

· Tju‖2L2 + ‖yk · Tju‖2L2

)

≤
3∑

j=1

|(PXTju,Tju)L2 | ≤ |(PXu,T · Tu)L2 |+
∣∣([PX , T ]u,Tu)L2

∣∣,
which, with the fact that γ ≥ 0, implies

3∑
j,k=1

(
‖〈y〉γ/2Tk · Tju‖2L2 + ‖Dyk

· Tju‖2L2 + ‖yk · Tju‖2L2

)
(38)

� ‖PXu‖2L2 +
∣∣([PX , T ]u,Tu)L2

∣∣.
To handle the last term in the above inequality, we write

[PX , Tj ] = −Aj + [Dy, Tj ] · ν(y)Dy +Dy · ν(y)[Dy, Tj ] +Dy ·
(
Tjν(y)

)
Dy

+ [T,Tj ] · μ(y)T + T ·
(
Tjμ(y)

)
T + T · μ(y)[T,Tj ] +

(
TjF (y)

)
.

This gives

(39)
∣∣([P,T ]u,Tu)L2

∣∣≤N1 +N2 +N3 +N4,

with

N1 = |(Au,Tu)L2 |,

N2 =

3∑
j=1

∣∣([Dy, Tj ] · ν(y)Dyu+Dy · ν(y)[Dy, Tj ]u+Dy · (Tjν(y))Dyu,Tju
)
L2

∣∣,

N3 =

3∑
j=1

∣∣([T,Tj ] · μ(y)Tu+ T · (Tjμ(y))Tu+ T · μ(y)[T,Tj ]u,Tju
)
L2

∣∣,



546 Frédéric Hérau and Wei-Xi Li

N4 =

3∑
j=1

∣∣((∂yjF (y))u,Dyju
)
L2

∣∣.
Next we treat the above four terms. For the term N1 one has, with λ defined in

(28),

(Au,Tu)L2 ≤ ε‖(λ1/3)wTu‖2L2 +Cε‖(λ−1/3)wAu‖2L2

≤ ε‖(λ1/3)wTu‖2L2 +Cε‖(λ2/3)wu‖2L2 ,

the last inequality holding because

(λ−1/3)wA(λ−2/3)w ∈Op
(
S(1, |dy|2 + |dη|2)

)
.

On the other hand,

‖(λ1/3)wTu‖2L2 �
∣∣((λ2/3)wTu,Tu

)
L2

∣∣
�

∣∣((λ2/3)wu,T · Tu
)
L2

∣∣+ ∣∣([(λ2/3)w, T ]u,Tu
)
L2

∣∣
� ε‖T · Tu‖L2 +Cε‖(λ2/3)wu‖L2 +

∣∣([(λ2/3)w, T ]u,Tu
)
L2

∣∣.
Observing (30), symbolic calculus gives

[(λ2/3)w, T ] = [(λ2/3)w, y ∧Dy] =Dyb
w
1 + ybw2 + bw3 ,

with bj , 1≤ j ≤ 3 belonging to S(λ2/3, |dy|2+ |dη|2) uniformly with respect to X .

This shows that

∣∣([(λ2/3)w, T ]u,Tu
)
L2

∣∣� ε

3∑
j,k=1

(‖Dyk
·Tju‖2L2 + ‖yk ·Tju‖2L2)+Cε‖(λ2/3)wu‖2L2 .

Combining the above inequalities, we have

N1 � ε

3∑
j,k=1

(
‖〈y〉γ/2Tk ·Tju‖2L2 +‖Dyk

·Tju‖2L2 +‖yk ·Tju‖2L2

)
+Cε‖(λ2/3)wu‖2L2 .

Direct verification shows that

[Tj ,Dyk
] =

∑



a
j,kDy�
, [T1, T2] = iT3, [T3, T1] = iT2, [T2, T3] = iT1,

with a
j,k ∈ {0,−1,+1}, and thus

N2 +N3 � ε

3∑
j,k=1

(
‖〈y〉γ/2Tk · Tju‖2L2 + ‖〈y〉γ/2Dyk

· Tju‖2L2 + ‖〈y〉γ/2yk · Tju‖2L2

)

+Cε

(
‖〈y〉γ/2Tu‖2L2 + ‖〈y〉γ/2Dyu‖2L2 + ‖〈y〉γ/2yu‖2L2

)

� ε

3∑
j,k=1

(
‖〈y〉γ/2Tk · Tju‖2L2 + ‖〈y〉γ/2Dyk

· Tju‖2L2 + ‖〈y〉γ/2yk · Tju‖2L2

)

+Cε(‖PXu‖2L2 + ‖u‖2L2),
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the last inequality using (7). It remains to treat N4, and by (2) and (7) we have

N4 � ‖〈y〉1+γ/2u‖2L2 + ‖〈y〉γ/2Dyu‖2L2 � (‖PXu‖2L2 + ‖u‖2L2).

Combining the above estimates, we conclude that

N1 +N2 +N4 +N4

� ε

3∑
j,k=1

(
‖〈y〉γ/2Tk · Tju‖2L2 + ‖〈y〉γ/2Dyk

· Tju‖2L2 + ‖〈y〉γ/2yk · Tju‖2L2

)

+Cε

(
‖PXu‖2L2 + ‖(λ2/3)wu‖2L2 + ‖u‖2L2

)
.

This along with (38) and (39) yields the desired upper bound for ‖〈y〉γ/2|y ∧
Dy|2‖L2 , with ε small enough. The proof of Lemma 4.3 is thus complete. �

LEMMA 4.4

Let p ∈ S(1, |dy|2 + |dη|2) uniformly with respect to X, and let λ be defined in

(28). Then for any ε > 0 there exists a constant Cε, such that(
PX(λ1/3)wu, pw(λ1/3)wu

)
L2

(40)
� ε‖(λ2/3)wu‖2L2 +Cε

{
‖PXu‖2L2 + ‖Φ2/3u‖2L2 +

∥∥〈∂xV (x)∧ ξ〉2/5u
∥∥2
L2

}
,

where Φ is given in (34).

Proof

As a preliminary step we first show that for any ε, ε̃ > 0 there exists a constant

Cε,ε̃ such that

Re
(
[PX , (λ1/3)w]u,aw(λ1/3)wu

)
L2

� ε
(
PX(λ1/3)wu, (λ1/3)wu

)
L2(41)

+ ε̃‖(λ2/3)wu‖2L2 +Cε.ε̃

{
‖Φ2/3u‖2L2 +

∥∥〈∂xV (x)∧ ξ〉2/5u
∥∥2
L2

}
,

where a is an arbitrary symbol belonging to S(1, |dy|2 + |dη|2) uniformly with

respect to X . Observing (3) and (31), symbolic calculus (see, e.g., [17, Theo-

rem 2.3.8]) shows that the symbols of the commutators

[ν(y), (λ1/3)w] and [μ(y), (λ1/3)w]

belong to S(Φ1/3, |dy|2 + |dη|2) uniformly with respect to X . As a result, using

the notation

Z1 =
(
Dy · [ν(y), (λ1/3)w]Dyu,a

w(λ1/3)wu
)
L2 ,

Z2 =
(
(y ∧Dy) · [μ(y), (λ1/3)w](y ∧Dy)u,a

w(λ1/3)wu
)
L2 ,

we have

Z1 +Z2 ≤ ε‖〈Dy〉aw(λ1/3)wu‖2L2 + ε‖(y ∧Dy)a
w(λ1/3)wu‖2L2

+Cε‖〈Dy〉Φ1/3u‖2L2 +Cε‖(y ∧Dy)Φ
1/3u‖2L2
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≤ ε‖(〈Dy〉+ 〈y〉)(λ1/3)wu‖2L2 + ε‖(y ∧Dy)(λ
1/3)wu‖2L2

+CεΦ
2/3‖〈Dy〉u‖2L2 +CεΦ

2/3‖(y ∧Dy)u‖2L2 ,

the last inequality holding because

[Dy, a
w], [y ∧Dy, a

w]
(
(1 + 〈y〉+ 〈η〉)−1

)w ∈Op
(
S(1, |dy|2 + |dη|2)

)
,

since a ∈ S(1, |dy|2 + |dη|2) uniformly with respect to X . Moreover using (35)

gives

(42) Z1 +Z2 ≤ ε
(
PX(λ1/3)wu, (λ1/3)wu

)
L2 +Cε

{
‖PXu‖2L2 + ‖Φ2/3u‖2L2

}
.

Denote that

Z3 =
(
[Dy, (λ

1/3)w] · ν(y)Dyu,a
w(λ1/3)wu

)
L2

+
(
Dy · ν(y)[Dy, (λ

1/3)w]u,aw(λ1/3)wu
)
L2 ,

Z4 =
(
[y ∧Dy, (λ

1/3)w] · μ(y)(y ∧Dy)u,a
w(λ1/3)wu

)
L2

+
(
(y ∧Dy) · μ(y)[y ∧Dy, (λ

1/3)w]u,aw(λ1/3)wu
)
L2 .

Observing (31), symbolic calculus gives

[Dy, (λ
1/3)w] = aw1 , [(y ∧Dy), (λ

1/3)w] = aw2 Dy + aw3 y+ aw4 ,

with aj , 1≤ j ≤ 4 belonging to S(Φ1/3, |dy|2+ |dη|2) uniformly with respect to X .

It then follows that

Z3 +Z4 ≤ ε‖〈Dy〉aw(λ1/3)wu‖2L2 + ε‖〈y〉1+γ/2aw(λ1/3)wu‖2L2

+ ε‖〈y〉γ/2〈Dy〉aw(λ1/3)wu‖2L2 + ε‖〈y〉γ/2〈y ∧Dy〉aw(λ1/3)wu‖2L2

+Cε

∥∥〈y〉γ/2(〈y〉+ 〈Dy〉)Φ1/3u
∥∥2
L2 +Cε‖〈y〉γ/2(y ∧Dy)Φ

1/3u‖2L2 .

Using similar arguments as the treatment of Z1 and Z2, we conclude that

Z3 +Z4 ≤ ε
(
PX(λ1/3)wu, (λ1/3)wu

)
L2 +Cε

{
‖PXu‖2L2 + ‖Φ2/3u‖2L2

}
.

This along with (42) gives([(
B(y)Dy

)∗
B(y)Dy, (λ

1/3)w
]
u,aw(λ1/3)wu

)
L2

(43)
� ε

(
PX(λ1/3)wu, (λ1/3)wu

)
L2 +Cε

{
‖PXu‖2L2 + ‖Φ2/3u‖2L2

}
,

since ([(
B(y)Dy

)∗
B(y)Dy, (λ

1/3)w
]
u,aw(λ1/3)wu

)
L2 =

∑
1≤j≤4

Zj .

Moreover we have(
[F (y), (λ1/3)w]u,aw(λ1/3)wu

)
L2

(44)
� ε

(
PX(λ1/3)wu, (λ1/3)wu

)
L2 +Cε

(
‖PXu‖2L2 + ‖Φ2/3u‖2L2

)
,

which can be deduced similarly as above, since by (3),

[F (y), (λ1/3)w] ∈Op
(
S(〈y〉1+γΦ1/3, |dy|2 + |dη|2)

)
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uniformly with respect toX . Next we treat the commutator [iQX , (λ1/3)w], whose

symbol is

−λ1/3−2

6

[
2
(
∂xV (x)∧ η+ y ∧ ξ

)
·
(
∂xV (x)∧ ξ

)
+ 3|y|4∂xV (x) · y+ 3|η|4ξ · η

]
.

In view of (30) and (28), one can verify that the above symbol belongs to

S
(
〈∂xV (x)∧ ξ〉2/5λ1/3 +Φ2/3λ1/3, |dy|2 + |dη|2

)
uniformly with respect to X . As a result, observing that λ1/3 ∈ S(λ1/3, |dy|2 +
|dη|2) uniformly with respect to X , we have

(λ−1/3)waw[iQX , (λ1/3)w] ∈Op
(
S(〈∂xV (x)∧ ξ〉2/5 +Φ2/3, |dy|2 + |dη|2)

)
uniformly with respect to X , which implies, with ε̃ arbitrarily small that(

[iQX , (λ1/3)w]u,aw(λ1/3)wu
)
L2

� ε̃‖(λ2/3)w‖2L2 +Cε̃

(∥∥〈∂xV (x)∧ ξ〉2/5u
∥∥2
L2 + ‖Φ2/3u‖2L2

)
.

This along with (43) and (44) gives (41), since

[PX , (λ1/3)w] = [iQX , (λ1/3)w] +
[(
B(y)Dy

)∗
B(y)Dy + F (y), (λ1/3)w

]
.

Next we prove (40). The relation

Re
(
PX(λ1/3)wu, (λ1/3)wu

)
L2 +Re

(
PX(λ1/3)wu, pw(λ1/3)wu

)
L2

=Re
(
PXu, (λ1/3)w(Id+pw)(λ1/3)wu

)
L2

+Re
(
[PX , (λ1/3)w]u, (Id+pw)(λ1/3)wu

)
L2

gives, with ε̃ > 0 arbitrary,

Re
(
PX(λ1/3)wu, (λ1/3)wu

)
L2 +Re

(
PX(λ1/3)wu, pw(λ1/3)wu

)
L2

� ε̃‖(λ2/3)w‖2L2 +Cε̃‖PXu‖2L2 +Re
(
[PX , (λ1/3)w]u, (Id+pw)(λ1/3)wu

)
L2 .

We can apply (41) with a= 1+p to control the last term in the above inequality;

this gives, with ε, ε̃ > 0 arbitrarily small,

Re
(
PX(λ1/3)wu, (λ1/3)wu

)
L2 +Re

(
PX(λ1/3)wu, pw(λ1/3)wu

)
L2

� ε
(
PX(λ1/3)wu, (λ1/3)wu

)
L2 + ε̃‖(λ2/3)w‖2L2

+Cε,ε̃

(
‖PXu‖2L2 + ‖Φ2/3u‖2L2 +

∥∥〈∂xV (x)∧ ξ〉2/5u
∥∥2
L2

)
.

Taking ε small enough yields the desired estimate (40). The proof is thus com-

plete. �

4.2. Proof of Proposition 4.1
In what follows, let hN , with N a large integer, be a symbol defined by

(45) hN = hN (y, η) =
∂xV (x) · y+ ξ · η+ (∂xV ∧ η+ y ∧ ξ) · (y ∧ η)

λ
4/3
N

ψN (y, η),
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where

(46) λN =
(
1+ |∂xV ∧η+y∧ξ|2+ |∂xV (x)|2+ |ξ|2+N−1〈∂xV (x)∧ξ〉6/5

)1/2
,

and

(47) ψN (y, η) = χ
( (|y ∧ η|2 + |y|2 + |η|2)N2

λ
2/3
N

)
,

with χ ∈C∞
0 (R; [0,1]) such that χ= 1 in [−1,1] and supp χ⊂ [−2,2].

LEMMA 4.5

Let λN be given in (46). Then

∀σ ∈R, λσ
N ∈ S(λσ

N , |dy|2 + |dη|2)(48)

uniformly with respect to X. Moreover if σ ≤ 1, then

(49) ∀|α|+ |β| ≥ 1, |∂α
y ∂

β
η (λ

σ
N )|� 〈∂xV (x)〉σ + 〈ξ〉σ.

Proof

The proof is the same as that of Lemma 4.2. �

LEMMA 4.6

The symbol hN given in (45) belongs to S(1, |dy|2+ |dη|2) uniformly with respect

to X.

Proof

It is just a straightforward verification by (48). �

LEMMA 4.7

Let λN and ψN be given in (46) and (47). Then for any σ ∈R the following two

inequalities

(50)
∣∣(ξ · ∂η + ∂xV (x) · ∂y

)
λσ
N

∣∣�Nλ
σ+2/3
N

and

(51)
∣∣(ξ · ∂η + ∂xV (x) · ∂y

)
ψN

∣∣�N3(|y ∧ η|2 + |y|2 + |η|2)

hold uniformly with respect to (x, ξ).

Proof

Using the inequality 〈∂xV ∧ ξ〉 ≤N5/6λ
5/3
N due to (46), we can verify that

|ξ · ∂η(λ2
N )|+ |∂xV (x) · ∂y(λ2

N )|� λN 〈∂xV ∧ ξ〉�Nλ
2+2/3
N .

Then for any σ ∈R one has

|ξ · ∂η(λσ
N )|+ |∂xV (x) · ∂y(λσ

N )|�Nλσ
Nλ

2/3
N .

Thus (50) follows. To show (51), we write∣∣(ξ · ∂η + ∂xV (x) · ∂y
)
ψN

∣∣≤ (K1 +K2),
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with

K1 = N2
∣∣λ−2/3

N

(
ξ · ∂η + ∂xV (x) · ∂y

)
[|y ∧ η|2 + |y|2 + |η|2]

× χ′((|y ∧ η|2 + |y|2 + |η|2)N2λ
−2/3
N

)∣∣,
K2 = N2

∣∣(|y ∧ η|2 + |y|2 + |η|2)
[(
ξ · ∂η + ∂xV (x) · ∂y

)
λ
−2/3
N

]

× χ′((|y ∧ η|2 + |y|2 + |η|2)N2λ
−2/3
N

)∣∣.
Using (50) shows that

K2 �N3(|y ∧ η|2 + |y|2 + |η|2).

Moreover direct computation gives

K1 �N2λ
1/3
N (|y ∧ η|+ |y|+ |η|)χ′((|y ∧ η|2 + |y|2 + |η|2)N2λ

−2/3
N

)
�N3(|y ∧ η|2 + |y|2 + |η|2),

the last inequality following from the fact that λ
2/3
N � (|y ∧ η|2 + |y|2 + |η|2)N2

on the support of the function

χ′((|y ∧ η|2 + |y|2 + |η|2)N2λ
−2/3
N

)
.

Then the above inequalities yield the desired inequality (51). The proof of Lem-

ma 4.7 is thus complete. �

Proof of Proposition 4.1

This will occupy the rest of this section. Since the proof is quite long, we divide

it into three steps.

Step 1. Let N be a large integer to be determined later, and let H = hWick
N be

the Wick quantization of the symbol hN given in (45). To simplify the notation

we will use CN to denote different suitable constants which depend only on N .

In the following discussion, let u ∈ S(R3
y). By (16) and Lemma 4.6 we can find

a symbol h̃N such that H = h̃w
N with h̃N ∈ S(1, |dy|2 + |dη|2) uniformly with

respect to X . Then using (19) gives∣∣((B(y)Dy)
∗B(y)Dyu,Hu

)
L2 + (Fu,Hu)L2

∣∣� |(PXu,u)L2 |.

This together with the relation

Re(iQXu,Hu)L2 = Re(PXu,Hu)L2 −Re
(
(B(y)Dy)

∗B(y)Dyu,Hu
)
L2

−Re(Fu,Hu)L2

yields

(52) Re(iQXu,Hu)L2 � |(PXu,u)L2 |+ |(PXu,Hu)L2 |.

Next we give a lower bound for the term on the left-hand side. Observe that the

symbol of QX is a first-order polynomial in y, η. Then

iQX = i
(
y · ξ − ∂xV (x) · η

)Wick
,
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and hence

(53) Re(iQXu,Hu)L2 =
1

4π

({
h, y · ξ − ∂xV (x) · η

}Wick
u,u

)
L2 ,

where {·, ·} is the Poisson bracket defined in (17). Direct calculus shows that{
h, y · ξ − ∂xV (x) · η

}

=
|∂xV (x)∧ η+ y ∧ ξ|2 + |∂xV (x)|2 + |ξ|2 + 2(∂xV ∧ ξ) · (y ∧ η)

λ
4/3
N

ψN

+ (∂xV ∧ η+ y ∧ ξ) · (y ∧ η)[(ξ · ∂η + ∂xV · ∂y)(λ−4/3
N ψN )]

= λ
2/3
N ψN − 1 +N−1〈∂xV (x)∧ y〉6/5

λ
4/3
N

ψN +
2(∂xV ∧ ξ) · (y ∧ η)

λ
4/3
N

ψN

+ (∂xV ∧ η+ y ∧ ξ) · (y ∧ η)[(ξ · ∂η + ∂xV · ∂y)(λ−4/3
N ψN )]

≥ λ
2/3
N − λ

2/3
N (1−ψN )− 1 +N−1〈∂xV ∧ ξ〉6/5

λ
4/3
N

− 2|(∂xV ∧ ξ) · (y ∧ η)|
λ
4/3
N

ψN

−
∣∣(∂xV ∧ η+ y ∧ ξ) · (y ∧ η)[(ξ · ∂η + ∂xV · ∂y)(λ−4/3

N ψN )]
∣∣

≥ λ
2/3
N −N2(|y ∧ η|2 + |y|2 + |η|2)− 1 +N−1〈∂xV ∧ ξ〉6/5

λ
4/3
N

− 2|(∂xV ∧ ξ) · (y ∧ η)|
λ
4/3
N

ψN

−
∣∣(∂xV ∧ η+ y ∧ ξ) · (y ∧ η)[(ξ · ∂η + ∂xV · ∂y)(λ−4/3

N ψN )]
∣∣,

the last inequality holding because λ
2/3
N ≤N2(|y∧η|2+ |y|2+ |η|2) on the support

of 1−ψN . Due to the positivity of the Wick quantization, the above inequalities,

along with (52), (53), and the estimate

(54)
(
(|y ∧ η|2 + |y|2 + |η|2)Wicku,u

)
L2 � |(PXu,u)L2 |+ ‖u‖2L2

due to (35), yield

(
(λ

2/3
N )Wicku,u

)
L2R3

y)
�

3∑
j=1

(RWick
j u,u)L2 + |(PXu,u)L2 |

(55)
+ |(PXu,Hu)L2 |+ ‖u‖2L2 ,

where Rj are given by

R1 =
1+N−1〈∂xV ∧ ξ〉6/5

λ
4/3
N

,

R2 =
2|(∂xV ∧ ξ) · (y ∧ η)|

λ
4/3
N

ψN ,

R3 = |(∂xV ∧ η+ y ∧ ξ) · (y ∧ η)[(ξ · ∂η + ∂xV · ∂y)(λ−4/3
N ψN )]|.
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Step 2. In this step we treat the above terms Rj , and we show that there

exists a symbol q, belonging to S(1, |dy|2 + |dη|2) uniformly with respect to X ,

such that

3∑
j=1

(RWick
j u,u)L2 ≤ N−1/3

(
(λ

2/3
N )Wicku,u

)
L2

(56)
+CN

{
|(PXu,u)L2 |+ |(PXu, qWicku)L2 |+ ‖u‖2L2

}
.

For this purpose we define q by

q(y, η) = qX(y, η) =
(∂xV (x)∧ ξ) · (∂xV (x)∧ η+ y ∧ ξ)

〈∂xV (x)∧ ξ〉8/5 ϕ(y, η),

with

ϕ(y, η) = χ
( |∂xV (x)∧ η+ y ∧ ξ|2 + |∂xV (x)|2 + |ξ|2

〈∂xV (x)∧ ξ〉6/5
)
.

Then one can verify that q ∈ S(1, |dy|2 + |dη|2) uniformly with respect to (x, ξ).

Thus similar to (52) we conclude that

(57) Re(iQXu, qWicku)L2 � |(PXu,u)L2 |+ |(PXu, qWicku)L2 |.

On the other hand, it is just a direct computation of the Poisson bracket to see

that

Re(iQXu, qWicku)L2 =
1

4π

({
q(y, η), y · ξ − ∂xV (x) · η

}Wick
u,u

)
L2

(58)

=
1

4π
(RWick

1,1 u,u)L2 +
1

4π
(RWick

1,2 u,u)L2 ,

with

R1,1 =
2|∂xV (x)∧ ξ|2
〈∂xV (x)∧ ξ〉8/5ϕ,

R1,2 =
(∂xV (x)∧ ξ) · (∂xV (x)∧ η+ y ∧ ξ)

〈∂xV (x)∧ ξ〉8/5
[(
ξ · ∂η + ∂xV (x) · ∂y

)
ϕ(y, η)

]
.

Moreover we have

|R1,2|�
(
|∂xV (x)∧ η+ y ∧ ξ|2 + |∂xV (x)|2 + |ξ|2

)1/3 � λ
2/3
N

due to the fact that

〈∂xV (x)∧ ξ〉2/5 ≈
(
|∂xV (x)∧ η+ y ∧ ξ|2 + |∂xV (x)|2 + |ξ|2

)1/3
on the support of ϕ′, and

1

2
R1,1 = 〈∂xV (x)∧ ξ〉2/5 − 1

〈∂xV (x)∧ ξ〉8/5ϕ− 〈∂xV (x)∧ ξ〉2/5(1−ϕ)

≥ 〈∂xV (x)∧ ξ〉2/5 − 1

〈∂xV (x)∧ ξ〉8/5

−
(
|∂xV (x)∧ η+ y ∧ ξ|2 + |∂xV (x)|2 + |ξ|2

)1/3
,
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where the inequality holds because

〈∂xV (x)∧ ξ〉2/5 ≤
(
|∂xV (x)∧ η+ y ∧ ξ|2 + |∂xV (x)|2 + |ξ|2

)1/3
on the support of 1− ϕ. These inequalities, combining (58) and (57), yield
(
(〈∂xV (x)∧ ξ〉2/5)Wicku,u

)
L2 �

(
(λ

2/3
N )Wicku,u

)
L2

+ |(PXu,u)L2 |+ |(PXu, qWicku)L2 |+ ‖u‖2L2 .

Consequently, observing that

R1 =
1+N−1〈∂xV ∧ ξ〉6/5

λ
4/3
N

≤N−1/3〈∂xV (x)∧ ξ〉2/5 + 1,

and

R2 =
|(∂xV ∧ ξ) · (y ∧ η)|

λ
4/3
N

ψN � N−1〈∂xV ∧ ξ〉
λ

N |y ∧ η|
λ
1/3
N

ψN

≤N−1/2〈∂xV (x)∧ ξ〉2/5,

we get the desired upper bound for the terms R1 and R2.

It remains to handle R3. By virtue of (50) and (51), we compute

R3 �Nλ
1/3
N |y∧η|+N2(|y∧η|2+ |y|2+ |η|2)≤N−1λ

2/3
N +CN (|y∧η|2+ |y|2+ |η|2).

As a result, the positivity of Wick quantization gives

(RWick
3 u,u)L2 ≤N−1

(
(λ

2/3
N )Wicku,u

)
L2 +CN

(
(|y ∧ η|2 + |y|2 + |η|2)Wicku,u

)
L2

≤N−1
(
(λ

2/3
N )Wicku,u

)
L2 +CN

{
|(PXu,u)L2 |+ ‖u‖2L2

}
,

the last inequality using (54). Thus the desired estimate (56) follows.

Step 3. Now we proceed to the proof of Proposition 4.1. From (55) and (56),

it follows that there exists a symbol p ∈ S(1, |dy|2+ |dη|2) uniformly with respect

to X such that(
(λ

2/3
N )Wicku,u

)
L2 ≤ N−1/3

(
(λ

2/3
N )Wicku,u

)
L2

+CN

{
|(PXu,u)L2 |+ |(PXu, pWicku)L2 |+ ‖u‖2L2

}
,

which allows us to choose an integer N0 large enough such that(
(λ

2/3
N0

)Wicku,u
)
L2 �CN0

{
|(PXu,u)L2 |+ |(PXu, pWicku)L2 |+ ‖u‖2L2

}
.

Consequently, observing that

λ2/3 � λ
2/3
N0

+ |y|2 + |η|2

with λ defined in (28), we get, combining (54),

(59)
(
(λ2/3)Wicku,u

)
L2 � |(PXu,u)L2 |+ |(PXu, pWicku)L2 |+ ‖u‖2L2 .

Note that 〈∂xV (x)〉2/3 + 〈ξ〉2/3 ≤ λ2/3; then the above inequality yields(
(〈∂xV (x)〉2/3 + 〈ξ〉2/3)u,u

)
L2 � |(PXu,u)L2 |+ |(PXu, pWicku)L2 |+ ‖u‖2L2 .
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Since p ∈ S(1, |dy|2 + |dη|2) uniformly with respect to X , applying the above

inequality to the function
(
〈∂xV (x)〉2/3 + 〈ξ〉2/3

)1/2
u

implies

(60)
(
〈∂xV (x)〉2/3 + 〈ξ〉2/3

)
‖u‖L2 � ‖PXu‖L2 + ‖u‖L2 .

Similarly, since 〈∂xV (x) ∧ ξ〉2/5 ≤ λ2/3, by virtue of (59) we have, repeating the

above arguments,

〈∂xV (x)∧ ξ〉2/5‖u‖L2 � ‖PXu‖L2 + ‖u‖L2 .(61)

Now we apply (59) to the function (λ1/3)wu to get(
(λ2/3)Wick(λ1/3)wu, (λ1/3)wu

)
L2

�
∣∣(PX(λ1/3)wu, (λ1/3)wu

)
L2

∣∣+ ∣∣(PX(λ1/3)wu, pWick(λ1/3)wu
)
L2

∣∣
+ ‖(λ1/3)wu‖2L2

≤ ε‖(λ2/3)wu‖2L2 +Cε

(
‖Φ2/3u‖2L2 +

∥∥〈∂xV (x)∧ ξ〉2/5u
∥∥2
L2 + ‖PXu‖2L2

)
,

where the last inequality follows from (40). Furthermore, using (32) implies(
(λ2/3)Wick(λ1/3)wu, (λ1/3)wu

)
L2 � ‖(λ2/3)wu‖2L2 − ‖Φ2/3u‖2L2 .

Combining the above inequalities, we have

‖(λ2/3)wu‖2L2 � ε‖(λ2/3)wu‖2L2

+Cε

(
‖Φ2/3u‖2L2 +

∥∥〈∂xV (x)∧ ξ〉2/5u
∥∥2
L2 + ‖u‖2L2

)

� ε‖(λ2/3)wu‖2L2 +Cε

(
‖PXu‖2L2 + ‖u‖2L2

)
,

the last inequality following from (60) and (61). Taking the number ε small

enough yields

‖(λ2/3)wu‖L2 � ‖PXu‖L2 + ‖u‖L2 .

This, along with (33) and (60), gives the desired estimate (29), completing the

proof of Proposition 4.1. �

5. Proof of Theorem 1.1: Regularity estimates in all variables

In this section we show the hypoelliptic estimates in spatial and velocity variables

for the original operator P . Throughout this section ‖ · ‖L2 stands for the norm

in L2(R6
x,y).

PROPOSITION 5.1

Let V (x) be a C2-function satisfying the assumption (8). Then for any u ∈
C∞

0 (R2n) one has
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‖|Dx|2/3u‖L2 + ‖〈y〉γ/2|Dy|2u‖L2 + ‖〈y〉γ/2|y ∧Dy|2u‖L2

(62)
� ‖Pu‖L2 + ‖u‖L2 .

Proof

The proof is quite similar to that of [19, Proposition 4.1]. So we only give a

sketch here and refer to [19] for more detailed discussions. To each fixed xμ ∈R
3

we associate an operator

Pxμ = i
(
y ·Dx − ∂xV (xμ) ·Dy

)
+
(
B(y)Dy

)∗ ·B(y)Dy + F (y).

Let PXμ , with Xμ = (xμ, ξ), be the operator defined in (27); that is,

PXμ = i
(
y · ξ − ∂xV (xμ) ·Dy

)
+
(
B(y)Dy

)∗ ·B(y)Dy + F (y).

Observe that

FxPxμ = PXμ ,

where Fx stands for the partial Fourier transform in the x variable. Suppose V

satisfies the condition (8). Then performing the Fourier transform with respect

to x, it follows from (29) that for all u ∈C∞
0 (R6),

‖〈Dx〉2/3u‖L2 + ‖〈y〉γ/2|Dy|2u‖L2 + ‖〈y〉γ/2|y ∧Dy|2u‖L2

(63)
� ‖Pxμu‖L2 + ‖u‖L2 .

Li [19, Lemma 4.2] showed that the metric

gx = 〈∂xV (x)〉2/3|dx|2, x ∈R
3

is slowly varying; that is, we can find two constants C∗, r0 > 0 such that if gx(x−
y)≤ r20 , then

C−1
∗ ≤ gx

gy
≤C∗.

The main feature of a slowly varying metric is that it allows us to introduce some

partitions of unity related to the metric (see, e.g., [14, Lemma 18.4.4]). Precisely,

we could find a constant r > 0 and a sequence xμ ∈R
n, μ≥ 1 such that the union

of the balls

Ωμ,r =
{
x ∈R

n;gxμ(x− xμ)< r2
}

covers the whole space Rn. Moreover there exists a positive integer Nr, depending

only on r, such that the intersection of more than Nr balls is always empty. One

can choose a family of nonnegative functions {ϕμ}μ≥1 in S(1, gx) such that

suppϕμ ⊂Ωμ,r,
∑
μ≥1

ϕ2
μ = 1, and sup

μ≥1
|∂xϕμ(x)|� 〈∂xV (x)〉1/3.

By [19, Lemma 4.6] we see

(64) ‖〈Dx〉2/3u‖2L2 �
∑
μ≥1

‖〈Dx〉2/3ϕμu‖2L2 + ‖Pu‖2L2 + ‖u‖2L2 .
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Using the notation

Rμ =−y · ∂xϕμ(x)−ϕμ

(
∂xV (x)− ∂xV (xμ)

)
· ∂y,

we write

ϕμPu= Pxμϕμu+Rμu.

Then∑
μ≥1

‖Pxμϕμu‖2L2 ≤ 2
∑
μ≥1

(‖ϕμPu‖2L2 + ‖Rμu‖2L2)≤ 2‖Pu‖2L2 + 2
∑
μ≥1

‖Rμu‖2L2 .

On the other hand, by [19, Lemma 4.9] we have∑
μ≥1

‖Rμu‖2L2 � ‖Pu‖2L2 + ‖u‖2L2 .

The above two inequalities yield

∀u ∈C∞
0 (R2n),

∑
μ≥1

‖Pxμϕμu‖2L2 � ‖Pu‖2L2 + ‖u‖2L2 .

Using (64) and (63), we have

‖〈Dx〉2/3u‖2L2 �
∑
μ≥1

‖〈Dx〉2/3ϕμu‖2L2 + ‖Pu‖2L2 +C‖u‖2L2

�
∑
μ≥1

‖Pxμϕμu‖2L2 + ‖Pu‖2L2 + ‖u‖2L2 ,

and

‖〈y〉γ/2|Dy|2u‖2L2 + ‖〈y〉γ/2|y ∧Dy|2u‖2L2

=
∑
μ≥1

‖〈y〉γ/2|Dy|2ϕμu‖2L2 +
∑
μ≥1

‖〈y〉γ/2|y ∧Dy|2ϕμu‖2L2

�
∑
μ≥1

‖Pxμϕμu‖2L2 +
∑
μ≥1

‖ϕμu‖2L2 .

As a result, combining these inequalities gives (62). The proof is then complete.

�

6. End of the proof of Theorem 1.1: Anisotropic estimates

In this section we prove the anisotropic estimate (11) in Theorem 1.1 under the

condition (10). Starting from the estimates for operators with parameters given

in Section 4, we first establish an estimate in Wick quantization, and then we

come back to the Weyl quantization from the Wick quantization.

NOTATIONS

Throughout this section, ‖ · ‖L2 stands for the norm in L2(R6
x,y). Given a sym-

bol p, we use pWick to denote the Wick quantization of p in all variables (x, y, ξ, η);

we use pWick(x) and pWick(y) to denote the Wick quantization of p in (x, ξ) and in
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(y, η), respectively; similarly we use it for the Weyl quantization pw, pw(x), and

pw(y), and for the wave-packets transform W , Wx, and Wy .

PROPOSITION 6.1 (ESTIMATES IN WICK QUANTIZATION)

Let V satisfy the condition (10). Then

(65) ∀u ∈ S(R6
x,y), ‖(λ2/3)Wicku‖L2 ≤ ‖P̃ u‖L2 + ‖Pu‖L2 + ‖u‖L2 ,

where λ is given in (28) and P̃ is defined by

(66) P̃ = i
(
y · ξ − ∂xV (x) ·Dy

)Wick(x)
+
(
B(y)Dy

)∗ ·B(y)Dy + F (y).

Proof

We prove this proposition in three steps. In what follows let u ∈ S(R6
x,y), and use

the notation X = (x, ξ).

Step 1. Let λ be given in (28). Then for any f ∈ S(R9
x,ξ,y), we have, by (32),

‖(λ2/3)Wick(y)f(X, ·)‖L2(R3
y)

� ‖(λ2/3)w(y)f(X, ·)‖L2(R3
y)
+
∥∥〈∂xV (x)〉2/3f(X, ·)

∥∥
L2(R3

y)

+ ‖〈ξ〉2/3f(X, ·)‖L2(R3
y)
.

This along with (29) gives for all f ∈ S(R9
x,ξ,y),∥∥〈∂xV (x)〉2/3f

∥∥
L2(R3

y)
+ ‖(λ2/3)Wick(y)f‖L2(R3

y)
� ‖PXf‖L2(R3

y)
+ ‖f‖L2(R3

y)
,

which holds uniformly with respect to (x, ξ). Integrating both sides of the above

estimate over R6
x,ξ yields, for all f ∈ S(R9

x,ξ,y),∥∥〈∂xV (x)〉2/3f
∥∥
L2(R9)

+ ‖(λ2/3)Wick(y)f‖L2(R9) � ‖PXf‖L2(R9) + ‖f‖L2(R9).

In particular, for any u ∈ S(R6
x,y), applying the above inequality to the function

Wxu, with Wx the wave-packets transform only in the (x, ξ) variables, we have∥∥〈∂xV (x)〉2/3Wxu
∥∥
L2(R9)

+ ‖(λ2/3)Wick(y)Wxu‖L2(R9)

� ‖PXWxu‖L2(R9) + ‖Wxu‖L2(R9).

Note that the operator πH =WxW
∗
x is an orthogonal projection on a closed space

in L2; then from the above inequality it follows that

‖WxW
∗
x (λ

2/3)Wick(y)Wxu‖L2(R9) � ‖(λ2/3)Wick(y)Wxu‖L2(R9)

≤ ‖PXWxu‖L2(R9) + ‖Wxu‖L2(R9).

On the other hand, by (13) we see

‖WxW
∗
x (λ

2/3)Wick(y)Wxu‖L2(R9) = ‖W ∗
x (λ

2/3)Wick(y)Wxu‖L2(R6)

= ‖(λ2/3)Wicku‖L2(R6),

where the last equality follows from the relation

W ∗
xW

∗
y λ

2/3WyWx =W ∗λ2/3W.
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Then the above inequalities yield

‖〈∂xV (x)〉2/3Wxu‖L2(R9) + ‖(λ2/3)Wicku‖L2(R6)

� ‖PXWxu‖L2(R9) + ‖Wxu‖L2(R9)(67)

� ‖πHPXWxu‖L2(R9) + ‖(1− πH)PXWxu‖L2(R9) + ‖u‖L2(R6).

Using (13) again, we have

‖πHPXWxu‖L2(R9) = ‖WxW
∗
xPXWxu‖L2(R9) = ‖W ∗

xPXWxu‖L2(R6)

=
∥∥[W ∗

x

(
iy · ξ − i∂xV (x) ·Dy

)
Wx

+W ∗
x

(
(B(y)Dy)

∗B(y)Dy + F (y)
)
Wx

]
u
∥∥
L2(R6)

,

and thus, with P̃ given in (66),

(68) ‖πHPXWxu‖L2(R9) = ‖P̃ u‖L2(R6)

due to the relation

W ∗
x

(
(B(y)Dy)

∗B(y)Dy + F (y)
)
Wx =

(
B(y)Dy

)∗
B(y)Dy + F (y),

since W ∗
xWx = Id and (B(y)Dy)

∗B(y)Dy + F (y) commutes with Wx. Moreover

observe

(1− πH)
(
(B(y)Dy)

∗B(y)Dy + F (y)
)
Wx = 0,

since (1− πH)Wx =Wx(Id−W ∗
xWx) = 0. Thus

(1− πH)PXWx =
(
iy · ξ − i∂xV (x) ·Dy

)
Wx −WxW

∗
x

(
iy · ξ − i∂xV (x) ·Dy

)
Wx

= −[WxW
∗
x , iy · ξ − i∂xV (x) ·Dy]Wx.

This along with (67) and (68) gives∥∥〈∂xV (x)〉2/3Wxu
∥∥
L2(R9)

+ ‖(λ2/3)Wicku‖L2(R6)

(69)
� ‖P̃ u‖L2(R6) + ‖u‖L2(R6) +

∥∥[πH , y · ξ − ∂xV (x) ·Dy]Wxu
∥∥
L2(R9)

.

Step 2. In this step we deal with the last term in (69), and we show that for

ε > 0 there exists a constant Cε such that

(70) ‖[πH, y · ξ]Wxu‖L2(R9) � ‖Pu‖L2(R6) + ‖u‖L2(R6)

and ∥∥[πH, ∂xV (x) ·Dy]Wxu
∥∥
L2(R9)

≤ ε
∥∥〈∂xV (x)〉2/3Wxu

∥∥
L2(R9)

(71)

+Cε(‖Pu‖L2(R6) + ‖u‖L2(R6)).(72)

Let us first prove (70). In view of (14) we see that the kernel of the commutator

[πH, y · ξ] is given by

K1(X,X̃) =K1

(
(x, ξ), (x̃, ξ̃)

)
= e−π/2(|x−x̃|2+|ξ−ξ̃|2)eiπ(x−x̃)·(ξ+ξ̃)(y · ξ̃ − y · ξ).
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Then

|K1(X,X̃)| ≤ e−π/2(|x−x̃|2+|ξ−ξ̃|2)|ξ − ξ̃||y|,

and thus

sup
X∈R6

∫
R6

|K1(X,X̃)|dX̃ + sup
X̃∈R6

∫
R6

|K1(X,X̃)|dX � |y|.

Consequently using the Schur criterion we have

‖[πH, y · ξ]Wxu(·, y)‖L2(R6
x,ξ)

� |y|‖Wxu(·, y)‖L2(R6
x,ξ)

= |y|‖u(·, y)‖L2(R3
x)
,

the last equality following from (13). Integrating both sides with respect to y

gives

‖[πH, y · ξ]Wxu‖L2(R9) � ‖〈y〉u‖L2(R6),

which along with (7) gives the desired estimate (70).

It remains to show (71). In view of (14) we see that the kernel of the com-

mutator [πH, ∂xV (x) ·Dy] is given by

K2(X,X̃) =
∑

1≤j≤3

K̃2,j ·Dyj ,

with

K̃2,j(X,X̃) = e−π/2(|x−x̃|2+|ξ−ξ̃|2)eiπ(x−x̃)·(ξ+ξ̃)
(
∂xjV (x̃)− ∂xjV (x)

)
.

Direct computation shows that

sup
X∈R6

∫
R6

|K̃2,j(X,X̃)|〈∂xV (x)〉−1/3 dX̃

+ sup
X̃∈R6

∫
R6

|K̃2,j(X,X̃)|〈∂xV (x)〉−1/3 dX �C,

since

|∂xV (x̃)− ∂xV (x)| � |x− x̃|
∑
j,k

∫ 1

0

∣∣∂xjxk
V
(
x+ θ(x̃− x)

)∣∣dθ

� |x− x̃|
∫ 1

0

〈x+ θ(x̃− x)〉M/3 dθ

� CM 〈x− x̃〉1+M/3〈x〉M/3

� CM 〈x− x̃〉1+M/3〈∂xV (x)〉1/3,

the second and the last inequalities using (10), and the third inequality holding

because

〈x+ θ(x̃− x)〉M/3 ≤CM 〈θ(x̃− x)〉M/3〈x〉M/3

with CM a constant depending only on M . Using again the Schur criterion for

the kernel

K̃2,j(X,X̃)〈∂xV (x)〉−1/3
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implies

∥∥[πH, ∂xV (x) ·Dy]Wxu
∥∥
L2(R9)

�
3∑

j=1

‖K̃2,jDyjWxu‖L2(R9)

�
∥∥〈∂xV (x)〉1/3〈Dy〉Wxu

∥∥
L2(R9)

.

On the other hand, for any ε > 0, we have∥∥〈∂xV (x)〉1/3〈Dy〉Wxu
∥∥
L2(R9)

≤ ε
∥∥〈∂xV (x)〉2/3Wxu

∥∥
L2(R9)

+Cε‖〈Dy〉2Wxu‖L2(R9)

and moreover by (13) and (62),

‖〈Dy〉2Wxu‖L2(R9) = ‖〈Dy〉2u‖L2(R6) � ‖Pu‖L2 + ‖u‖L2 .

Then (71) follows from the above inequalities.

Step 3. By virtue of (69), (70), and (71), the desired estimate (65) follows

if we let the number ε in (71) be small enough. The proof of Proposition 6.1 is

thus complete. �

End of the proof of Theorem 1.1

Now we are ready to prove the anisotropic estimate (11) in Theorem 1.1. This

will occupy the rest of the section.

Step a. Using the inequality

‖(λ2/3)wu‖L2 � ‖(λ2/3)Wicku‖L2 +
∥∥((λ2/3)w − (λ2/3)Wick

)
u
∥∥
L2 ,

we have, by (65),

‖(λ2/3)wu‖L2 � ‖Pu‖L2 + ‖u‖L2 +R1 + ‖(P − P̃ )u‖L2

(73)
� ‖Pu‖L2 + ‖u‖L2 +R1 +R2,

with

R1 =
∥∥((λ2/3)w − (λ2/3)Wick

)
u
∥∥
L2 ,

R2 =
∥∥(∂xV (x)− (∂xV (x))Wick(x)

)
·Dyu

∥∥
L2 .

Here we used the fact that

P − P̃ = i
(
y ·Dx − ∂xV (x) ·Dy

)
− i

(
y · ξ − ∂xV (x) ·Dy

)Wick(x)

= −i∂xV (x) ·Dy + i
(
∂xV (x) ·Dy

)Wick(x)
,

the last equality holding because y ·Dx − (y · ξ)Wick(x) = 0 due to (16) since the

symbol y · ξ is a first-order polynomial in (x, ξ).

Step b. In this step we show that

(74)
∥∥((λ2/3)w − (λ2/3)Wick

)
u
∥∥
L2 ≤ ‖Pu‖L2 + ‖u‖L2 .

By (16),

(λ2/3)Wick − (λ2/3)w = rw
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with

r(x, y, ξ, η) = r(Z) =

∫ 1

0

∫
R12

(1− θ)(λ2/3)′′(Z + θZ̃)Z̃2e−2π|Z̃|226 dZ̃ dθ.

Direct computation shows that if |α|+ |β|+ |α̃|+ |β̃| ≥ 1, then

|∂α
x ∂

β
ξ ∂

α̃
y ∂

β̃
η (λ

2/3)| ≤Cα,β,α̃,β̃

(
〈∂xV (x)〉2/3 + 〈ξ〉2/3 + 〈y〉+ 〈η〉

)
.

As a result we have, with Z = (x, y, ξ, η) and Z̃ = (x̃, ỹ, ξ̃, η̃),

(75) |∂α
x ∂

β
ξ ∂

α̃
y ∂

β̃
η r(Z)| ≤Cα,β,α̃,β̃(L1 +L2 +L3 +L4),

where the Lj ’s are given by

L1 =

∫ 1

0

∫
R12

〈∂xV (x+ θx̃)〉2/3|Z̃|2e−2π|Z̃|226 dZ̃ dθ,

L2 =

∫ 1

0

∫
R12

〈ξ + θξ̃〉2/3|Z̃|2e−2π|Z̃|226 dZ̃ dθ,

L3 =

∫ 1

0

∫
R12

〈y+ θỹ〉|Z̃|2e−2π|Z̃|226 dZ̃ dθ,

L4 =

∫ 1

0

∫
R12

〈η+ θη̃〉|Z̃|2e−2π|Z̃|226 dZ̃ dθ.

As for the term L1, we use the condition (10) to compute

L1 �
∫ 1

0

∫
R12

〈x+ θx̃〉2M/3|Z̃|2e−2π|Z̃|226 dZ̃ dθ

�
∫
R12

〈x〉2M/3〈x̃〉2M/3|Z̃|2e−2π|Z̃|226 dZ̃

� 〈x〉2M/3 � 〈∂xV (x)〉2/3.

Using the inequality

〈ξ + θξ̃〉2/3 � 〈ξ〉2/3〈ξ̃〉2/3,

we have

L2 � 〈ξ〉2/3
∫
R12

〈ξ̃〉2/3|Z̃|2e−2π|Z̃|226 dZ̃ � 〈ξ〉2/3.

Similarly,

L3 +L4 � 〈y〉+ 〈η〉.

It follows from (75) and the above estimates that

rw
(
(〈∂xV (x)〉2/3+〈ξ〉2/3+〈y〉+〈η〉)−1

)w ∈Op
(
S(1, |dx|2+ |dy|2+ |dξ|2+ |dη|2)

)
,

and thus

‖rwu‖L2 �
∥∥(〈∂xV (x)〉2/3

)w
u
∥∥
L2 +

∥∥(〈ξ〉2/3)wu∥∥
L2

+ ‖〈y〉wu‖L2 + ‖〈η〉wu‖L2
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� ‖〈∂xV (x)〉2/3u‖L2 + ‖〈Dx〉2/3u‖L2 + ‖〈y〉u‖L2 + ‖〈Dy〉u‖L2

� ‖Pu‖L2 + ‖u‖L2 ,

the last inequality using (18), (62), and (7).

Step c. Supposing V satisfies the assumption (10), we show

(76)
∥∥(∂xV (x)− (∂xV (x))Wick(x)

)
·Dyu

∥∥
L2 � ‖Pu‖L2 + ‖u‖L2 .

In fact, for each 1≤ j ≤ 3, one has, by (16),

∂xjV (x)−
(
∂xjV (x)

)Wick(x)

=
(
(∂xjV (x))w(x) − (∂xjV (x))Wick(x)

)
+
(
∂xjV (x)− (∂xjV (x))w(x)

)
= rwj + r̃wj

with r̃j ∈ S(〈∂xV (x)〉1/3, |dx|2 + |dξ|2) due to [17, Theorem 2.3.18], and

rj(x, ξ) = r(X) =

∫ 1

0

∫
R6

(1− θ)(∂xjV )′′(x+ θx̃)x̃2e−2π|X̃|223 dX̃ dθ.

Applying (10) we have, for any α,β ∈ Z
3
+,

|∂α
x ∂

β
ξ rj(x, ξ)| �

∫ 1

0

∫
R6

〈x+ θx̃〉M/3|x̃|2e−2π|X̃|223 dX̃ dθ

� 〈x〉M/3

∫
R6

〈x̃〉M/3|x̃|2e−2π|X̃|223 dX̃

� 〈∂xV (x)〉1/3.

It then follows that

r̃wj
(
〈∂xV (x)〉−1/3

)w
, rwj

(
〈∂xV (x)〉−1/3

)w ∈Op
(
S(1, |dx|2 + |dξ|2)

)
,

and thus

‖rwj Dyju‖L2 + ‖r̃wj Dyju‖L2 � ‖〈∂xV (x)〉1/3〈Dy〉u‖L2

� ‖〈∂xV (x)〉2/3u‖L2 + ‖〈Dx〉2u‖L2

� ‖Pu‖L2 + ‖u‖L2 ,

the last inequality using (18). The estimate (76) follows.

Step d. Combining (73), (74), and (76), we get the desired estimate (11),

completing the proof of Theorem 1.1. �
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[11] F. Hérau and K. Pravda-Starov, Anisotropic hypoelliptic estimates for

Landau-type operators, J. Math. Pures Appl. (9) 95 (2011), 513–552.
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