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Abstract LetX be a projective irreducible holomorphic symplectic manifold. The sec-

ond integral cohomology ofX is a lattice with respect to the Beauville–Bogomolov pair-

ing. A divisorE onX is called a prime exceptional divisor ifE is reduced and irreducible

and of negative Beauville–Bogomolov degree.

LetE be a prime exceptional divisor onX. We first observe that associated toE is a

monodromy involution of the integral cohomology H∗(X,Z), which acts on the second

cohomology lattice as the reflection by the cohomology class [E] of E.

We then specialize to the case where X is deformation equivalent to the Hilbert

scheme of length n zero-dimensional subschemes of a K3 surface, n≥ 2. We determine

the set of classes of exceptional divisors onX. This leads to adetermination of the closure

of the movable cone ofX.
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1. Introduction

An irreducible holomorphic symplectic manifold is a simply connected compact

Kähler manifold X , such that H0(X,Ω2
X) is generated by an everywhere nonde-

generate holomorphic two-form (see [Be1], [Hu1]). The dimension of X is even,

say, 2n. The second integral cohomology of X is a lattice with respect to the
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Beauville–Bogomolov pairing (see [Be1]). A divisor E on X is called a prime

exceptional divisor if E is reduced and irreducible and of negative Beauville–

Bogomolov degree (see [Bou]).

1.1. A prime exceptional divisor is monodromy reflective
When dim(X) = 2, then X is a Kähler K3 surface. Let E be a prime divisor of

negative degree on X . Then E is necessarily a smooth rational curve. Its degree is

thus −2. E may be contracted, resulting in a surface Y with an ordinary double

point (see [BHPV, Chapter III]). A class x ∈H2(X,Z) is primitive if it is not a

multiple of another integral class by an integer larger than 1. Let c ∈H2(X,Z)

be a primitive class of negative degree. Then c has degree −2 if and only if the

reflection Rc :H
2(X,Q)→H2(X,Q), given by

(1.1) Rc(x) = x− 2(x, c)

(c, c)
c,

has integral values, since the lattice H2(X,Z) is even and unimodular.

Druel recently established the birational contractibility of a prime excep-

tional divisor E on a projective irreducible holomorphic symplectic manifold X

of arbitrary dimension 2n. There exists a sequence of flops of X , resulting in

a projective irreducible holomorphic symplectic manifold X ′, and a projective

birational morphism π :X ′ → Y onto a normal projective variety Y , such that

the exceptional divisor E′ ⊂ X ′ of π is the strict transform of E (see [D] and

Proposition 3.1 below). The result relies on the work of several authors, in par-

ticular, on Boucksom’s [Bou] work on the divisorial Zariski decomposition and

on recent results in the minimal model program (see [BCHM]).

Let E be a prime exceptional divisor on a projective irreducible holomorphic

symplectic manifold X . Let c be the class of E in H2(X,Z), and consider the

reflection Rc : H
2(X,Q) → H2(X,Q), given by (1.1). Building on Druel’s [D]

result, we prove the following statement.

THEOREM 1.1

The reflection Rc is a monodromy operator. In particular, Rc is an integral isom-

etry. Furthermore, c is either a primitive class or two times a primitive class.

See Corollary 3.6 for a more detailed statement and a proof. The reflection Rc

arises as a monodromy operator as follows. Let Def(Y ) be the Kuranishi defor-

mation space of Y , and let ψ̄ : Y → Def(Y ) be the semiuniversal family. Then

Def(Y ) is smooth, as is the fiber Yt of ψ̄, over a generic point t ∈ Def(Y ), and

the smooth fiber Yt is deformation equivalent to X (see [Na1]). Let U ⊂Def(Y )

be the complement of the discriminant locus. Rc is exhibited as a monodromy

operator of the local system R2
ψ̄∗
Z over U .
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1.2. Prime exceptional divisors in the K3[n]-type case
Theorem 1.1 imposes a rather strong numerical condition on a class c to be the

class of a prime exceptional divisor. We get, for example, the following theorem.

Assume that X is deformation equivalent to the Hilbert scheme S[n] of length n

subschemes of a K3 surface S. We will abbreviate this statement by saying that

X is of K3[n]-type. Assume that n≥ 2 and X is projective.

THEOREM 1.2

Let e be a primitive class in H2(X,Z), with negative Beauville–Bogomolov degree

(e, e) < 0, such that some integer multiple of e is the class of an irreducible

divisor E. Then (e, e) = −2 or (e, e) = 2− 2n. If (e, e) = 2− 2n, then the class

(e,•) in H2(X,Z)∗ is divisible by n− 1.

The theorem is related to Theorem 22 in the beautiful paper [HT2]. In particular,

the case of fourfolds is settled in that paper. The hypothesis that the divisor E

is irreducible is necessary. There exist examples of pairs (X,e), with X of K3[n]-

type e ∈ H2(X,Z), such that 2e is effective, the reflection by e is an integral

reflection of H2(X,Z), but 2− 2n < (e, e)<−2 (see [Ma4, Example 4.8]).

DEFINITION 1.3

An isometry g of H2(X,Z) is called a monodromy operator if there exists a

family X → T (which may depend on g) of irreducible holomorphic symplectic

manifolds, having X as a fiber over a point t0 ∈ T , and such that g belongs to the

image of π1(T, t0) under the monodromy representation. The monodromy group

Mon2(X) of X is the subgroup of O[H2(X,Z)] generated by all the monodromy

operators.

DEFINITION 1.4

(1) A class e ∈H2(X,Z) is said to be monodromy reflective if e is primitive

and the reflection Re(x) := x − 2(x,e)
(e,e) e, with respect to the class e, belongs to

Mon2(X).

(2) A line bundle L is said to be monodromy reflective, if the class c1(L) is.

Theorem 1.2 is an immediate consequence of Theorem 1.1 and the following

characterization of monodromy-reflective line bundles on X of K3[n]-type.

PROPOSITION 1.5

Let e ∈H2(X,Z) be a primitive class of negative degree (e, e). Then the reflection

Re belongs to Mon2(X) if and only if e has one of the following two properties:

(1) (e, e) =−2, or

(2) (e, e) = 2− 2n, and n− 1 divides the class (e,•) ∈H2(X,Z)∗.
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The proposition is proven in Section 4. A class e ∈H1,1(X,Z) is said to be Q-

effective, if some nonzero integer multiple of e is the class of an effective divisor.

Examples of monodromy-reflective line bundles, which are not Q-effective, are

exhibited in Section 11.

1.3. A classification of monodromy-reflective line bundles
When X is a K3 surface, a monodromy-reflective line bundle L has degree −2,

and precisely one of L or L−1 is isomorphic to OX(E), where E is an effective

divisor (see [BHPV, Chapter VIII, Proposition 3.6]). If Pic(X) is cyclic, then E is

necessarily a smooth rational curve. We may deform to this case upon deforming

the pair (X,L) to a nearby deformation equivalent pair.

Monodromy-reflective line bundles of degree 2− 2n, over X of K3[n]-type,

need not be Q-effective if n > 1. Whether the line bundle is or is not Q-effective

depends on a monodromy invariant defined in Proposition 1.7 below. The defi-

nition depends on the following theorem.

The topological K-group K(S) of a K3 surface S, endowed with the Mukai

pairing (v,w) :=−χ(v∨ ⊗w), is called the Mukai lattice. K(S) is a rank 24 even

unimodular lattice isometric to the orthogonal direct sum Λ̃ :=E8(−1)⊕2⊕U⊕4,

where E8(−1) is the negative definite E8 lattice and U is the rank 2 lattice with

Gram matrix
(
0 1
1 0

)
.

Let Λ := E8(−1)⊕2 ⊕ U⊕3 ⊕ Zδ, with (δ, δ) = 2− 2n. Then H2(X,Z) is iso-

metric to Λ, for any X of K3[n]-type, n > 1 (see [Be1]). Let O(Λ, Λ̃) be the set

of primitive isometric embeddings ι : Λ ↪→ Λ̃. O(Λ̃) acts on O(Λ, Λ̃) by compo-

sitions. If n− 1 is a prime power, then O(Λ, Λ̃) consists of a single O(Λ̃)-orbit.

The Euler number η := η(n−1) is the number of distinct primes p1, . . . , pη in the

prime factorization n− 1 = pe11 · · ·peηη , with positive integers ei. For n > 2, there

are 2η−1 distinct O(Λ̃)-orbits in O(Λ, Λ̃) (see [O] or [Ma4, Lemma 4.3]).

THEOREM 1.6 ([Ma4, THEOREM 1.10])

An irreducible holomorphic symplectic manifold X of K3[n]-type, n ≥ 2, comes

with a natural choice of an O(Λ̃)-orbit of primitive isometric embeddings of

H2(X,Z) in Λ̃. This orbit is monodromy invariant; that is, ι : H2(X,Z) ↪→ Λ̃

belongs to this orbit if and only if ι ◦ g does, for all g ∈Mon2(X).

Let S be a K3 surface, let H be an ample line bundle on S, and let v ∈K(S)

be a primitive class satisfying (v, v) = 2n− 2, n≥ 2. Assume that X :=MH(v)

is a smooth and compact moduli space of H-stable sheaves of class v. Then

X is of K3[n]-type and the orbit in the theorem is that of Mukai’s isometry

ι :H2(MH(v),Z)→ v⊥, where v⊥ ⊂K(S) is the sublattice orthogonal to v (see

[Ma4, Theorem 1.14] or Theorem 2.1 below). The monodromy invariance of the

O(K(S))-orbit of Mukai’s isometry uniquely characterizes the orbit in the above

theorem, for every X of K3[n]-type.

Let X be of K3[n]-type, n > 1. Let I ′′n(X) ⊂ H2(X,Z) be the subset of

monodromy-reflective classes of degree 2 − 2n, and let e be a class in I ′′n(X).
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Choose a primitive isometric embedding ι :H2(X,Z) ↪→ Λ̃, in the natural orbit

of Theorem 1.6. Choose a generator v of the rank 1 sublattice of Λ̃ orthogonal to

the image of ι. Then (v, v) = 2n−2. Indeed, (v, v)> 0, since the signature of Λ̃ is

(4,20), and (v, v) is equal to the order of (Zv)∗/Zv, which is equal to the order

of H2(X,Z)∗/H2(X,Z), which is 2n− 2. Let ρ be the positive integer, such that

(e+ v)/ρ is an integral and primitive class in Λ̃. Define the integer σ similarly

using e− v. Let div(e,•) be the integer in {(e, e)/2, (e, e)}, such that the class

(e,•)/div(e,•) is an integral and primitive class in H2(X,Z)∗. Given a rational

number m, let F(m) be the set of unordered pairs {r, s} of positive integers, such

that rs=m and gcd(r, s) = 1. If m is not a positive integer, then F(m) is empty.

Set

Σ′′
n :=F(n− 1)∪F

(
[n− 1]/2

)
∪F

(
[n− 1]/4

)
.

Note that Σ′′
n is a singleton if and only if n= 2 or n− 1 is an odd prime power.

PROPOSITION 1.7

If div(e,•) = n − 1 and n is even, set {r, s} := {ρ,σ}. Otherwise, set {r, s} :=

{ρ/2, σ/2}. Then {r, s} is a pair of relatively prime integers in Σ′′
n, and the

function

rs : I ′′n(X)−→Σ′′
n,

sending the class e to the unordered pair {r, s}, is monodromy invariant. The

function rs is surjective, if n≡ 1 modulo 8, and its image is F(n− 1) ∪F([n−
1]/2) otherwise.

The proposition is proven in Lemmas 7.1 and 7.3. A more conceptual definition

of the monodromy-invariant rs is provided in the statements of these lemmas.

The proof relies on the classification of the isometry classes of all possible pairs

(L̃, e), where L̃ is the saturation in Λ̃ of the rank 2 sublattice span{e, v}. The
classification is summarized in Table 1. We finally arrive at the classification of

monodromy-reflective line bundles.

PROPOSITION 1.8

Let X be of K3[n]-type, and let L be a monodromy-reflective line bundle. Set

e := c1(L).

(1) If (e, e) = 2−2n, then the Mon2(X)-orbit of the class e is determined by

div(e,•) and the value rs(e).

(2) If (e, e) = −2, then the Mon2(X)-orbit of the class e is determined by

div(e,•).

Part (1) is proven in Lemmas 7.1 and 7.3. Part (2) is [Ma3, Lemma 8.9].
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1.4. A numerical characterization of exceptional classes
Let (X1,L1) and (X2,L2) be two pairs as in Proposition 1.8. Set ei := c1(Li).

If (ei, ei) = 2 − 2n, div(e1,•) = div(e2,•), and rs(e1) = rs(e2), then the pairs

(X1,L1) and (X2,L
ε
2) are deformation equivalent (requiring ei to preserve its

Hodge type along the deformation), for ε = 1 or ε = −1, by Proposition 1.8

and Lemma 5.17. (The proof of the latter depends on the Torelli theorem; see

[Ver]). Furthermore, if X1 is projective and L⊗k
1

∼= OX1(E1), for some k > 0

and a prime exceptional divisor E1, then a generic small deformation (X,L) of

(X2,L2) consists of L satisfying L⊗d ∼=OX(E) for a prime exceptional divisor E

and for d = k or d = −k (see Proposition 5.14). This leads us to the numerical

characterization of exceptional line bundles described in this section.

Let X be an irreducible holomorphic symplectic manifold of K3[n]-type,

n≥ 2. Let L be a monodromy-reflective line bundle on X , e := c1(L), and let Re

be the reflection by e. Re preserves the Hodge structure and so acts on H1,1(X)∼=
H1(X,TX). The Kuranishi deformation space Def(X) is an open neighborhood

of zero in H1(X,TX), which may be chosen to be Re-invariant. Hence, Re acts

on Def(X). The local Kuranishi deformation space Def(X,L), of the pair (X,L),

is the smooth divisor De ⊂Def(X) of fixed points of Re.

DEFINITION 1.9

Let h ∈H2(X,R) be a Kähler class. A line bundle L ∈ Pic(X) is called numeri-

cally exceptional if its first Chern class e := c1(L) is a primitive class in H2(X,Z),

satisfying (h, e) > 0 and the following properties. The Beauville–Bogomolov

degree is either (e, e) = −2, or (e, e) = 2 − 2n and n := dimC(X)/2 > 2. In the

latter case one of the following properties holds:

(1) div(e,•) = 2n− 2 and rs(e) = {1, n− 1};
(2) div(e,•) = 2n− 2 and rs(e) = {2, (n− 1)/2}; we must have n≡ 3 (mod-

ulo 4) for the pair rs(e) to be relatively prime;

(3) div(e,•) = n− 1, n is even, and rs(e) = {1, n− 1};
(4) div(e,•) = n− 1, n is odd, and rs(e) = {1, (n− 1)/2}.

A cohomology class e ∈H1,1(X,Z) is numerically exceptional, if e= c1(L), for a

numerically exceptional line bundle L.

DEFINITION 1.10

(1) A line bundle L ∈ Pic(X) is called stably prime exceptional, if there exists

a closed complex analytic subset Z ⊂De of codimension ≥ 1, such that the linear

system |Lt| consists of a prime-exceptional divisor Et, for all t ∈ [De \Z].

(2) L is said to be stably Q-effective, if there exists a nonzero integer k, such

that the linear system |Lk
t | is nonempty, for all t ∈De.

If E is a prime exceptional divisor on a projective irreducible holomorphic sym-

plectic manifold X , then OX(E) is stably prime exceptional, by Proposition 5.2.
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Let L be a line bundle on an irreducible holomorphic symplectic manifold X

of K3[n]-type with a primitive first Chern class. Recall that a necessary condition

for the linear system |Lk| to consist of an exceptional divisor E is that L is

monodromy reflective (see Definition 1.4), by Theorem 1.1. Assume that L is

monodromy reflective. Set e := c1(L). Let De ⊂ Def(X) be the divisor fixed by

the reflection Re.

THEOREM 1.11

(1) Assume that L is numerically exceptional. Then Lk is stably prime excep-

tional, where k is determined as follows. If the degree of L is 2− 2n, then

k =

⎧⎪⎪⎨⎪⎪⎩
2 if div(e,•) = 2n− 2 and rs(e) = {1, n− 1},
1 if div(e,•) = 2n− 2 and rs(e) = {2, (n− 1)/2},
1 if div(e,•) = n− 1.

If the degree of L is −2, then

k =

⎧⎪⎪⎨⎪⎪⎩
2 if div(e,•) = 2 and n= 2,

1 if div(e,•) = 2 and n > 2,

1 if div(e,•) = 1.

(2) If L is not numerically exceptional, then L is not stably Q-effective. That

is, for every nonzero integer k, there exists a dense open subset Uk of De, such

that H0(Xt,L
k
t ) vanishes, for all t ∈ Uk.

See Remark 4.2 for the Euler characteristic χ(Lk). Note that in Theorem 1.11(1)

Lk is effective as well, for the specified integer k, by the semicontinuity theorem.

Theorem 1.11 is proven in Section 8. The proof relies on both the Torelli

theorem (see [Ver]) and the examples worked out in Sections 10 and 11. We

exhibit an example of a pair (X,L), for each possible value of the monodromy

invariants (e, e), div(e,•), and rs(e), and verify Theorem 1.11 for (X,L). All

values of the monodromy invariants are realized by examples whereX is a smooth

and projective moduli space of sheaves on aK3 surface. See Table 2 for a reference

to an example for each value of the monodromy invariants.

The vanishing in Theorem 1.11(2) is verified in the examples as follows. In

all the examples of monodromy-reflective but nonnumerically exceptional line

bundles considered in Section 11, X admits a birational involution ι :X →X ,

inducing the reflection Re.

The following simple observation is proven in Section 11.

OBSERVATION 1.12

If L is a monodromy-reflective line bundle on X, and there exists a bimeromor-

phic involution ι : X → X inducing the reflection Re, e = c1(L), then the line

bundle L is not Q-effective.
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1.5. Cones
LetX be a projective irreducible holomorphic symplectic manifold. Set N1(X) :=

H1,1(X,Z) ⊗Z R, and let C1,1
X be the connected component of the cone {λ ∈

N1(X) : (λ,λ)> 0}, which contains the ample cone. Denote by C1,1

X its closure.

A divisor D on X is called movable if the base locus of the linear system |D| has
codimension ≥ 2 in X . Denote by MVX the convex cone in N1(X) generated

by classes of movable divisors. Let MVX be its closure in N1(X). Then MVX

is equal to the subcone of C1,1

X , consisting of classes λ, such that (λ, [E])≥ 0 for

every prime exceptional divisor E (see [Bou], [Ma6, Lemma 6.22]).

The closure of the movable cone can be described also in terms of the set

of stably prime exceptional divisors. MVX is the subcone of C1,1

X , consisting of

classes λ such that (λ, e) ≥ 0, for every stably prime exceptional class e [Ma6,

Theorem 6.17, Lemma 6.22]. Hence, Theorem 1.11 above determines the closure

of the movable cone. Furthermore, a stably prime exceptional class e is prime

exceptional if and only if the hyperplane orthogonal to e intersects MVX along

a face of codimension one of the latter (see [Ma6, Lemma 6.20]). In this sense

Theorem 1.11 determines the set of classes of prime exceptional divisors.

1.6. The structure of the paper
The paper is organized as follows. In Section 2 we provide a sequence of easy

examples of monodromy reflective line bundles on moduli spaces of sheaves on

K3 surfaces. We calculate their invariants, and determine whether or not they

are effective, illustrating Theorem 1.11.

In Section 3 we prove Theorem 1.1 stating that associated to a prime excep-

tional divisor E is a monodromy involution of the integral cohomology H∗(X,Z),

which acts on the second cohomology lattice as the reflection by the cohomology

class [E] of E (see Corollary 3.6). In Section 4 we specialize to the K3[n]-type

case, n≥ 2, and prove Theorem 1.2 about the possible degrees of prime excep-

tional divisors.

Let (Xi,Ei), i = 1,2, be two pairs, each consisting of an irreducible holo-

morphic symplectic manifold Xi and a prime exceptional divisor Ei. Let ei ∈
H2(X,Z) be the class of Ei. In Section 5 we define two notions of deformation

equivalence:

(1) deformation equivalence of the two pairs (Xi,Ei), i= 1,2;

(2) deformation equivalence of the two pairs (Xi, ei), i= 1,2.

We relate these two notions via Torelli.

In Section 6 we return to the case where X is of K3[n]-type, n ≥ 2. We

associate, to each monodromy-reflective class e ∈ H2(X,Z) of degree 2 − 2n,

an isometry class of a pair (L̃, ẽ), consisting of a rank 2 integral lattice L̃ of

signature (1,1) and a primitive class ẽ ∈ L̃, with (ẽ, ẽ) = 2− 2n. The isometry

class of the pair (L̃, ẽ) is a monodromy invariant, denoted by f(X,e). In Section 7

we calculate the monodromy invariant f(X,e) explicitly as the function rs in

Proposition 1.8. We then prove Proposition 1.8.
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In Section 8 we prove Theorem 1.11, which provides a numerical characteri-

zation of exceptional classes.

Sections 9, 10, and 11 are devoted to examples of monodromy-reflective line

bundles over moduli spaces of stable sheaves. In Section 9 we study the excep-

tional locus of Jun Li’s [Li] morphism from certain moduli spaces, of Gieseker–

Maruyama H-stable sheaves on a K3-surface, to the Uhlenbeck–Yau compacti-

fications of the moduli spaces of H-slope-stable vector bundles.

In Section 10 we exhibit an example of a prime exceptional divisor for each

value of the invariants of a monodromy-reflective line bundle L, for which L is

stated to be stably Q-effective in Theorem 1.11.

In Section 11 we exhibit an example of a monodromy-reflective line bundle

L, which is not Q-effective, for each value of the invariants for which L is stated

not to be Q-effective in Theorem 1.11.

2. Easy examples of monodromy-reflective line bundles

In Section 2.1 we review basic facts about moduli spaces of coherent sheaves on

K3 surfaces. In Section 2.2 we briefly describe a sequence of examples of pairs

(X,e), with X of K3[n]-type, where e is a monodromy-reflective class of degree

2− 2n with div(e,•) = 2n− 2, for each n≥ 2 and for each value of the invariant

rs. For details and references, as well as for examples of degree −2, or with

div(e,•) = n− 1, see Sections 10 and 11.

2.1. The Mukai isomorphism
The group K(S), endowed with the Mukai pairing

(v,w) :=−χ(v∨ ⊗w),

is called the Mukai lattice. Let us recall Mukai’s notation for elements of K(S).

Identify the group K(S) with H∗(S,Z), via the isomorphism sending a class F

to its Mukai vector ch(F )
√
tdS . Using the grading of H∗(S,Z), the Mukai vector

is

(2.1)
(
rank(F ), c1(F ), χ(F )− rank(F )

)
,

where the rank is considered in H0 and χ(F )− rank(F ) in H4 via multiplication

by the orientation class of S. The homomorphism ch(•)
√
tdS :K(S)→H∗(S,Z)

is an isometry with respect to the Mukai pairing on K(S) and the pairing(
(r′, c′, s′), (r′′, c′′, s′′)

)
=

∫
S

c′ ∪ c′′ − r′ ∪ s′′ − s′ ∪ r′′

on H∗(S,Z) (by the Hirzebruch–Riemann–Roch theorem). For example, (1,0,1−
n) is the Mukai vector in H∗(S,Z), of the ideal sheaf of a length n subscheme.

Mukai defines a weight 2 Hodge structure on the Mukai lattice H∗(S,Z), and

hence on K(S), by extending that of H2(S,Z) so that the direct summands

H0(S,Z) and H4(S,Z) are of type (1,1).

Let v ∈K(S) be a primitive class with c1(v) of Hodge-type (1,1). There is

a system of hyperplanes in the ample cone of S, called v-walls, that is countable
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but locally finite (see [HL, Chapter 4.C]). An ample class is called v-generic if

it does not belong to any v-wall. Choose a v-generic ample class H . Let MH(v)

be the moduli space of H-stable sheaves on the K3 surface S with class v.

When nonempty, the moduli space MH(v) is a smooth projective irreducible

holomorphic symplectic variety of K3[n]-type, with n= ((v, v)+2)/2. This result

is due to several people, including Huybrechts, Mukai, O’Grady, and Yoshioka.

It can be found in its final form in [Y2].

Over S × MH(v) there exists a universal sheaf F , possibly twisted with

respect to a nontrivial Brauer class pulled back from MH(v). Associated to F is

a class [F ] in K(S×MH(v)) (see [Ma2, Definition 26]). Let πi be the projection

from S×MH(v) onto the ith factor. Assume that (v, v)> 0. The second integral

cohomology H2(MH(v),Z), its Hodge structure, and its Beauville–Bogomolov

pairing are all described by Mukai’s Hodge isometry

(2.2) θ : v⊥ −→H2
(
MH(v),Z

)
,

given by θ(x) := c1(π2!{π!
1(x

∨)⊗ [F ]}) (see [Y2]).

Let Λ̃ be the unimodular lattice E8(−1)⊕2 ⊕U⊕4, where U is the rank two

unimodular hyperbolic lattice. Λ̃ is isometric to the Mukai lattice of a K3 surface.

Let X be an irreducible holomorphic symplectic manifold of K3[n]-type, n≥ 2.

Recall that X comes with a natural choice of an O(Λ̃)-orbit of primitive isometric

embeddings of H2(X,Z) in Λ̃, by Theorem 1.6.

THEOREM 2.1 ([Ma4, THEOREM 1.14])

When X is isomorphic to the moduli space MH(v), of H-stable sheaves on a K3

surface of class v ∈ K(S), then the above-mentioned O(Λ̃)-orbit is that of the

composition

(2.3) H2
(
MH(v),Z

) θ−1

−→ v⊥ ⊂K(S)∼= Λ̃,

where θ−1 is the inverse of the Mukai isometry given in (2.2).

The combination of Theorems 1.6 and 2.1 is an example of the following metaprin-

ciple guiding our study of the monodromy of holomorphic symplectic varieties of

K3[n]-type.

Any topological construction, which can be performed uniformly and naturally

for all smooth and compact moduli spaces of sheaves on any K3 surface S, and

which is invariant under symmetries induced by equivalences of derived categories

of K3-surfaces, is monodromy invariant.

2.2. A representative sequence of examples
Let S be a projective K3 surface with a cyclic Picard group generated by an

ample line bundle H . Fix integers r and s satisfying s≥ r ≥ 1 and gcd(r, s) = 1.

Let X be the moduli space MH(r,0,−s). Then X is a projective irreducible

holomorphic symplectic manifold of K3[n]-type with n = 1 + rs (see [Y2]). Set

e := θ(r,0, s). The weight two integral Hodge structure H2(MH(r,0,−s),Z) is
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Hodge-isometric to the orthogonal direct sum H2(S,Z)⊕ Ze, and the class e is

monodromy reflective of Hodge-type (1,1), (e, e) = 2−2n, div(e,•) = 2n−2, and

rs(e) = {r, s}.
When r = 1, then X = S[n] is the Hilbert scheme. Let E ⊂ S[n] be the big

diagonal. Then E is a prime divisor, which is the exceptional locus of the Hilbert–

Chow morphism π : S[n] → S(n) onto the nth symmetric product of S. The equal-

ity e= [E]/2 was proven in [Be1].

When r = 2, let E ⊂ MH(2,0,−s) be the locus of H-stable sheaves which

are not locally free. Then E is a prime divisor, which is the exceptional locus of

Jun Li’s morphism from MH(2,0,−s) onto the Uhlenbeck–Yau compactification

of the moduli space of H-slope-stable vector bundles of that class. The equality

e= [E] holds, by Lemma 10.16.

When r ≥ 3, let Exc⊂MH(r,0,−s) be the locus of H-stable sheaves which

are not locally free or not H-slope-stable. Then Exc is a closed algebraic subset

of MH(r,0,−s) of codimension ≥ 2, by Lemma 9.5. Jun Li’s morphism is thus

not a divisorial contraction. Set U := X \ Exc. Let ι : U → U be the regular

involution, which sends a locally free H-slope-stable sheaf F to the dual sheaf F ∗.

The restriction homomorphism from H2(X,Z) to H2(U,Z) is an isomorphism,

and the induced involution ι∗ of H2(X,Z) is the reflection by the class e, by

Proposition 11.1. The class e is thus not Q-effective, by Observation 1.12.

3. The monodromy reflection of a prime exceptional divisor

Let X be a projective irreducible holomorphic symplectic manifold, and let E

be a reduced and irreducible divisor with negative Beauville–Bogomolov degree.

The following result is due to S. Bouksom and S. Druel.

PROPOSITION 3.1 ([D, PROPOSITION 1.4])

There exists a sequence of flops of X, resulting in a smooth birational model X ′

of X, such that the strict transform E′ of E in X ′ is contractible via a projective

birational morphism π :X ′ → Y to a normal projective variety Y . The exceptional

locus of π is equal to the support of E′.

The divisor E is assumed to be exceptional, rather than to have negative Beauville–

Bogomolov degree, in the statement of [D, Proposition 1.4]. The technical term

is exceptional in the sense of [Bou, Definition 3.10] and is a precise measure of

rigidity. Boucksom characterized exceptional divisors on irreducible holomorphic

symplectic varieties by the following property, which we will use as a definition

(see [Bou, Theorem 4.5]).

DEFINITION 3.2

A rational divisor E ∈Div(X)⊗Z Q is exceptional, if E =
∑k

i=1 niEi, with pos-

itive rational coefficients ni, prime divisors Ei, and a negative definite Gram

matrix ([Ei], [Ej ]).
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In particular, a prime divisor is exceptional if and only if it has negative Beauville–

Bogomolov degree. Hence, we may replace in the above proposition the hypothesis

that E is exceptional by the hypothesis that E has negative Beauville–Bogomolov

degree.

DEFINITION 3.3

A primitive class e ∈H2(X,Z) is (prime) exceptional if some positive multiple

of e is the class of a (prime) exceptional divisor. A line bundle L ∈ Pic(X) is

(prime) exceptional if c1(L) is.

Let Def(X ′) and Def(Y ) be the Kuranishi deformation spaces of X ′ and Y .

Denote by ψ : X → Def(X ′) the semiuniversal deformation of X ′, denote by

0 ∈ Def(X ′) the point with fiber X ′, and let Xt be the fiber over t ∈ Def(X ′).

Let ψ̄ : Y →Def(Y ) be the semiuniversal deformation of Y , let 0̄ ∈Def(Y ) be its

special point with fiber Y , and let Yt be the fiber over t ∈Def(Y ).

The variety Y necessarily has rational Gorenstein singularities, by [Be2,

Proposition 1.3]. The morphism π : X ′ → Y deforms as a morphism ν of the

semiuniversal families, which fits in a commutative diagram

(3.1)

X ν→ Y
ψ ↓ ψ̄ ↓

Def(X ′)
f→ Def(Y )

by [KM, Proposition 11.4]. The following is a fundamental theorem of Namikawa.

THEOREM 3.4 ([Na1, THEOREM 2.2])

The Kuranishi deformation spaces Def(X ′) and Def(Y ) are both smooth of the

same dimension. They can be replaced by open neighborhoods of 0 ∈Def(X ′) and

0̄ ∈Def(Y ), and denoted again by Def(X ′) and Def(Y ), in such a way that there

exists a natural proper surjective map f : Def(X ′) → Def(Y ) with finite fibers.

Moreover, for a generic point t ∈Def(X ′), Yf(t) is isomorphic to Xt.

The morphism f : Def(X ′)→ Def(Y ) is in fact a branched Galois covering, by

[Ma5, Lemma 1.2]. The Galois group G is a product of Weyl groups of finite

type, by [Ma5, Theorem 1.4] (see also [Na2]). Furthermore, G acts on H∗(X ′,Z)

via monodromy operators preserving the Hodge structure. When the exceptional

locus of π :X ′ → Y contains a single irreducible component of codimension one

in X ′, then the Galois group G is Z/2Z.

Let Σ⊂ Y be the singular locus. The dissident locus Σ0 ⊂Σ is the locus along

which the singularities of Y fail to be of ADE type. Σ0 is a closed subvariety

of Σ.

PROPOSITION 3.5 ([Na1, PROPOSITION 1.6], [W])

Y has only canonical singularities. The dissident locus Σ0 has codimension at
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least 4 in Y . The complement Σ \ Σ0 is either empty or the disjoint union of

codimension 2 smooth and symplectic subvarieties of Y \Σ0.

Keep the notation of Proposition 3.1. Let [E] be the class of E in H2(X,Z), and

let R be the reflection of H2(X,Q) given by

R(x) := x−
( 2(x, [E])

([E], [E])

)
[E].

Consider the natural isomorphism H2(X,Z)∗ ∼=H2(X,Z), given by the universal

coefficients theorem and the fact that X is simply connected. Denote by

(3.2) [E]∨ ∈H2(X,Q)

the class corresponding to −2([E],•)/([E], [E]), where both pairings in the frac-

tion are the Beauville–Bogomolov pairing.

We identify H2(X,Z) and H2(X ′,Z) via the graph of the birational map.

This graph induces a Hodge isometry, and the isometry maps the class [E] ∈
H2(X,Z) to the class [E′] ∈H2(X ′,Z), by [OG1, Proposition 1.6.2]. We get an

identification of the dual groups H2(X,Z) and H2(X
′,Z). The following corollary

was proven, in the case where E is an irreducible component of a contractible

divisor, in [Ma5, Lemmas 4.10, 4.23]. We are now able to extend it to the more

general case of a prime exceptional divisor E. The following is a corollary of

Proposition 3.1, Proposition 3.5, and [Ma5, Lemmas 4.10, 4.23].

COROLLARY 3.6

(1) The class [E]∨ ∈H2(X,Z) corresponds to the class in H2(X
′,Z) of the

generic fiber of the contraction E′ → Y in Proposition 3.1. The generic fiber is

either a smooth rational curve or the union of two homologous smooth rational

curves meeting at one point. In particular, [E]∨ is an integral class in H2(X,Z),

and R is an integral isometry.

(2) The reflection R is a monodromy operator in Mon2(X) as well as

Mon2(X ′). R preserves the Hodge structure. The action of R on H1,1(X ′) ∼=
H1(X ′, TX ′) induces an involution of Def(X ′), which generates the Galois group

of the double cover of the Kuranishi deformation spaces Def(X ′)→Def(Y ).

(3) Either [E] is a primitive class of H2(X,Z), or [E] is twice a primitive

class. Similarly, [E]∨ is either a primitive class or twice a primitive class. Finally,

at least one of [E] or [E]∨ is a primitive class.

Proof

(1) The singular locus of Y contains a unique irreducible component Σ of codi-

mension 2, and Y has singularities of type A1 or A2 along the Zariski dense open

subset Σ \ Σ0, by Proposition 3.5 (see also the classification of singularities in

[Na1, Section 1.8]). When X =X ′, the class [E′]∨ is the class of the fiber of the

composite morphism E′ ↪→X ′ → Y , by [Ma5, Lemmas 4.10, 4.23].

(2) R is a monodromy operator in Mon2(X ′), by [Ma5, Lemmas 4.10, 4.23].

Now the isometry Z∗ : H2(X,Z) → H2(X ′,Z), induced by the graph Z of the
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birational map, is a parallel transport operator. This follows from the proof of

[Hu3, Theorem 2.5]. In this proof Huybrechts constructed a correspondence Γ :=

Z+
∑

i Yi in X ×X ′ with the following properties: Γ∗ :H
2(X,Z)→H2(X ′,Z) is

a parallel transport operator, Z is the closure of the graph of the birational map

as above, and the image of Yi in each factor X and X ′ has codimension ≥ 2. It

follows that the two isometries Z∗ and Γ∗ coincide.

(3) The statements about the divisibility of [E] and [E]∨ follow from the

equality
∫
[E]∨ [E] =−2. �

We denote by

e ∈H2(X,Z)

the primitive class, such that either [E] = e or [E] = 2e. Let e∨ be the primitive

class in H2(X,Z), such that [E]∨ = e∨ or [E]∨ = 2e∨. The divisibility factor

div(e,•), of the class (e,•) ∈ H2(X,Z)∗, is the positive number satisfying the

equality (e,•) = div(e,•) · e∨.

LEMMA 3.7

We have

−div(e,•) =

⎧⎪⎪⎨⎪⎪⎩
(e, e)/2 if [E] = e and [E]∨ = e∨,

(e, e) if [E] = 2e and [E]∨ = e∨,

(e, e) if [E] = e and [E]∨ = 2e∨.

Proof

Let [E] = k1e and [E]∨ = k2e
∨. Then

−(e,•) = −1

k1

(
[E],•

)
=

([E], [E])

2k1
[E]∨ =

k1(e, e)

2
[E]∨ =

k1k2(e, e)

2
e∨. �

REMARK 3.8

Let L be the line bundle with c1(L) = e. Then dimH0(X,Ln) is either 0 or 1,

for all n ∈ Z, by [Bou, Proposition 3.13]. Hence, there exists at most one nonzero

integer n, such that the linear system |Ln| contains a prime divisor. In particular,

for a given pair (X,e), at most one of the equalities ([E], [E]∨) = (e,2e∨) or

([E], [E]∨) = (2e, e∨) can hold, for some prime divisor E with [E] ∈ spanZ{e}. The
same holds for an exceptional divisor, where the coefficients ni in Definition 3.2

are integral and with gcd{ni : 1≤ i≤ k}= 1.

4. Holomorphic symplectic manifolds of K3[n]-type

We prove Proposition 1.5 in this section. This completes the proof of Theorem 1.2.

The lattice H2(X,Z) has signature (3,20) (see [Be1]). A 3-dimensional subspace

of H2(X,R) is said to be positive definite, if the Beauville–Bogomolov pairing

restricts to it as a positive-definite pairing. The unit 2-sphere, in any positive-

definite 3-dimensional subspace, is a deformation retract of the positive cone
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C+ ⊂H2(X,R), given by C+ := {λ ∈H2(X,R) : (λ,λ)> 0}. Hence, H2(C+,Z) is

isomorphic to Z and is a natural representation of the isometry group OH2(X,R).

We denote by O+H
2(X,Z) the index two subgroup of OH2(X,Z), which acts

trivially on H2(C+,Z).
Let X be of K3[n]-type, n≥ 2. Embed the lattice H2(X,Z) in its dual lattice

H2(X,Z)∗, via the Beauville–Bogomolov form.

THEOREM 4.1 ([Ma4, THEOREM 1.2, LEMMA 4.2])

Mon2(X) is equal to the subgroup of O+H
2(X,Z), which acts via multiplication

by 1 or −1 on the quotient group H2(X,Z)∗/H2(X,Z).

The quotient H2(X,Z)∗/H2(X,Z) is a cyclic group of order 2n − 2. Indeed,

we may deform X to the Hilbert scheme S[n] of length n subschemes of a K3

surface S. H2(S[n],Z) is Hodge-isometric to the orthogonal direct sum

(4.1) H2(S,Z)⊕Zδ,

where δ is half the class of the big diagonal, and (δ, δ) = 2− 2n (see [Be1]). Let

π : S[n] → S(n) be the Hilbert–Chow morphism onto the symmetric product of S.

The isometric embedding H2(S,Z) ↪→ H2(S[n],Z) is given by the composition

H2(S,Z)∼=H2(S(n),Z)
π∗
−→H2(S[n],Z).

Proof of Proposition 1.5

The lattice H2(X,Z) is isometric to the orthogonal direct sum (4.1). Let e be

a class in H2(X,Z) of negative Beauville–Bogomolov degree, and let Re(x) :=

x− 2 (x,e)
(e,e) e be the reflection by e. Then Re is an integral isometry of H2(X,Z),

which acts by 1 or −1 on the quotient H2(X,Z)∗/H2(X,Z), if and only if e

has one of the two properties in the statement of Proposition 1.5, by [GHS,

Corollary 3.4]. The proposition now follows from Theorem 4.1.∗ �

REMARK 4.2

Let X be of K3[n]-type, let L be a line bundle on X , and set α := c1(L). Then the

sheaf-cohomology Euler characteristic of L is given by the binomial coefficient

χ(L) =
(
[(α,α)/2]+n+1

n

)
by [Hu2, Section 3.4, Example 7]. We get the following

equalities:

χ(L) =

{
1 if (α,α) =−2,

0 if (α,α) = 2− 2n and n≥ 3,

χ(L2) = 0 if (α,α) =−2 and n≥ 3,

χ(L2) < 0 if(α,α) = 2− 2n and n≥ 2.

∗I thank V. Gritsenko for reference [GHS, Corollary 3.4], which drastically shortens the

original proof.
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5. Deformation equivalence

This section is influenced by an early draft of a paper of Brendan Hassett and

Yuri Tschinkel, [HT3], which was graciously communicated to the author. The

results rely heavily on Verbitsky’s Torelli theorem (Theorem 5.7).

5.1. The prime exceptional property of pairs (X,L) is open
Let X be a projective irreducible holomorphic symplectic manifold, and let E be

a prime exceptional divisor. Set c := [E] ∈H2(X,Z). Given a point t ∈Def(X),

let ct ∈H2(Xt,Z) be the class associated to c via the parallel transport isomor-

phism∗ H2(X,Z) → H2(Xt,Z). Denote by Rc both the reflection of H2(X,Z)

with respect to c, as well as the involution of Def(X). Let Dc ⊂Def(X) be the

fixed locus of Rc. Dc is a smooth divisor in Def(X), which is characterized also

as the subset

(5.1) Dc :=
{
t ∈Def(X) : ct is of Hodge type (1,1)

}
.

LEMMA 5.1

There exists an open subset D0
c ⊂Dc, containing 0, such that for every t ∈D0

c

the class ct is Poincaré dual to a prime exceptional divisor Et.

Proof

Let X ′, E′, and Y be as in Proposition 3.1. Denote the image of E′ → Y by B.

The generic fiber of E′ →B is either a smooth rational curve C, whose normal

bundle satisfies

NC/X′ ∼= ωC ⊕
(2n−2⊕

i=1

OC

)
,

or the union of two such curves meeting nontangentially at one point, by Proposi-

tion 3.5. Druel showed that the exceptional locus of the birational map X →X ′

does not dominate B (see the proof of [D, Theorem 1.3]). We conclude that

a Zariski dense open subset of the original divisor E in X is covered by such

rational curves. The proposition now follows from results of Ziv Ran about the

deformations of such pairs (X,C) (see [R, Theorem 1], with further comments in

[Ka]). Our argument is inspired by [HT1, Theorems 4.1, 4.3]. Note first that the

class of the curve C remains of type (n− 1, n− 1) over Dc, by Corollary 3.6(1).

Let ψ :X →Dc be the semiuniversal family, let H→Dc be the irreducible com-

ponent of the relative Douady space containing the point t0 representing the pair

(X,C), and let C ⊂H×Dc X be the universal subscheme. We get the diagram

C f−→ X
α ↓ ↓ ψ

t0 ∈ H β−→ Dc

∗The local system R2ψ∗Z over Def(X) is trivial, since we may choose Def(X) to be simply

connected.
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Let π :H1(C,NC/X)→H2n(Ω2n−2
X ) be the semiregularity map. Then π is an iso-

morphism of these one-dimensional vector spaces (Observation (a) before Corol-

lary 4 in [R]). Theorem 1 of [R] implies that the morphism β is surjective, of

relative dimension 2n− 2, and smooth at the point t0. It follows that C has rela-

tive dimension 2n− 1 over Dc, and C is smooth along the rational curve C over

t0. Furthermore, the fiber (β ◦ α)−1(0) contains a unique irreducible component

Ẽ, which dominates E, and f : Ẽ →E has degree 1, by Corollary 3.6(1).

We claim that the differential df : TC → f∗TX is injective along C. TC
comes with a natural filtration Tα ⊂ Tβ◦α ⊂ TC; (f∗TX )|C comes with the fil-

tration TC ⊂ (TX)|C ⊂ (TX )|C . The homomorphism df is compatible with the

filtrations and induces the identity on the first and third graded summands TC

and T0(Dc). It suffices to prove injectivity on the middle graded summand. The

above condition on NC/X implies, furthermore, that the evaluation homomor-

phism H0(NC/X)⊗OC →NC/X is injective. It follows that the differential df is

injective along C. Consequently, f(C) determines a divisor E in X , possibly after

eliminating embedded components of f(C), which are disjoint from the curve C.

Furthermore, E intersects the fiber X of ψ along a divisor E0 containing E, and

E0 is reduced along E.

It remains to prove that E0 is irreducible. Now the fiber Xt has a cyclic

Picard group, for a generic t ∈Dc. Hence, the generic fiber Et of E is of class kct,

for some positive integer k. Thus E0 is of class kc. But the linear system |kE|
consists of a single divisor kE, by [Bou, Proposition 3.13]. We get that k = 1,

since E0 is reduced along E. �

Let π : X → T be a smooth family of irreducible holomorphic symplectic mani-

folds over a connected complex manifold T . Assume that there exists a section e

of R2
π∗Z, everywhere of Hodge type (1,1). Given a point t ∈ T , denote by Lt the

line bundle on the fiber Xt with class et.

PROPOSITION 5.2

Assume given a point 0 ∈ T , such that the fiber X0 is projective and the linear

system |Lk
0 |, of the kth tensor power, consists of a prime exceptional divisor

E0 ⊂X0, for some positive integer k. Then k = 1 or 2. Let Z ⊂ T be the subset of

points t ∈ T , such that h0(Xt,L
k
t )> 1, or there exists a nonprime divisor, which

is a member of the linear system |Lk
t |. Then Z is a proper and closed analytic

subset of T . Furthermore, there exists an irreducible divisor E in X \ π−1(Z),

such that E intersects the fiber π−1(t) along a prime exceptional divisor Et of

class ket, for every t in the complement T \Z.

Proof

The integer k is 1 or 2 by Corollary 3.6. The dimension h0(Xt,L
k
t ) is an upper-

semicontinuous function on T , and so the locus where it is positive is a closed

analytic subset of T . On the other hand, h0(Xt,L
k
t ) is positive over an open
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subset, by Lemma 5.1. Hence, it is positive everywhere, and Lk
t is effective for

all t.

Let Z1 ⊂ T be the closed analytic subset, where h0(Xt,L
k
t ) > 1. We know

that h(X0,L
k
0) = 1, by [Bou, Proposition 3.13]. Hence, we may assume, possibly

after replacing T by T \Z1, that h
0(Xt,L

k
t ) = 1, for all t ∈ T .

We prove next that the section e lifts to a line bundle L ∼= OX (E), for a

divisor E ⊂ X , which does not contain any fiber of π. The following is part of the

edge exact sequence of the spectral sequence of the composite functor Γ ◦ π∗ of

pushforward and taking global sections:

H1(T,O∗
T )→H1(X ,O∗

X )→H0(T,R1
π∗O

∗
X )→H2(T,O∗

T ).

Let V be an open subset of T satisfying Hi(V,O∗
V ) = 0, for i = 1,2. Then the

restriction of e to V lifts to a line bundle LV over π−1(V ). Now π∗LV is a line

bundle over V , which must be trivial, by the vanishing of H1(V,O∗
V ). Hence,

H0(π−1(V ),LV ) ∼=H0(V,OV ), and there exists a unique divisor EV ⊂ π−1(V ),

in the linear system |LV |, which does not contain any fiber of π. If V1 and V2 are

two such open subsets of T , then the divisors EVi constructed above agree along

π−1(V1 ∩ V2), since they are canonical over any subset V of V1 ∩ V2, over which

Hi(V,O∗
V ) = 0, for i= 1,2. Hence, we get a global divisor E ⊂ X . Set L :=OX (E).

We prove next that E is irreducible. Let p : E → T be the restriction of π.

Then p is a proper morphism, which is also flat by [Mat, Application 2, p. 150].

All fibers of p are connected, since T is smooth and in particular normal, and

the fiber over 0 is connected. The morphism p is smooth along the smooth locus

of E0, and E is a local complete intersection in the smooth complex manifold X .

Hence, there exists precisely one irreducible component of E which contains E0.

Assume that there exists another irreducible component E ′. Then E ′ maps to a

proper closed subset of T , which does not contain 0. But T is irreducible, and E ′

intersects each fiber of π along a subset which is either empty or of codimension at

least one. Hence, the codimension of E ′ in X is larger than one. This contradicts

the fact that E is a divisor. We conclude that E is irreducible.

The subset Z ⊂ T , consisting of points t ∈ T , where Et is reducible or nonre-

duced, is a closed analytic subset of T , which does not contain 0. �

Proposition 5.2 shows that the property that L is prime exceptional is open in any

smooth and connected base T of a deformation of a pair (X,L), as long as it holds

for at least one projective pair. One limiting case is that of a pair (X,L), where

L is exceptional, in the sense of Definition 3.2, but no longer prime. However,

the exceptional property is unfortunately not closed, as the following example

shows.

EXAMPLE 5.3

Let Y be the intersection of a quadric and a cubic in P4, which are tangent

at one point y0, such that Y has an ordinary double point at y0. Let H be

the hyperplane line bundle on Y . Y is a singular K3 surface of degree 6. Let
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π :X → Y be the blowup of Y at y0, and let E ⊂X be its exceptional divisor.

X is a smooth K3 surface. Set L0 := π∗H⊗OX(2E). Then L0 has degree −2, but

L0 is not exceptional. Set c := c1(L0), let Dc ⊂Def(X) be the divisor defined in

equation (5.1), and denote by Lt the line bundle on Xt with class ct, t ∈Dc. Then

Lt has degree −2, and thus precisely one of Lt or L−1
t is effective (see [BHPV,

Chapter VIII, Proposition 3.6]). The semicontinuity theorem implies that Lt is

effective, since L−1
0 is not and Dc is connected. For a generic t ∈ Dc, the pair

(Xt,Lt) consists of a Kähler K3 surface, whose Picard group is generated by

Lt. Hence, the linear system |Lt| consists of a single smooth rational curve Et.

The analogue of Lemma 5.1 is known for such a pair (Xt,Lt), even if Xt is not

projective. Hence, Proposition 5.2 applies as well. Let D0
c ⊂Dc be the subset of

pairs (Xt,Lt), such that Lt
∼=OXt(Et), for a smooth connected rational curve Et.

We get thatD0
c is nonempty and the complement Z :=Dc\D0

c is a closed analytic

subset containing 0 ∈Dc. Consequently, the property of Lt being exceptional is

not closed.

5.2. Deformation equivalence and Torelli
We introduce and relate three notions of deformation equivalence of pairs.

DEFINITION 5.4

Let (Xi,Ei), i= 1,2, be two pairs of an irreducible holomorphic symplectic mani-

fold Xi, and an effective divisor Ei ∈Div(Xi). The two pairs are said to be defor-

mation equivalent, if there exists a smooth proper family π :X → T of irreducible

holomorphic symplectic manifolds, over a connected analytic space T with finitely

many irreducible components, a holomorphic line bundle L over X , a nowhere-

vanishing section s of π∗L, points ti ∈ T , and isomorphisms fi : Xti →Xi, such

that fi((sti)0) =Ei, i= 1,2. Above (sti)0 denotes the zero divisor of sti in Xti .

The relation is clearly symmetric and reflexive. It is also transitive, since we allow

T to be reducible.

DEFINITION 5.5

Let (Xi,Li), i= 1,2, be two pairs of an irreducible holomorphic symplectic man-

ifold Xi and a line bundle Li. The two pairs are said to be deformation equivalent

if there exists a smooth proper family π :X → T of irreducible holomorphic sym-

plectic manifolds, over a connected analytic space T with finitely many irreducible

components, and a section e of R2π∗Z, which is everywhere of Hodge-type (1,1),

points ti ∈ T , and isomorphisms fi :Xti →Xi, such that (fi)∗(eti) = c1(Li).

DEFINITION 5.6

Let (Xi, ei), i= 1,2, be two pairs of an irreducible holomorphic symplectic man-

ifold Xi and a class ei ∈ H2(Xi,Z). The two pairs are said to be deformation

equivalent if there exists a smooth proper family π : X → T of irreducible holo-

morphic symplectic manifolds, over a connected analytic space T with finitely
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many irreducible components, a section e of R2π∗Z, points ti ∈ T , and isomor-

phisms fi :Xti →Xi, such that (fi)∗(eti) = ei.

Definitions 5.5, 5.4, and 5.6, fit in a hierarchy. If Li =OXi(Ei) and ei := c1(Li),

then

(X1,E1) ≡ (X2,E2)⇒ (X1,L1)≡ (X2,L2),
(5.2)

(X1,L1) ≡ (X2,L2)⇒ (X1, e1)≡ (X2, e2).

Assume that the divisors Ei, i = 1,2, are prime exceptional, and assume

that X1 is projective. Then both implications above are equivalences, by Propo-

sition 5.12. For a qualified “converse” to the second implication (5.2), without

assuming that L1 and L2 are effective (see Lemma 5.17).

5.2.1. Period maps

A marking, for an irreducible holomorphic symplectic manifold X , is a choice of

an isometry η :H2(X,Z)→ Λ with a fixed lattice Λ. The period, of the marked

manifold (X,η), is the line η[H2,0(X)] considered as a point in the projective

space P[Λ⊗C]. The period lies in the period domain

(5.3) Ω :=
{
� : (�, �) = 0 and (�, �̄)> 0

}
.

Ω is an open subset, in the classical topology, of the quadric in P[Λ ⊗ C] of

isotropic lines (see [Be1]).

There is a (non-Hausdorff) moduli space MΛ of marked irreducible holomor-

phic symplectic manifolds, with a second integral cohomology lattice isometric

to Λ (see [Hu1]). The period map

P :MΛ −→ Ω,
(5.4)

(X,η) �→ η
[
H2,0(X)

]
is a local isomorphism, by the local Torelli theorem (see [Be1]). The surjectiv-

ity theorem states that the restriction of the period map to every connected

component of MΛ is surjective (see [Hu1]).

Two points x and y of a topological space are inseparable if every pair of

open subsets U , V , with x ∈ U and y ∈ V , has a nonempty intersection. Assume

given a bimeromorphic map f : X1 → X2 and a marking η1 for X1. Let f∗ :

H2(X2,Z)→H2(X1,Z) be the isometry induced by the bimeromorphic map f

(see the proof of Corollary 3.6). Set η2 = η1 ◦ f∗. Then (X1, η1) and (X2, η2)

are inseparable points of MΛ (see [Hu3, Theorem 2.5]). Conversely, Verbitsky

recently proved the following version of the Torelli theorem.

THEOREM 5.7 ([Ver, THEOREM 4.24], [Hu4])

Let M0
Λ be a connected component of MΛ. If (X1, η1) and (X2, η2) are two pairs

in M0
Λ and P (X1, η1) = P (X2, η2), then (X1, η1) and (X2, η2) are inseparable

points of M0
Λ.



Prime exceptional divisors 365

A homomorphism h :H∗(X1,Z)→H∗(X2,Z) is a parallel transport operator if

there exists a smooth and proper family f : X → B of irreducible holomorphic

symplectic manifolds over an analytic base B, points b1, b2 in B, isomorphisms

Xi
∼=Xbi , and a continuous path γ from b1 to b2, such that parallel transport in

the local system R∗f∗Z along γ induces h. The following is a fundamental result

of Huybrechts.

THEOREM 5.8 ([Hu1, THEOREM 4.3])

Let (X1, η1) and (X2, η2) be two inseparable points of MΛ, with dim(Xi) = 2n.

Then there exists an effective cycle Γ := Z+
∑

Yj in X1×X2, of pure dimension

2n, with the following properties.

(1) Z is the graph of a bimeromorphic map from X1 to X2.

(2) The correspondence [Γ]∗ :H
∗(X1,Z)→H∗(X2,Z) is a parallel transport

operator. Furthermore, the composition

η−1
2 ◦ η1 :H2(X1,Z)→H2(X2,Z)

is equal to the restriction of [Γ]∗.

(3) The image of the projection of each Yj into each Xi, i= 1,2, has positive

codimension in Xi.

Assume given two deformation equivalent pairs (Xi, ei), i = 1,2, in the sense

of Definition 5.6. Then there exist isometries ηi : H
2(Xi,Z) → Λ, having the

following two properties:

(1) η1(e1) = η2(e2);

(2) the marked pairs (Xi, ηi) belong to the same connected component M0
Λ.

Let λ be the common value ηi(ei), i= 1,2. If both classes ei belong toH
1,1(Xi,Z),

then the periods P (Xi, ηi) belong to the hyperplane λ⊥ ⊂ P[Λ⊗ C] orthogonal

to λ. The intersection λ⊥ ∩Ω is connected.

Fix a primitive nonzero class λ ∈ Λ with (λ,λ)< 0. Let

M0
Λ,λ ⊂M0

Λ

be the subset parameterizing marked pairs (X,η), such that η−1(λ) is of Hodge

type (1,1), and (κ, η−1(λ))> 0, for some Kähler class κ on X .

CLAIM 5.9

M0
Λ,λ is an open subset of P−1(λ⊥ ∩Ω).

Proof

Let M0
+ be the subset of M0

Λ consisting of marked pairs (X,η), such that

(κ, η−1(λ)) > 0, for some Kähler class κ on X . It suffices to prove that M0
+

is an open subset of M0
Λ. Let (X0, η0) be a point of M0

+, and let κ0 be a Kähler

class on X0 satisfying (κ0, η
−1
0 (λ))> 0. Let Def(X0) be the Kuranishi deforma-

tion space, and let ψ : X → Def(X0) be the semiuniversal family with fiber X0

over 0 ∈ Def(X0). There exists an open subset U of Def(X0), and a differen-
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tiable section κ of the real vector bundle (R2
ψ∗
R)|U , over U , such that κt is a

Kähler class of Xt, for all t ∈ U , by the proof of the stability of Kähler mani-

folds (see [Voi, Theorem 9.3.3]). We may identify U with an open subset of M0
Λ

containing (X0, η0), by the local Torelli theorem. We get the continuous function

(κt, η
−1
t (λ)) over U , which is positive at (X0, η0). Hence, there is an open subset

W ⊂ U , containing (X0, η0), such that (κt, η
−1
t (λ))> 0, for all t ∈W . �

The local Torelli theorem implies that the period map restricts to a local isomor-

phism

Pλ :M0
Λ,λ −→ λ⊥ ∩Ω.

M0
Λ,λ is thus a non-Hausdorff smooth complex manifold of dimension b2(X)− 3.

5.2.2. M0
Λ,λ is path connected

Given a point t ∈Ω, set Λ1,1
t := {x ∈ Λ : (x, t) = 0}. The following statement is a

Corollary of Theorem 5.7.

COROLLARY 5.10

Let t ∈ λ⊥ ∩ Ω be a point, such that Λ1,1
t = spanZ{λ}. Then the fiber P−1

λ (t)

consists of the isomorphism class of a single marked pair.

Proof

Let (X,η) be a marked pair in P−1
λ (t). Set λ̃ := η−1(λ). Then H1,1(X,Z) is

spanned by λ̃, and there exists a Kähler class κ0, such that (κ0, λ̃) > 0. Let

us first describe the three possibilities for the Kähler cone KX and the bira-

tional Kähler cone BKX of X . Recall that BKX is the union of the subsets

f∗(KY )⊂H1,1(X,R), as f varies over all bimeromorphic maps f :X → Y from

X to another irreducible holomorphic symplectic manifold Y . Denote by λ̃∨ the

primitive class in H2(X,Z)∗, which is a positive multiple of (λ̃,•). Let CX be the

connected component of the cone {κ ∈H1,1(X,R) : (κ,κ) > 0}, which contains

the Kähler cone.

Case 1. If dλ∨ is not represented by a rational curve, for any positive integer

d, then BKX =KX = CX , by [Hu3, Corollary 3.3].

Case 2. Assume that λ̃ is Q-effective. Then dλ̃ is represented by a prime

exceptional divisor E ⊂ X , for some positive integer d, which is uniruled, by

[Bou, Proposition 4.7]. Then

BKX =KX =
{
κ ∈ CX : (κ, λ̃)> 0

}
,

by [Bou, Theorem 4.3].

Case 3. Assume that dλ̃ is not effective, for any positive integer d, but dλ̃∨

is represented by a rational curve, for some positive integer d. Then

KX =
{
κ ∈ CX : (κ, λ̃)> 0

}
,

BKX = KX ∪K′
X , where K′

X =
{
κ ∈ CX : (κ, λ̃)< 0

}
,

by [Bou, Theorem 4.3].
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Let (X1, η1) and (X2, η2) be two marked pairs in P−1
λ (t). Then (X1, η1)

and (X2, η2) are inseparable points, by Theorem 5.7. Hence, there exists a cycle

Γ := Z+
∑

Yj in X1×X2, satisfying the properties listed in Theorem 5.8. Denote

by g :X1 →X2 the bimeromorphic map with graph Z, and let f :H2(X1,Z)→
H2(X2,Z) be the parallel-transport operator [Γ]∗, so that f = η−1

2 ◦ η1, by Theo-

rem 5.8. Set λ̃i := η−1
i (λ). Let κi be a Kähler class on Xi, such that (λ̃i, κi)> 0.

In cases 1 and 3, Xi does not contain any effective divisor, i= 1,2. In partic-

ular, the image of each Yj has codimension ≥ 2 in each Xi, and f = g∗. We have

(λ̃1, g
∗(κ2)) = (η−1

1 (λ), g∗(κ2)) = (g∗η
−1
1 (λ), κ2) = (η−1

2 (λ), κ2) = (λ̃2, κ2), since

g∗ is an isometry. We conclude the inequality

(5.5)
(
λ̃1, g

∗(κ2)
)
> 0.

If g∗(κ2) is not a Kähler class, then the birational Kähler cone BKX1 consists

of at least two connected components. Thus we must be in case 3. So κ1 ∈ KX1

and g∗(κ2) belongs to K′
X1

. Hence, (g∗(κ2), λ̃1) < 0, by the characterization of

K′
X1

. This contradicts inequality (5.5).

We conclude that g∗(κ2) is a Kähler class. Thus g is an isomorphism, by

[Hu3, Proposition 2.1], and (X1, η1) and (X2, η2) are isomorphic marked pairs.

It remains to treat case 2. In that case BKXi = KXi , and so g is an iso-

morphism. Hence, g∗(λ̃1) = λ̃2, since the classes λ̃i are effective. On the other

hand, f(λ̃1) = η−1
2 η1(η

−1
1 (λ)) = η−1

2 (λ) = λ̃2. Hence, f(λ̃1) = g∗(λ̃1). The sub-

space λ̃⊥
1 , orthogonal to λ̃1, is necessarily in the kernel of the correspondence

[
∑

Yj ]∗ :H
2(X1,Z)→H2(X2,Z). Hence, f(α) = g∗(α), for all α ∈ λ̃⊥

1 . We con-

clude that f = g∗, and the two pairs (X1, η1) and (X2, η2) are isomorphic. �

COROLLARY 5.11

M0
Λ,λ is a path-connected subset of M0

Λ.

Proof

Let (X,η) be a marked pair in M0
Λ,λ. Then there exists a continuous path from

(X,η) to some (X0, η0), where H1,1(X0,Z) is spanned by η−1
0 (λ), by the local

Torelli theorem. Hence, it suffices to construct a continuous path between any two

pairs (X0, η0) and (X1, η1) in M0
Λ,λ, such that H1,1(Xi,Z) is cyclic, for i= 0,1.

Set ti := P (Xi, ηi), i= 0,1. Let I be the closed interval [0,1]. Let γ : I → λ⊥ ∩Ω

be a continuous path from t0 to t1. Let I1 ⊂ I be the subset of points t, such

that Λ1,1
γ(t) is cyclic. We may choose γ so that I1 is a dense subset of I .

For each t ∈ I1, there exists a unique isomorphism class of a marked pair

(Xt, ηt) in M0
Λ,λ with period γ(t), by Corollary 5.10. Choose an open path-

connected subset Ut ⊂M0
Λ,λ, containing (Xt, ηt), such that Pλ restricts to Ut as

an open embedding. This is possible, by the local Torelli theorem. We get the open

covering γ(I)⊂
⋃

t∈I1
Pλ(Ut). Choose a finite subcovering

⋃N
j=0Pλ(Utj ) of γ(I),

with 0 = t0 < t1 < · · ·< tN = 1. Choose an increasing subsequence τj := tij , 0≤
j ≤ k, such that τ0 = t0, τk = tN , and Pλ(Uτj ) ∩ Pλ(Uτj+1) is nonempty. Choose

points sj,j+1 in Pλ(Uτj )∩Pλ(Uτj+1), such that Λ1,1
sj,j+1

is cyclic, and let s̃j,j+1 be
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the unique point of M0
Λ,λ over sj,j+1. Then s̃j,j+1 belongs to Uτj ∩Uτj+1 . Choose

continuous paths αj in Uτj from s̃j−1,j to (Xτj , ητj ), if j > 0, and βj in Uτj from

(Xτj , ητj ) to s̃j,j+1, if j < k. Then the concatenated path β0α1β1 · · ·αk−1βk−1αk

is a continuous path from the isomorphism class of (X0, η0) to that of (X1, η1).

�

5.2.3. Deformation equivalent monodromy-reflective line bundles are simultane-

ously stably Q-effective or not stably Q-effective

PROPOSITION 5.12

Let (X1,E1), (X2,E2) be two pairs of irreducible holomorphic symplectic man-

ifolds Xi and prime exceptional divisors Ei ⊂Xi. Assume that X1 is projective

and (X1, [E1]) is deformation equivalent to (X2, [E2]), in the sense of Defini-

tion 5.6. Then (X1,E1) and (X2,E2) are deformation equivalent in the sense of

Definition 5.4.

Proof

We assume, for simplicity of notation, that the class [Ei] is primitive. The

generalization of the proof to the case [Ei] = 2ei is straightforward. As noted

above, we can choose a marking η2 of X2, such that (X2, η2) belongs to M0
Λ and

η2([E2]) = λ. Any Kähler class κ on X2 satisfies (κ, [E2])> 0, since E2 is effective

(see [Hu1]). Hence, (X2, η2) belongs to M0
Λ,λ.

Choose a continuous path γ : [0,1]→M0
Λ,λ from (X1, η1) to (X2, η2). Further

choose a sufficiently fine partition of the unit interval

0 = t0 < t1 < · · ·< tN = 1

and open connected subsets Ui ⊂M0
Λ,λ, 1≤ i≤N , such that γ([ti−1, ti]) is con-

tained in Ui, and the restriction of P to Ui is an open embedding Pi : Ui ↪→
λ⊥ ∩ Ω. This is possible by the local Torelli theorem.

CLAIM 5.13

For each 1≤ i≤N −1, there exists a marked pair (Yi, ϕi) in Ui∩Ui+1, such that

Yi is projective, and ϕ−1
i (λ) is the class of a prime exceptional divisor on Yi.

Proof

Following is an iterative process of constructing the pairs (Yi, ϕi). Set (Y0, ϕ0) =

(X1, η1). Assume that i= 1, or assume that 1< i≤N − 1 and (Yj , ϕj) exists for

all 1 ≤ j < i. The pair (Yi−1, ϕi−1) belongs to Ui. Proposition 5.2 implies that

there exists a closed analytic subvariety Zi ⊂ Ui, not containing (Yi−1, ϕi−1),

such that for every (X,η) in Ui \ Zi, η
−1(λ) is the class of a prime exceptional

divisor E ⊂X . The locus of projective marked pairs is dense in Ui ∩ Ui+1, by

[Hu2, Proposition 21]. Hence, there exists a projective pair (Yi, ϕi) in [Ui \Zi]∩
Ui+1. �



Prime exceptional divisors 369

Set (YN , ηN ) := (X2, η2). Let Di ⊂ Yi be the prime exceptional divisor with

[Di] = η−1
i (λ). It remains to prove that (Yi−1,Di−1) is deformation equivalent

to (Yi,Di), for 1≤ i≤N . Both pairs (Yi−1, ϕi−1) and (Yi, ϕi) belong to Ui \ Zi

by construction, for i < N , and by the characterization of ZN in Proposition 5.2,

for i=N . Proposition 5.2 exhibits a divisor Ei in the restriction of X to Ui \Zi,

whose fiber over the pair (Yi, ϕi) is Di, and whose fiber over the pair (Yi−1, ϕi−1)

is Di−1. This completes the proof of Proposition 5.12. �

The following variant of Proposition 5.12 will be used in the derivation of Theo-

rem 1.11 from Torelli.

PROPOSITION 5.14

Let X and Y be two irreducible holomorphic symplectic manifolds, with X projec-

tive, E ⊂X a prime exceptional divisor, and L a line bundle on Y . Set c := c1(L).

Assume that (X, [E]) and (Y, c) are deformation equivalent in the sense of Def-

inition 5.6. Assume further that there exists a Kähler class κ on Y , such that

(κ, c)> 0. Then L is stably prime exceptional (in the sense of Theorem 1.11).

The above proposition was proven in the course of proving Proposition 5.12.

COROLLARY 5.15

Let (X1,L1) and (X2,L2) be two pairs, each of an irreducible holomorphic sym-

plectic manifold Xi and a monodromy-reflective line bundle Li. Set ei := c1(Li).

Assume that X1 is projective, ke1 is the class of a prime exceptional divisor E1,

for some nonzero integer k, and H0(X2,L
d
2) vanishes, for all nonzero integers d.

Then the pairs (X1, e1) and (X2, e2) are not deformation equivalent, in the sense

of Definition 5.6.

Proof

If (X1, e1) and (X2, e2) were deformation equivalent, in the sense of Definition 5.6,

then H0(X2,L
d
2) would not vanish for d= k or d=−k, by Proposition 5.14 and

the semicontinuity theorem. �

5.3. Deformation equivalence and monodromy invariants
Let Mon2(X) be the monodromy group, introduced in Definition 1.3. Let I(X)⊂
H2(X,Z) be a Mon2(X)-invariant subset, and let Σ be a set.

DEFINITION 5.16

A function f : I(X) → Σ is a monodromy invariant, if f(e) = f(g(e)), for all

g ∈Mon2(X). The function f is said to be a faithful monodromy invariant if the

function f̄ : I(X)/Mon2(X)→Σ, induced by f , is injective.

Given an irreducible holomorphic symplectic manifold X ′, deformation equiv-

alent to X , denote by I(X ′) ⊂ H2(X ′,Z) the set of all classes e′, such that
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(X ′, e′) is deformation equivalent to (X,e), for some e ∈ I(X), in the sense of

Definition 5.6.

Assume that f : I(X)→Σ is a monodromy-invariant function. Then f admits

a natural extension to a function f : I(X ′)→Σ, for every irreducible holomorphic

symplectic manifold X ′ deformation equivalent to X . The extension is uniquely

determined by the following condition. Given any smooth and proper family

π : X → T , of irreducible holomorphic symplectic manifolds deformation equiv-

alent to X, and any flat section e of the local system R2π∗Z, the function f(e) is

locally constant, in the classical topology of the analytic space T . We denote this

extension by f as well. The following statement relates monodromy invariants to

deformation equivalence.

LEMMA 5.17

Let f : I(X)→Σ be a faithful monodromy-invariant function. Assume given two

pairs (Xi, ei), i= 1,2, with Xi deformation equivalent to X and ei ∈ I(Xi).

(1) We have f(e1) = f(e2) if and only if (X1, e1) and (X2, e2) are deforma-

tion equivalent, in the sense of Definition 5.6.

(2) Assume that f(e1) = f(e2), ei = c1(Li), for holomorphic line bundles

Li on Xi, and there exist Kähler classes κi on Xi, satisfying (κi, ei) > 0, for

i = 1,2. Then (X1,L1) is deformation equivalent to (X2,L2), in the sense of

Definition 5.5.

Proof

Part (1) is evident. Part (2) follows from part (1) and Corollary 5.11. �

6. Monodromy invariants from Mukai’s isomorphism

Let S be a K3 surface, and let M be a smooth and projective moduli space

of stable coherent sheaves on S. In Section 2.1 we recalled Mukai’s embedding

θ−1 :H2(M,Z)→K(S), of the second cohomology of M , as a sublattice of the

Mukai lattice. In Section 6.1 we use this embedding to define a monodromy

invariant of a class in H2(M,Z). The values of this monodromy invariant, for

monodromy-reflective classes, are calculated in Sections 6.2 and 7.

6.1. A rank two sublattice of the Mukai lattice
Let Λ̃ be the unimodular lattice E8(−1)⊕2 ⊕ U⊕4, where U is the rank two

unimodular hyperbolic lattice. Λ̃ is isometric to the Mukai lattice of a K3 sur-

face. Let X be an irreducible holomorphic symplectic manifold of K3[n]-type,

n≥ 2. Choose an embedding ι :H2(X,Z) ↪→ Λ̃ in the canonical O(Λ̃)-orbit of X

provided by Theorem 1.6. Let v be a generator of the rank 1 sublattice of Λ̃

orthogonal to the image of ι. Then (v, v) = 2n− 2. Let e be a primitive class in

H2(X,Z) satisfying (e, e) = 2− 2n. We get the sublattice

L := spanZ{e, v} ⊂ Λ̃,
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where we denote by e also the element ι(e). Let

(6.1) L̃

be the saturation of L in Λ̃. Note that the pair (L̃, e) determines the lattice L

via the equality L= Ze+ [e⊥ ∩ L̃].

DEFINITION 6.1

Two pairs (Li, ei), i= 1,2, each consisting of a lattice Li and a class ei ∈ Li, are

said to be isometric, if there exists an isometry g : L1 → L2, such that g(e1) = e2.

REMARK 6.2

Let L0 be a lattice. The set of isometry classes of pairs (L1, e1), with L1 isometric

to L0, is in natural bijection with the orbit set L0/O(L0). The bijection sends

the isometry class of (L1, e1) to the orbit O(L0)g(e1), where g : L1 → L0 is some

isometry. The orbit O(L0)g(e1) is independent of the choice of g.

Let U be the rank 2 even unimodular hyperbolic lattice. Let U(2) be the rank

2 lattice with Gram matrix
(

0 −2
−2 0

)
. Let Hev be the rank 2 lattice with Gram

matrix
(
2 0
0 −2

)
. Let I ′′n(X)⊂H2(X,Z) be the subset of primitive classes of degree

2 − 2n, such that div(e,•) = n − 1 or div(e,•) = 2n − 2. Let In(L̃) ⊂ L̃ be the

subset of primitive classes of degree 2− 2n. Let ρ be the largest positive integer,

such that (e+v)/ρ is an integral class. Define the integer σ similarly using (e−v).

PROPOSITION 6.3

(1) The isometry class of the lattice L̃ is determined as follows.

L̃∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

U if div(e,•) = 2n− 2,

Hev if div(e,•) = n− 1 and n is even,

U(2) if div(e,•) = n− 1 and n is odd , n �≡ 1 (mod8),

U(2) if div(e,•) = n− 1, n≡ 1 (mod8) and ρσ = 2n− 2,

Hev if div(e,•) = n− 1, n≡ 1 (mod8) and ρσ = n− 1.

(2) Consider the function

f : I ′′n(X)−→ In(U)/O(U)∪ In
(
U(2)

)
/O

(
U(2)

)
∪ In(Hev)/O(Hev),

which sends the pair (X,e), e ∈ I ′′n(X), to the isometry class of the pair (L̃, e),

consisting of the primitive sublattice L̃ ⊂ Λ̃, given in equation (6.1), and the

class e ∈ In(L̃). Then f is a faithful monodromy-invariant function (see Defini-

tion 5.16).

The proposition is proven below in Lemmas 7.1 and 7.3. We provide an explicit

and easily computable classification of the isometry classes of the pairs (L̃, e) in

Lemma 6.5.
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Let L0 be a rank 2 even lattice of signature (1,1). Let In(L0) ⊂ L0 be the

subset of primitive classes e with (e, e) = 2− 2n. Let IL0,n(X) ⊂ I ′′n(X) be the

subset consisting of classes e, such that the lattice L̃ in equation (6.1) is isometric

to L0. Consider the function

(6.2) f : IL0,n(X)→ In(L0)/O(L0),

which sends the pair (X,e) to the isometry class of the pair (L̃, e). The faithfulness

statement in Proposition 6.3 follows from the following general statement.

LEMMA 6.4

The function f , given in (6.2), is a faithful monodromy invariant.

Proof

Let e1, e2 be two classes in IL0,n(X). Denote by L̃j the primitive rank 2 sublattice

of Λ̃ associated to ej in equation (6.1), via a primitive embedding ι :H2(X,Z)→
Λ̃ in the canonical O(Λ̃)-orbit, j = 1,2. Denote ι(ej) by ej as well.

Assume that f(e1) = f(e2). Then there exists an isometry g : L̃1 → L̃2, such

that g(e1) = e2. Let v ∈ Λ̃ be a generator of ι[H2(X,Z)]⊥. Then v is orthogonal

to ej . Hence, g(v) = v or g(v) = −v. If g(v) = −v, set g′ := −(Re2 ◦ g). Then

g′ : L̃1 → L̃2 is an isometry satisfying g′(e1) = e2 and g′(v) = v. Hence, we may

assume that g(v) = v.

There exists an isometry γ ∈O+(Λ̃), such that γ(L̃1) = L̃2 and γ restricts to

L̃1 as g, by [Ni, Theorem 1.14.4]. Then γ(v) = v, and so γ ◦ ι = ι ◦ μ, for some

isometry μ ∈O+H
2(X,Z). The fact that the isometry μ extends to Λ̃ implies that

μ belongs to Mon2(X), by [Ma3, Theorem 1.6] (see also [Ma3, Lemma 4.10(3)]).

Now ι(μ(e1)) = γ(ι(e1)) = ι(e2). So μ(e1) = e2. �

6.2. Isometry orbits in three rank two lattices
Set

MU :=

(
0 −1

−1 0

)
, MHev :=

(
2 0

0 −2

)
, MU(2) :=

(
0 −2

−2 0

)
.

Given an integer m, let F(m) be the set of unordered pairs {r, s} of positive

integers, such that rs=m and gcd(r, s) = 1. Set

Σn(U) := F(n− 1),

Σn

(
U(2)

)
:= F

(
[n− 1]/2

)
, if n is odd,

Σn(Hev) :=

{
F(n− 1) if n �≡ 1 (modulo) 4,

F([n− 1]/4) if n≡ 1 (modulo) 4.

Table 1 summarizes how the statements of Proposition 6.3 and Lemma 6.5

determine the lattice L̃ and the pair {r, s} in terms of (e, e), div(e,•), n, and
{ρ,σ}.
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Table 1

(e, e) div(e,•) n ρσ L̃ {r, s} r · s
(1) 2− 2n 2n− 2 ≥ 2 4n− 4 U { ρ

2
, σ
2
} n− 1

(2) 2− 2n n− 1 even n− 1 Hev {ρ,σ} n− 1

(3) 2− 2n n− 1 odd 2n− 2 U(2) { ρ
2
, σ
2
} (n− 1)/2

(4) 2− 2n n− 1 ≡ 1 modulo 8 n− 1 Hev { ρ
2
, σ
2
} (n− 1)/4

In line (3) cases where n≡ 1 modulo 8 occur as well.

LEMMA 6.5

Let L̃ be U , Hev, or U(2), and let e ∈ In(L̃), n≥ 2. Choose a generator v of the

sublattice of L̃ orthogonal to e.

(1) Let ρ be the largest positive integer such that (e + v)/ρ is an integral

class of L̃. Define the integer σ similarly using (e− v). Then gcd(ρ,σ) is 1 or 2.

(2) The integers r := ρ/gcd(ρ,σ) and s := σ/gcd(ρ,σ) have the following

properties.

(a) If L̃ = U , then rs = n − 1, and the classes α := (e + v)/2r and β :=

(e− v)/2s form a basis of L̃ with Gram matrix MU .

(b) If L̃= U(2), then n is odd, rs= (n−1)/2, and the classes α := (e+v)/2r

and β := (e− v)/2s form a basis of L̃ with Gram matrix MU(2).

(c) If L̃=Hev and n is even, then rs= n− 1 and the classes

α :=
1

2

[e+ v

r
− e− v

s

]
and β :=

1

2

[e+ v

r
+

e− v

s

]
form a basis of L̃ with Gram matrix MHev .

(d) If L̃=Hev and n is odd, then n≡ 1 modulo 4, rs= (n− 1)/4, and the

classes

α :=
1

2

[e+ v

2r
− e− v

2s

]
and β :=

1

2

[e+ v

2r
+

e− v

2s

]
form a basis of L̃ with Gram matrix MHev .

(3) If we replace v by −v, then (r, s) gets replaced by (s, r).

(4) Let rs : In(L̃)→Σn(L̃) be the function which assigns to a class e ∈ In(L̃)

the unordered pair {r, s} occurring in the above factorization. Then rs factors

through a one-to-one correspondence

rs : In(L̃)/O(L̃)−→Σn(L̃).

Proof

Let {u1, u2} be a basis of L̃ with Gram matrix ML̃. Observe first that O(L̃) is

isomorphic to Z/2Z×Z/2Z. Indeed, each of O(U) and O(U(2)) is generated by

−id and the isometry, which interchanges u1 and u2. O(Hev) is generated by the

two commuting reflections with respect to u1 and u2. Write

e= au1 + bu2.
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Case L̃ = U . We have n − 1 = −(e, e)/2 = ab and gcd(a, b) = 1, since e is

primitive. Note also that a and b have the same sign. Set v := au1−bu2. Then (e+

v)/2a= u1 and (e−v)/2b= u2. Thus r = |a| and s= |b|, and part (2) holds. Part

(3) is clear. Part (4) follows from part (3) and the identification of O(U) above.

Case L̃= U(2). We may identify the free abelian groups underlying U and

U(2), so that the bilinear form on U(2) is 2 times that of U . The statement of

the lemma follows immediately from the case L̃= U .

Case L̃=Hev. We have 2− 2n= (e, e) = 2(a− b)(a+ b). So b− a and b+ a

have the same sign, since n ≥ 2. If n is odd, then both a and b are odd, since

gcd(a, b) = 1 and (a− b)(a+ b) is even. If n is even, then {a, b} consists of one

odd and one even integer. Furthermore,

gcd(b− a, b+ a) = gcd(b− a,2a) =

{
1 if n is even,

2 if n is odd.

Choose v = bu1 + au2. We have

u1 =
1

2

[e+ v

a+ b
− e− v

b− a

]
, u2 =

1

2

[e+ v

a+ b
+

e− v

b− a

]
.

Hence, r = |a+ b| and s= |b− a|, if n is even, and r = |a+ b|/2 and s= |b− a|/2,
if n is odd. The rest is similar to the case L̃= U . �

7. Monodromy invariants of monodromy-reflective classes

Fix n ≥ 2. Let X be a (Kähler) irreducible holomorphic symplectic manifold

of K3[n]-type. We define in this section the monodromy invariant function rs

of Proposition 1.8 and prove that proposition. Part (2) of the proposition was

treated in [Ma3, Lemma 8.9]. We thus consider only part (1). We will relate this

latter part to Proposition 6.3 and prove Proposition 6.3.
It will be convenient to use the following normalization. Fix an isometry

Λ̃ ∼=K(S), for some K3 surface S, and use Mukai’s notation for classes in the

Mukai lattice K(S). The isometry group O(Λ̃) acts transitively on the set of

primitive classes in Λ̃ of degree 2n − 2. Hence, we may choose the embedding

ι :H2(X,Z)→ Λ̃, so that v = (1,0,1− n) is orthogonal to the image of ι. Then

v⊥ =H2(S,Z)⊕Zδ, where δ := (1,0, n− 1). Thus

(7.1) e= x+ tδ,

for some integer t and a class x ∈H2(S,Z).

7.1. The divisibility case div(e,•) = (e, e)

Let In(X)⊂H2(X,Z) be the subset of all primitive classes e, satisfying (e, e) =

2 − 2n and div(e,•) = 2n− 2. Recall that Σn(U) is the set of unordered pairs

{r, s} of positive integers, such that rs= n− 1 and gcd(r, s) = 1.

LEMMA 7.1

If e belongs to In(X), then L̃ is isometric to the unimodular hyperbolic plane U .
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Denote by

rs : In(X)−→Σn(U)

the composition of the function f : In(X) → In(U)/O(U), defined in equation

(6.2), with the bijection rs : In(U)/O(U) → Σn(U) constructed in Lemma 6.5.

Then the function rs : In(X) → Σn(U) is surjective and a faithful monodromy

invariant (see Definition 5.16).

Proof

Write e = x + tδ as in equation (7.1). The assumption that div(e,•) = 2n − 2

implies that x= (2n− 2)ξ, for a class ξ ∈H2(S,Z). We clearly have the equality

2− 2n= (e, e) = (x,x) + t2(δ, δ) = (2− 2n)2(ξ, ξ) + (2− 2n)t2.

Hence, we get the equality

t2 − 1 = (2n− 2)(ξ, ξ).

Consequently, 4n− 4 divides (t− 1)(t+ 1). Thus n− 1 divides (t− 1)(t+ 1)/4.

Now gcd((t−1)/2, (t+1)/2) = 1. We get a unique factorization n−1 = rs, where

s divides (t− 1)/2, r divides (t+1)/2, and gcd(r, s) = 1. We may assume that s

is odd, possibly after replacing the embedding ι by −ι, which replaces t by −t.

Using the above factorization n− 1 = rs, we get

e+ v = 2rα, where α :=
( t+ 1

2r
, sξ,

(t− 1)s

2

)
,

e− v = 2sβ, where β :=
( t− 1

2s
, rξ,

(t+ 1)r

2

)
and the classes α and β belongs to L̃. The Gram matrix of {α,β} is(

(α,α) (α,β)

(α,β) (β,β)

)
=

(
(e+ v, e+ v)/4r2 (e+ v, e− v)/4rs

(e+ v, e− v)/4rs (e− v, e− v)/4s2

)
=

(
0 −1

−1 0

)
.

We conclude that span{α,β} is a unimodular sublattice of Λ̃. Hence, L̃ =

span{α,β} and L̃∼= U .

The function rs is shown to be surjective in Example 7.2. The faithfulness

of the monodromy invariant rs was proven in Lemma 6.4. �

EXAMPLE 7.2

Compare this with Section 2.2 above. Choose a factorization n−1 = rs, with s≥
r > 0, and gcd(r, s) = 1. Let S be a projective K3 surface, v = (r,0,−s) ∈K(S),

H a v-generic polarization, and X =MH(r,0,−s). Let ι :H2(MH(r,0,−s),Z) ↪→
K(S) be the embedding given in (2.3). Set e := θ(r,0, s), where θ is Mukai’s isom-

etry given in equation (2.2). The class e is monodromy reflective and div(e,•) =
2n − 2. Now (v + e)/2r = (1,0,0), (e − v)/2s = (0,0,1), and L̃ ∼= U . We get

rs(e) = {r, s}, by Lemma 6.5.
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7.2. The divisibility case div(e,•) = (e, e)/2

Let n be an integer ≥ 2. Let I ′n(X) ⊂ H2(X,Z) be the subset of all primitive

classes e satisfying (e, e) = 2− 2n, and div(e,•) = n− 1. Set

Σ′
n :=

⎧⎪⎪⎨⎪⎪⎩
Σn(Hev) if n is even,

Σn(U(2)) if n is odd but n �≡ 1 modulo 8,

Σn(U(2))∪Σn(Hev) if n≡ 1 modulo 8.

In each of the above three cases, let ICn be the union of the sets In(L̃)/O(L̃) as

L̃ ranges through the one or two lattices appearing.

LEMMA 7.3

Let e be a class in I ′n(X).

(1) If n is even, then L̃ is isometric to Hev.

(2) If n is odd, then L̃ is isometric to U(2) or to Hev. The latter occurs only

if n≡ 1 modulo 8 and ρσ = n− 1.

In both cases, let

rs : I ′n(X)−→Σ′
n

be the composition of the function f : I ′n(X) → ICn, defined in equation (6.2),

with the injection rs : ICn → Σ′
n, constructed in Lemma 6.5. Then the function

rs : I ′n(X) → Σ′
n is surjective and a faithful monodromy invariant (see Defini-

tion 5.16).

Proof

Let us first observe that L̃ cannot be unimodular. Assume otherwise. Then Λ̃

decomposes as an orthogonal direct sum L̃⊕ L̃⊥. Consequently, v⊥ decomposes

as the orthogonal direct sum L̃⊥ ⊕Z{e}. But then div(e,•) = 2n− 2.

We keep the normalization e= x+ tδ of equation (7.1). The assumption that

div(e,•) = n− 1 implies that x= (n− 1)ξ, for a class ξ ∈H2(X,Z). We have the

equality

(7.2) (t2 − 1) =
(n− 1)(ξ, ξ)

2
.

Hence, n− 1 divides t2 − 1.

Case n is even. Then n− 1 is odd. Set

r := gcd(t+ 1, n− 1), s := gcd(t− 1, n− 1).

Then both r and s are odd and gcd(r, s) divides gcd(t− 1, t+ 1). We conclude

that gcd(r, s) = 1 and rs divides n− 1. Now n− 1 divides (t− 1)(t+ 1). Thus,

n− 1 divides rs, and so rs= n− 1. Set

α :=
1

2

[e+ v

r
− e− v

s

]
=

1

2

( t+ 1

r
− t− 1

s
, (s− r)ξ, (s− r)t− s− r

)
,

β :=
1

2

[e+ v

r
+

e− v

s

]
=

1

2

( t+ 1

r
+

t− 1

s
, (s+ r)ξ, (s+ r)t+ r− s

)
.
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Note the equality (t+ 1)/r − (t− 1)/s= ((s− r)t+ s+ r)/rs and the fact that

the denominator is odd, while the numerator is even. Hence, α, β are integral

classes of Λ̃, and
( (α,α) (α,β)
(α,β) (β,β)

)
=
(
2 0
0 −2

)
.

CLAIM 7.4

L̃= span{α,β}.

Proof

Suppose otherwise. Then L̃ strictly contains L′ := span{α,β}. Let d be the index

of L′ in L̃. Then the determinant of the Gram matrix of L̃ is d2 times the

determinant of the Gram matrix of L′. The latter determinant is −4. It follows

that L̃ is unimodular, a contradiction. �

Case n is odd. Then t is odd, by equation (7.2). Set

r := gcd
(n− 1

2
,
t+ 1

2

)
, s := gcd

(n− 1

2
,
t− 1

2

)
.

Then rs divides (n− 1)/2, since gcd((t+ 1)/2, (t− 1)/2) = 1.

Case n is odd and (ξ, ξ)/2 is even. Then (n− 1)/2 divides (t+ 1)(t− 1)/4,

by equation (7.2). Hence, rs= (n− 1)/2. Set

α :=
e+ v

2r
=
( t+ 1

2r
, sξ, s(t− 1)

)
,

β :=
e− v

2s
=
( t− 1

2s
, rξ, r(t+ 1)

)
.

Then α and β are integral classes of Λ̃, and
( (α,α) (α,β)
(α,β) (β,β)

)
=
(

0 −2
−2 0

)
. We conclude

the equality L̃= span{α,β}, by the argument used in Claim 7.4.

Case n is odd and (ξ, ξ)/2 is odd. Let 2k be the largest power of 2 which

divides t2 − 1. Then k ≥ 3. Furthermore, 2k is also the largest power of 2 which

divides n−1, by equation (7.2). Thus n≡ 1 (modulo 8). The set {r, s} consists of

one odd and one even integer. Say s is odd. Then 2k−2 is the largest power of 2,

which divides r. We conclude that rs= (n− 1)/4. Furthermore, both (t+ 1)/2r

and (t− 1)/2s are odd. Set

α :=
1

2

[e+ v

2r
+

e− v

2s

]
=

1

2

( t+ 1

2r
+

t− 1

2s
, (2s+ 2r)ξ,2s(t− 1) + 2r(t+ 1)

)
,

β :=
1

2

[e+ v

2r
− e− v

2s

]
=

1

2

( t+ 1

2r
− t− 1

2s
, (2s− 2r)ξ,2s(t− 1)− 2r(t+ 1)

)
.

Then α and β are integral classes of Λ̃ and
( (α,α) (α,β)
(α,β) (β,β)

)
=
(−2 0

0 2

)
. We conclude

the equality L̃= span{α,β}, by the argument used in Claim 7.4.

The function rs is shown to be surjective in Examples 7.5 and 7.6. The

faithfulness of the monodromy invariant rs was proven in Lemma 6.4. �

EXAMPLE 7.5

Let s > r ≥ 1 be positive integers with gcd(r, s) = 1. Set n := rs+ 1. Let S be a
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projective K3 surface, set v := (r,0,−s), and let H be a v-generic polarization

of S. Set M := MH(v). Let A be a primitive isotropic class in H2(S,Z). Set

e := θ(r, (n− 1)A,s). Then e is monodromy reflective and div(e,•) = n− 1. If n

is even, then (M,e) is an example of case 1 of Lemma 7.3, with rs(e) = {r, s}.
If n is odd, then n− 1 = rs is even and precisely one of r or s is even. If r is

even, then ρ = r and σ = 2s. If s is even, then ρ = 2r and σ = s. (M,e) is an

example of Lemma 7.3(2), with L̃∼= U(2) and rs(e) = {r/2, s}, if r is even, and

rs(e) = {r, s/2}, if s is even.

EXAMPLE 7.6

We exhibit the next examples of the case of Lemma 7.3, where X = S[n], n≡ 1

modulo 8, and L̃∼=Hev . Set n= 8k+1, k an integer ≥ 1. Choose a factorization

2k = rs, with r even, s odd, and gcd(r, s) = 1. There exists an integer λ, such that

λr ≡−1 modulo s, since gcd(s, r) = 1. If λ is a solution, so is λ+ s. Hence, we

may assume that λ is an odd and positive integral solution. Set g := [rλ+ 1]/s.

Then g is a positive odd integer.

Let S be a K3 surface with a primitive class ξ ∈ Pic(S) of degree (ξ, ξ) = 2λg.

Set

v := (1,0,1− n) and e :=
(
2λr+ 1, (n− 1)ξ, [2λr+ 1](n− 1)

)
.

Then (e, e) = 2− 2n, by the two equalities

(e, e) = (n− 1)
[
2λg(n− 1)− 2

(
4{r2λ2 + rλ}+ 1

)]
and 2λg(n− 1) = 8rλsg = 8rλ(rλ+ 1). The class e is primitive, since

gcd(2λr+ 1, n− 1) = gcd(2λr+ 1,4rs) = gcd(2λr+ 1, s) = gcd(−1, s) = 1.

The classes (e+ v)/2s= (g,2rξ,4λr2) and (e− v)/2r = (λ,2sξ,4gs2) are integral

and primitive. We conclude that L̃ ∼= Hev , by Proposition 6.3(1), and rs(e) =

{r, s}, by Lemma 6.5.

8. Numerical characterization of exceptional classes via Torelli

Table 2 points to an example provided in this paper, for each possible value of

the quadruple {n, (e, e),div(e,•), rs(e)}, for a monodromy reflective class e.

The congruence constraints on n are necessary. If (e, e) =−2 and div(e,•) =
2, then n≡ 2 (modulo 4), by [Ma3, Lemma 8.9]. If rs(e) = {2, (n− 1)/2}, then
n ≡ 3 (modulo 4) in order for {2, (n − 1)/2} to be a pair of relatively prime

integers. If (e, e) = 2− 2n, div(e,•) = n− 1, n > 2, and rs(e) = {1, n− 1}, then
n must be even, since for odd n the product of r and s is equal to (n− 1)/2 or

(n− 1)/4, by Lemmas 7.3 and 6.5. This explains also the value of n in the last

three rows.

Proof of Theorem 1.11

Set e := c1(L). The pair (X,e) is deformation equivalent, in the sense of Defi-

nition 5.6, to a pair (M,c) appearing in Table 2, by Proposition 1.8 and Lem-
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Table 2

(e, e) div(e,•) L̃ {r, s} n Reference

−2 1 NA NA ≥ 2 Examples 10.2, 10.5

−2 2 NA NA ≥ 6 and Example 10.6

≡ 2 mod 4

−2 2 NA NA = 2 Example 10.13

2− 2n 2n− 2 U {1, n− 1} ≥ 2 Example 10.13

2− 2n 2n− 2 U {2, (n− 1)/2} ≥ 7 and Lemma 10.16(2)

≡ 3 mod 4

2− 2n 2n− 2 U s > r > 2 = rs+ 1 Proposition 11.1

gcd(r, s) = 1

2− 2n n− 1 Hev {1, n− 1} ≥ 4, even Lemma 10.16(1)

2− 2n n− 1 U(2) {1, (n− 1)/2} ≥ 3, odd Lemma 10.16(1)

2− 2n n− 1 Hev r ≥ 3, s≥ 3 = rs+ 1 Lemma 11.2

gcd(r, s) = 1 even

2− 2n n− 1 U(2) r ≥ 3, s≥ 2 = 2rs+ 1 Lemma 11.2

gcd(r, s) = 1

2− 2n n− 1 Hev r even, s odd = 4rs+ 1 Example 11.3

gcd(r, s) = 1

ma 5.17(1). M is projective, and Theorem 1.11 holds for (M,c), by the exam-

ple referred to in Table 2. Suppose that L is numerically effective. Then Theo-

rem 1.11(1) follows for (X,L), by Proposition 5.14.

Suppose next that L is not numerically effective. We prove Theorem 1.11(2)

by contradiction. Assume that part (2) fails. Then there exists a nonzero integer

k, such that h0(Xt,L
k
t ) > 0, for all t ∈ De. We may assume that the absolute

value |k| is minimal with the above property. Now Pic(Xt) is cyclic, for a generic

t ∈De. Hence, the linear system |Lk
t | must have a member Et, which is a prime

divisor, by the minimality of |k|. It follows that Et is the unique member of the

linear system, by [Bou, Proposition 3.13]. Hence, h0(Xt,L
k
t ) = 1, away from a

closed analytic proper subset Z ⊂De.

Set U :=De \ Z, and let XU be the restriction of the semiuniversal family

from Def(X) to U . There exists an irreducible divisor E ⊂ XU , which does not

contain the fiber Xt, for any t ∈ U , and which intersectsXt along a divisor in |Lk
t |,

by the argument used in the proof of Proposition 5.2. The argument furthermore

shows that there exists a closed analytic proper subset Z1 ⊂ U , such that the

fiber Et of E is a prime divisor, over all points t ∈ U \ Z1. We do not need the

projectivity assumption, as it was used in the proof of Proposition 5.2 only to

establish that the generic dimension of h0(Xt,Lt) is 1, a fact which was already

established above.

We conclude the existence of a pair (X1, e1), parameterized by a point in

U \ Z1, such that X1 is projective, by [Hu2, Proposition 21]. Let L2 be the
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line bundle on M with c1(L2) = c. Then H0(M,Ld
2) vanishes, for all nonzero

integers d, since L2 is not numerically exceptional, and the examples mentioned

in Table 2 have this property, whenever c is not numerically exceptional. Hence,

(X1, e1) and (M,c) are not deformation equivalent, by Corollary 5.15. On the

other hand, (X1, e1) is deformation equivalent to (X,e), and hence to (M,c),

a contradiction. �

9. Conditions for the existence of slope-stable vector bundles

Let S be a projective K3 surface with a cyclic Picard group generated by an

ample line bundle H . We assemble in Section 9.1 necessary conditions for the

existence of locally free H-slope-stable sheaves (see Lemmas 9.2–9.4).

In Section 9.2 we bound the dimension of the locus Exc of H-stable sheaves,

which are not locally free or notH-slope-stable. The sheaves F considered all have

the following involutive property: there exists an integer t, such that the classes

in K(S) of F and F ∗ ⊗ Ht are equal. Equivalently, c1(F ) = (t · rank(F )/2)h,

for some integer t, where h := c1(H). I thank Kota Yoshioka for pointing out

that much of the content of Section 9.2 is essentially proven in Sections 2 and

3 of his paper [Y3]. Section 9.2 was not replaced by a citation, since the precise

statements we need are not easily recovered from those of Yoshioka, as he was

mainly concerned with proving that the locus Exc has codimension ≥ 1, while

we need that Exc have codimension ≥ 2 in the subset of cases considered.∗

The results of this section are only lightly used in Section 10 but are essential

to the examples in Section 11.

9.1. Necessary conditions
Set h := c1(H) ∈H2(S,Z) and d := deg(H)/2.

LEMMA 9.1

Let F be a locally free H-stable sheaf of rank r satisfying c1(F ) = (tr/2)h, for

some integer t. Then F ∗ is H-stable, if and only if F is H-slope-stable. In par-

ticular, if r = 2, then F is H-slope-stable.

Proof

After tensorization by a power of H , we may reduce to the case where either

c1(F ) = 0, or r = 2ρ is even and c1(F ) = ρh. Assume that we are in one of these

cases. If c1(F ) = 0, set L := OS . If c1(F ) = ρh, set L := H . In either case, we

have the equality [F ] = [F ∗ ⊗ L] of classes in K(S). Furthermore, a sheaf G is

H-stable if and only if G⊗L is H-stable.

If F is H-slope-stable, then so is F ∗. Hence F ∗ is H-stable as well. F is

H-slope-semistable, since it is H-stable. Suppose that F is not H-slope-stable.

Then there exists a saturated subsheaf F1 ⊂ F , of rank (say) r1, with c1(F1) =

∗For some cases Yoshioka does state that the codimension is ≥ 2 (see [Y3, Lemma 3.1]) but

under an assumption that excludes some cases which we need.
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(r1/r)c1(F ) and 0 < r1 < r. Set F2 := F/F1 and r2 := r − r1. H-stability of F

yields the inequality χ(F2)/r2 > χ(F )/r. We get the injective homomorphism

F ∗
2 → F ∗ and the inequalities

χ(F ∗
2 ⊗L)

r2
=

χ(F ∗∗
2 )

r2
≥ χ(F2)

r2
>

χ(F )

r
=

χ(F ∗ ⊗L)

r
.

Hence, F ∗ ⊗L is H-unstable. Consequently, F ∗ is H-unstable.

If r = 2, then F ∗ ⊗L is isomorphic to F and thus F ∗ is H-stable. �

LEMMA 9.2

Let F be a locally free H-slope-stable sheaf of class v = (r,0,−s). Then v =

(1,0,1) or s≥ r ≥ 2.

Proof

If rank(F ) = 1, then F is isomorphic to OS , since F is locally free, and so s=

−1. Assume that v �= (1,0,1). Then H0(F ) vanishes, by the H-stability of F .

Similarly, H2(F )∗ ∼=H0(F ∗) = (0), by the H-slope-stability of F ∗. Thus, r− s=

χ(F ) =−dimH1(F )≤ 0. �

Lemma 9.2 states a necessary cohomological condition for the existence of a

locally free H-slope-stable sheaf of class v with c1(v) = 0 (slope 0). The condition

states that χ(v)≤ 0, unless v is the class u= (1,0,1) of the trivial line bundle.

If χ(v)≤ 0, then the locus of sheaves with nonzero global sections is expected to

have positive codimension. The condition χ(v)≤ 0 translates to (u, v)≥ 0. The

following lemma states a similar cohomological condition, for a class v with a

nonzero slope. The role of the trivial line bundle is replaced next by a simple and

rigid sheaf E of the same slope as v.

LEMMA 9.3

Let F be a locally free H-slope-stable sheaf of class v = (2r, rh,−b), where r > 0,

gcd(r, b) = 1, (h,h) = 2d, and d is an odd integer. Set u := (2, h, (d + 1)/2). If

(v, v) = −2, then v = u. Otherwise, (v,u) ≥ 0 and (v,u) is even. Furthermore,

(v,u) = 0, if and only if v = (2, h, (d− 1)/2).

Proof

MH(u) consists of a single isomorphism class. Let E be an H-stable sheaf of

class u. Then E is necessarily H-slope-stable and locally free (see [Mu]). MH(v)

is nonempty, by assumption. Let 2n be its dimension. Then 2n − 2 = (v, v) =

2dr2+4rb, and b= (n−1−dr2)/2r. If n= 0, then r = 1, since r divides (v, v)/2.

We conclude that v = u, if (v, v) =−2.

Assume that v �= u. Then n≥ 1. We get the inequality

χ(u)

2
=

5+ d

4
>

(4 + d)r2 + 1− n

4r2
=

χ(v)

2r
.
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Thus, Hom(E,F ) = 0. Similarly,

Ext2(E,F )∗ ∼=Hom(F,E)∼=Hom(E∗, F ∗)∼=Hom(E∗ ⊗H,F ∗ ⊗H) = 0,

since E∗⊗H ∼=E and F ∗⊗H is an H-slope-stable sheaf of class v. Thus, (v,u) =

−χ(v,u)≥ 0. Furthermore, (v,u) = 2[r(d−1)/2+b]. If (v,u) = 0, then r divides b.

Hence, r = 1, since gcd(r, b) = 1. If r = 1 and (v,u) = 0, then b = (1− d)/2, as

claimed. �

LEMMA 9.4

Let F be a locally free H-slope-stable sheaf of class v = (2r, rh,−b), where r > 0,

gcd(r, b) = 1, (h,h) = 2d, and d is an even integer. Set u := (2, h, d/2). If (v, v) =

0, then v = u. Otherwise, (u, v) is a positive even number.

This lemma has a cohomological interpretation as well. MH(u) is two-

dimensional, and it parameterizes locally free H-slope-stable sheaves (see [Mu]).

Let B ⊂MH(u)×MH(v) be the correspondence consisting of pairs (E,F ), with

nonvanishing Hom(E,F ). The lemma states that if v �= u, then the expected

codimension (u, v) + 1 of B is larger than 2, and so B is not expected to surject

onto MH(v).

Proof

Set n := (1/2)dimCMH(v) = 1 + (v, v)/2. If n = 1, then (v, v) = 0, and so v =

ku, for some positive integer k. If k > 1, then the moduli space MH(ku) is the

kth symmetric product of MH(u) and it consists entirely of H-unstable but H-

semistable sheaves. We are assuming however the existence of an H-slope-stable

sheaf F of class v. Hence, k = 1 and v = u.

Assume that n > 1. We get

χ(v)

2r
=

(4+ d)r2 − n+ 1

4r2
<

4 + d

4
=

χ(u)

2
.

The normalized Hilbert polynomial p of a sheaf G of positive rank is the Hilbert

polynomial divided by the rank p(n) := χ(G⊗Hn)/ rank(G). The first two lead-

ing terms in the normalized Hilbert polynomials of u and v are equal, and the

constant terms are related by the above inequality. Hence, Hom(E,F ) = 0, for

every H-slope-stable sheaf E of class u. Such a sheaf E is necessarily locally

free, and so E∗ ⊗ H is H-slope-stable of class u. We get also the vanishing

of Ext2(E,F ), by the argument used in the proof of Lemma 9.3. We conclude

the inequality (u, v) =−χ(E∗ ⊗ F )≥ 0. Furthermore, (u, v) = dr+ 2b is even. If

(u, v) = 0, then (v, v) = 0, and so v = u. The lemma follows. �

9.2. Sufficient conditions
9.2.1. The case c1(v) = 0

Let r, s be integers satisfying s > r > 2 and gcd(r, s) = 1. Set n := rs + 1 and

v := (r,0,−s). A sheaf F of class v is H-stable if and only if it is H-semistable.

Hence, MH(v) is smooth and projective of dimension 2n. Let Exc ⊂M be the
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locus of H-stable sheaves of class v that are not locally free or not H-slope-stable.

Exc is clearly a closed subset of MH(v).

LEMMA 9.5

Exc has codimension at least 2 in M .

Proof

We will use the following notation, in order for large parts of the proof to

generalize to a proof of Lemma 9.6. Let u := (1,0,1) be the class of OS . Set

ε := rank(u) = 1.

Step 1: Jun Li’s morphism to the Uhlenbeck–Yau compactification. Let YH(w)

be the moduli space of H-slope-stable locally free sheaves of class w ∈K(S). Let

v1, . . . , vk be distinct classes in K(S), with vi = (ri,0,−si), ri > 0, (vi, vi)≥−2.

Let d1, . . . , dk be positive integers satisfying

r =

k∑
i=1

diri and t(�v, �d) := s−
( k∑
i=1

disi

)
≥ 0.

Denote the dth symmetric product of YH(vi) by YH(vi)
(d). Set

Y (�v, �d) :=

k∏
i=1

YH(vi)
(di) × S(t(
v,
d)).

Note that for YH(vi) to be nonempty, vi = (ri,0,−si) should satisfy

(9.1) ri =−si = 1 or si ≥ ri ≥ 2,

by Lemma 9.2. If ri =−si = 1, then vi = u.

Let Mμss
H (v) be the moduli space of S-equivalence classes of H-slope-

semistable sheaves of class v (see [HL, Section 8.2]). Then Mμss
H (v) is a projec-

tive scheme. Set theoretically, Mμss
H (v) is the disjoint union of all such varieties

Y (�v, �d). There exists a projective morphism

φ̄ :MH(v)−→Mμss
H (v)

(see [Li]). Each irreducible component of each fiber of the morphism φ̄ is unira-

tional, as it is dominated by an iterated construction of open subsets in extension

bundles and bundles of punctual Quot schemes (see [HL, Theorem 8.2.11]). The

morphism φ̄ is thus generically finite, since MH(v) is holomorphic symplectic.

It suffices to prove the inequality

dimY (�v, �d)≤ dimMH(v)− 4,

for all strata Y (�v, �d)⊂Mμss
H (v), such that Y (�v, �d) �= YH(v). It would then follow

that YH(v) is nonempty, and the image of φ̄ is contained in the closure Y H(v) of

YH(v) in Mμss
H (v). The fiber of φ̄ over a point of YH(v) consists of a single point.

Let ỸH(v) be the normalization of Y H(v). The morphism φ̄ would then factor

through a surjective birational morphism

φ :MH(v)→ ỸH(v),



384 Eyal Markman

since MH(v) is smooth and irreducible, and Exc =MH(v)−YH(v) would be the

exceptional locus of φ. It would also follow that the singular locus of Y H(v) has

codimension ≥ 4 in Y H(v). It would then follow that Exc has codimension ≥ 2

in MH(v), by Proposition 3.5.

Step 2: Upper bounds for dimY (�v, �d). Fix a stratum Y (�v, �d). Set t := t(�v, �d)

and v′ := (r,0, t− s). Then v′ =
∑k

i=1 divi. Set

c(�v, �d) := dimMH(v)− dimY (�v, �d).

We compute

c(�v, �d) = 2+ (v, v)−
k∑

i=1

di
[
(vi, vi) + 2

]
− 2t

= 2+ 2t(εr− 1) + (v′, v′)−
k∑

i=1

di
[
(vi, vi) + 2

]
(9.2)

= 2+ 2t(εr− 1) +

k∑
i=1

k∑
j=1

didj(risj + rjsi)− 2

k∑
i=1

di[risi + 1].

Case 1. Suppose that vi �= u, for all i. Then si ≥ ri ≥ 2, for 1≤ i≤ k. Write

c(�v, �d) in the form

2+ 2t(εr− 1) + 2

k−1∑
i=1

di

k∑
j=i+1

dj(risj + rjsi) + 2

k∑
i=1

di
[
(di − 1)risi − 1

]
.

Case 1.1. Assume that k = 1. Then

c(�v, �d) = 2+ 2t(εr− 1) + 2d1
[
(d1 − 1)r1s1 − 1

]
.

Case 1.1.1. If d1 = 1, then c(�v, �d) = 2t(εr − 1) ≥ 4t. If t = 0, we are in the

open subset where F is locally free and H-slope-stable. If t > 0, we see that

indeed c(�v, �d)≥ 4.

Case 1.1.2. If d1 > 1, then 2d1[(d1 − 1)r1s1 − 1] is a positive even number,

so c(�v, �d)≥ 4 + 2t(εr− 1)≥ 4.

Case 1.2. Assume that k > 1. Then

c(�v, �d) = 2+ 2t(εr− 1) + 2(A+B), where

A =

k−1∑
i=1

di

{[ k∑
j=i+1

dj(risj + rjsi)
]
+
[
(di − 1)risi − 1

]}
,

B = dk
[
(dk − 1)rksk − 1

]
.

We are assuming that si ≥ ri ≥ 2. Hence, (risj + rjsi)≥ 2rirj ≥ 8. Hence, A≥ 7.

Now B > 0, if dk > 1, and B =−1, if dk = 1. The desired inequality c(�v, �d)≥ 4

follows.

Case 2. Assume that v1 = u. Note that r1s1+1= 0 and r1sj+rjs1 = sj−rj =

(u, vj). Equation (9.2) becomes

c(�v, �d) = A+B +C, where
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A = 2+ 2t(εr− 1)− 2d21,

B = 2d1

k∑
j=2

dj(sj − rj) = 2d1(u, v
′ − d1v1) = 2d1(2d1 + s− r− εt),

C =

k∑
i=2

k∑
j=2

didj(risj + rjsi)− 2

k∑
i=2

di[risi + 1].

Note the equality

A+B = 2+ 2t(εr− εd1 − 1) + 2d1(s− r+ d1).

Case 2.1. Assume that k = 1. Then r = d1, t= (r+ s)/ε, and

c(�v, �d) = A= 2+ 2
[
(r+ s)

(
r− (1/ε)

)
− r2

]
≥ 2 + 2

[
(s− 1)(r− 1)− 1

]
≥ 2r(r− 1)≥ 12.

Case 2.2. Assume that k ≥ 2. Then 1≤ εd1 ≤ εr− d2r2 ≤ εr− 2. So

A+B ≥ 2 + 2t+ 2d1(s− r+ 1)≥ 2 + 4d1 ≥ 6,

C/2 =

k−1∑
i=2

k∑
j=i+1

didj(risj + rjsi) +

k∑
i=2

[
d2i risi − di(risi + 1)

]

=

k−1∑
i=2

di

([ k∑
j=i+1

dj(risj + rjsi)
]
+
[
(di − 1)risi

]
− 1

)
+ dk

[
(dk − 1)rksk − 1

]
.

If k = 2 and d2 = 1, then C =−2. Otherwise, C ≥ 0. We conclude that c(�v, �d)≥ 4.

This completes the proof of Lemma 9.5. �

9.2.2. The case with slope equal to one half

Let r be a positive odd integer, σ a positive integer, and set n := rσ+1. Assume

that r ≥ 3, σ ≥ 3, and gcd(r, σ) = 1. Let S be a K3 surface with a cyclic Picard

group generated by an ample line bundle H . Set d := deg(H)/2. Choose (S,H),

so that σ and d have the same parity. If d is odd, assume that σ > r, possibly after

interchanging r and σ. Set h := c1(H) and v := (2r, rh,−b), where b := [σ−rd]/2.

Note that gcd(r, b) = gcd(r, σ) = 1. Hence, v is a primitive class in K(S), (v, v) =

2n− 2, and the moduli space MH(v) is smooth and projective of type K3[n]. Let

Exc⊂MH(v) be the locus parameterizing sheaves F that are not locally free or

not H-slope-stable.

LEMMA 9.6

Exc is an algebraic subset of codimension∗ ≥ 2 in MH(v).

∗Note that the assumption σ > r, adopted above when d is odd, is necessary, since otherwise

Exc =MH(v), by Lemma 9.3.
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Proof

Proof in the case d is odd. When d is odd, then σ is odd. Set u := (2, h, (d+1)/2)

and s := r+ (v,u). Then s= σ is odd. Thus, s > r, by assumption, and s− r is

even, so s≥ r+ 2.

Given an H-slope-stable locally free sheaf Fi of class vi = (2ri, rih,−bi), set

si := ri + (vi, u). If vi = u, then si =−1. If vi �= u, then si ≥ ri, by Lemma 9.3.

Furthermore, si = ri if and only if vi = (2, h, (d−1)/2). If vi �= u and si �= ri, then

si ≥ ri + 2, since si − ri is even, by Lemma 9.3.

With the above notation of s and si, the proof is almost identical to that of

Lemma 9.5. Following are the necessary changes. Replace the class (1,0,1) by the

class u defined above. Then ε= rank(u) = 2. Set λ := (0,0,−1). Then (u,λ) = 2

and (λ,λ) = 0. With the above definition of si, we have vi = riu+((si + ri)/2)λ.

Hence,

(vi, vj) = risj + rjsi,

as in the proof of Lemma 9.5.

Equation (9.1) is replaced by

ri =−si = 1, si = ri = 1, or si ≥ ri + 2≥ 3,

by Lemma 9.3. Equation (9.2), for the codimension c(�v, �d) of Y (�v, �d), remains

valid. The argument for case 1.1.1 remains valid. In case 1.1.2 the term 2d1[(d1−
1)r1s1 − 1] vanishes, if d1 = 2 and r1 = s1 = 1. However, in that case (u, v′) =

(u,2v1) = 0 and 2rt = (u, v − v′) = (u, v) = s− r > 0. So t > 0 and c(�v, �d) = 2 +

2t(2r− 1)≥ 4.

In case 1.2 we are no longer assuming that ri ≥ 2. However, since all vi
are different from u, and k > 1, then at least one vi, say, v1, is different from

(2, h, (d+ 1)/2). Then s1 ≥ r1 +2≥ 3. Thus r1s2 + r2s1 ≥ 4 and A≥ 3. The rest

of the argument in case 1.2 is identical.

In case 2, the equations for c(�v, �d), A, B, and C, remain valid. The argument

in case 2.1 remains valid. The inequality εr − d2r2 ≤ εr − 2, in the first line of

case 2.2, need not hold. Nevertheless, εr− εd1 ≥ εd2 ≥ 2. So

A+B ≥ 2 + 2d1(s− r+ 1)≥ 2 + 6d1 ≥ 8.

The rest of the argument remains valid.

Proof in the case d is even∗. When d is even, then σ is even. Set u :=

(2, h, d/2). By assumption, r ≥ 3, s≥ 3, and gcd(r, s) = 1.

Given an H-slope-stable sheaf Fi of class vi = (2ri, rih,−bi), with ri > 0, set

σi := (u, vi) = 2bi+ rid. If vi = u, then σi = 0. If vi �= u, then σi is a positive even

integer, by Lemma 9.4. Note also that (u, v) = σ.

The proof is again almost identical to that of Lemma 9.5. Following are the

necessary changes. Replace the class (1,0,1) by the class u defined above. Then

ε = rank(u) = 2. Set λ := (0,0,−1). Then (u,λ) = 2 and (λ,λ) = 0. With the

∗The cases where σ < r were proven earlier in [Y3, Lemma 3.1].
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above definition of σi, we have vi = riu+ (σi/2)λ. Hence,

(vi, vj) = riσj + rjσi,

and we replace si by σi in the proof of Lemma 9.5. Then Equation (9.2), for the

codimension c(�v, �d) of Y (�v, �d), remains valid.

Equation (9.1) is replaced by

vi = u or σi is a positive even integer,

by Lemma 9.4. The argument for case 1.1 remains valid.

In case 1.2 we are no longer assuming that ri ≥ 2. However, since all the vi
are different from u, then σi ≥ 2, for all i. Thus, r1σ2 + r2σ1 ≥ 4 and A≥ 3. The

rest of the argument is identical.

In case 2, v1 = u, σ1 = 0 and (r1σj + rjσ1) = σj = (u, vj). Then c(�v, �d) =

A+B +C, where

A = 2+ 2t(εr− 1),

B = 2d1

k∑
j=2

djσj = 2d1(u, v
′ − d1v1) = 2d1(σ− εt),

and C remains the same. Then

A+B = 2+ 2t(εr− εd1 − 1) + 2d1σ.

In case 2.1, r = d1, v
′ = ru, εt= (v−v′, u) = σ, and c(�v, �d) =A= 2+σ(εr−1).

Hence c(�v, �d)≥ 17.

In case 2.2 we assume that k ≥ 2 and so ε(r − d1) ≥ 2. So A + B ≥ 2 +

2d1σ ≥ 8. The rest of the argument is the same. This completes the proof of

Lemma 9.6. �

10. Examples of prime exceptional divisors

Let e, E, and X be as in Theorem 1.2. Set n := dimC(X)/2. The pair (X,E) has

the following elementary invariants:

(1) (e, e) =−2, or (e, e) = 2− 2n;

(2) the divisibility div(e,•) of the class (e,•) in H2(X,Z)∗ is equal to (e, e)

or (e, e)/2;

(3) write [E] = ke, where e is a primitive class in H2(X,Z); then k = 1, or

k = 2.

Set [E]∨ :=−2([E],•)/([E], [E]). We have [E]∨ = e∨ or [E]∨ = 2e∨, where e∨

is a primitive class in H2(X,Z), and the coefficient is determined by Lemma 3.7

in terms of the invariant div(e,•) and the coefficient k in (3) above. In particular,

if div(e,•) = (e, e)/2, then [E] = e, by Lemma 3.7.

THEOREM 10.1

Let X be a smooth projective holomorphically symplectic variety, and let E be a

prime divisor on X.
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(1) Assume that through a generic point of E passes a rational curve of

class � ∈H2(X,Z), such that [E] · � < 0. Then E is an exceptional divisor (see

[D, Theorem 1.3]).

(2) Let E and � be as in part (1), and let π : X ′ → Y be the birational

contraction of E introduced in Proposition 3.1. Then Y has Ai-singularities away

from its dissident locus,∗ and i= 1 or i= 2. Furthermore,

�=

{
[E]∨ if i= 1,
1
2 [E]∨ if i= 2.

Proof

We need only prove part (2). Y has A1- or A2-singularities, by Corollary 3.6. Let

E′ be the strict transform of E inX ′. The generic fiber of the restriction of π to E′

is a rational curve, or a pair of rational curves joined at a node. The exceptional

locus of the birational transformation from X to X ′ does not dominate π(E′),

by the proof of [D, Proposition 1.4]. The morphism π thus restricts to a rational

morphism from E to π(E′), whose generic fiber is isomorphic to the generic fiber

of E′ over π(E′). The class � must be the class of an irreducible component of

the generic fiber of the restriction of π to E, by the uniqueness of the family

of rational curves, which dominates E (see [D, Proposition 4.5]). The equality

�= (1/i)[E]∨ follows from Corollary 3.6(1). �

We will say that the prime exceptional divisor is of type Ai, if the variety Y

in Theorem 10.1(2) has Ai-singularities away from its dissident locus. All prime

exceptional divisor studied in this paper are of type A1.

10.1. Brill–Noether exceptional divisors
Let S be a K3 surface, let F0 be a simple and rigid coherent sheaf, that is, a

sheaf satisfying End(F0, F0)∼=C and Ext1(F0, F0) = 0. Then the class v0 of F0 is

a primitive class in K(S) with (v0, v0) =−2. Examples of exceptional divisors E

of degree −2 in moduli spaces of sheaves on S seem to arise as Brill–Noether loci

as follows. Let v ∈K(S) be a class satisfying (v0, v) = 0 and such that there exists

a smooth and compact moduli space M(v) of stable sheaves of class v. The locus

M(v)1, of points representing sheaves F with nonvanishing Ext1(F,F0), is often

an exceptional divisor of degree −2. The examples considered in this section are

all of this type.

EXAMPLE 10.2

An example is the case n≥ 2, (e, e) =−2, and div(e,•) = 1. Let S be a K3 sur-

face containing a smooth irreducible rational curve Σ. Let E ⊂ S[n], n≥ 2, be the

divisor consisting of length n subschemes intersecting Σ along a nonempty sub-

scheme. The class [E] is identified with [Σ], under the embedding of H2(S,Z) as

∗See the paragraph preceding Proposition 3.5 for the definition of the dissident locus.
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an orthogonal direct summand in the decomposition (4.1) of H2(S[n],Z). Thus

([E], [E]) = ([Σ], [Σ]) = −2 and div([E],•) = 1. E is of type A1. Let F0 be the

direct image of OΣ(−1), and let v0 ∈K(S) be the class of F0. Then v0 is orthog-

onal to the class of the ideal sheaf IZ of a length n subscheme Z of S, and E is

the Brill–Noether locus, where Ext1(IZ , F0) does not vanish.

Let S be a projective K3 surface, with a cyclic Picard group generated by an

ample line bundle H of degree d≥ 2. In the remainder of this section the simple

and rigid sheaf F0 will be OS . Then Ext1(F,OS)∼=H1(F )∗, by Serre’s duality.

We will need the following results.

LEMMA 10.3 ([Ma1, LEMMA 3.7(3)])

Let F be an H-stable sheaf on S of rank r and determinant H , and let U ⊂
H0(F ) be a subspace of dimension r′ ≤ r. Then the evaluation homomorphism

U ⊗OS → F is injective and its cokernel is an H-stable sheaf.

Consider the Mukai vector v := (r,H, s), and assume that r ≥ 0 and r + s ≥ 0.

Set v0 := (1,0,1). Let MH(v)t be the Brill–Noether locus of H-stable sheaves F

with h1(F )≥ t.

THEOREM 10.4 ([Ma1, COROLLARY 3.19], [Y1])

(1) MH(v)t is empty if and only if MH(v+ tv0) is.

(2) There exists a smooth surjective projective morphism

ft :
[
MH(v)t \MH(v)t+1

]
−→

[
MH(v+ tv0) \MH(v+ tv0)

1
]
.

(3) The fiber of ft, over a point representing a sheaf E, is naturally iso-

morphic to the Grassmannian G(t,H0(E)). Furthermore, H0(E) is (r+ s+2t)-

dimensional, and the dimension t(r+s+t) of the fiber is equal to the codimension

of MH(v)t in MH(v).

(4) If s = −r, then M(v)1 is a prime divisor of class θ(−v0). The class

� ∈H2(MH(v),Z)∗ of a P1-fiber of f1 is (θ(−v0),•) (see [Ma7, Lemma 4.11]).

The embedding G(t,H0(E)) ↪→MH(v) in part (3) sends a t-dimensional subspace

U ⊂H0(E) to the cokernel of the evaluation homomorphism U ⊗OS →E. The

cokernel is stable, by Lemma 10.3.

EXAMPLE 10.5

The case n ≥ 2, (e, e) = −2, and div(e,•) = 1 was considered in Example 10.2.

Additional examples of such prime exceptional divisors are provided in The-

orem 10.4(4). MH(v)1 is exceptional, since it is prime of degree −2, by The-

orem 10.4(4). Examples of prime exceptional Brill–Noether divisors, for more

general simple and rigid sheaves, can be found in the work of Yoshioka [Y1].
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EXAMPLE 10.6

An example is the case (e, e) =−2, div(e,•) = 2, and [E] = e.

Assume that n is congruent to 2 modulo 4 and n≥ 6. Let S be a projective

K3 surface with a cyclic Picard group generated by an ample line bundle H of

degree (H,H) = (n−2)/2. Then hi(H2) = 0, for i > 0, and h0(H2) = n. Set X :=

MH(1,H2,−1)∼= S[n]. Let E :=MH(1,H2,−1)1 be the Brill–Noether divisor in

MH(1,H2,−1) of sheaves F with h1(S,F )> 0.

We recall the explicit definition of E. Let πi, i = 1,2, be the projection

from S ×MH(1,H2,−1) onto the ith factor. Let Z ⊂ S ×MH(1,H2,−1) be the

universal subscheme, and let IZ be its ideal sheaf. Then F := IZ ⊗ π∗
1H

2 is a

universal sheaf over S ×MH(1,H2,−1). We have the short exact sequence

0→F → π∗
1H

2 →OZ ⊗ π∗
1H

2 → 0

and the homomorphism of rank n vector bundles

g :H0(H2)⊗OMH(v)
∼= π2∗(π

∗
1H

2)−→ π2∗(OZ ⊗ π∗
1H

2).

The homomorphism g is injective, since a generic length n subscheme of S induces

n independent conditions on a linear system |L|, provided the line bundle L on

S satisfies h0(L)≥ n. The Brill–Noether divisor is the zero divisor of
n
∧ g. E is

an effective divisor of class θ(−v0), where v0 := (1,0,1) is the class in K(S) of

the trivial line bundle, and θ is the Mukai isomorphism given in (2.2).

LEMMA 10.7

E is a prime exceptional divisor of class e := θ(−v0). In particular, (e, e) =−2

and div(e,•) = 2.

The rest of Section 10.1 is devoted to the proof of Lemma 10.7.

LEMMA 10.8

Let F be an H-slope-stable sheaf of class (2,H2,0).

(1) For every nonzero section s ∈H0(F ), the evaluation homomorphism s :

OS → F has a rank 1 torsion-free cokernel sheaf.

(2) If ε ∈ Ext1(OS , F ) is a nonzero class and

0→OS →Gε → F → 0

is the corresponding extension, then the sheaf Gε is H-slope-stable.

Proof

(1) Denote the cokernel of s by Qs. If T is a subsheaf of Qs with zero-dimensional

support, then Ext1(T,OS) = 0. Thus, the inverse image of T in F would contain

a subsheaf isomorphic to T . But F is torsion-free. Hence, the dimension of the

support of any subsheaf of Qs is at least 1.

If T is a subsheaf of Qs of one-dimensional support, then its inverse image in

F is a rank one subsheaf F ′ of F with effective determinant line bundle. Hence,
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det(F ′) ∼= Hk, for some positive integer k. This contradicts the slope stability

of F . Hence, Qs is torsion-free.

(2) Assume that Gε is H-slope-unstable, and let G′ ⊂ Gε be an H-slope-

stable subsheaf of maximal slope of rank r ≤ 2. If G′ maps to zero in F , then G′

is a subsheaf of OS and cannot destabilize Gε. For the same reason, the slope of

the image Ḡ of G′ satisfies μ(Ḡ)≥ μ(G′). Thus rank(Ḡ) �= 1, since otherwise Ḡ

would destabilize F . Hence, rank(G′) = 2, G′ maps isomorphically onto Ḡ, and

det(G′)∼=Hk, for 2/3< k ≤ 2. It follows that k = 2.

Set Q := F/Ḡ. We get the short exact sequence

0→ Ḡ
ι→ F →Q→ 0.

Ext1(Q,OS) vanishes, since Q has zero-dimensional support. Hence, ι∗ : Ext1(F,

OS)→ Ext1(Ḡ,OS) is injective. On the other hand, the pullback ι∗(ε) vanishes

in Ext1(Ḡ,OS). This contradicts the assumption that ε is a nonzero class. �

The moduli space M ss
H (2,H2,0), of H-semistable sheaves of class (2,H2,0), is

known to be an irreducible normal projective variety of dimension 2n− 2. Fur-

thermore, the singular locus is equal to the strictly semistable locus, and it has

codimension 2, if n= 6, and 4, if n > 6 (see [KLS, Theorems 4.4, 5.3]). A generic

H-stable sheaf of class (2,H2,0) is H-slope-stable. This is equivalent to the cor-

responding statement for MH(2,0,1− (n/2)) and follows from the next lemma.

LEMMA 10.9

Let s be an integer ≥ 2. Then the set of H-stable locally free sheaves of class

(2,0,−s) is Zariski dense in M ss
H (2,0,−s). Furthermore, any H-stable locally

free sheaf of class (2,0,−s) is H-slope-stable.

The proof of the density statement is similar to that of Lemma 9.5 and is omitted.

The case s= 2 is proven in [OG2, Proposition 3.0.5]. The second statement is a

special case of Lemma 9.1.

LEMMA 10.10

Let U ⊂M ss
H (2,H2,0) be the subset parameterizing H-slope-stable sheaves F with

h1(F ) = 0. Then U is a Zariski-dense open subset.

Proof

Let Mμs ⊂M ss
H (2,H2,0) be the Zariski open subset of H-slope-stable sheaves.

Note that Mμs is a dense subset, by Lemma 10.9. Let t be the minimum of the

set {h1(F ) : [F ] ∈Mμs}. It suffices to prove that t = 0. Assume that t > 0. Let

U ′ ⊂Mμs be the Zariski open subset of sheaves F with h1(F ) = t. Let p : P→ U ′

be the projective bundle with fiber PH1(F )∗ over F . P is a Zariski open subset

of the moduli space of coherent systems constructed by Le Potier in [Le]. A point
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in P parameterizes an equivalence class of a pair (F, �), consisting of an H-slope-

stable sheaf F of class (2,H2,0) and a one-dimensional subspace �⊂ Ext1(F,OS).

We have dim(P) = dim(U ′) + t− 1 = 2n+ t− 3.

There exists a natural morphism

f : P−→MH(3,H2,1),

sending a pair (F, �) to the isomorphism class of the sheaf G� in the natural

extension 0→ �∗ ⊗OS →G� → F → 0. G� is H-slope-stable, by Lemma 10.8(2).

Now h0(G�) = h0(F ) + 1 = t+ 3. Furthermore, the data (F, �) is equivalent

to the data (G�, �), where � is a one-dimensional subspace of H0(G�). Hence, the

fiber of f , over the isomorphism class of G�, has dimension at most t+ 2. The

dimension of MH(3,H2,1) is 2n− 8. Thus, dim(P)≤ 2n+ t− 6. This contradicts

the above computation of the dimension of P. �

Let G(1,U) be the moduli space of equivalence classes of pairs (F,λ), where F

is an H-slope-stable sheaf of class (2,H2,0) with h1(F ) = 0, and λ⊂H0(F ) is a

one-dimensional subspace. G(1,U) is a Zariski open subset of the moduli space

of coherent systems constructed by Le Potier in [Le]. The forgetful morphism

G(1,U)→ U is a P1-bundle. Let

ψ :G(1,U)−→MH(1,H2,−1)

be the morphism sending a pair (F,λ) to the quotient F/[λ⊗OS ]. The morphism

ψ is well defined, by Lemma 10.8(1).

LEMMA 10.11

(1) The divisor E is smooth along the image of ψ, and ψ maps G(1,U)

isomorphically onto a Zariski open subset of E.

(2) Let F be an H-slope-stable sheaf of class (2,H2,0) with h1(F ) = 0. Then

ψ(PH0(F )) is a rational curve of class (θ(−v0),•) in H2(MH(1,H2,−1),Z).

Proof

(1) The proof is similar to that of [Ma1, Proposition 3.18(6), (7)]. Let us first

prove that the morphism ψ is injective. Let Q be a sheaf represented by the

point ψ(F,λ). We know, by construction, that Hi(F ) = 0, for i > 0, and h0(F ) =

χ(F ) = 2. Hence, h0(Q) = 1, h1(Q) = 1, and h2(Q) = 0. It follows that

dimExt1(Q,OS) = 1, F is isomorphic to the unique nontrivial extension of Q

by OS , and λ is the kernel of the homomorphism H0(F )→H0(Q). Hence, ψ is

injective.

The image of ψ is Zariski open in E, since it is characterized by

dimExt1(Q,OS) = 1 and by the H-slope-stability of the unique nontrivial exten-

sion. G(1,U) is clearly smooth. It suffices to construct the inverse of ψ as a

morphism. This is done as in the proof of [Ma1, Proposition 3.18].
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(2) Let w ∈K(S) be a class orthogonal to (1,H2,−1). The equality∫
PH0(F )

ψ∗(θ(w))=−(v0,w)

follows by an argument identical to the proof of [Ma7, Lemma 4.11]. It follows

that ψ(PH0(F )) has class (θ(−v0),•) in H2(MH(1,H2,−1),Z). �

LEMMA 10.12

The closure E′ of the image of ψ is a prime exceptional divisor of class θ(−v0).

Proof

G(1,U) is a P1-bundle over U . Hence G(1,U) is irreducible of dimension 2n− 1.

The image of ψ is irreducible of dimension 2n− 1, as ψ is injective. Hence, E′

is irreducible. The canonical line bundle of G(1,U) restricts to the fiber PH0(F )

as the canonical line bundle of the fiber, since U is holomorphic symplectic.

The normal of ψ(G(1,U)) in MH(1,H2,−1) is isomorphic to the canonical line

bundle of ψ(G(1,U)), by Lemma 10.11(1). Hence, E′ · ψ[PH0(F )] =−2, and E′

is exceptional, by Theorem 10.1(1). E′ is of type A1, by Lemma 10.11(1). The

class of E′ is θ(−v0), by Lemma 10.11 and Theorem 10.1(2). �

Proof of Lemma 10.7

E is an effective divisor of class θ(−v0), by definition of E. This is also the class

of the reduced and irreducible divisor E′ supporting a component of E. Hence,

E is reduced and irreducible. We have the equality ([E], θ(x)) = (θ(−v0), θ(x)) =

−(v0, x), which is divisible by 2, for all x ∈ (1,H2,−1)⊥, since (1,H2,−1)− v0 =

2(0,H,−1). Hence, div([E],•) = 2. �

10.2. Exceptional divisors of nonlocally free sheaves
In this section we will consider examples of prime exceptional divisors that arise

as the exceptional locus for the morphism from the Gieseker–Simpson moduli

space of H-stable sheaves to the Uhlenbeck–Yau compactification of the moduli

space of H-slope-stable locally free sheaves. Such divisors on a 2n-dimensional

moduli space seem to have class e or 2e, where e is a primitive class of degree

(e, e) = 2− 2n.

EXAMPLE 10.13 ([Be1])

An example is the case n≥ 2, (e, e) = 2−2n, div(e,•) = 2n−2, rs(e) = {1, n−1},
and [E] = 2e.

Let S be a K3 surface, let X := S[n], and let E ⊂X be the big diagonal.

Then [E] = 2e, for a primitive class e ∈H2(S[n],Z), and (e, e) = 2− 2n. Hence

[E]∨ = e∨, by Corollary 3.6. E is the exceptional locus of the Hilbert–Chow

morphism S[n] → S(n) onto the nth symmetric product. The symmetric product

S(n) has A1-singularities away from its dissident locus. The monodromy invariant

rs(e) is equal to {1, n− 1}, by Example 7.2.
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The following result will be needed in the next example.

LEMMA 10.14

Let S be a K3 surface, let L be a line bundle on S, let v = (r,L, s) be a class

in K(S) satisfying (v, v) ≥ 2, and let r ≥ 2. Let H be a v-generic polarization.

Assume given an H-slope-stable sheaf G of class (r,L, s+1) and a point P ∈ S,

such that G is locally free at P . For each 2-dimensional quotient Q of the fiber

GP , there exists a natural embedding

κ : PQ−→MH(v),

whose image C := κ(PQ) is a smooth rational curve satisfying∫
C

θ(x) = (w,x) =− rank(x),

for all x ∈ v⊥, where w is the following rational class in v⊥:

(10.1) w :=
r

(v, v)
v+ (0,0,1) =

1

(v, v)

(
r2, rL, sr+ (v, v)

)
.

Proof

Consider the short exact sequence of the tautological quotient bundle qPQ over

PQ,

0→OPQ(−1)→Q⊗OPQ → qPQ → 0.

Let

ι : PQ→ S × PQ

be the morphism given by ι(�) = (P, �). Let πi be the projection from S × PQ

onto the ith factor. Over S × PQ we get the short exact sequence

0→F → π∗
1G

j→ ι∗(qPQ)→ 0,

where j is the natural homomorphism and F its kernel. Given a point � ∈ PQ,

we denote by �̃ ⊂ GP the corresponding hyperplane. The sheaf F�, � ∈ PQ, is

the subsheaf of G, with local sections whose values at P belong to �̃. F� is H-

slope-stable, since G is. F is thus a family of H-stable sheaves, flat over PQ. Let

κ : PQ→MH(v) be the classifying morphism associated to F . The morphism κ

is clearly injective. An elementary calculation verifies that the differential d�κ is

injective.

Let us compose the Mukai isomorphism θ, given in (2.2), with pullback by κ:

v⊥
θ−→H2

(
MH(v),Z

) κ∗
−→H2(PQ,Z).

The composition is given by

κ∗(θ(x))= c1
{
π2!

[
π!
1(x

∨)⊗F
]}
.
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Let [F ] be the class of F in K(S×PQ). Then [F ] = π!
1[G]− ι![qPQ]. We have the

equalities

c1
{
π2!

(
π!
1(x

∨ ⊗G)
)}

= 0,

c1
{
π2!

(
π!
1(x

∨)⊗ ι!(qPQ)
)}

= c1
{
π2!

(
rank(x) · ι!(qPQ)

)}
= rank(x)c1(qPQ).

We conclude that the following equality holds, for all x ∈ v⊥:∫
PQ

κ∗(θ(x))=− rank(x).

A direct calculation verifies that the class w, given in (10.1), is orthogonal

to v and satisfies (w,x) =− rank(x), for all x ∈ v⊥. �

EXAMPLE 10.15

Let S be a K3 surface with a cyclic Picard group generated by an ample line

bundle H . Let b be an odd integer, such that there exists a line bundle L ∈ Pic(S)

of degree 2n− 4b− 2, where n > 2. If c1(L) is divisible by 2, assume that n > 3.

Let v ∈K(S) be the class (2,L,−b) in Mukai’s notation. Then (v, v) = 2n− 2

and the moduli space M :=MH(v) is smooth, projective, and 2n-dimensional.

Let E ⊂M be the closure of the locus of points representing H-stable sheaves

F , which are not locally free, but such that F ∗∗/F has length one. Let Y be the

normalization of the Uhlenbeck–Yau compactification of the moduli space of

locally free H-slope stable sheaves of class v. Then Y is a projective variety, and

there exists a morphism φ :M → Y whose exceptional locus contains E (see [Li]).

LEMMA 10.16

E is a prime exceptional divisor of type A1. The class [E] ∈ H2(M,Z) is the

primitive class e := θ(2,L, n− b− 1). In particular, (e, e) = 2− 2n.

(1) If the class c1(L) is not divisible by 2, then div(e,•) = n− 1,

rs(e) =

{
{1, n− 1} if n is even,

{1, (n− 1)/2} if n is odd.

(2) If the class c1(L) is divisible by 2, then n ≡ 3 (modulo 4), div(e,•) =
2n− 2, rs(e) = {2, (n− 1)/2}.

Proof

When the class c1(L) is divisible by 2, then n ≡ 3 (modulo 4), since deg(L) =
2n− 4b− 2 is divisible by 8. In that case n≥ 7, by assumption.

If F ∗∗/F has length one and F is H-stable, then the reflexive hull F ∗∗ is

necessarily H-semistable† of class u := (2,L,1− b) ∈K(S). MH(u) is irreducible

†The H-semistability is proven by an easy modification of the proof of [Ma4, Proposi-

tion 4.10, Part 1]. The assumption that the rank is 2 is needed.
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of dimension 2n−4, and its generic point represents a locally free H-slope-stable

sheaf. This is clear if c1(L) is not divisible by 2. If c1(L) is divisible by 2, this

follows from Lemma 10.9 and the assumption that n≥ 7.

Let U ⊂ MH(u) be the locus of H-stable locally free sheaves. Choose a

twisted universal sheaf G over S × U . Then E contains a Zariski dense open

subset isomorphic to the projectivization of G. E is irreducible, since the moduli

space MH(u) is irreducible. We conclude that E is a prime exceptional divisor,

since it is contracted by the morphism to the Uhlenbeck–Yau compactification

(also by Theorem 10.1). Furthermore, E is of type A1.

We calculate next the class [E]∨ ∈H2(M,Z), given in equation (3.2). Recall

that [E]∨ is the class of the fiber of E → Y , by Corollary 3.6. Fix an H-slope-

stable locally free sheaf G of class u ∈K(S). Fix a point P ∈ S, and denote by

GP the fiber of G at P . Let PGP be the projectivization of the fiber, and denote

by

κ : PGP −→MH(v)

the morphism given in Lemma 10.14. Then κ(PGP ) is a fiber of E → Y , and we

get the equality [κ(PGP )] = [E]∨ of classes in H2(M,Z). We conclude that the

following equalities hold, for all x ∈ v⊥:

(10.2)

∫
[E]∨

θ(x) =− rank(x) =
1

n− 1
(w,x),

where w = (2,L, n− b− 1), by Lemma 10.14.

The class [E] is the unique class in H2(M,Z) satisfying the equality

−2([E], θ(x))

([E], [E])
=

∫
[E]∨

θ(x),

for all x ∈ v⊥, by Corollary 3.6. Now (w,w) = 2− 2n, and so the equality [E] =

θ(w) follows from equation (10.2). Hence, ([E], [E]) = (θ(w), θ(w)) = 2− 2n. The

class [E] is primitive, since w is.

Let us calculate div(e,•). The class x= (ρ,L′, σ) belongs to v⊥ if and only

if bρ= 2σ − (L,L′). Hence, (e, θ(x)) = (w,x) = (1− n)ρ. If c1(L) is divisible by

2, then every integral class x ∈ v⊥ has even rank ρ, and so div(e,•) = 2n− 2. If

c1(L) is not divisible by 2, choose a line bundle L′, such that (L,L′) is odd, and

set σ := [(L,L′) + b]/2. Then (1,L′, σ) belongs to v⊥. Hence, div(e,•) = n− 1.

The pair (L̃, e), given in equation (6.1), may be chosen to consist of the

saturation L̃ in K(S) of the lattice spanned by the classes v and w = θ−1(e),

by Theorem 1.6 part 2.1. The largest integer dividing w − v = (0,0, n − 1) is

σ := n− 1. Now w+ v = (4,2L, n− 1− 2b). The largest integer ρ dividing w+ v

is 4, if c1(L) is divisible by 2. Otherwise, ρ = 1, if n is even, and ρ = 2, if n is

odd. The invariant rs(e) is then calculated via Table 1. �
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11. Examples of noneffective monodromy-reflective classes

We provide examples of monodromy-reflective classes, which are not Q-effective.

Observation 1.12 guides us to lift these reflections to birational self-maps. Let us

first prove the observation.

Proof of Observation 1.12

There exists a Zariski open subset U ⊂ X , such that X \ U has codimension

≥ 2, ι restricts to a regular involution of U , and the composition H2(X,Z) ∼=
H2(U,Z)

ι∗−→H2(U,Z) ∼=H2(X,Z) is an isometry, by [OG1, Proposition 1.6.2].

The isometry ι∗ is assumed to be the reflection Re. Hence, ι
∗L∼= L−1 and L is

not Q-effective. �

Let S be a projective K3 surface with a cyclic Picard group generated by an

ample line bundle H . Set h := c1(H) ∈H2(S,Z). Set d := deg(H)/2.

11.1. Noneffective classes of divisibility div(e,•) = 2n− 2

Let r, s be integers satisfying s > r > 2 and gcd(r, s) = 1. Set n := rs+ 1. Set

v := (r,0,−s), e := θ(r,0, s), and M :=MH(v). M is smooth and projective of

dimension 2n. Let L ∈ Pic(M) be the line bundle with class e. Let Exc⊂M be

the locus of H-stable sheaves of class v, which are not locally free or not H-

slope-stable. Exc is a closed subset of codimension ≥ 2 in M , by Lemma 9.5. Let

M0 be the complement M \ Exc of Exc, and let η :M0 →M be the inclusion.

The restriction homomorphism η∗ :H2(M,Z)→H2(M0,Z) is an isomorphism.

Let φ :M0 →M0 be the involution sending a point representing the sheaf F , to

the point representing F ∗. Set ψ := (η∗)−1 ◦ φ∗ ◦ η∗.

PROPOSITION 11.1

(1) The class e is monodromy reflective, (e, e) = 2− 2n, div(e,•) = 2n− 2,

and rs(e) = {r, s}.
(2) Let Re :H

2(M,Z)→H2(M,Z) be the reflection by e. Then Re(θ(λ)) =

−θ(λ∨), for all λ ∈ v⊥.

(3) We have ψ =Re.

(4) H0(M,Lk) vanishes, for all nonzero integral powers k.

Proof

Part (1) was proven in Example 7.2. Set ẽ := (r,0, s) ∈ v⊥. Part (2) follows from

the fact that θ : v⊥ →H2(M,Z) is an isometry, and the equality Rẽ(λ) =−λ∨,

for all λ ∈ v⊥. Part (4) follows from part (3), via Observation 1.12. We proceed

to prove part (3). We need to prove the equality φ∗(η∗(y)) = η∗Re(y), for all

y ∈H2(M,Z).

Let πi be the projection from S ×M0 onto the ith factor, i= 1,2. Let F be

a universal sheaf over S ×M , let G be its restriction to S ×M0, and let [G] be
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its class in K(S ×M0). The morphism φ :M0 →M0 satisfies

(id×φ)!G ∼= (G ⊗ π∗
2A)

∗,

for some line bundle A ∈ Pic(M0). We have the commutative diagram

K(S ×M)
(id×η)!−→ K(S ×M0)

π2! ↓ ↓ π2!

K(M)
η!

−→ K(M0)

by the Künneth theorem (see [At]). Hence,

η∗θ(x) = c1
[
π2!

(
π!
1(x

∨)⊗ [G]
)]
,

for all x ∈ v⊥ ⊂K(S). This explains the first equality below:

φ∗(η∗θ(x)) = c1
{
φ!π2!

(
π!
1(x

∨)⊗ [G]
)}

= c1
{
π2!

(
π!
1(x

∨)⊗ (id×φ)![G]
)}

= c1
{
π2!

(
π!
1(x

∨)⊗
(
[G]⊗ π!

2[A]
)∨)}

= −c1
{
π2!

(
π!
1(x)⊗

(
[G]⊗ π!

2[A]
))}

= η∗θ(−x∨) = η∗
(
Re

(
θ(x)

))
.

The fourth equality follows from Grothendieck–Verdier duality, the fifth is due

to the fact that θ is independent of the choice of a universal sheaf, and the sixth

follows from part (2). �

11.2. Noneffective classes of divisibility div(e,•) = n− 1

Let r be a positive odd integer, let σ be a positive integer, and set n := rσ + 1.

Assume that r ≥ 3, σ ≥ 3, and gcd(r, σ) = 1. Let S be a K3 surface with a cyclic

Picard group generated by an ample line bundle H . Set d := deg(H)/2. Choose

(S,H), so that σ and d have the same parity. If d is odd, assume that σ > r,

possibly after interchanging r and σ. Set h := c1(H) and

v := (2r, rh,−b),

where b := [σ− rd]/2. Note that gcd(r, b) = gcd(r, σ) = 1. Hence, v is a primitive

class in K(S), (v, v) = 2n− 2, and the moduli space MH(v) is smooth and pro-

jective of type K3[n]. Let Exc⊂MH(v) be the locus parameterizing sheaves F ,

which are not locally free or not H-slope-stable. Exc is an algebraic subset of

codimension ≥ 2 in MH(v), by Lemma 9.6.

LetM0 be the complementM \Exc, and let η :M0 →M be the inclusion. Let

φ :M0 →M0 be the involution sending a point [F ], representing the sheaf F , to

the point representing F ∗ ⊗H . The homomorphism η∗ :H2(M,Z)→H2(M0,Z)

is an isomorphism, by Lemma 9.6. Set ψ := (η∗)−1 ◦ φ∗ ◦ η∗.
Set e := (2r, rh,σ− b). Note that gcd(r, σ − b) = gcd(r,2σ− 2b) = gcd(r, σ+

rd) = gcd(r, σ) = 1. Hence, e is a primitive class in v⊥ of degree (e, e) = 2− 2n.
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LEMMA 11.2

(1) The class θ(e) is monodromy reflective, and div(θ(e),•) = n− 1.

(2) We have L̃ and rs(e) =
{
Hev and {r,σ} if σ is odd (n even),

U(2) and {r,σ/2} if σ is even (n odd).

(3) Let Re : v
⊥ → v⊥ be the reflection by e. Then Re(λ) =−[λ∨]⊗H, for all

λ ∈ v⊥.

(4) We have ψ =Re.

(5) Let L be the line bundle on MH(v) with c1(L) = θ(e). Then the vector

space H0(MH(v),Lk) vanishes, for all nonzero integral powers k.

Proof

(1) Let λ := (x, c, y) ∈K(S). Then λ belongs to v⊥ if and only if r(h, c)− 2ry+

bx= 0. In particular, x is divisible by r, since gcd(r, b) = 1. Now (λ, e) = (λ, v)−
xσ =−xσ. Thus (e,λ) is divisible by rσ = n−1. There exists a class c ∈H2(S,Z),

satisfying (c, h) =−b, since the class h is primitive and H2(S,Z) is unimodular.

Then the class λ := (r, c,0) belongs to v⊥, and (e,λ) = −rσ = 1 − n. Hence,

div(θ(e),•) = n− 1. The class θ(e) is monodromy reflective, by Proposition 1.5.

(2) If σ is odd, then n= rσ + 1 is even, and L̃∼=Hev , by Lemma 7.3. Now

(e − v)/σ = (0,0,1) is primitive. Hence, rs(e) = {r, σ}, by Lemma 6.5. If σ is

even, then n is odd and d is even. The classes α := (e − v)/σ = (0,0,1) and

β := (e+v)/2r = (2, h, d/2) are integral isotropic classes, and (α,β) =−2. Hence,

{α,β} spans the primitive sublattice L̃ ∼= U(2). Consequently, rs(e) = {r, σ/2},
by Lemma 6.5.

Part (3) is verified by a straightforward calculation. Part (4) follows from

part (3) by the same argument used in the proof of Proposition 11.1. Part (5)

follows from part (4), by Observation 1.12. �

EXAMPLE 11.3

Let r and s be positive integers satisfying s > r, one of r or s be even, and

gcd(r, s) = 1. Set n= 4rs+1. Note that n≡ 1 (modulo 8). Let S be a K3 surface

with a cyclic Picard group generated by an ample line bundle H . Set h := c1(H)

and d := (h,h)/2. Assume that d is odd. Then s + rd is odd, since r and s

consist of one odd and one even integer, by assumption. Set v := (4r,2rh,−s+rd)

and e := (4r,2rh, s + rd). Then the classes v and e are primitive, (e, v) = 0,

(v, v) = 2n − 2, and (e, e) = 2 − 2n. We have (e + v)/2r = (4,2h,d) and (e −
v)/2s= (0,0,1). We claim that div(e,•) = n− 1. Indeed, if λ= (x, c, y) belongs

to v⊥, then 2r divides x. Hence, (e,λ) = (v,λ) − 2sx = −2sx is divisible by

4rs= n−1. Furthermore, let c be a class inH2(S,Z) satisfying (c, h) = rd−s, and

set λ= (2r, c,0). Then (λ, e) = 1− n. Hence, div(e,•) = n− 1. Hence, L̃=Hev ,

by Proposition 6.3. Thus rs(e) = {r, s}, by Lemma 6.5. Let Exc⊂MH(v) be the

locus parameterizing sheaves which are not locally free or not H-slope-stable.

Exc is an algebraic subset of codimension ≥ 2 in MH(v), by the proof of the odd

d case of Lemma 9.6. (The symbol r in that proof should remain rank(v)/2 and so

should be set equal to twice the symbol r above, and similarly the symbol s in that
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proof should be set equal to twice the symbol s above.) Let L be the line bundle

over MH(v) with c1(L) = θ(e). We conclude that H0(MH(v),Lk) vanishes, for

all nonzero integers k, by the same argument used to prove Lemma 11.2.
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