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Abstract In this paper we construct a coarse moduli scheme of stable unramified irreg-
ular singular parabolic connections on a smooth projective curve and prove that the con-
structed moduli space is smooth and has a symplectic structure. Moreover, we will con-
struct the moduli space of generalized monodromy data coming from topological mon-
odromies, formal monodromies, links, and Stokes data associated to the generic irregu-
lar connections. We will prove that for a generic choice of generalized local exponents, the
generalized Riemann—Hilbert correspondence from the moduli space of the connections
to the moduli space of the associated generalized monodromy data gives an analytic iso-
morphism. This shows that differential systems arising from (generalized) isomonodro-
mic deformations of corresponding unramified irregular singular parabolic connections
admit the geometric Painlevé property as in the regular singular cases proved generally.

0. Introduction

Let m,l be positive integers, and let v be an element of Cdw/w!™~ !+t ... +
Cdw/w. We denote the C[[w]]-module C[[w]]®" with the connection

dw

Cllw]®" — Cllw]* © ——=,

ae; +— dae; +vae; +w ! dwe;_1

by V(v,r). Here e1,...,e, is the canonical basis of C[[w]]®" and ey = 0.
We have the following fundamental theorem.

THEOREM 0.1 (HUKUHARA AND TURRITTIN)

Let V' be a free Cl[[z]]-module of rank r, and let V:V =V @dz/z™ be a con-
nection. Then there are positive integers l,s,r1,...,7s such that for a variable w
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with w' = z, there exist vy,...,vs € Cdw/w™~*t ... + Cdw/w such that

(V, V) ®c[[z]] C((w)) (V(I/l,rl) b D V(l/g, g)) ®c[[w]] C(( ))

For the proof of Theorem 0.1, see [27, Theorem 6.8.1], for example. Note that
v1,...,Vs in Theorem 0.1 are unique modulo Zdw/w. So we can take vy,...,vq
as invariants of a connection. In this paper we consider only the case [ = 1.

Let C be a smooth projective irreducible curve over C of genus g, let
t1,...,t, be distinct points of C, and let mq,...,m, be posmve integers. Put
D:=3" mt;. Take d€ Z and v = ( ;l))éigif , such that V ) e Cdz /2 +

-+ Cdz;/z and that d+ 3 7 3777 oresy, (v ()) =0, where z; is a generator
of the maximal ideal of O¢;,. Let N; be p051tlve integers such that N; > m;
for i =1,...,n, and set Nyt; := Spec(Ocy,/(z)). (E,V, {l( }) is said to be
an irregular singular v-parabolic connection of parabolic depth (N;) if E is a
vector bundle on C of rank r and degree d, V: E — E @ QL(D) is a connec-

tion, By, = 15" 51" 5517, 51” = 0 is a filtration such that 1" /1{") =
Onit;y, V (l(i)) l(i) ® Q};( ) for any i,7, and for the induced morphism
v (z“)/zﬁl)@m( ), (V) —vPid) (187 /1)) is contained in the

image of (l]( )/lj+1) ® QL — (1 )/lj+1) ® QL(D) for any i,j. We can define a-
stability for a v-parabolic connectlon (see Definition 2.2 for a precise definition of
a-stability). We first show in Theorem 2.1 that there is a coarse moduli scheme
M5, o(r,d,(N;))y of a-stable v-parabolic connections of parabolic depth (N;).
The main theorems of this paper are Theorems 2.2 and 4.1, which state that the
moduli space Mg‘/c(r7 d, (m;)), of a-stable v-parabolic connections (E, V, {l;i)})
of parabolic depth (m;) is smooth and has a symplectic structure.

However, there is a serious example (Remark 1.2) which states that for special
v, there is a member (E,V, {l]m}) € M7, (r,d,(m;)), such that the invariants

vi,...,vs for (E,V)® éc,ti given in Theorem 0.1 are different from the data
(2) (@)

Vg s Vplq

space at a glance. On the other hand, assume that N; > r%?m,; for any i and 0 <

given by v. So MS/C(T, d, (m;)), does not seem to be a good moduli

Re(resy, ( (¢ ))) < 1 for any 4, 7. Then Proposition 1.2 states that for any member

(B, V,{} >}) € M,(r,d,(Ni))y, the data v1,...,v, for (B, V)@ Oy, given in
Theorem 0.1 are the same as the data 1/( ) ey ,(AA)l given by v. So it seems that
M5, o(r,d,(N;))y is a good moduli space. However Remark 2.3 states that the
moduli space M5 /C(r d, (N;)), is not smooth for special v. So we cannot define
isomonodromic deformations on the moduli space M7 (7, d, (N;)). After all the
authors believe that the moduli space Mg /C(r d,(m;)) of a-stable parabolic
connections of parabolic depth (m;) is a correct moduli space, although v does
not necessarily reflect the invariants given in the Hukuhara—Turrittin theorem.
After we construct the good moduli space M7, (r,d, (m;)), of the a-stable
parabolic connections, we will investigate the Riemann—Hilbert correspondences
for these moduli spaces and define the generalized isomonodromic flows or iso-
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monodromic differential systems associated to them. For that purpose, it is nec-
essary to construct a good moduli space of the generalized monodromy data for
the parabolic v-connection (E,V, {lj(z)}) € My, (r,d,(m;)),. However, for that
purpose, we should fix the types of decompositions in the Hukuhara—Turrittin
formal types at all irregular singular points. However, for some special v, we
cannot recover these formal types (see Remark 1.2). So in this paper, we will
restrict ourselves to the case when the local exponent v is generic (cf. Defini-
tion 5.1). In this case, we can also construct the coarse moduli scheme R(v)
of the data consisting of Stokes data, links, and global topological monodromy
representation of w1 (C'\ {¢1,...,t,}). Let us denote by v,es the residue part of
v and by p = {%;} = e(Vres) its exponential. Under the assumption that v is
generic, nonresonant, and irreducible, we can see that the moduli space R(v)
is a nonsingular affine scheme. Moreover for a fixed generic v, we can define
the Riemann-Hilbert correspondence RH(p /), : M7 o (r,d, (m;))y — R(v),
and in Theorem 5.1, we prove that RH(p,¢),,, is an analytic isomorphism under
the assumption that v is generic, nonresonant, and irreducible. In Section 6, we
will define the isomonodromic differential systems induced by the family of the
Riemann—Hilbert correspondences and show that the corresponding differential
systems have geometric Painlevé property when v is generic, simple, nonreso-
nant, and irreducible (cf. Theorem 6.1). Then as a corollary we can obtain the
geometric Painlevé property of the 5 types of classical Painlevé equations listed
below when p = e(yes) is nonresonant and irreducible (note that if rank F =2,
v are always simple):

Q) Pyi(DM),  Pr(D)p,  Pur(D§Y)p,
P (ES)p,  Pr(BY),.

For Py (Dfll))p, we showed the geometric Painlevé property for any p (see [10],
[11], [8]). More generally, the geometric Painlevé property for isomonodromic
differential systems associated to the regular singular parabolic connections for
any p was proved completely in [8].

The rough plan of this paper is as follows. In Section 1, we will prepare some
results on the formal parabolic connections and their reductions to the finite
orders. In Section 2, we will construct the coarse moduli scheme Mp (7, d, (N;))w
for N; > m; as a quasi-projective scheme and show that Mg/c(r, d,(m;)), is
smooth for any v. In Section 3, we will show the existence of the smooth fam-
ily of the moduli spaces of parabolic connections over the space of generalized
exponents when we also vary the divisor D =3"" | m;t; in a product of Hilbert
schemes of points (cf. Theorem 3.1). Theorem 3.1 seems important from the view
point of confluence process of singular points. In Section 4, we will show the exis-
tence of the relative symplectic form w on the family of moduli spaces of parabolic
connections parameterized by v. We will use Theorem 3.1 to reduce the proof
of the closedness dw =0 to the case of regular singular cases in [8]. In Section 5,
we will review on the generalized monodromy data and construct the moduli
space of them when v is generic. Moreover, we define the Riemann—Hilbert cor-
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respondence and show that it gives an analytic isomorphism for generic, non-
resonant and irreducible v. In Section 6, fixing a nonresonant and irreducible
Vyes, we will define the family of Riemann—Hilbert correspondences and define

: : . e 0,8 )
the isomonodromic flows on the phase space 72 ,,,, : M7 e/, 17 which

res

is the family of moduli spaces of a-stable parabolic connections over a certain
space T;>° of parameters including generic, simple exponents v with the fixed
residue part v,es (see (26)). The isomonodromic flows define an isomonodromic
foliation or an isomonodromic differential system on the phase space, and its geo-
metric Painlevé property follows easily from the definition based on Theorem 5.1.
The geometric Painlevé property gives a complete and clear proof of the analytic
Painlevé property for the isomonodromic differential systems with nonresonant
and irreducible exponents Vies or p = €(Vyes).

As explained in [9], it is important to construct the fibers of the phase space
of the isomonodromic differential system as smooth algebraic schemes. One can
use affine algebraic coordinates of the fibers over an open set of parameter spaces
to write down the differential systems explicitly. Then the differential systems
satisfy the analytic Painlevé property, which easily follows from the geometric
Painlevé property.

We should mention that Malgrange [14] and [15] and Miwa [16] gave proofs of
the analytic Painlevé property for isomonodromic differential systems for irreg-
ular connections on P'. However, to give a complete proof of the geometric
Painlevé property, we believe that our algebro-geometric construction of the fam-
ily of the moduli spaces of connections is indispensable (see also [10], [11], [8] for
the regular singular cases).

Bremer and Sage [2] studied the moduli space of irregular singular connec-
tions on P'. They considered also the ramified case. However, they assumed
that the bundle V is trivial, which means that their moduli space only covers a
Zariski open set of our moduli space, which is not enough to prove the geometric
Painlevé property even for generic unramified cases (see Remark 5.3).

1. Preliminary

As a corollary of Theorem 0.1, we obtain the following proposition.

PROPOSITION 1.1

Let V' be a free Cl[[z]]-module of rank r, and let V:V =V @ dz/z™ be a con-
nection. Then there is a positive integer | such that for a variable w with w' = z,
there exist vy,...,vp—1 € Cdw/w!™ ! + ... + Cdw/w and a filtration V ®
Cllw]] =V 2> ViDVeD---DV,_1 DV, =0 by subbundles such that V(V}) C
V; @ dw/w'™ =Y and V; )V =2V (v,1) for any j=0,1,...,7r — 1.

Proof

We prove the proposition by induction on r. For r =1, we take a basis e of V.
Then we have V(e) = ve dz for some v € C[[z]]z~™. We can WritAe V=35> m a;z’.
We put vg:= )" ,5qa;27 and pi= [vg=3,5,(j + 1) 'a;2/ "', Then we have
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exp(—p) € C[[2]] and
d

d
——exp(—p1) = —exp(—p) 7= = —exp(—p)vo.

We put e’ :=exp(—p)e. Then €’ is a basis of V and
d _
V(e') =V (exp(—p)e) = exp(—p)V(e) + Me dz
= exp(—p)vedz — exp(—p)voedz

= (v —1p)exp(—p)edz = (v —vy) dze'.

Hence we have V=V ((v — 1) dz, 1).

Now assume that » > 1. By Theorem 0.1, there is a positive integer ! such that
for a variable w with w' = z, there exist p1,...,us € Cdw/w™ + --- + Cdw/w,
positive integers r1,...,rs and an isomorphism

¢V ®cipy C((w))

—= (V(p1,m1) @ciron C((w))) @ - @ (V (s, 7s) @cirug) C((w))).

We can take an element e, 1 € ¢~ 1(V (us,75)) such that V(e,_1) = pse,_1. Let
m,_1 be the smallest integer such that w™ ~te,_1 € V ®¢p) Cl[w]]. Then we
have

V(w™te, 1) =m,_qw™ " dwe,_1 + psw™ e,

mr—1

= (mr_lwflderus)w €r_1.

If we put V,—y := Cl[w]Jw™ ~te,—1 and py_y :=m,_1w™" dw + s, then V,_; =
V(vp—1,1) and W,_ := (V ®cyep) Cl[w]])/V;—1 is a torsion-free C[[w]]-module.
So W,._1 is a free C[[w]]-module of rank r — 1, and V induces a connection

_ dw
V . erl — erl ® Tm
Then by the induction assumption, there is a filtration W,_1 =V D Vi, D --- D

Vi—3 D V,_1 =0 by subbundles such that V(V) CV; ® dw/w™~*1 and V/
Vig1 =V (p),1) for j=0,...,r — 2 for some p; € de/wml 1y 4+ Cdw/w
(0<j<r—2). Let V; be the pull back of V; by the homomorphism V ®c[r2))
Clw]] = W,—1 (0<j <r—1). Then V(V;) CV; @ dw/w'™ 1 and V;/Vj41 &

V(uj,1) for 0<j<r—1. O

REMARK 1.1

By the proof of Proposition 1.1, we can easily see that {v; modZdw/w} in
Proposition 1.1 are nothing but the invariants in the Hukuhara—Turrittin the-
orem (Theorem 0.1). We should remark that we cannot give a decomposition
(V,V) @cyra Cllw]] = D)2 : o V(vj,1) even if v; modulo Z dw/w are mutually dis-
tinct.

REMARK 1.2

Unfortunately, we cannot recover vy, .. ., v,_; from V& C[[w]]/(w™~*1). Indeed,
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consider the connection V : C[[2]]%? — C[[2]]®2? ® dz/25 given by

27 8dz+272dz 274 dz
0 27 8dz—272dz) "

va+(

Let
Ve Clll/ (%) : (Cl[=/(2) = (Cl)/ (%) @ d*

be the induced C[[z]]/(2%)-homomorphism. Then V ® C][2]]/(2%) can be given
by the matrix

with respect to the basis

0 27 %dz —272%dz
1 0
0/’ 1
basis are 2z 0dz + 272dz, 27 %dz — 272 dz.
On the other hand, take the basis
_ 2
(1 + 24)
of (C[[2]]/(2°))®2. Then we have
14 2% 27 %dz4+272dz 27 4dz 1424
6 _
ol ()= (T ) (1
2 -6 -2 —4 2
6 —z [z %dz+277dz 27 %dz —z
(V®C[[z]]/(z >) <1+z4) h ( 0 27 8dz—272dz 1+ 24
_ 0 4 1+ 2% _6 —22
= (z6d2> =z dz< 2 )+z dz L4a4)
1+ 24 —22
22 ) 1424
is given by
27 8dz 2z7%dz
0 278%dz) "

Thus we conclude that the “eigenvalues” of V® CJz]/(2%) can not be well defined.
In other words, the eigenvalues vy, ...,vs given in the Hukuhara—Turrittin theo-

A (2'6 dz+272%dz 2 4dz )

of (CJ[[2]]/(2%))®2. So the “eigenvalues” of V @ C[z]/(2°) with respect to this

1424

2 )
—z —z

(2 %dz+272dz _ 6y, 1+ 2*

N —z74dz N —22
and
Thus the representation matrix of V @ C[[2]]/(2%) with respect to the basis
So the “eigenvalues” of V® C[z]/(2%) with respect to this basis are 2% dz, 276 dz.
rem (Theorem 0.1) cannot be recovered from V ® C[z]/(25).
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On the other hand, we have the following proposition, which will be possible to
improve more generally according to the referee’s valuable comment.

PROPOSITION 1.2
Let V,W be free C[[z]]/(zTZm)—modules of rank r with connections

d
vV V—>V®—Z

v W—>W®%

and filtrations
V:VQDV13"'VT713‘/7~:O,
W=WyeoW1D---W,_1DW,.=0,
such that Vi /Viz1 = C[[2]]/(z""™), Wi /Wit1 = C[2])/(z""™) and that VY (V;) C
Vi®dz/2™, VW(Wi) CWi®dz/z™ for any i. Let VY : V;/Vig1 = (Vi/Vig1) @
dz/z™ and VIV : W; /Wi — (Wi /Wii1) ® dz/zm be the morphisms induced by

VvV and VWV, respectwely Choose a basis € of V;/Viy1 (resp., eV of Wi /Wii1)
such that VY () =v)eY and VIV (elV) = VWeW with

VZ ( (Z) —m+a() 12 m+1_|_...+ag)12—1)dz7
w — (b@nz—m —+ b(_l"H_lZ—m,—i-l 44 b(_l)lz—1> dz.

Assume that 0 < Re(a@l) <1 and 0< Re(b@l) <1 for any i. If there is an
isomorphism ¢ : V. — W of C[[z]]/(zTQm)—modules such that VWV o o= (p ®
id) o VY, then there is a permutation o € S, such that v} = }T/I(/i) for any i =
0,...,m—1.

Proof
We prove the proposition by induction on r. Assume that r = 1. We can write
o(ed) = cell with c € (C[[2]]/(2™))*. Then we have

(de)el) + e el = VW (el ) = VW () = (p @ i)V (e}))

= (e ®id) (1 ef ) = v @(ey)
= cugfegv.
So we have

de=c(vy — ).

If vy # vV, we can write

vV =a 2"zt a2z " THde a2 d2

with n>1and a_,, #0. If we put ¢ = co+c1z+cp2? + -+ +¢pp_12™ 1 with each
¢; € C, then we have ¢y # 0. So we have
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de=c(v) —v¥)

=(co+ciz+--+ cm,lszl)(a,nz*” dz+ - +a_ 127! dz)
=coanz "dz+ Y B2 dz ¢ C[[2]]/(z") @ dz,
ji>-n

which is a contradiction. Thus we have v} = v}V .

Next assume that r > 1. Consider the composite
YV =V W — W/W.

There exists an element ¢ € C[[2]]/(2"" ™) such that 1(e¥ |) = celV in W/Wj.
Then we have

ey qjey =W ®id) (v, 16/ )= ®id) o V¥ (e/ ;)
=VVou(e, 1) =V"(cey)
= (dc)egv + cugvegv,

and so we have

de=c(vY_, —13").

|4

If 1) is an isomorphism, then we have ¥ ; =1}V and the composite

-1
VSW s W sV
gives a splitting of the exact sequence
0—V,og —V—>V/V,._;1—0.

So we have V =V,_1 @& V/V,_;. Similarly we have a splitting W = W/W; &
Wi, and we have an isomorphism V/V,_; 2 W) which is compatible with the
connections. So we obtain an isomorphism (V/V,._1) ® C[[z}]/(z(r_l)Zm) SwWie
C[[z]]/(z*=V*m). By the induction hypotheses, there is a permutation o € S,
such that o(r —1) =0 and v} = Vg‘(/i) for any 4.

So assume that v is not an isomorphism. Then we can write ¢ = ¢ 2" +
Cop1 2" T4+ crzszZ’" with ¢ # 0 and k> 0. If k < (r? — 1)m, we have

de=Fkep2"Vdz + (k+ Depp12"dz 4+ + (7‘2m - l)c,.zm_lz”;"”‘*2 dz#0.

So we have v | — v}V #0. Put n:=max{j | oY - b(i); # 0}. Then we have
r?m—1 . -1 )
de=c(v) v} = ( Z cjzj) Z (ay*l) - b;o))zjdz
j=k j=—n
:Ck( (T D b(o)) F=ndz + Z ’yjzj.
j>k—n

Thus we have k — 1=k —n and ke, = cp(a” Y —5?). Son=1 and a'"; " —
b(_of =k > 1, which contradicts the assumption that 0 < Re(a (_Tl 1)) <1, 0<
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Re(b(_oi) < 1. Hence we have k > (r2 —1)m + 1. Then Im1) € z(rz_l)m“(W/Wl).
So ¢ induces a morphism

Vi1 @ O[]}/ (= 70™) — W @ O[]}/ (0™,
which also induces a morphism
11 Vooa ® C[L]]/ (20 70™) — (Wh /W) @ C[[2]] /(20 ~0™),
We define ¢V € C[[z]]/(z"* =™ by ¢y (eY_,) = cMel . If 1)y is isomorphic, then

(Wh/Wa) ® ClI/(=""~D™) Y3 ¥,y @ Cll])/ (20~ Dm)
% Wy @ C[=])/ (0™

gives a splitting of the exact sequence

0 — Wa @ C[[2])/ (=" ~V™) — W @ C[[2])/ (=)™

— (W1/Wa) @ C[[2])/ (V™) — 0.
So we have
Wi @ C[[2]] /(D™
= (W1/Wa) @ C[[2])/ (=" V™)) @ (Wa ® C[[2]] /(2" V™))

and (¢ ®1d)(V,_y ® C[[2]]/(z(*~Dm)) = (W1 /Wa) @ C[[2]] /(" ~1™). Then we

have v ; =v}" and an isomorphism

(V/Vro1) ® Cl2])/ (200" m)
=5 (W @ Cl[2)/ (=0~ ™) /(Wi /W) @ Cl[2]]/ (07~ D ™).

By the induction hypothesis, there exists a permutation o € S, such that o(r —
1)=1and v} = z/g[(/i) for i £ 1 — 1. If 91 is not an isomorphism, then we can see
by a similar argument to the above that ¢ induces a homomorphism

r: Voot @ Cl[2)/ (207 7D™) — (Wa/Ws) ® C[e]] /(20 ~2™).
We repeat this argument and we finally obtain an isomorphism
Wi i Vo1 @ O[]/ (27 79™) =5 (W /Wysa) @ O[]/ (21 —™)
for some j with 0 <j <r — 1. So there is a slitting
(W;/Wy42) @ ClLll/ (™) 2 v,y & Cl[a]) /(2 9m)
5 W; ® C[[]]/ (20~
of the exact sequence
0 — W1 @ C[l2]]/ (27" )™) — W, @ C[e]) /(20" =™)
— (W;/Wis1) @ Cl[]]/ (=07 =D™) — 0.
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Therefore we have
W; @ C[[2])/ (20" ™)
= (W;/ W1 @ Cll2l}/ 7" ™) @ (W © C[[=]] /(21" —™))

and (p ® id)(Vi1 ® C[2]}/ (2" 7™) € (Wy/Wji1) @ C[#]}/ (" 7™). Since
¢ ®id induces an isomorphism V,_; @ C[[2]]/ (" ~)™) =5 (W, /W;41) @ C[[2]]/
(z(”2’j)m), it also induces an isomorphism

(V/Veoa) @ C[])/ (0™
=5 (W@ ClL])/ (U =0"™) /(W) /W) @ L)/ (20 D"m)).

So we have vY_ | = U]VV , and by the induction hypothesis there exists a permuta-
tion o € S, such that o(r —1)=j and v}/ = VZ[(/k) for any k #r — 1. O

REMARK 1.3

Assume that [ =1, and assume that 0 < Re(res(v;)) <1 for any j in Proposi-

’7'27”
tion 1.1. Then the eigenvalues l/i\/'@)C[z]/(z ) appearing in Proposition 1.2 are

nothing but the eigenvalues given in the Hukuhara—Turrittin theorem (Theo-
rem 0.1).

2. Moduli space of unramified irregular singular parabolic connections

Let C be a smooth projective irreducible curve over C of genus g, and let
n
i=1

be an effective divisor on C'. Take a generator z; of the maximal ideal of O¢ 4,. Let
E be a vector bundle of rank 7 on C, and let V: E — E®@QL(D) be a connection.
Take a positive integer N; with N; > m;, and put Nit; := Spec(Oc.s, /(2V7)).
Then V induces a morphism

\Y Nit; :E®Oc,ti/(zi\h) —>E®91C'<D> ®Oc7tl/(z7,Nl)

Put
N{™(d, D)

)\0<j<r—1
= {l/ = (V](l))lg‘zjg_;;

(2)

d+ Zlgign Zogjgr—l resy, (,/j(z)

VJ@ € z;:lfm CzFdz;, and
)=0J"

DEFINITION 2.1
Take v € N\ (d, D). We say that (E,V, {l;z) }) is an unramified irregular singular
v-parabolic connection of parabolic depth (N;)?; on C' if

(1) E is a rank r vector bundle of degree d on C,
(2) V: E— E®Qc(D) is a connection, and
(3) Eln,t, = l((f) D lgl) DD lrl)l 51 =0 is a filtration by free On,t,-

modules such that ly)/lﬁl >~ Op,y, forany i, 7, V|, (ly)) C l](-i) ® Q& (D) for any
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i,, and for the induced morphism V" : 1 /1) 1% /1) 2,0L(D), Im(V""” —
0 PRSIV 52ty 7/ bjpr = 65/ b4 v,
I/J(-Z)idl;i)/lj(_ill) is contained in the image of (ly)ﬂﬁﬂ QL — (1 (Z)/l](:)rl) QL(D).
1)\1<i<n

We fix a sequence of rational numbers o = (ag-'))lgjgr such that 0 < agi) < agi) <

<ol <1 for any 7 and ozgi) #* ozy;/) for (i,5) # (¢/,5).

DEFINITION 2.2
A v-parabolic connection (E, V, {ly)}) is said to be a-stable (resp., a-semistable)
if for any subbundle 0 # F C E with V(F) C F @ QL(D), the inequality

deg F+ 0 30y o length((F|,e, N 182))/(Fle, 0 157))

rank I’
deg B+ 30 320 o length(1{”, /1)
(resp., <) rank £/
holds.
REMARK 2.1

O. Biquard and P. Boalch [3, Section 8] considered a stability condition for a
meromorphic connection with the assumption that the restriction of the connec-
tion to each singular point is equivalent to a diagonal one. For a parabolic weight
a= (ay)) with 0 < ay) < 1/N;, the a-stability in our definition for a parabolic
connection (E,V, {lj(l)}) is equivalent to the (a;i)Ni)-stability in [3] for (E,V)
under the main assumption in [3].

REMARK 2.2

Take a parabolic connection (E,V,{l;i)}) with parabolic depth (m;). Fix léf,),
and put E’ := ker( ot /l](f,)). Then V induces a connection V' : E' —
E' ® QL(D). We define a parabolic structure {@); )} on E' by (I )( D= l( for
i#, () oF ker(E’|m,t,—>E|m,t,/l )fOIOS]ST—]7aHd(Z)j)2:
1m(l]( H_J,@)(Qc( Mirtir) = Elm e, ®(’)C(—mi/ti/) = E'|pm,,) forr —j <5 <.
Then we obtain a new parabolic connection (E’, V', {(l’)gl)}) We call this the
elementary transform of (E,V, {Z(Z }) along l(i/ We put (« ’)(-i) = aw for i £,
(a)g.l) —a(+), for1<j<r—j, and (« ) ) ay)rﬂ,—klforr 1< <r.
Then (E,V, {l; )}) is a-stable if and only if (E', V', {(! )j )} satisfies the follow-
ing stability condition: for any subbundle F’ C E’ with V/(F’) C F' @ Q& (D),

deg '+ 30 301 () length((F |y, 0 (1)) /(F e, 0 (1)57))
rank F”’

deg B + 30 30 (o) P length (1) /(1))
< rank B’
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holds. So we can consider a stability of a parabolic connection with respect to a
weight o = (ozg-i)) without the condition 0 < ozg-i) <1

Let S be an algebraic scheme over C, and let C be a projective flat scheme
over S, such that each geometric fiber Cs; of C over S is a smooth irreducible
curve of genus g¢. Let #1,...,%, C C be closed subschemes such that the composite
t; < C — S is an isomorphism for any i and that £; N#; = () for any i # j. We
put D := Z?:l m;t;. Then D is an effective Cartier divisor on C flat over S. Let

N (d, D) be the scheme over S such that for any T — S,

v\ € HO(T, 0 (mif:)r ) (Q4)r) } |

(3) N™(d, D)(T) = {V (VJ(i)) d+3. .I‘eS”.(V(-Z)) =0.

THEOREM 2.1

There exists a relative coarse moduli scheme M7 ¢, 5(r,d, (N;)) Ty N (d,D) of
a-stable unramified irregular singular v-parabolic connections (v moves around
in /\/}(n)(d,D)) on C over S of parabolic depth (N;)i_,. Moreover, M7 . o(r,
d,(N;)) is quasi-projective over N (d,D).

Proof

Fix a weight « which determines the stability of irregular singular parabolic
connections. We take positive integers (1, 82,7 and rational numbers 0 < dli) <
déi) <oo<aW < satisfying (5; +B2)a§-i) = Bldgi) for any 4,7. We assume that
7> 0. We can take an increasing sequence 0 < oy < oy < --- < o, < 1 such that
{aglp= 1,...7nr}:{d§i)|1 <i<n,1<j<r}.

Take any member (E,V,{ly)}) € M3 c/s(rd, (N:))(T), where M o, o(r,
d,(N;)) is the moduli functor of a-stable unramified irregular singular parabolic
connections of parabolic depth (NNV;). We define subsheaves F,(E) C E induc-
tively as follows. First we put Fy(E) := E. Inductively we define Fj,4q(E) :=
ker(F,(E) — (F Ni(tl)T)/ly))v where (i,7) is determined by aj, = ay). We also
put dy, :=length((E/F,11(E)) @ k(z)) for p=1,...,rn and € T. Then (E,V,
{lp}) — (E,E,idg, V, Fy(FE)) determines a morphism

. a D’.a’,B,
LM e ss(r,d, (Ni)) — MCX:LNﬁ";Y(d,D)/Nﬁ")(d,D) (r,d, {di}1<i<rn),

Do/ By N : .
where MCXSN7(H>(d,D)/N7£n)(d,D)(r’d’{dl}lglg’,‘n) is the moduli functor of

(a/,B,7)-stable parabolic ~AL,-triples whose coarse moduli scheme

Do/ ,B,y ) ) .
MCXSN,E")(d,D)/Nﬁ")(d,D)(T’ d,{d;}1<i<rn) exists by [10, Theorem 5.1]. Here we

put D’ := Z?:l N;t;. We can check that ¢ is representable by an immersion. So
we can prove in the same way as [10, Theorem 2.1] that a certain locally closed

D’,a’\, ..
subscheme M ./ (r,d, (N;)) of MCXSNT(”)’Y(d,D)/NT(")(d,D)(T’ d,{di}1<i<rn) is just

the coarse moduli scheme of M%/C/S(T, d, (N;)). By construction, we can see that
MB‘/C/S(T, d, (N;)) represents the étale sheafification of M%/C/S(T, d,(N;)). O
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There is also a coarse moduli scheme M B/cy s(r,d,(N;)) of v-parabolic connec-
tions (E,V, {ly)}) of parabolic depth (N;) such that (E,V, {ly) ®@Clz]/(z")})
is a-stable. Indeed we can construct Mg/c/s(r, d,(N;)) as a quasi-projective
scheme over M7 o, 5(r, d, (m;)).

THEOREM 2.2
MB )¢ /s(r,d, (m;)) is smooth over N™(d, D), and

dim(MB‘/C/S (r,d,(ms)) ) = 2r2(g — 1) + Zmir(r —-1)+2
i=1
for any v ENygn)(d,D) if Mg/c/s(r, d,(m;)), is not empty.
We will prove Theorem 2.2 in several steps.

We can canonically define a morphism

det: Mg ¢ /s(r.d, (m;)) — Mpc/s(1,d, (m)) N ™(d, D)

"N (D)
by
det(E,V, {I{"}) := (det(E),det(V), 7 (E,V,{I{"})).

Here Mp,c/s(1,d,(m;)) is the moduli space of pairs (L, V) of aline bundle L
on Cy and a connection VX': L — L ® Qf (D). Note that we put

det(V) := (VAL A - Aid) + (A AV A Aid) 4+ -+ (id A+ ATd A V)
and that the morphism Tr : N\™(d, D) —>./\/1(n) (d, D) is given by Tr((z/j(.i))) =
r—1_ (i)\n
(ijo Vi )izt

PROPOSITION 2.1

The morphism

det : M5 /s (r,d, (mi)) — Mpyeys(1,d, (mi)) X o0 4 p) N™(d, D)
defined above is smooth.
Proof

We can see by an easy argument that it is sufficient to show that the morphism
of moduli functors

det : M%/C/S (r, d, (mz)) — MD/C/S(l,d, (mi)) XN (4, D) /\/’T(n)(d,D)

is formally smooth. Let A be an Artinian local ring with maximal ideal m and
residue field k = A/m. Take an ideal I of A such that mI =0. Let

f ey
Spec(A/I) —— MD/C/S(r,d,(mi))
l ldet
Spec(A) —— Mpc/s(1,d,(m:)) X A (4,D) N (d, D)
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be a commutative diagram. Here g corresponds to a line bundle L on Ca with
a connection VI : L - L ® Q_C /a(Da) and v = (y(.l)) € N(n)(d D)(A) such
that V*[,, i, (a) = (3= . J(Z))a for any a € L|,,,,), and i =1,...,n. More-
over f corresponds to an element (E,V {l( )}) € MD/C/S(r,d,( Z))(A/I). Put

(B VALY = (B, V,{I"}) @ A/m. We set
Fo :={a€é&nd(E)| Tr(a) =0 and a|mi(gi)k(7§»i)) C Z;i) for any 7,5},
Fo={be&nd(E)® QC/S(D) | Tr(b) =0 and

HONSIEO) .
b|mi(fi)k(lj ) cl j+1 ®QC/S( ) for any 7/7.7}7
Vrs :fgaaHvafaVEfo.

Let C4 = U, Ua be an affine open covering such that Fl|y g/ = OIGJB:®A/I7

#H{(t)a| (#:)a €Uy} <1 for any a and #{a | (£;)a € U, }71forany( i)a. Take
a free Oy, -module E, with isomorphisms ¢, : det(E,) = L|y, and ¢, : B, ®
A/I:>E|UQ®A/I such that

Pa ®A/I:det(¢a) :det(Ea) ®A/I L) det(E)|U ®A/T = (L@A/I”U ®A/I-
If (#;)a € Uy, we may assume that the parabolic structure {l )} is given by

1= (e

mz‘(fi)A/I""’ej‘mi(fi)Au)’

where‘ e1,...,e, is the standard basis of E,. We define a parabolic structure
{(12)"} on Eq by

La) 5 = (€1l iyas -+ €l (i)

The connection ¢, o (V|y,) 0 ¢a: Ea® A/l — E, ®QC/S( ) ® A/I is given by
a connection matrix B, € HO((E )" ® Eo ® Q¢ 5(D) ® A/I). Then we have

Vﬁi_)1®A/I * *

0 V@A *

Bo"(fi)A/I - . . .. :
0 0 o @A/

We can take a lift B, € HY(EY ® E, ® Q¢,5(D)) of By such that
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and such that Tr(By)(e1 A---Aey) = (00 @1d) "N (Vi |u, (aler A---Aey))). Con-
sider the connection V : By — Eq ® / 5(D) defined by
fi dfy f1
Vol i|={ " |+Baf:
fr df fr
Then we obtain a local parabolic connection (Eq, Va, {(la)gz)}) If (ti)a ¢ U, for
any i, we can easily define a local parabolic connection (E, Vg, {(la)gl)}) (In
this case the parabolic structure {(la)g-i)} is nothing.)
We put Uyg := Uy NUg and Uagy := Uy NUg NU,. Take an isomorphism
9,8@ : Ea|Ua,3 = E6|Uaﬁ
such that 05, ® A/I = gbgl o ¢y and g o det(0gy) = po. We put
)ody'

o —1 .
Uafy = Ga © (04 |Uasy ©0v8lUas, ©Opalvns, —1dE0,,

and
Vap = $a © (vaan/s - oﬁ_zi © V,B|Ua5 0 0/3@) © ¢;1'

Then we have {uap~} € C2({Us}, F§ ® 1) and {vas} € C'({Us}, F§ @ I). We can
easily see that

d{uapy} =0 and Vrs{uapy} = —d{vap}.
So we can define an element
(B VALY) = [({tapy Y {vap})] € HX(FS) @1 1.
Then we can check that w(FE,V, {lj(l)}) =0 if and only if (E,V,{l](-i)}) can be
lifted to an element (F,V, {ZNY)}) of M3 ¢ ,s(r,d, (m;))(A) such that
det(E,V,{I{"}) = g.
From the spectral sequence H4(F}) = HPTI(FS), there is an isomorphism

HY(Vze)
H2(F3) = coker(H' (F)) ——5 H'(FY)).

Since (F§)" ® Q¢, ,, = Fo and (F5)Y @ Qg, /), = F(, we have

H'(Vrg)
— HY(F))

Hl(Vfg)v

H?(F3) = coker (H' (FY)

=~ ker(H'(F3)" HY(F)Y)”

—H(V(zg)v) v

_Ho(vf(g)

= ker (H(FY) HO(F))".
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*(Vre)

Take any element a € ker(H°(F) ———— HY(F})). Then we have a € End(E,

v, {Z;i) }). Since (E, V, {Zgl)}) is a-stable, we have a = ¢-id for some ¢ € C. So we
—H°(Vxe)
have a = 0, because Tr(a) = 0. Thus we have ker(H"(F)) T HY(FH)) =

0, and so we have H?(Fg) = 0. In particular, we have w(E,V, {ly)}) =0. Thus
(E,V,{l;i)}) can bg lifted to a member (E,@,{Zy)}) € M%/C/_S(T’ d, (m;))(A)
such that (E,@,{l}m}) ® A/ = (E,V,{lg-l)}) and det(EN’,@,{lgl)}) = g. Hence
det is a smooth morphism. O

We can see that the moduli space Mp,c,5(1,d,(m;)) is an affine space bun-
dle over Picg/s le(n)(d,D) with fibers H(Qg ) (s € S). So Mpc/s(1,d, (m;))
is smooth over Nl(n)(d, D). Combined with Proposition 2.1, we can see that
M e ,/s(r,d, (m;)) is smooth over ./\/T(n)(d7 D).

PROPOSITION 2.2
For any v € /\/}(n)(d,D), the fiber 7= 1(v) = ME ¢ 5(rsd, (mi))y is equidimen-
sional of dimension 2r*(g— 1) +2+r(r —1) Y7, m; if it is not empty.

Proof

Since Mp ¢ /5(r,d, (m;)), is smooth over C for any v e N{™(d, D)(C), it is
sufficient to show that the dimension of the tangenF space @MS/C/S(T7d7(m'i))V (z)
of Mg c/s(r.d,(m:)), at any point x = (E,V,{i{"}) € Mg ¢ 5(r.d, (m)), is
equal to

2% (g —1)+2+7r(r— 1)Zmi.
i=1
We define a complex F*® on C, by
FO.= {a €énd(E) ’ a|mi(gi)m(l§-i)) C l§-i) for any i,j},
Fli={be &nd(E) @ 0L (D) | bl iy, (87) € 18], © QF (D) for any 7,5},
Vre: F'Sa—Voa—aoVeFL

D

(Evv’vv7 {(lv)gl)}) c MS/C/S(Tv d, (mz))u(C[E])

such that (E”,V”,{(l”);i)}) ® Cle]/(e) & (E, V, ~{l](4i)})7 where €2 = (. Take an
affine open covering C, = J, U, such that El|y, = OGU}:, #{i | (t;)x € Uy} <1 for
any « and #{a|(t;). € U,} =1 for any i. We can take an isomorphism

Take a tangent vector v € @Ma/c/s(r,d,(mi))u (). Then v corresponds to a member

Pa: EU‘UQXSpecC[e] o (E ®c C[e])‘UQXSpecC[e]

such that ¢, ® Cle]/(€) : E*®@Cle]/(€)|v.. = (E®Cle]/(€))|v. = E|v, is the given
isomorphism. We put
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Ua = $a 095" —idBacily, , xspeccia’
Vo 1= (0o ®@1d) 0 V|17, xspecclq © Pa’ — V @ Cle]|v, xspec C[d-
Then we have {uas} € C'({Ua}, (€) ® F°), {va} € C°({Ua}, () ® F), and
d{uapt ={upy —tay +uap} =0,  Vre{uas}={vp —va}=d{va}.

0 [({uas}; {va})] determines an element o, (v) € H!(F*®). We can easily check
that the correspondence v — o, (v) gives an isomorphism

OMg o s (rd,(mi)),, () — H'(F*).
From the spectral sequence HY(FP) = HPTI(F*), we obtain an exact sequence
0— C— H°(F°) — H(F') — H'(F*)
— HY(F°) — HY(F') — C —0.
So we have
dim H*(F*) = dim H°(F") + dim H' (F°) — dim H°(F°)
—dim H'(F') + 2dimc C
=dim H°((F°)Y ® Q5. ) +dim H' (F°) — dim H°(F°)
—dimH'((F°)V @ Q¢ ) +2
=dim B (F%)" + dim H' (F°) — dim H*(F°) — dim H°(F°)¥
=2 2x(FY).
Here we used the isomorphisms F' = (FO)¥ @ Qp , FO = (F')¥ @ Qp  and Serre
duality. We define a subsheaf & C End(E) by the exact sequence

0— & — &End(E) — @Homo o, (5017 715y — 0.
i=1
Inductively we define a subsheaf & C End(E) by the exact sequence

n
00— gk — 8;9_1 — @Homo
1=1

113 1) — 0.

my(E))

Then we have &,_; = F°, and we have

n r—1
X(F) = x(Er-1) = x(énd(E Zzlength (Homo, q, )z(l( ) l(l 1/l(1 )
i=1j=1
n r—1
:rQ(l—g>—Z mi(r —j)
i=1j=1

=r2(1—g) —7r(r— 1)Zmi/2.
i=1
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Thus we have
dimH' (F*) =2 - 2x(F) =2+ 2r"(g— 1) +r(r —1) Y _mj,
and the statement of the proposition follows. O

Proof of Theorem 2.2

By Proposition 2.1, we can see that Mp ¢ /s(r,d, (m;)) is smooth over N (d, D),
and by Proposition 2.2, every fiber Mg/c/s(r, d,(m;)), over v € N (d,D) is
smooth of equidimension 2r?(g — 1) +2+r(r —1)>"""_, m;. So we obtain Theo-

rem 2.2. O
PROPOSITION 2.3

Take v = (V](»Z)) ENT(n)(d, D), and write 1/ Zkffm J) 2Fdz;, where (C,ty,
cotn) = (Coty, ... tn)y and 2 is a genemtor of the maa:zmal ideal of Ocy, .

Assume that m; > 1 and a(_l;il)f # a(_i’f;i) for any i and any j # j'. Then the canon-
ical morphism

b: MS/C/S(Ta d, (Nz‘)),, — Mpc;s (73 d, (mz‘)) )
(B, VALY = (B, VALY @ Ocy, /(21")})

is an isomorphism.

Proof
Take any member (E,V, {ly)}) € M5 c/5(r:d, (mi)), (C). We can see the follow-
ing claim by the Hukuhara—Turrittin theorem (see [27, Theorem 6.1.1]).

CLAIM
We have (E, V)@ Cllz]] =V e aVed,1).

By the above claim, we have l(- V(V,Ez L D)|mit, ® - @ V(l/j(-i), Dlmgt, - If we
set 1=Vl Dlve, @ @ VD 1)|n,, then (B,V,{I{"}) € Mg ¢ 5(r,
d,(N;)), and p(E,V, {l?)}) = (E,V7 {l§z }). Thus p is surjective.

Take any member (E,V, {Zil)}) € MS/C/S(T, d,(m;)),(U) and two members
(E,V,{IJ(Z-)})7 (E,V,{(l’);i)}) Gp_l(E7V7{Z§-i)}), where U is a scheme over C.
Take any point z € U and a local section e!._; € ((l’)f)l)w such that (On,¢; ®
Ovgen_= (I )(1) )z, and V(el._;) = fz)ler 1- Let ¢; be the image of e/._; by

the homomorphism

i)
U 1 g(9]\77:25,;><[]'

Then we have

e =mw el ) =mV(el_y) = Vmi(el_y) = V(er) = dey + ey
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So we have

cl(u(i 1— I/{i)) =dc;.

o
Since

vy = = @ =) de a8 = a) e e
Y;;jl) - a(_z,i)l € C\ {0}, we have ¢; = 0. Similarly, the projection of e/._; to
E|NitixU/lj(.l) iszerofor j=1,...,7—1. Sowe havee,._; € (lff_)l)w and so (l’)ffll C

and a

lgll. Similarly we have lgll C (l/)ffll and lffll = (l’)gl. By induction on 7, we
have 1" = (1) for j=1,...,r — 1. So we have (B,V,{I\"}) = (E,v,{(1)\"}).
Thus p is a monomorphism.

Finally we will show that p is smooth. Let A be an Artinian local ring with
maximal ideal m, and let I be an ideal of A such that mI = 0. Assume that a
commutative diagram

Spec(A/TI) . M%/C/S (r,d, (N;))

l [

Spec(4) —L— MPBers (r,d, (m;))

v

is given. Then g corresponds to a member (E, V, {Zy)}) € M%/c/s(r, d, (m;))u(A),
and f corresponds to a member (F ® A/I,V ® A/I,{[(ji)}) € /\;l%/c/s(r,d,
(N;)w(A/I). Note that l;l) = Z;; ker(V|m,t, — 1/,(;)) and that Z;-Z) =
@;; ker((V® A/I)|n;t, — 1/,(;)). We can easily check that a canonical homo-
morphism ker(V|n,;, — yj(-i)) — ker(V|m,t, — yj(-i)) is surjective. So the canonical
(@)

Nit; —V; ) = E|nu, is surjective by Nakayama’s
0
J

homomorphism ¢ : @;;é ker(V
lemma. We can easily check that ¢ is also injective. If we put

k;; ker(Vn.s, — v, then (E,_V,{l](z)}) € M c/5(r.d, (ND))(A), p(E,V,
{I{") = (B,V,{I{"}) and (B, V,{I{"}) @ A/T = (E®© A/I, V& A/T,{I{"}). Thus
p is a smooth morphism.

By the above proof, p becomes bijective and étale. Hence p is an isomor-
phism. O

REMARK 2.3

In general the moduli space M7 ., 5(r;d, (N;)) is not smooth over /\/}(")(d, D) if
N; > m;. For example, assume that m; > 1 for any ¢ and g > 1. Then a general
fiber M3 ./ 5(r,d, (N;))y over v e N\ (d, D) is smooth of dimension 2r(g —
1)+2+r(r—1)>"  m; by Proposition 2.3 and Theorem 2.2. Take x € S, and
put C:=C,, t; := (t;), and E := Oc(—t1) ® Oc. Take a nonzero section w €
H°(C,Q4((mq + 1)t1)), and consider the connection

i=1
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v (@ - @2) - (8 3) (};) (fi € Oc(~t), f2 € Oc).

Then there is a canonical extension 0 — O¢(—t1) = E — Oc — 0 which is com-
patible with the connections. We take the parabohc structure l(z) =0c(—t1)
If we take a() < 1 for any 4,5, (E,V, {l }) becomes a-stable. We define a
complex F* as follows:

= {ac&ndE (1) <18 for any 4,5},

bln;t z(l ) Cl ® Qlc(Zl;l mt;)
for any 1,7,
Fli=1(be énd(E) ® QC (Zm li ) b(” lm/l(l) ) is contained in the image of ¢ ,
(z“’ /1521) ® Qb — (117 /1)) ® Qb (mat,)
for any %,J

Vre : F'3a—Va—aVeF!,

where by) )/l 1 (l( )/lg+1) ® Q&(mit;) is the homomorphism induced by
b|n,t;- We can see that the relative tangent space @M"‘/C/s(z _1,(ma)) /N (d,D) &
k(x) at the point z = (E,V, {ly)}) is isomorphic to H!(F*). From the spectral
sequence HI(FP)= HPTI(F*), we obtain an exact sequence
0— C— H'(F°) — H(F') — H'(F*)
— H'(F°) — H'(F') — H*(F*) — 0.
So we have
dimH'(F*) = dim H*(F") + dim H' (F°) — dim H°(F°)
—dim H'(F') + 1 + dimH?*(F*)
= X(F") = x(F°) + 1+ dimH*(F*)
= (20 -9 +22(20 -2+ Y mi) = DO (Ni+2my))
i=1 i=1
- (2(-9)- zn:N) + 1+ dimH2(F*)

i=1

(g 1)+ 242 e (A EAFY) 1),

i=1
If we put
aln;t; (l;i)) C l_(ji) ® Oc((N; —my)ti)
n P (@) (7(0) /7(3)
for any 4,j and a; (lj /l].+1)
(f/)o =g ac 5Tld(E) & OC( E (Nz - mz)t1> is contained in the image of 5
i=1 a8 ) - P ) )

® Oc ((Ni —my)t;) for any i, j



Moduli of unramified irregular singular connections 453

(F) = {b € End(E) @ QL (Zn: Niti) ’ blnee, (1) € 19 @ Qb (Nit,) for any i j}
i=1

VFye : (F)’ 3a- Va—aV e (F)',
then we have (F1)V @ QL = (F/)? and (F°)¥ ® QL = (F')!. We have
H (V]:o) H1<]:1))

Hl(j—_'O)\/)v

H?(F*) = coker(H' (F°)
~ker(H'(F')Y HVre),

%ker(Ho((]:l)v ® Qé) M HO((]:O)V ® Qé))v

—H®(V (7))

=~ ker(H° ((F)°) HO((F)Y) .

_HO(V(]:/)O) HO((]_-/)l)) Let f E— E(tl)

Note that C-idg C ker(H®((F")?)
be the composite

f :E— O¢ ‘—)E(tl).
Since f is compatible with the connections, we have

—H(V 2 o)
f e ker(HO((F)°) ——0% o (1),

Note that 0# f ¢ C -idg. So we have dimH?(F®) > 2, which means that
dimHY(F*) >8(g— 1) +3+2>. ", m;. So Mp c/5(2,—1,(N;)) is not smooth

over N{™(d, D) at .

3. Smoothness of the family of the moduli spaces over configuration space

n

Take any point x € S. If we put t; := (£;),, we have Dz =Y .y m;t;. Consider
the Hilbert scheme H, := Hllbg“ Put H := Hllbm1 X oo X Hllbg:" and let D; C
C: X H be the universal divisors for i =1,...,n. Note that H is smooth over C.
Let H' C H be the open subscheme such that H ={he H| (D), "N (Dj)n=
() for i # j}. Consider the affine space bundle

N = HV* ()« (28, (D) 1) | (D2 r,))

over H', where m; : (D;)gr — H' is the projection. Take the universal family
(79, where 79 € H°<< DA Q% (D)) (Don)-

Assume that v = ( ) € N is given. Let h € H' be the correspondlng point,
and write (D;), =, mkt’ with ¢} #t’ for k # j and 1/ = v, with v €
HO(miyty,, Q5 ((Di)n)|my 1, ). Then we define f; (v )—Zkrest;c(l/k).

Though it is obvious that the function f ;Z) defined above is an algebraic func-
tion on N, we give a proof by way of precaution. We can take a disk Ay C C,

containing ¢, such that Ay N Ay =0 for k # k’. Taking a sufficiently small ana-
lytic open neighborhood U of h in H', we can write (D;)y =), D), with D; an
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effective Cartier divisor on C, x U flat over U, (Dj,)n, = mjt}, and (D)), C Ay for
any g € U. Then we can write (D](.Z))NU =Y 1y, with 7, € HO((D}) a2 (D) ®
O(Dé)NU ). By shrinking U if necessary, we can take an open subset W] C C, x Ny
such that Ay x Ny C W, and a section @, € HO(W}, Q¢ N JNw (Di)lwr) such
that @ [pr x, A, = 7, Then we have

@y, _ 1 —
5w = e 2 /.
(i))

So ( f]@)U becomes a holomorphic function on Ny. We can glue (f;")y and

obtain a holomorphic function f]@ on N. Note that f]@ |nv,. is an algebraic
function on Ngo by its definition, where H® is the Zariski-open subset of H’
defined by

H® :={h € H'|(D;), has no multiple component }.

So f;i) is a rational function on A/, which is holomorphic on N, and hence fj(i)
becomes an algebraic function on N.
We define

n r—1
N(d, (D)) := {1/ eEN ‘ d+ ZZf]m(u) = 0}.
i=1j=0
Then we can easily see that N" (d,(D;)) is smooth over H'. We put D :=
Z?:1<Di)N£”)(d,(Di)) and define a moduli functor Mg (r,d, (D;)) : (Sch //\/',gn) (d,
(D;))) — (Sets) by
M. (7‘, d, (Dl)) (T)
E is a vector bundle on C; x T of rank r,
V:E=SE® Q(IZI xT/T(DT) is a relative connection,
‘ El(pyp = lf)i) D lgi) 5D lizll 518" =0 is a filtration
= (E'7 v, {ly)}) such that for any i, 7, lg-z)/lyll is a line bundle on (D;)r, / ~,
(Vo) — (D]('Z))TidE\(Di)T )(ly)) C 15-21 ® QémxT/T(DT):

(E,V, {ly”)}) ® k(y) satisfies the a-stability (1) below
for any geometric point y of T',

where T is a locally Noetherian scheme over ./\/}gn)(d, (D;)) and (E,V, {l;’)}) ~
(E’,V’,{(l’)%)}) if there is a line bundle f) on T such that (E,V,{l;"}) =
(£, V' {(I);”}) ® L. We have that (E,V,{l;"}) ® k(y) is a-stable if

for any subbundle 0# F C F ® k(y) with (V® k(y))(F) CF ® Qéy (D),

deg F+ Y0 327 ol length((Fl(p,), N (15, @ k(1)) /(Flp,), N (1" @ k(y))))
rank F'
_ deg(B@k(y) + 1L Xy o length((1$”, @ k(y)) /(11" @ k(y)))
rank F/ ’

()
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THEOREM 3.1
There exists a relative coarse moduli scheme

7w ME (r,d, (D;)) — N (d, (D))

of Mg (r,d,(D;)). Moreover, 7 is a smooth morphism.

Proof
We can see by the same argument as in Theorem 2.1 that there exists a relative
coarse moduli scheme

of M& (r,d,(D;)). More precisely, M (r,d, (D;)) represents the étale sheafifica-
tion of Mg (r,d,(D;)). We can define a morphism
det : M& (r,d,(D;)) — Me, (1,d,(D;)) x N (D) N (d, (Dy)),

(B, V. {17}) = ((det(E),det(V)), 7 (E,V,{I!"})).

Here Me,(1,d,(D;)) is the moduli space of line bundles with a connection. We
can construct M, (1,d, (D;)) as an affine space bundle over Pic# le(n)(d, (D))
whose fiber is isomorphic to H°(Q¢_). So Me, (1,d, (D;)) is smooth over J\/l(n)(d,
(D;)). Let A be an Artinian local ring with maximal ideal m and residue field
k= A/m. Assume that an ideal I of A such that mI =0 and a commutative
diagram

Spec(A/T) —— Mg (r,d,(D;))

| [

Spec(A) —2— M, (1,d,(Dy)) x Nl(n>(d7(Di))N£"> (d,(D;))

are given. Here f corresponds to an A/I-valued point (E,V, {l](l)}) € Mg (r,d,

(D))(A/T). Put (B,V,{1'"}) := (B,V,{I"}) @ A/m. Set
F0:={a€é&nd(E)|Tr(a) =0 and a\(Di)k(Zﬁ.“) C Z;i) for any 4,5},
Fhi={be&nd(E)® Q) (Dx) | Tr(b) =0 and

STONSIE ) ~ .
b0, (1;7) C iy ® Qe (Dy) for any i, j},
Vre : F'5a—Va—aVeFL.
Then we can see by the same argument as that of Proposition 2.1 that there
is an obstruction class w‘(E7 v, {ly)}) € H?(F*) @ I such that w(E,~V,~{l§.Z~)}) =0
if and only if (E,V,{ly)}) can be lifted to an A-valued point (E,V,{ZY)}) €
M@ (r,d,(D;))(A) such that (E,V,{I{"}) @ A/T = (B,V,{I{"}) and det(E,V,
{Zgz)}) =g. Since (E,V, {Z;Z)}) is a-stable, we can see by the proof of Proposi-
tion 2.1 that H?(F*®) =0. So det is a smooth morphism. Since M, (1,d,(D;))
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is smooth over Nl(n)(d, (D;)), we can see that Mg (r,d,(D;)) is smooth over
N (d, (D). 0
4. Relative symplectic form on the moduli space

THEOREM 4.1
There exists a relative symplectic form

we HO (MS/C/S (T7 da (mi))aQQ

M ¢ s (r,d,(mi) JNE (d,D)) :

We prove Theorem 4.1 in several steps.

PROPOSITION 4.1
There exists a skew-symmetric nondegenerate pairing

wr 9Mg/c/s(r,d,<m,1>>/N1<"><d,D) % @Mg/c s (rd (m) N (@,D) T O e s(rd.(mo)):

Proof
There are an affine scheme U and an étale surjective morphism p: U — M5 e/ s(m,
d,(m;)) which factors through M% o 5(r,d, (m;)); namely, there is a universal

family (EI@,{Z?”}) on C xg U. We define a complex F* on C xg U by
Fli={ac End(E) ‘ a|mi({i)U([§i)) C ij(-i)for any i,j},
Fli={be&nd(B) @ Q% 5(D) | bl 7, 1)) €18y © QF (D) for any 4,5},
Vre: F'3a—Voa—aoVeF

Let my : C xg U — U be the projection. Then we have

e >R (7). (F®).

U/N{™ (d,D) =p’ (@Mg/c/s(r,d,(mi))//\/ﬁm (d,D))

Take an affine open covering C xs U = |J,U, and a member v € H(U,
RY(m)«(F*)) =HY(C xs U, F5); v is given by [({uas}, {va})], where {uns} €
C'({Ua}, Fp), {va} € C°({Ua}, ), and

d{uapy = {usy —tay +tap} =0,  Vre({uas}) = {vp —va} = d{va}.
We define a pairing
wy :H' (C xg U, F*) x HY(C xg U, F*)
— H*(C x5 U, ) = H(U,Op)

WU([({ua,B}v {Ua})] ) [({u:x,@}v {U;})])
i= [{Tr(uap oup,) }, —{Tr(uap o vj) — Tr(va 0 upg) ]

By construction, wy is functorial in U. So wy descends to a pairing
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w:0
MZ,c/s

X ©

(rd,(ms)) /NS (d,D) M (rd,(ms)) /N (d,D)

o
D/c/s

- OMS/C/S(Tad»(mz:))'

Take any C-valued point x = (E,V, {ly)}) € MS/C/S(T, d,(m;))(C), and put
v := 7w(x). Then a tangent vector v € G)MS/C/S(7‘7d7(mi))/N7§n)(d7D)(.‘r) =
OMg ¢ s (rd(mi). (x) corresponds to a C[t]/(t?)-valued point (EV, V", {(l”)y) e
M 5 (o)) (CI /(1)) such that (B7,97, {09)"}) @ Cl/(1) = (B,
v, {Zy)}). We can check that w(v,v) is nothing but the obstruction class for the
lifting of (EV, V", {(l”)gl)}) to a member of M7 ¢ (7, d, (m;))w(Clt]/(t?)). Since

Mg c/s(r,d,(mi)), is smooth, we have w(v,v) =0. So w is a skew-symmetric
v
8 /c)s(ndi(m) /NI (D) @Mg/c/s(r,d,(mi))/Nr(")(d,D)

be the homomorphism induced by w. For any C-valued point x € M7 e/ g(r,d,
(mi))(C),
{(z):H'(F*(2)) =0

bilinear pairing. Let £: 0,

Mg/C/S(T’df(mi))/NT(n) (d,D) (:C)

— Y (z)=H"' (f'(x))v

M%/C/S(T’dv(mi))/N}‘n)(d,D)
induces a commutative diagram

H°(F°(z)) ——— H°(F'(z)) —— H'(F*(z)) —— H'(F°(x)) —— H'(F'(x))

) gl | ) il
H (F'(2)) —— H' (F°(2))Y ———H (F'(2)) ——— H°(F'(2))Y ——— H' (F°(2))"”
where by, ba, bs, by are isomorphisms induced by F(x) = F'(2)Y @ Qf , F'(x) =
Fo(z)V @ Qéz and the Serre duality. Thus ¢ becomes an isomorphism by the five
lemma. (Il

PROPOSITION 4.2
For the 2-form w constructed in Proposition 4.1, we have dw = 0.

Proof

Take any point x € S. We will show that dW|Mg/C/S(r,d,(mi))z = 0. We use the
notation in Theorem 3.1. Note that the relative moduli space Mg (r,d, (D;)) is
smooth over Nr(n)(d, (D;)). There is an affine scheme U and an étale surjective
morphism p: U — Mg (r,d, (D;)) which factors through Mg (r,d, (D;)); namely,

there exists a universal family (E,V, {ZNy)}) on Cy x U. Set
FO.= {a € &End(E) ’ a|(Di)U([§-i)) C l;m for any i,j},
Fli= {b € Snd(E) ® Qéme/U(DU) | b|(Di)U(l~j(<i)) - l~§?_1 for any i,j},

V]:-.:]:"Oaar—)@afaﬁe]}l.
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I

Then we have a canonical isomorphism H(U,p*(0, (rd(Di)) /N (d (D‘))))
Cp T, (L4 T (Vi

H'(F*). We can define a skew-symmetric pairing
Gy HY(F*) x HY(F*) — B (U, Q% 0) = Ov,
([({uas} {va})] [({uis} {va})])
= [({Tr(uag o uj,) b, —{Tr(uap o vjy) — Tr(va 0 upg) )]
Since @y is functorial in U, it descends to a 2-form

e HY(Mg, (r.d. (Dy), Oneg, (o (DO)NED (D))

By construction, the restriction & Mg (r,d,(D;)); 1S nothing but the restriction
w|MS/C/S(T7d’(mi))7—' of the 2-form w defined in Proposition 4.1. On the other hand,

for generic v € ./\/T(n)(d7 (D)), the fiber Mg (r,d,(D;)), is nothing but the moduli
space of regular singular parabolic connections considered in [8]. Note that for
generic v, every v-parabolic connection is irreducible and automatically stable.
is nothing but the restriction of the

v

Moreover, the restriction @| Mg (r,d,(Dy))
relative 2-form considered in [8, Proposition 7.2]. By [8, Proposition 7.3], we
have di|rg (r4,(p:)), = 0. Since Mg (r,d,(D;)) is smooth over N(d, (D)),
we have do = 0. So we have dW|M‘5‘/c/S(r,d,(m7¢))z = dof)\MgI (rd,(D:)) = 0. Hence
we have dw = 0. (|

5. Moduli spaces of generalized monodromy data and Riemann-Hilbert
correspondence

5.1. Fixing the formal type
Fix a nonsingular projective curve C' and a divisor D = ", m;t; on C such that
m; >0, t; #1; for i # j. At each point ¢;, we take a generator z; of the maximal
ideal my, of Oc¢,; then we have the formal completion O¢ ¢, =1lim;, Oc 4, /mfl ~
Cl[zi]]- \0<

For given integers r > 0, d, let us fix generalized exponents v = (V§l))?§§§£71€
Nr(")(d, D) (cf. (2)). In Theorems 2.1 and 2.2, we have constructed a smooth
quasi-projective moduli scheme Mg /C(r, d,(m;)), of a-stable v-parabolic con-
nections on C' of parabolic depth (m;)7_;, with rank r, deg d.

For each fixed v-parabolic connection (E,V, {l;z)}) € Mg/c(r, d, (m;))y, we
can define a formal connection by

dZ,‘

(zi)™
In this section, we assume that (Et , @t) is unramified for each 4,1 <1 <n, that

is, in the Hukuhara—Turrittin decomposition in Theorem 0.1, I =1.
By Proposition 1.1, there exists a filtration by C[[z;]]-submodules

Eti =F ®OC,t1 C[[Zl]]? ﬁti :Eti — Et'i ® C[[ZZH

Eti :le(i) S lAl(z') S l;(i) 5. DlA(i)1 DZ;(i) _0

r—
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such that ﬁti (Tj(i)) C Z\j(i) ® dz;/z" and lAj(i)/lAj(i)1 ~ V(f/j(-i),l), where v =
(7 NZE T € NiV(d. D). |

The isomorphism class of (Ey,, Vy,, {I j(z)}) at each t; as C[[z;]]-connection is
called the formal type of the connection (E,V) at t;. For each ¢, the data o) =

(z7j(-i))033'§’"_1 are called formal generalized exponents of (Eti,ﬁti,{z;(i)}). Note

that the original parabolic structure {l;i)} is a filtration of £ ®o,, Clz]/(2").
Moreover, as we see in Remark 1.2, v may not be equal to the formal generalized
exponents U.

The main purpose of this section is to define the Riemann—Hilbert corre-
spondence from the moduli space M§ /C(r, d,(m;)), of v-parabolic connections
to the moduli space of generalized monodromy data consisting of the monodromy
representation of fundamental group 71 (C'\ {t1,...,tn}, %), links (or connection
matrices), formal monodromies, and Stokes data. Moreover, we may expect that
the Riemann—Hilbert correspondence is a proper bimeromorphic surjective ana-
lytic morphism for any v as we proved in the case of at most regular singularities,
that is, the case when m; =1 for all i,1 <i<n (cf. 8], [10], [11]).

As explained in [13], [20], and [21], in order to construct the moduli space of
generalized monodromy data and define the Riemann—Hilbert correspondence,
we need to fix a formal type of the parabolic connection (E,V, {lj(-i)}) at each
irregular or regular singular point ¢;. However the counterexample in Remark 1.2
shows that for a special v, one cannot determine the formal type of a connection
(E7V,{l§i)}) € Mp,c(r,d,(mi))y, that is, the reductions up to the order m;
are not enough to determine the formal type for a special v. Since we have
Proposition 1.2, we may take deeper reductions of order N; = r%m; > m; to
recover the formal type. However, in Remark 2.3, we see that the corresponding
moduli space M7, (r,d, (N;)), is not smooth.

At this moment, we do not know how to handle these difficulties. For this
(9

reason, we impose the following genericity conditions on v = (v; )?Efgﬁ‘l €
N™(d, D).
Let us write V;l)(zi) explicitly as
v () = (@) 2™ a5 de

4) "

= Z (agz,)ng)dzz for0<j<r-—1.

szmi

DEFINITION 5.1
Let v = {V;l)(zi) ?éggfb_l € N\ (d, D) be written as in (4). We have the follow-
ing:

(1) v is generic if for every (i,71), (¢, J2), j1 # j2, the top terms are different,
that is, a;-?,_mi #* at?

J2,—m;)
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(2) v is resonant if for some i,1 <i < n, with m; =1 there exists ji,jo,
j1 # ja, such that

A —al_ ez

aj),—1 J2,—
moreover, v is called nonresonant if it is not resonant;
(3) v is reducible if for some h,1 < h < r, there exist some choices of jil),

..,j,(li),Ogj{i)<j§i) <j()<r—1foreachz 1 <i < n, such that
(5) ZZGO €
i=1 k=1

If v is not reducible, we call v irreducible.

Note that the genericity and resonance of v does not depend on the choice of
the local coordinates z;. An easy argument shows that if v is irreducible, every
v-parabolic connection (E,V,{l;i)}) is irreducible and hence a-stable for any
choice of the weights a.

From now on, we assume that v is generic. From the Hukuhara—Turrittin
theorem (see [27, Theorem 6.1.1]), it is easy to see the following lemma.

LEMMA 5.1

Let (E7V,{l](-l)}) be an a-stable v-parabolic connection in Mp o (r,d, (m;))y.
Assume that v = {V](l)(zl)} is generic. Then we have a direct sum decomposition
of the formal connection

(6) (B, Vi) =V Daev De-ave?,,1).

Here V (v; @1 ) ~ C[[zl]} ) s a rank 1 C|[[zi]]-module with a connection given by

eg-) ()( ) . In partzcular the formal type of (Et ,Vt ) is uniquely deter-

mined by genemlzzed exponents {1/( )}0<]<r 1 Moreover the decomposition (6)

is compatible with the parabolic structure {l }0<Z<T 1.

This lemma implies that there exists a free basis e(()i),. . efa 2 L of By, as a C|[z]]-
module, such that

Vel = 1/3@ (zi)ey).

©7)

Moreover, for Ey, @ C[[z]]/ (2"*), the induced basis {E;i)} gives a parabolic struc-
ture

=@ e,

Let us take a generic v = {vW},<,<, € Nr(n)(d, D). For each t;, define the space
of formal solutions at t; by

(7) Vi, = {0 € By, ©cyz Univy, | V0 =0}
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where Univy, denotes the differential ring extension of C[[z;]] which is similarly
defined as in [20, Section 1.2]. Under the isomorphism of (6), the space V4, is
a C-vector space of dimension r and has a natural decomposition

(®) Vo=V eV,
where V(i) (f(i)(zi)e(i)) is a one-dimensional vector subspace and f(i)(zi) =
exp(— fZ/ ) € Univy,. Note that we have df;l)(zl) = f( )(zl) g )(zl)

5.2. Generalized monodromy data

As in Section 5.1, we fix a nonsingular projective curve C' and a divisor D =
Z;;l m;t; on C such that m; >0, t; #t; for ¢ # j. Moreover, at each point ¢;,
we fix a generator z; of the maximal ideal m;, of O¢, so that we have the
formal completion (%\t, =lim; Ocy, /m} ~ C[[z]]. Let us fix a generic element
venN™ (d, D) written as in (4). Then Lemma 5.1 implies that the formal types of
every v-parabolic connection (E,V, {l](z)}) € Mp,c(r.d, (m;))y at t; can be fixed
as in (6). Fixing these data, we will associate a generalized monodromy data
to each (E,V, {lj(z)}) € Mp o (r.d, (m;)), as follows. We will basically follow the
formulations in [13] and [20] of the genus zero case, which is easily generalized to

higher genus case (for the known facts on generalized monodromy data, see [1],
[13], [22], [27], and [21]).

Local coordinates. For each i,1 <1i <n, we consider the fixed generator z; of the
maximal ideal of O¢+, as a local analytic coordinate around ¢; of C'.

Local neighborhoods. We have an analytic local neighborhood A; C C of ¢; which
is identified with {z; | |2;| < €;} for a small positive number ;.

Singular directions and sectors. Let us identify d,0 <d < 27, as a ray startmg

from the origin z; =0 with an argument d. Fixing a generic v = {1/ (zl)} €
Nrn) (d, D), we can define the singular directions {d,(; 12222 such that 0 < d( &
d(i) d(i) < 27. A direction d at t; is called singular if for some j; # jo the
function exp( [ J(I) V](;))) has “maximal descent” along the ray z; = r;eV 14
for r; = 0. More explicitly, if
() _ (0 () a® —m;
le _72 _((a’jl,—m, _727 ) 2 +)d2}1,
(@) al®
( ]1» ]2 —m;
(( (@ (1) )ef\/_l(ml—l)d —(mz—l)/( _ 1))

317 Jz’ T

) # 0, then d is a singular direction if

is a negative real number (for more detail, see [20, Section 1.3]). For each 4,1 <4 <
n,let 0 < dgi) < dgi) << dgi) < 27 be all the singular directions at ¢;. To fix the
order of Stokes data at ¢;, we take a point ¢! € 0A,; such that dgi) —2m <argt; <
dgi). (Later we will not impose this last condition for ¢} when we will vary the
associated data continuously.) We denote by v; = 0A; a closed counterclockwise
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as)

. N ()
Singular direction dj

o

s;—1

Figure 1. Local neighborhood of ¢;.

loop starting from ¢;. Moreover, we set d((:’) = dgi) — 271 < 0. For each 1 <k <s;,
we define a sector S](;) by

(9) S,(j) = {zl en; ’ 0< |zl < ei,d,(fll <argz; < d,(j)}

(see Figure 1). For a singular direction d at t;, let J(d,7) be the set of all pairs
(j1,42) such that a singular direction of V;I) - 1/](;) is d. The number #7(d,) is
called the multiplicity of d at ¢;. It is easy to see that

(10) S 8I(d, i) = (mi = r(r—1).

1<k<s;

Note that if the multiplicity ljj(dg),i) is one for all 1 <k <'s;, the number of
singular direction is equal to (m; — 1)r(r — 1).

Paths and loops. We fix a point b on C'\ {t1,...,t,} and a continuous path I;
from b to t}. Let us set %4 = livilfl for 1 <4< n and set the usual symplectic
generators ay, Bk, 1 <k <g, of m1(C,b) so that the fundamental group m(C\
{t1,...,tn},b) is generated by {+!, a, B }. Moreover, we assume that our choice
of paths ; and loops v; ay, /3 satisfies the conditions []7_; [, Bk] [Tie; % = 1,
where [ag, Bk] = akﬁkaglﬁgl. Then we have the following presentation of the
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Figure 2. Paths and loops.

fundamental group (see Figure 2):

(11) T (C\{t1,...,tn},b) = <’Y”04k,ﬁk ‘ H ag, Br) H’Yl' = 1>-

=1

Spaces of formal solutions and analytic solutions. Since we assume that v is
generic, we Can fix a decomposition of the formal connection (E't,ﬁt) ~
V(v () e V(v @ Heo-- @V( v, 1, 1) asin (6) and the space of formal solutions
Vi, as in (8). Moreover, we fix the space of analytic solutions Vj, of (E,V) near
b, which is a C-vector space of dimension r.

Fixing these data, we can associate the following generalized monodromy data
to each v-parabolic connection (E,V, {l;z)}) € Mg/c(r, d,(m;))y.

Generalized monodromy data

Formal monodromy {7;}. For each i,1 <i <n, we can define the formal mon-
odromy 7; € Aut(V%,) coming from a monodromy on formal solutions. The eigen-
values of 5; are determined by {a ;. 71}0<7<T 1 with some exponential maps. Since
we fix the decomposition (8), 7; are fixed diagonal matrices.

Stokes data {St ) }. Let us consider a sector S C A; \ {0}, and let V(S) denote
k

the space of analytic (or convergent) solutions of V =0 on the sector S. Let

{S;(j)}lgigsi be the set of sectors defined in (9). For directions dj _ € S,(;), di,+ €

S 1(:-3-17 we have multisummation maps
multsg, _ : Vi, — V(S(i))7

multsg, | : V4, —>V(S,E:J)rl)
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which are C-linear isomorphisms between V;, and V(S,(:)) and V(S,(Cil), respec-
tively. The Stokes map St i) comes from an isomorphism
k

(12) Std(i) Vi, — Vi,
k
which makes the following diagram commutative:
multsg, — : V4, — V(S,ii))
1St I
k .
multsg, 4 : Vi, — V(S,g:)_l).

The identification V(S,(:)) = V(S,(jll) comes from analytic continuations.
According to the decomposition (8) of V;, = @;;é Vj(i), each Stokes map
Std(i) has the form
k

Sty =1d+ > Rj\ »»
(j1,42)€T (A )

with Rj, j, =1, 0 My, 5, © pj, where 0 < j1,j2 <7 — 1,71 # ja, Pjr Ve, = ‘/j(:) is
the projection, and i, : Vj(;) —+ V4, is the canonical injection. Moreover, Mj, ., :
Vj(li) — VJ(;) is a linear map between one-dimensional spaces. So M;
by a scalar ¢;, j, € C. In the matrix form, one can write

Styw =1 + Z Cja g1 Lja g1

(j1.52)€T (A 1)

1.jo 18 given

where I;, ;, is the (r x r)-matrix whose (i, k)-entry is zero except for (i,k) =
(j2,j1) and the (jo,j1)-entry is 1 (for this fact, see [21, Theorem 8.13] or [22,
Lemma 6.5]).

The link L; € Homg(Vy, Vi,). Analytic continuation along I; gives a C-linear
isomorphism V, — V. Composition of this isomorphism and the inverse of the
multisummation map V;x — V4, gives the linear map which is called a link (or
a connection matriz)

(13) Li: Vo= Vie — Vi,

The topological monodromy Top,; € Aut(V;,). Identifying V;- with V4, by the mul-
tisummation map, an analytic continuation along the loop +; starting from ¢
gives a topological monodromy Top, € Aut(V;,) ~ GL,(C). We have the following
relation:

(14) Top, = i 0 Stdgii) 0---0 Stdgi) o Stdgi) .

The global monodromy representation. We can consider the monodromy rep-
resentation p: 7w (C\ {t1,...,t,},b) — Aut(V}) ~ GL,.(C). Moreover, p(v}) =
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L;l Top, Li, and we set Ay, = p(ay), B, = p(Bk). These data determine the mon-
odromy representation p : w1 (C\{t1,...,tn},b) — Aut(V}) =~ GL,.(C) associated
to analytic continuations of the space of solutions of Vo = 0. We have the relation

1 1
(15) H L;* Top, L; H(B,;lA,ngkAk) =1,.
i=n k=g

(Note that in this notation, p becomes an antihomomorphism such that p(d1d2) =
p(62)p(d1).) By the relation (14), we see that the formal monodromy 7;, Stokes
data {Stdgj>}1SkSr(r—1)(mi—1)7 and the link L; determine p(+}).

For a generic v € N (d, D), we define the set R(v) of all tuples

{{’%}a {Stdg) }a {Ll}v {Ak7 Bk}}
satisfying the following.

1. For each 1< i <mn, ¥; € GL(V;,) preserving the decomposition (8) whose
eigenvalues are determined by {Gg'f),l}ogjgr—y (Hence, 7; is a diagonal matrix
with prescribed eigenvalues.)

2. For each 1<i<n and 1<k <s;, Std,ﬁ“ € GL(W,) of the form Stdl(::) =
Id+ Z(jl,]é)ej(dg),i) R;, j, where R;, ;, corresponds to a one-dimensional homo-
morphism cj, j, : Vj(ll) — Vj(;).

3. We have linear bijections L; : V, — V;, for 1 <i <n.

4. Define Top, € GL(V;,) by the formula (14). The set {{Top; }1<i<n, {4k,
By, € GL(V3) bi<k<g} satisfies the relation (15).

DEFINITION 5.2
Two tuples {{7.}, {St, },{L:}, {Ax, Be}} and {{5'},{St }, {L7}, {4}, By}
are called equivalent if there exist ¢(*) € GL(V;,) preserving the decomposition
Vi, = @Z;é Vj(z) in (8) and o € GL(V}) satisfying

oWL; =Llo foreachi,1<i<n,

a(i)*% = %/a(i) for each 7,1 <7 <n,

a(”StdS) = St;(i)a(i) for each i,1<i<n,1<k<s;,
k

Ay, =0 Ao, Br=0"'Bjo foreach k,1<k<g.

Note that under the assumption that v is generic we see that o) € GL(W,)
above is a diagonal matrix in H;;é GL(VJ@) ~ (CX)".

Since the set R(v) is an affine scheme with a natural action of the reductive
group

n r—1

(16) G :=GL(V,) x [ T] 6r(v,?)

i=15=0
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in Definition 5.2, we can construct the categorical quotient
(17) R(v)=R(v)//G

which is considered as the set of equivalence classes of the generalized monodromy
data associated to v. By definition of the categorical quotient, R(v) is an affine
scheme.

PROPOSITION 5.1
Assume that v € Nﬁn)(d, D) is generic, nonresonant, and irreducible (cf. Defini-
tion 5.1). Then moduli space R(v) is a nonsingular affine scheme and

dimR(v) =2r%(g— 1) + Zmir(r —1)+2
i=1
if R(v) is nonempty.

Proof
For a generic v € Nr(n)(d, D), consider the affine variety of tuples

S(v) = {{{%}, {Styo} {Li}, {Ag, Bi}} | without the relation (15)}.

Set I; = (m; — 1)r(r — 1), and recall the equality >, ., . ﬁj(d,(f),i) =[; where

17 (déi),i) is the multiplicity of the singular direction dg). The set of Stokes

matrices Stdm is isomorphic to the affine variety Cw(d'(cz)’i). Then we see that
k

S(w)~][i-, C“ x GL,(C)" x GL,(C)% (with I; = (m; — 1)r(r —1)); hence S(v)

is a smooth affine variety of dimension Y ;- (m; — 1)r(r — 1) + (n+ 2g)r?. Define

the morphism

(18) wu:S(v) — SL,(C)

by

,u({{%}, {Std;“}’ {Li}, {AkaBk}}>
(19)

1 1
= [ L " Top, Li [[ (B, ' A, ' BrAr)
i=n k=g
with Top, =7; o St iy 005t i) oSt ). Then we see that 7~2(V) =u~Y(I,). As
s 2 1

in [7, Theorem 2.2.5], in order to prove the smoothness of 7@(1/), we only have
to prove that the derivative dy, : T's s — Tsr,,(c),1, =~ sl-(C) is surjective at any
point s € S. If v is nonresonant and irreducible, this can be shown by direct
calculations of dus as in the proof of [7, Theorem 2.2.5]. Therefore R(v) is a
smooth affine scheme with

dim’]é(l/) =dimS(v) — (r2 -1

- Z(ml —Dr(r—1)+ (n+29)r* — (r* = 1).
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Recall that G = GL(V;) x [T\, H;;é GL(Vj(i)) ~ GL,(C) x [[;~,(C*)" acts on
R(v) as in Definition 5.2. Note that the subgroup Z = {(cI,, (c,...,c)) € G,c €
C*} acts on 7%(1/) trivially. Then under the assumption on v, it is also easy to
see that the action of G/Z on R(v) is free. Hence R(v) = R(v)//G is a smooth
affine scheme with

dimR(v) = dimR(v) — (dim G — 1)

= Z(ml —Dr(r—1)+(n+29)r* - (r*—=1) = (r*+nr—1)

n
=2r%(g—1)+ Zmir(r —1)+2.
i=1

5.3. The generalized Riemann-Hilbert correspondence
Let us fix a data (C,D =Y mst;), let z; be a generator of m;,, and take
a generic element v € Nr(") (d,D). For these data, we can also fix an analytic
neighborhood A; = {z; € C||z;] < €;} of each t;, singular directions {dg)}, sec-
tors {S,(:)}, and t7 € OA; as in Section 5.2.

Moreover, we fix a base point b € C'\ {¢1,...,t,} and a continuous path I;
from b to t} and loops {7}, au, Bk} with the condition (11).

Fixing these data, we can define the generalized Riemann—Hilbert correspon-
dence as in Section 5.2:

(20) RH(D/C)J, : Mg/C (T, d, (mi))u — R(V)

THEOREM 5.1

Under the notation above, assume further that v is nonresonant and irreducible.
Then the generalized Riemann—Hilbert correspondence RH(p ¢y, (20) is an ana-
lytic isomorphism.

Proof
Under the assumption that v is generic, we can fix formal types of all singularities
of v-parabolic connections (E,V,{ly)}) € M3 ,c(r,d,(m;))y, and then we can
define the Riemann-Hilbert correspondence RH(p /¢, as we explained above.
The fact that RH(p,c),, is a holomorphic map can be proved as follows. All
generalized monodromy data can be defined by a system of local fundamental
solutions of V = 0 defined in each open set including the sectors near the singular
points ¢; (cf. [27, Chapter VI]). If one has a holomorphic family of v-parabolic
connections, Sibuya [26] showed that at least locally in the parameter space there
exists a family of a system of fundamental solutions depending on the parameter
holomorphically. Hence, this shows that RHp ¢y, is holomorphic.

Recall that M7, (r,d, (m;))y is a smooth quasi-projective scheme (see The-
orem 2.2) and R(v) is a smooth affine algebraic scheme (see Proposition 5.1).
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Since RH(p/¢),, is an analytic morphism between smooth analytic manifolds,
we only have to prove that RH(p /¢, is bijective.
First, we prove the surjectivity of RH(p/¢),,. Let us take a tuple

{{7:}, {Std,(j>}’ {L:},{Ar, Br}} € R(v).

By the Malgrange—Sibuya theorem formulated as in [1, Theorem 4.5.1] or in its
original form (see [27, Theorem 6.11.1]), we see that the local analytic isomor-
phism class of the singular connection on each small neighborhood A; with the
fixed formal type v(9) = {VJ@ (z;)} has one-to-one correspondence with the set of
the formal monodromy and Stokes data with the formal type determined by ().
So for each i,1 <i <n, we can take local analytic connections (E®,V®) on A,
whose formal types are given by v(Y and whose local generalized monodromy
data is isomorphic to {{%;}, {Std,i,") 1

Since we assume that v is generic and nonresonant, the parabolic structures
{l§i)} of (E®,V®) at t; can be uniquely determined, so we obtain local analytic
v)_parabolic connections (E® V), {léi)}).

The data {Top;,{L;}, Ak, B} determine the monodromy data of a flat bun-
dle E; on Cy:=C\ {t1,...,t,}. Hence E; = E; ® O¢, is a locally free sheaf
with a flat connection V: By — E; ® Qg . Since by (15) the local monodromy
data of (E1,V) and (E®,V®) is isomorphic over A; \ {0}, we can glue (E1, V1)
and (E®,V®) to obtain a holomorphic vector bundle E on C and a flat con-
nection V: E — E ® QL(D). Then by GAGA, we obtain a v-parabolic con-
nection (E,V, {ly)}) of degree d. (Note that by the Fuchs relation, the residue
part of v determines the degree of E.) Since v is irreducible, this connection
must be irreducible; hence it is a-stable for any weight «, so it is a member
of Mg/c(r, d,(m;)),. This shows that RH(p/c),. is surjective. Now from this
construction, the injectivity of RH(p,¢),, is obvious. Hence RH(p /¢ ., is bijec-
tive. |

REMARK 5.1

In the next section, we will vary the data (C,t), the local generators {z; € my, } in
a suitable moduli space, and v = {v(z)} € N,(,n)(d, D), and we will construct
the continuous analytic family of Riemann-Hilbert correspondences RH(p ¢ .-
In order to do this, we first fix data (C,t),{z1,...,2,},v as a base point in a
connected component of the moduli space of such data. We will assume that v
is generic and simple (see Definition 6.1) for a technical reason. We can also fix a
small neighborhood A; near ¢; and the (simple) singular directions {d;i)}lgjgsi
and the ordered sectors {S;(f)}lgkgsi- Moreover, we can fix ¢} as before (see Fig-
ure 1). Fixing a base point b € C'\ {t1,...,t,}, we can also take and fix paths and
loops as in Section 5.2. Once we fix these data, we can define the moduli space
R(v) of generalized monodromy data (17) and the Riemann—Hilbert correspon-
dence RH(p /¢y, as in (20). Note that in order to define a data of R(v), we

need to fix the paths {I;},{!,ax, B} and the order of the sectors {S,(:)}lgkgsi
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near each t; which is determined by the singular directions determined by (%)
as in Section 5.2. The closure of the first sector SY) contains the end point ¢} of
the path [;. If we vary v continuously from the original data in the connected
component under the condition that v is generic and simple and fixing the data
(C,t),{z:}, the singular directions and sectors are changing continuously. In this
procedure, we need to keep the order of sectors; hence we need to change the
point ¢ and the path [; continuously. It is easy to see that when we vary the
data (C,t), {2;}, v continuously in the connected component of the moduli spaces
(see Section 6.1) starting from the base data, we can vary continuously singu-
lar directions, sectors, and paths and loops starting from the original data. By
this procedure, we can define the continuous analytic family of Riemann—Hilbert
correspondences in each connected component of the moduli space.

REMARK 5.2

By using the result in [26], Jimbo, Miwa, and Ueno [13] discussed the analycity
of the Riemann-Hilbert correspondence when one varies {(P!,D),v} € My, x
N (d, D) and discussed the isomonodromic deformations of linear connections.
When v varies in the open set of Nﬁn) (d, D) corresponding to generic exponents,
one can define an analytic family of Riemann—-Hilbert correspondences.

REMARK 5.3

The surjectivity part of Theorem 5.1 is related to the generalized Riemann—
Hilbert problem with irregular singularities over C' = P! which has been inves-
tigated, for example, in [13], [5], and [20]. Usually, they would like to obtain
singular connections (E,V) with trivial bundle E = ng. However from our
viewpoint of global moduli spaces of the connections, even in the case of C' = P!
and d =deg FF =0, it is not natural to assume that vector bundle E is always
trivial, that is, E = (’);‘2{, for the set of such connections may correspond to a
Zariski-dense open subset of the moduli space M7, (r,d, (m;)),, but they may
not cover all of the moduli space. The type of bundle F may jump, for example,
as E~Op1(1) @ Op1(—1) ® 0357_2). The jumping phenomena of the bundle
types in the moduli space of semistable bundles, which both of authors learned
from Professor Maruyama, is one of keys of many moduli problems and makes
the moduli theory interesting. In the case of the connections, divisors for jumping
phenomena are corresponding to the 7-divisors.

REMARK 5.4

In [4], Boalch constructed the space of isomorphism classes of meromorphic con-
nections on a degree zero bundles on P! with compatible framing of fixed generic
irregular type by an analytic method and showed that taking monodromy data
induces the bijection between the space of meromorphic connections on degree
zero bundles and the corresponding spaces of monodromy data (cf. [4, Corol-
lary 4.9]). In [3], Biquard and Boalch generalized the analytic construction of the
moduli spaces of the connections and showed that under a slightly weaker generic
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condition the space of meromorphic connections with fixed equivalence classes
of polar part over a curve is a hyper-Kéhler manifold. Despite these interesting
analytic constructions, we believe that our algebro-geometric constructions of the
moduli space of stable parabolic connections with fixed irregular singular types
have some advantages, such as natural algebraic structures on the moduli spaces,
which are crucial to write down the isomonodromic differential equations in some
rational algebraic equations on the algebraic coordinates on the phase spaces.

REMARK 5.5

In [8], Inaba showed a stronger statement for the Riemann—Hilbert correspon-
dence when all of the singularities are at most regular (that is, m; =1 for all 7).
See also [10], [11], and [9] for former results on the Riemann—Hilbert correspon-
dences.

6. Geometric Painlevé property for generalized isomonodromy
differential systems

6.1. Generalized isomonodromic differential systems and their geometric
Painlevé property

Let us fix integers g, n,d, 7, (Mm;)1<i<n as in Section 5, and let M, ,, be an algebraic
scheme which is a smooth covering of the moduli stack of n-(distinct) pointed
curves such that Mg, is smooth and has the universal family (Cotrye.ty) —
My,. We put D =" mt;. For each (C,t1,...,t,) € My, and i,1 <i<
n, let W, : Og,, /mi" 5 Clz]/(2™) be ring isomorphisms. The moduli space
Mg (m,) of tuples (C,tq,...,tn, {W;i}1<i<n) is a smooth quasi-projective scheme
over My . Let My, (m;) —> Mgy be the natural morphism, and consider the
scheme J\/}(n)(d7 D) over M, ,, of generalized exponents defined in (3) in Section 2.
Then by using the local coordinates z; at t;, we have a natural isomorphism

Mg,n,(mi) XMg,n Nr(n)(d, D) ~ Mgﬂl,(mi) X 1\71§7l)(6l,l))7

where N (d, D) is defined in (2). This space is the parameter space of our
moduli spaces, and for simplicity, from now on, we set

(21) T =My (ms) X, N (d, D) ~ My, sy X NS(d, D).

Let us take v = (V](-i))?gérz_l e N (d, D) and write V](Z)(z,) as in (4):

i) i) L —m @ o1
vy () = (a5 5 ™ e e hE ) dz
(22) 1

= Z (aéi,)czf)dzi for 1 <i<n.
k:*'rni
Let us consider the following decomposition according to the order of expansions
in (22):

an)(daD) = Ntop X Nmid X Nrcs
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where we set Niop = {(a; (i) m, )M > 2}, Niia = {(a gz,)c) —-m; < k< —1,m; >3},
Nres = {(a; () 1)} Using th1s decomposition, for v € N(")(d D), we can write as
v= (utop, led, Vyes). Let us define

Niop = {(a5 ) [0 o, #0)_  G1 # a).
Since the genericity condition on v € N,gn)(d, D) depends on the part vy (cf.
Definition 5.1),

(23) N° = N¢?

top

X Nid X Nies € N™(d, D)

is the space of generic generalized exponents. Note that N° is an affine open
subvariety of NT(-n)(d, D). Moreover, the conditions of resonance and reducibility
on v depend just on vy (cf. Definition 5.1). Let us denote by P the set of
formal monodromies {7;} associated to v,es, which admits a surjective map by
an exponential map

€: Nyes — P, {a J—l}H{’YZ}

(Note that we have the Fuchs relation of vyes.)

Recall that for v € N°, in the previous section, we define the moduli space
of generalized monodromy data R(v) as in (17).

Now we will see the dependence of isomorphism classes of R(v) on v € N°.
In order to avoid technical difficulties coming from the multiplicity of the Stokes
lines, we give the following definition.

DEFINITION 6.1

A generic local exponent v = (V;Z)(Zl» € N° is called simple if all of the multi-
plicities of the singular directions of v are one. We denote by N°® the set of all
simple generic local exponents v.

Since the singular directions for generic local exponents can be determined by
Viop as in Section 5.2, we have the following.

LEMMA 6.1
We can write
(24) NO7S Ntop X led X Nr687
where Nto’p consists of Viop = (aéz)_ml) € N, with the conditions that for any i
and (j1,j2) # (k1,k2),
arg(a<i)77mi - a§i)77mi) % arg(a](fl)ﬁmi - agz)ﬁmi) mod 27Z.

Note that Ntoog is mot a Zariski-open subset of Ng,, and Nmp may not be con-
nected.

We constructed the moduli space R(v) of the generalized monodromy data asso-
ciated to the formal type v as in (17). Since for v € N°* every Stokes matrix
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associated to each singular direction is one-dimensional, we can easily see that the
algebraic isomorphism class of the affine scheme R(v) only depends on v,¢s or on
p = e(Vyes) for v € N°°. So we may write as R(v) = R(Vres) = R(p) for v € N°-*.
Fix a base element in each connected component of My ,, () ¥ Ntoo’f, X Nmia X P,
and fix the data of singular directions, sectors, paths, and loops for it as in the
previous section. Varying the data continuously in each connected component of
Mg n,
generalized monodromy data

(ms) X Nigp X Nmia X P, we can construct the family of moduli spaces of

(25) TR — Mg,n,(mi) x N2 Nmia X P

top

such that 77 ' ((C,t,{¥;}), (Wtops Vmid €(¥res)) = R(V) = R(Vyes). (Note that in
order to construct the family (25), we need to consider the actions of the funda-
mental groups of the base spaces to singular directions and the homotopy classes
of paths and loops in Section 5.2.) Let us fix Vyes € Nyes and set p = €(Vyes) =
{7} € P. For simplicity, we set

Tsis =M, n,(m;) X Ntoo)s X Nmid X {Vres} C TO
(26) ’ ’
= M!]v"»(mi) X Ntoop X Nmid X Nres~
Since T9° ~ My (m,y X Niop X Nimia X {p}, restricting the family 7, (see (25))

= Mg,
to this space, we obtain the family of moduli spaces

(27) Tp:Rp —T.°

Vres

which is analytically locally constant with the typical fiber R(ves) = R(p). Con-
sidering the universal covering map

Tor i

Vres g,n,

o5 (mi) X Nfo’; X Nipiq ¥ {Vres} — T2

- = Mg (ms) X Negp X Ninia X {Vres},

we can pull back the family m; , (27) to the family over the universal covering

which is isomorphic to the product fibration:
Fip:Rp=R(p) x TS —TS*

Vres

with the fixed fiber R(vyes) = R(p). On the other hand, by applying Theorems
2.1 and 2.2 to the family of n-pointed curves over Mg, (), there exists the
quasi-projective smooth family of relative moduli spaces

2 - Mg/C/]\/[g,n_’(mi) <r7 d7 (ml)>

—T'= My, (mi) X0, N\™ (d, D) = M,

g

n(msy X N(d, D).

We denote by M7 JCITSE
{vies} CT =My, (1my) % N (d, D) by the morphism 7o. Then there exists the
quasi-projective smooth family of relative moduli spaces

the pullback of T,9° = M, (m,) X Niop X Niia X

- g,m,

(29) T pre . MS/C/T,?;; — T

Vres
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Pulling back this family by the universal covering map (28), we obtain the

family 72, : Mg 16T, fs;; of moduli spaces.
Now take a base point (C,t1,...,tn,{% }1<i<n,¥) in each connected compo-

nent of 7;° , and fix a small neighborhood A; near each ¢; and the (simple)
singular directions {d;l)}lgjgsi and the ordered sectors {S\”},<<s, for each i

as in 5.2. Moreover, fixing t} € Sy) NOA; and a base point b€ C\ {t1,...,tn},
we can fix paths {I;}, {7}, ax, Bk} as in 5.2.
As explained in Remark 5.1, when we vary the data in T, or in T,j’f

starting from each base point, we can vary the choice of sectors, paths, and loops
continuously. Hence we can define an analytic morphism

RH S R(Vres) X TS

. o
vre - Mp e 7, Vies
which makes the following diagram commutative and induces the continuous
analytic family of Riemann-Hilbert correspondences of fibers of 72 ,, ., and 71 p,

RH,

Mg gy, " Rl < T
(30) T2 00 I Tp
R

The analycity of RH,,
smooth, we can consider the natural surjection of tangent sheaves
(31) ©:Opne

=0,8
D/C/Ty Vres

also follows from the result in [26]. Since 79, is

— ﬁg,um(@m;) — 0.

Now one can introduce the (generalized) isomonodromic flows and isomonodromic
differential systems as follows.

DEFINITION 6.2

Assume that v,es is nonresonant and irreducible so that RH, . induces an
analytic isomorphism between the closed fibers of 7; p and 7, over every
closed point of fﬁc by Theorem 5.1. The pullback of the set of all constant sec-
tions of 71 p over IN“,‘,’:’ (C f,fe) via the Riemann-Hilbert correspondence RH,,,

gives the set of horizontal analytic sections of 7, . in (30) which we call the
(generalized) isomonodromic flows. Then the isomonodromic flows define a split-

ting W : T3 e (OF0s ) = @Mg/é/%m of the surjection (31) and define the sub-
sheaf -
(32) Vres éP = \i/(ﬁ-;,ures (G)ﬁfr*; )) C GM"‘ ~o,s 7

D/C/T,/lreb
which we call the isomonodromic foliation or the isomonodromic differential sys-
tem. It is obvious that the isomonodromic flows become solution manifolds, or
integral manifolds of the differential system 6, __. The differential system 6, _
in (32) is called the isomonodromic differential system associated to the moduli
(m ) X NO yS

space of v-parabolic connections. The parameter space T 08 — ) top X

g,n,
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Nmid X {Vres} can be considered as the space of time variables, though some of
parameters may be redundant.

Now from the diagram (30), we can descend RH,,__ to obtain the following com-

mutative diagram: Yres
Mjesrss, —5 R
(33) L .
vice = Tgs.

By the same reason, we can pull back the locally constant sections of m p by

RH,,.. and define an isomonodromic flow on g, _ : Mg/C/To,S —Tp% .
Then we can also define the splitting

(34) Vim0 Ors) 2 Onig e

and we can define an analytic foliation

(35) 0., =0p:="(m;, (Or:))C @Mg/C/TS;‘;S .
It is natural to consider both isomonodromic differential systems 8, . and

0
sponding phase spaces, it is now almost trivial to see the following theorem, as
is explained in [8] and [10].

Since their integral manifolds are the isomonodromic flows on the corre-

Vres ®

THEOREM 6.1

Assume that V..., is nonresonant and irreducible. Then the isomonodromic differ-
ential system é,,m in (32) on the phase space Mg/é/f,f;gs satisfies the geometric
Painlevé property. Moreover, the differential system 0, in (35) on the phase
space Mg/C/TS;; also satisfies the geometric Painlevé property.
Let us consider the affine variety 7,7  which contains T,)** as an analytic dense
open set. Then we have the followingﬂ diagram:

(8% o
MBergs, = Mpjeyrs, |

(36) \L 7r27Vres *L 7-‘-/27l’res

TS C T

Vres Vres

Since 7’9 ..., is smooth and algebraic, we have a natural surjective homomor-
phism

(37) ©:On — (m5,,..)" (O

Vres

g/c/To ) — 0.

Vres
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Over the phase space MZ e e s this is nothing but the surjection in (31).

res

The following theorem says that the splitting ¥ in (34) can be extended to the
algebraic splitting ¥ : (73, )" (©1g ) — Omg

D/C/T,‘jms

THEOREM 6.2

We can extend the splitting VU in (34) to the algebraic splitting
(38) v (ﬂ-é’VTGS)*<®TSreS) - ®Mg/C/T3reS
Proof

Take an affine open subset U CT; — and an algebraic vector field v € H (U,
Org ); v corresponds to a morphism ¢* : Spec Oyle] = T, where €2 =0. We
denote the pullback to C x Spec Oy le] of the local defining equation of #; by g;.
We may assume that g;|,, 7, is the element given by v. Consider the composite

d _
de : Ocxspec 0u [ — L xspec oule/u = Ocxspec oy [ A9i & Ocxspec 0y [¢] d€
— Ocxspec 0y [¢] de-

Note that ede =0, and 50 O¢xspec 0y [ de = Oy, de. Let (I/j(i)) + e(,uéi)) be the
pullback of the universal family on T, by ¢, where d. (yj@) =0. There is an
étale surjective morphism V' =], Vi — (75, )~ '(U) such that V is an affine

scheme and there is a universal family (E,V, {l;(z)}) on Cy.
Take an affine open covering Cy, = |J, Wa. After shrinking Vi, we may
assume that #{a | (t;)v, C Wo} =1 for any i and #{i | (f;)y, "W, # 0} <1 for

any «. Take a free O, [e]-module E, with an isomorphism F, ® Ow,_ €]/ (¢) s
E|Wa. Assume that (@')Vk C W,. We can take a basis eg, ...,e,_1 of E, and A, €
End(E,) such that Vl]w,(e;) = §; " dgi(Aa ® Oule]/(€))(e;) and
Aal@m;—1)i; (€l @m—1)E) = (gril/j('l))@j‘(2mﬁ1)fi for each 0 <j <r —1. We may
assume that d.(A,) =0. We can take a matrix B, € End(Ea)gilfmi such that
Bal@m;—1)i; (€5l @m:—1)z,) = (fﬂy))ej‘@mi—l){ for each 0 < j <r — 1. Here note

i

that ugi) has no residue part, and so [ ,uéi) is single valued. We have

(Aa|(2mi—1)£iBa|(2mi—1)£i - BO"(27rLi—1)t~iA04|(2mi—1)fi)(ej|(2mi—1)fi)

= Aal@m, 17, ((/ “;i))ef‘@mf“ﬂ)

- Bal(?mifl)fi ((gril/j('l))ejl@mifl)fi)

—( / i) Al a1y €3l zmi1z) = @V Bal 17, €l 2, -1)2,)

- (/ 'uy)> (glml V§l))(ej|(2mi*1)t~i) o (glmlyﬂ(l)) (/ 'uél)) (ej‘@mifl)fi) =0.
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This means that Ay By — BoAq € §; " End(E,). We define

Coim g™ aaB + AuBo — BaA, € End(E,).
i

Then we have (Aq +€Co)g; ™ dGil .z, (€jlm.z,) = ( ]()4‘6#5))(

Ay = (Ao + eC’a)gi_mi dg; + B, de,

.7,)- We put

and define a connection V, : E, — E, ® Q! by
r—1 r—1 r—1 _
Va (Z aje]) = Z da; ®e; + ZajAa(e])
=0 =0 =0

for a; € Ow,,, where Q' is the subsheaf of QCV x s Spec Oy €]/ Vi (D) locally gener-
ated by §; ™ dg; and §; ~™ de. Then V,, is a flat connection, that is, V0V, = 0.
We define a local parabolic structure {( )(i)} by (! )(»i) = (er—1lm, t . mifs)-
So we obtain a triple (E,, Vo, {(I ) }) which satisfies Vo |,,.7, (1 ) ) ( ) ®

@ for any i and (Valps, - 0+ @ DP) C (D ©

Qévk[s]/vk[e](ka [e]) for any 4,7, where Cy,[e] = Cy, xu SpecOyle]l, Dy, [e] =

Dy, xy SpecOye], and V., is the relative connection induced by V.
We call (€,Vg, {(lg)g-l)}) a horizontal lift of (E,V, {ly)}) with respect to v

if

(1) & is a vector bundle on Cy, Xy Spec Oyle],

2) i, = ) D2 (1)) =0 is a filtration by subbundles for i =
1,...,n, and

)

(3) Ve:£—E®Q! is a connection satisfying

(a) Vel ((e))”) C (le)}” © Q* for any i, j,

(b) the curvature V¢ o Vg E— E®O? is zero,

(©) (Velm,z, = 05" +en”)id)(e)”) € Ue)fhy © O, 0 vy10(Pev ) for
any 1,7, where Vg is the relative connection induced by V¢, and

(d) (€, Ve {(1){"}) @ Oule]/(e) = (B, V., {I{"}).

Note that (Ey, Va, {(la)gl)}) is a local horizontal lift and that the obstruction
class for the existence of a global horizontal lift lies in H?(F*®), where

—{uegnd )| w2 l(l()) Cl @ for any i, it
s, () TV 00
for any i, j, and the image of
Fl:={ue&nd(E) ®ﬁl l(z) N E|m , ‘mm E\m £ ®Q )

—>E|m i ®ch /Vk(DVk)
lies in l]Jrl ® QCV Vi (Dy,) for any i,j

Fri={ue End(E) @ Q2 ‘ ul,, 7, (ly)) C lj:_1 ® Q2 for any i3},
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d°:F'su—sVou—uoV+udee F,
dl:fl9w+ad6,_>d6/\w+(@oa—ao@)/\dﬁé.?gc

Here O = Qévk/Vk (Dv) @ Oc,, de. We can easily check that the complex F*
is exact and so H2(F*®) = 0. So there is a horizontal lift (S,Vg,{(lg)é-l)}) of

(E,@,{l}m}) (In fact, we can see that a horizontal lift is unique because of

H(F*) =0.) (S7Vg,{(lg)§»i)}) determines an algebraic vector field ¥'(v) €
HO(Vi., (Opre )vi.)- We can see that ¥/(v) descends to an algebraic vector

D/C/Tl‘;'reS

field ¥ (v) € HO((rh,, )" (U), Ona

D/C/TS e

U(v), that is, ¥ is algebraic. O

). By construction we have ¥/(v) =

REMARK 6.1
The algebraic splitting in (38) also defines an algebraic differential system on the
phase space MB‘/C/TO

Vres

(39) Bi’res = 0;) = \Il((ﬂ-éaures)*(@TSres )) - GA{g/C/TSres ’

which coincides with 6
0/

Vres
and irreducible; that is, the condition for simpleness for v (or v.p,) may not

— [
= 0p on Mp ey,

also satisfies the geometric Painlevé property when v,es is nonresonant

. It seems natural to expect that

Vres

be necessary. If we will fix a nonsimple vi,, and vary the other data in T, _,
/

we can show the geometric Painlevé property for the vector fields 6,,

Theorem 5.1.

. from

Now we show that geometric Painlevé property of a differential system 6, _ on
MZ IS, implies that the analytic or classical Painlevé property of differential
system holds as follows (cf. [9], [8]). Assume that on an affine Zariski-open subset
U of Ty we have algebraic coordinates T, ..., Tj of U where | = I(g,n, (m;), p) =
dim77 . Then we may also consider them as a coordinate system on U NT;° .

Then we can see that the differential systems H:Jres on the phase space Mg e/
over U are generated by the following algebraic vector fields:

P
’ — rp / r_
0, ={0),....6;}, where0, \I’((?Ti)'

These vector fields naturally commute to each other, and by using affine algebraic
coordinate charts of Mg Jc/u We may write these vector fields explicitly and define
algebraic partial differential equations on M3 sc/u Restricting these vector fields

on the phase space M<Z over U NTy* , we obtain the vector fields

D/C/UNTS,
0,.. ={61,...,0;} which are equivalent to the isomonodromic flows defined in
Theorem 6.1. Hence 0, can be written in partial algebraic differential equations
with the independent variables T7,...,T},. Since all the solutions of 8, are in
the isomonodromic flows, the solutions stay in the phase space over U NT;° .
This means that all solutions can be arranged in a coordinate chart after the

rational transformations of algebraic coordinates of the fibers. So the movable
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singularities of the associated differential equations are only poles, which implies
the analytic Painlevé property.

REMARK 6.2

Jimbo, Miwa, and Ueno [13] gave explicit isomonodromic differential systems in
the case of C =P1.

REMARK 6.3

Even if v, is resonant or reducible, we can define the Riemann—Hilbert cor-
respondence RH,, . under the condition that v is generic. We expect that the
Riemann-Hilbert correspondence RH, __, is a proper surjective bimeromorphic
analytic map on each fiber of every closed point of T; . If we can show this
fact, we can define an isomonodromic differential system and show its geometric
Painlevé property.

6.2. Relations to the classical Painlevé equations

Painlevé [18] and [19] and Gambier [6] classified the second-order rational alge-
braic ordinary differential equations which may have analytic Painlevé property
into 6 types, Py,J =1,..., VI. We call these equations classical Painlevé equa-
tions. However they did not give the proof of the Painlevé property for classical
Painlevé equations.

Okamoto introduced a one-parameter family of algebraic surfaces associated
to each type of classical Painlevé equation (see [17]) on which the Painlevé equa-
tion has horizontal separated solutions at least locally. A surface appearing as
a fiber in the Okamoto’s family is called Okamoto’s space of initial conditions.
It has a nice compactification S, which is a smooth rational projective surface,
whose anticanonical divisor —Kg=Y = Zle n;Y; is an effective normal crossing
divisor, and the space of initial conditions can be given as S\ Yicq. It satisfies
the condition —Kg-Y; =Y -Y; =0 for all 7,1 <i<s. We call such a pair (5,Y)
where S is a smooth projective rational surface and Y € | — Kg| with the above
condition an Okamoto—Painlevé pair (see [25], [23], [24]). In [25], [23], and [24],
Okamoto—Painlevé pairs (S,Y) are classified into 8 types corresponding to the
affine Dynkin diagrams of types Dlgl),4 <k< 8,Eé1),E§1),E§1). Moreover, one
can show that such pairs (S,Y) have a special one-parameter deformation, and
one can derive the classical Painlevé equations from the special deformations of
Okamoto—Painlevé pairs.

In [10] and [11], we proved that the Okamoto-Painlevé pair of type DS)
which corresponds to Painlevé VI equation Py; can be obtained by the moduli
space of stable v-parabolic connections of rank 2 and degree —1 over P! with
4-regular singular points. Since it was known that Painlevé VI equations can be
obtained as isomonodromic differential equations, so we can prove the Painlevé
property for Py; in [10] and [11].

One can classify types of regular or irregular singularities of parabolic con-
nections of rank 2 on P! whose isomonodromic differential equations give the
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Table 1
Dynkin | Painlevé equations mo mi Moo my | dimP
DY Pyr 1 1 1 1 4
I Py 1 1 2 - 3
DSV | deg Py=Pu;(D{M) 1 1| 14172 | - 2
DY P (DY) 2 - 2 - 2
DV P (DY) 1+1/2 | - 2 - 1
DY Pur (DY) 4172 | - [ 1+1/2| - 0
EY Pryv 1 - 3 - 2
EW Py (FN) =Py, 1 - | 14372 | - 1
EW P - - 4 - 1
EY Pr - - | 14572 | - 0

classical Painlevé equations of 8 types (see [13], [20]). In Table 1, we list the
types of singularities of linear connections of rank 2 by specifying the orders m;
of singularities at 4 points of P': i =0,1,00,t#0,1,00. When m,; = —, it indi-
cates that there are no singularities at the point, and when m; is a half integer,
it indicates that the connection has a ramified irregular singularity with Katz
invariant m; — 1. Moreover, P is the space of formal monodromies as in the
previous subsection.

From Table 1, we can see that the following 5 types depending on the param-
eter p € P correspond to the rank 2 connections with regular or unramified irreg-
ular singularities:

(40) Pyi(D)p,  Pu(DS)p,  Pur(D{Y)y,
PIV(Et(sl))pv PH(Eél))p-

As a corollary of Theorem 6.1, we have the following.

THEOREM 6.3

Classical Painlevé equations of above 5 types in (40) have the geometric Painlevé
property as well as the analytic Painlevé property if the parameter p € P is non-
resonant and irreducible.

Proof

It is easy to check that each classical Painlevé equation listed above coincides
with our isomonodromic flows @, on a Zariski open set of our family of the
moduli space of the parabolic connections of the type above (cf. [13] or [20]).
Then by Theorem 6.1 classical Painlevé equations satisfy the geometric Painlevé
property. (Il

REMARK 6.4
In the case of Py I(Dfll))p, the geometric Painlevé property holds even for reso-
nant and reducible parameter p € P (cf. [10], [11]). Actually, if all singularities
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are regular, the result of Inaba [8] implies that the corresponding isomonodromic
differential systems 65 have the geometric Painlevé property even for resonant
or reducible parameters p € P.

REMARK 6.5

In [20], explicit families of connections corresponding to each type in Table 1 are
given as well as isomonodromic differential equations for these families. However
these connections only cover a Zariski dense open set of our moduli spaces. So
it is not enough to show the Painlevé property for classical Painlevé equations.
Moreover, even when C = P! d = 0, constructions of moduli spaces by using
only the trivial bundle do not give a whole moduli space of ours because of the
existence of a jumping locus of the bundle type.

REMARK 6.6

In [20], one can see the all of the explicit equations corresponding to the moduli
spaces R(Vyes) of generalized monodromy data for ten types in Table 1. These
equations are all cubic equations in three variables x1, z2, x3 with the coefficients

in parameters in P. In the case of Py (Dfll))p, the equation is given classically
by Fricke and Klein (cf. [9], [20]).
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