Toward Dirichlet’s unit theorem on
arithmetic varieties

Atsushi Moriwaki

Abstract Inthispaper, we would like to propose a fundamental question about a higher-
dimensional analogue of Dirichlet’s unit theorem. We also give a partial answer to the
question as an application of the arithmetic Hodge index theorem.
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0. Introduction

0.1. Classical Dirichlet’s unit theorem

Let K be a number field, and let Ok be the ring of integers in K. Let K(C) be
the set of all embeddings K into C, and let Zx and Z% be real vector spaces
given by

Ex={(eRXO | ¢, =¢& forall o € K(C)}

and

s={¢ezx| X & =0},
ceK(C)
respectively. The classical Dirichlet’s unit theorem asserts that the unit group
O of Ok is a finitely generated abelian group of rank s = dimg Z%. The most
essential part of the proof of Dirichlet’s unit theorem is to show that =% is
generated by the image of the map L: O — Ek given by L(u), = log|o(u)| (u €

O ) over R; that is, for any £ € 2%, there are uy,...,u, € Ox and aq,...,a, €R
such that
(0.1.1) & =arloglo(uy)|* + - +a,log|o(u,)|?

for all 0 € K(C).
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Let us consider this problem in the flavor of Arakelov theory. Let X =
Spec(Ok), and let ]Si\v(X)R be the real vector space consisting of pairs (D,§)
of D € Div(X)g :=Div(X) ®z R and £ € Eg. An element of m(X)R is called
an arithmetic R-divisor on X. For D = (3. papP,§) € BRI(X)R, the arithmetic
degree deg( ) of D is given by

deg(D Zap log #(Ox / P) + Zsa

The arithmetic principal divisor (J;) for x € K* is defined to be
= (Zordp(x)Rf(x)),
P

where £(z), = —log|o(x)|? for 0 € K(C). As the map (A) KX — ISRI(X)R given
by @+ () is a group homomorphism, we have the natural extension

o~

Og: K = (K%, x) 2R — Div(X)g,

that is,

— —

(xi@al .. .x;@ar) — al(xl) + .. _i_ar(mr)

for x1,...,z, € KX and aq,...,a, € R. In particular, d/%((/x\)R) =0forallze K
by the product formula.

If we set D¢ = (0,&) for € € 2%, then assertion (0.1.1) is equivalent to showing
that

D¢ + (u)g = (0,0)

for some u € (O )r := (O, x) ®zR. For this purpose, it is actually sufficient to
show that

D + (2)g > (0,0)

for some = € K. Indeed, we choose z1,...,2, € K™ and aq,...,a, € R such
that z = x®a1 - z®% and ay,.. -, @ are linearly 1ndependent over Q. Then, as
De+ () > (0,0) and deg(D5+( 2)g) =0, we have D¢ + ()p = (0,0), and hence
>i_jajordp(x;) =0 for all P. Therefore, ordp(z;) =0 for all i and P, which
means that z; € O for all i. In this way, the classical Dirichlet’s unit theorem
can be formulated in the following way.

THEOREM 0.1.2 (CF. PROPOSITION 3.4.5)
If deg(D) >0 for D € Div(X)g, then there exists x € Ky such that D + (x)g >
(0,0).

This is an application of the compactness theorem (cf. Corollary 3.3.2) and the
arithmetic Riemann—Roch theorem on arithmetic curves, which indicates that the
theory of arithmetic R-divisors is not an artificial material but actually provides
realistic tools for arithmetic problems.
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In this paper, we would like to consider a higher-dimensional analogue of the
above theorem on arithmetic varieties.

0.2. Arithmetic Cartier divisors
Let X be an arithmetic variety; that is, X is a flat and quasi-projective integral
scheme over Z. We say X is generically smooth if the generic fiber Xg of X —
Spec(Z) is smooth over Q. We assume that X is projective, generically smooth,
normal, and d-dimensional (i.e., the Krull dimension of X is d, so that dim X¢ =
d—1).

We denote the group of Cartier divisors on X by Div(X). Let C be a class
of real-valued continuous functions. As examples of C, we can consider

C° = the class of continuous functions,
C° = the class of C'*°-functions,
C° NPSH = the class of continuous plurisubharmonic functions,

which have good properties as in [21, Section 2.3]. Let K be either Z or Q or
R. A pair D = (D, g) is called an arithmetic K-Cartier divisor of C-type if the
following conditions are satisfied:

(i) D is a K-Cartier divisor on X, that is, D =>""_, a;D; for some Dy, ...,
D, € Div(X) and a4, ...,a, €K;

(ii) ¢g:X(C) >R U{£oo} is a locally integrable function, and go Fu = ¢
(a.e.), where F, : X(C) — X(C) is the complex conjugation map;

(iii) for any point z € X (C), there are an open neighborhood U, of x and a
function u, on U, such that u, belongs to the class C and

g=uz+ Z(_ai) log|fil* (ae.)

i=1

on U,, where f; is a local equation of D; over U, for each i.

Let Div (X)k be the set of all arithmetic K-Cartier divisors of C-type. For sim-

——

plicity, Dive(X)z is denoted by ]SEC (X). Note that there are natural surjective
homomorphisms

ﬁEco (X) Rz R — f)i\Vco (X)R and ]SR/'COO (X) Rz R — ]SECDO (X)R
and that they are not isomorphisms, respectively (for details, see [21]).
Let Rat(X) be the function field of X. The group of arithmetic principal
divisors on X is denoted by PDiv(X), that is,
PDiv(X) := {(¢) == ((¢). —log|¢|?) € Dive= (X) | ¢ € Rat(X)*}.
The homomorphism (A) :Rat(X)* — Diveee (X) given by ¢ @S\) has the natural
extension

(g 1 Rat(X)% — Dives (X)k,
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that is,

(687 48 = a3 (61) + - + ar (1)

for ¢q,.. .,qi)l € Rat(X)* and nd ay,...,a € K. For simplicity, (A)]K is occasionally
denoted by ( ). We define PD]V(X)]K to be

PDIv(X )i == { () | ¢ € Rat(X);}.
Note that
PDiv(X)x = (PDiv(X))x C Dives (X)x.
An element of ﬁ/(X )k is called an arithmetic K-principal divisor on X.

Let D= (D,g) and D' = (D', ¢") be arithmetic R-Cartier divisors of C%-type
on X. We define D=D and Egﬁ to be

D=D'«D=D" and g=g (ae)
and

D<D < D<D and g<g (ae).

Let C be a reducei\and irreducible 1-dimensional closed subscheme of X.
The arithmetic degree deg(D|c) of D along C is characterized by the following
properties (for details, see [21, Section 5.3)):

(i) d/eTg(§|c) is linear with respect to D;

(i) if ¢ € Rat(X)y, then deg((d)glc) = 0;

(iii) if C € Supp(D) and C is vertical, then d/e\g(ﬁ|c) = log(p) deg(D|c),
where C is contained in the fiber over a prime p;

(iv) if C ¢ Supp(D) and C is horizontal, then deg(D|c) d/eTg(D|C,g|C)
where C is the normalization of C and deg on the right-hand side is the arithmetic

degree in the sense of Section 0.1. (Note that C' = Spec(Ok) for some number
field K.)

The current dd®([g]) + dp on X(C) is denoted by c;(D). Note that ¢;(D) is
locally equal to dd°([u;]) by the Poincaré-Lelong formula. If D is of C*°-type,
then c;(D) is represented by a C*°-form. By abuse of notation, we also denote
the C°°-form by ¢;(D).

0.3. Arithmetic volume function
Let D = (D,g) be an arithmetic R-Cartier divisor of C°-type on X. We define
H°(X,D) and H°(X, D) to be

H(X,D):={¢€Rat(X)* | D+ (¢) >0} U{0}
and

H°(X,D):={¢€eRat(X)* | D+ () > (0,0)} u{o},
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respectively. Note that HO(X, D) is a finitely generated Z-module and H°(X, D)
is a finite set. It is easy to see that |¢|exp(—g/2) is represented by a continuous
function 74 4 for ¢ € H°(X, D) (cf. [21, Section 2.5] or Lemma 3.1.1), so that we
can define ||¢||, to be

9l := maX{%g(iﬂ) ’ TEe X((C)}-
Then

A°(X,D)={¢c H'(X,D) | ||¢ll, < 1};

that is, H°(X, D) is the set of small sections.
The arithmetic volume vol(D) of D is defined to be

—~ log#H°(X,nD
vol(D) := hglj;p Og#nd/(d!,n)

As fundamental properties of \7(;1, the following are known (for details, see [21]):

o~

1) vol(D) < oo (see [17], [18]);

(1) vol(D 8]);
(2) vol(D) = lim,, o0 ©EEILEED (see [5], [18]);
(3)

3 \70\1(aﬁ) = ad;(;l(ﬁ) for a € R>q (see [17], [18]);

(4) the function Diveo (X)r — R given by D \751(5) is continuous in the
following sense: let Dy,...,D,, Ay,..., A, be arithmetic R-divisors of C°-type on
X; for a compact subset B in R" and a positive number ¢, there are positive

numbers ¢ and ¢’ such that
i=1 j=1 i=1

for all ai,...,a,,01,...,0s €R and ¢ € CY(X) with (ai,...,a,) € B, |61] + -+ +
05| <6 and [[¢lsup < 6" (see [17], [18]);

(5) if f:Y — X is a birational morphism of generically smooth, normal, and
projective arithmetic varieties, then ﬁ(f*(ﬁ)) = ;81(5) (see [17]).

<e

0.4. Positivity of arithmetic Cartier divisors

Let D = (D,g) be an arithmetic R-Cartier divisor of C%type on X. Here we

would like to introduce several kinds of positivity of D, that is, the effectivity,

bigness, pseudoeffectivity, nefness, and relative nefness of D:

o D is effective LL D> (0,0).

o Dis big <& vol(D) > 0.

D is pseudoeffective LDy Ais big for any big arithmetic R-divisor A of
CO-type.

= . def
o Dis nef &

(1) d/;g(ﬁkv) >0 for all reduced and irreducible 1-dimensional closed sub-
schemes C' of X;
(2) c1(D) is a positive current.
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e Dis relatively nef FLig

subschomcs C of X, where “vertical” means “not flat over Z”;
(2) c1(D) is a positive current.

The set of all nef arlthmetlc R-Cartier divisors of C°- C”-type on X is denoted by
Nefco( )r. Note that Nefco( )& forms a cone in Diveo(X)g.

0.5. Arithmetic intersection number in terms of the arithmetic volume

An arithmetic R-Cartier divisor D of C%-type on X is said to be integrable
if there exist nef arithmetic R-Cartier divisors D; and Dy of C°-type such that
D =D, — D,. The subspace con51st1ng of integrable arlthmetlc R-Cartier divisors

of C%-type on X i X is denoted by DIVCo (X)r- Note that DlVCo (X)r is the subspace
generated by Nef co (X)r in Diveo (X)r.

By [21, Claim 6.4.2.2], if P is a nef arithmetic R-Cartier divisor of C'*°-type,
then the arithmetic Hilbert—Samuel formula

(0.5.1) vol(P) = deg(P")
holds. Note that
d
AXy - Xy = Z (—1)%—#D (ZX’)
0£IC{L,...,d} i€l

in the polynomial ring Z[X71, ..., X4]. Thus, for nef arithmetic R-Cartier divisors
Py,...,P; of C™®-type, we have

— _ 1 — —
deg(Pr-Pa)=2 > ()" #Ovl(3Py),
TP#£IC{1,...,d} iel

so that, for Dy,..., Dy € Ne\fco (X)g, it is very natural to define (Te\g(ﬁl -+ Dy)

to be
— 1 i~ _
deg(Dy---Dg) := a Z (—=1)¢ #(I)V01<Z Di>.
PAIC(1,...,d} icl

Using the regularity of quasi- plurlsubharmomc functions and the contmulty of
vol, we can see that the above map deg( E Nefco( )r X -+ x Nef o (X r—R
is R>p-multilinear; that is,

deg(Dy -+ (aD; +a'D;) - Dy)
=adeg(Dy--D;--Dg)+ o deg(Dy -+ D, Dy)
for a, o € R>g (for details, see [21, Claim 6.4.2.4]). Therefore, the map
deg(-+) : Nefco(X)g x -+ x Nefco (X)g — R

extends uniquely to an R-multilinear map

——Nef

— ——Nef
deg(--+) : Diveo (X)g % -+ x Diveo (X)g — R.
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In Section 2.1, we will see that the above arithmetic intersection number
ge\g(ﬁl-uﬁd) for integrable arithmetic R-Cartier divisors Dy,..., D4 of C°-
type on X coincides with one due to Zhang [24, Lemma 6.5], [25, Section 1] and
Maillot [13, Section 5].

0.6. Zariski decomposition
Let D = (D,g) be an arithmetic R-Cartier divisor of C%-type on X. Let us
consider the following set:

Y(D):= {M € Nefo(X)z | M < D}.

If Y(D) # 0 and Y(D) has the greatest element P (i.e., P € T(D) and M < P
for all M € Y(D)), then D =P + N is called the Zariski decomposition of D,
where N := D — P. This decomposition has the following properties.

(1) P is nef and N is effective.

(2) The natural map H°(X,nP) — H°(X,nD) is bijective for every n > 0.
In particular, @(E) = \751(?) = (Tezr(?d).
In [21, Theorem 9.2.1], we prove that if X is a regular projective arithmetic
surface and Y(D) # (), then Y (D) has the greatest element. Moreover, if we set

X =Py =Proj(Z[Ty,...,Tn]) (n>2),
D :={T, =0},
g:=log(1+ T\ /To|* + - +|Tn/To|*) —€ (0 <e<log(n+1)),

then, in [20, Theorem 2.3, Theorem 5.6], we prove that D is big and f*(D) does
not admit the Zariski decomposition for any birational morphism f:Y — X of
generically smooth, normal, and projective arithmetic varieties. More generally,
a criterion for the existence of the Zariski decomposition on arithmetic toric
varieties is known (for details, see [3]).

It is easy to see that if T (D) # (), then D is pseudoeffective. The converse is
a very interesting question, and it is closely related to the fundamental question
in the next subsection.

0.7. Fundamental question
Let D = (D, g) be an arithmetic R-Cartier divisor of C°-type on X. In this paper,
we would like to propose the following fundamental question.

FUNDAMENTAL QUESTION
Are the following conditions (1) and (2) equivalent?

(1) D is pseudoeffective.

—

(2) D+ (p)g is effective for some ¢ € Rat(X)y.

Obviously (2) implies (1). Moreover, if H%(X,aD) # {0} for some a € R+, then
(2) holds. Indeed, as we can choose ¢ € Rat(X)* with aD + (¢) > 0, we have
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—

¢/* € Rat(X)g and D + (¢1/*), > 0. In the geometric case, (1) does not neces-
sarily imply (2). For example, let ¥ be a divisor on a compact Riemann surface
M such that deg(?¥) =0 and the class of ¥ in Pic(M) is not a torsion element.
Then it is easy to see that 1} is pseudoeffective and there is no element % of
Rat(M)* @z R such that ¥ + (¢)r is effective (cf. Remark 3.1.4). In this sense,
the above question is a purely arithmetic problem.

Note that Theorem 0.1.2 yields the answer in the case where d =1 because
the pseudoeffectivity of D implies d/eTg(ﬁ) > 0. Moreover, as we remarked in Sec-

— o~

tion 0.6, if there is ¢ € Rat(X)p such that D+ (¢)g > (0,0), then —(¢) € T(D).

0.8. Partial answer to the fundamental question
One of the main purposes of this paper is to give the following partial answer to
the above fundamental question.

THEOREM 0.8.1
If D is pseudoeffective and D is numerically trivial on Xq, then there exists

o~

¢ € Rat(X)y such that D + (¢)g is effective.

Here we would like to give a sketch of the proof of the above theorem. For
simplicity, we restrict ourself to the case where X is regular and d = 2, that is,
X is a regular projective arithmetic surface. In this case, we can give a simpler
proof than the original one by using the recent result on the existence of relative
Zariski decomposition. Let D = Q + N be the relative Zariski decomposition of D
(for details, see [22, Section 1]). In particular, we have the following properties.

(i) N is effective and N is vertical.

(ii) Q is relatively nef.

(iii) If D is pseudoeffective, then @Q is also pseudoeffective (cf. [22, Proposi-
tion A.1]). This part corresponds to Lemma 2.3.5 in the original proof discussed
in Sections 2 and 3.

Therefore, we may assume that D is relatively nef. By the Hodge index theorem
(cf. Theorem 2.2.3), we have d/e:g(ﬁz) < 0. Here we assume that d/e\g(ﬁz) < 0. Let
A be an ample arithmetic R-divisor of C*°-type on X. Then d/e\g(EJr €eA-D) <0
for a sufficiently small positive number €. As D + €A is ample, we can find a
positive number ¢ such that D + €A + (0, ¢) is nef. In particular,

c/lég(ﬁ—k €A+ (0,¢)-D) >0
because D is pseudoeffective. On the other hand, as deg(Dg) =0,
deg(D + €A+ (0,¢) - D) = deg(D + €A- D) + gdeng)
= d/e\g(5+62~§) <0.

This is a contradiction, so that d/eg(52) =0, and hence, by the equality condition
of the Hodge index theorem (cf. Remark 2.2.4), there are ¢ € Rat(X); and
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—

a locally constant function A on X(C) such that D = (¢)g + (0,A). Let X —
Spec(Ok) be the Stein factorization of X — Spec(Z), where K is a number field
and O is the ring of integers in K. Let X, be the connected component of
X (C) corresponding to o € K(C) (cf. Section 0.10(3)). We set A, = A|x,. As D
is pseudoeffective,

osg%(ﬂ-ﬁ):%ZAm

so that ) _ A, > 0. If we set

;o 1
o= g

o

for each o and we consider a locally constant function A\’ : X(C) — R given by
N|x, = A, then M’ < Xon X(C) and ) _ A, = 0. Thus, by the classical Dirichlet’s
unit theorem, there exists u € (O )r such that (0,\') = (u)g. Thus

D =(¢)g +(0,A) > (o) + (0, N) = (P)g + (W) = (¢ w)g,

as required.

0.9. Further discussions
Theorem 0.8.1 treats only the case where D is scanty. For example, if D is ample,
the problem seems to be difficult to get a solution. For this purpose, we would
like introduce a notion of multiplicative generators of approximately smallest
sections.

Here we define I'; (X, D) to be

I'5(X,D):={p€Rat(X)Z | D+ (p)r > 0}.

Let ¢:Rat(X)* — L{ (X(C)) be a homomorphism given by ¢ — log|¢|. It

extends to a linear map /g : Rat(X )5 — Ll (X(C)). For p € Rat(X)z, we denote

exp(lr(yp)) by |¢|. If ¢ e Tz (X, D), then |¢|exp(—g/2) is represented by a con-
tinuous function 7, 4 (cf. Lemma 3.1.1), so that we define ||¢||g,sup to be

g.sup = max{n%g(x) | T € X((C)}.

Let ¢1,...,¢; be elements of Rat(X)y;. We say ¢1,...,¢; are multiplicative
generators of approximately smallest sections for D if, for a given € > 0, there is
no € Zso such that, for any integer n with n > ng and H°(X,nD) # {0}, we can
find ai,...,q € R satisfying % - % € X (X,nD) and

P+ 07 lng.sup < € min{|[@lng,sup | ¢ € H*(X,nD)\ {0}}.

The advantage of the existence of multiplicative generators of approximately

I

smallest sections is the following theorem.

THEOREM 0.9.1 (CF. THEOREM 3.6.3)
If we admit the existence of multiplicative generators of approximately smallest
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sections, then we can find ¢ € I'y (X, D) such that
l¢llg,sup = inf{||z/1| g,8up ‘ Y eTR(X, D)}

For the proof, we need the following compactness theorem.

THEOREM 0.9.2
Let H be an ample arithmetic R-Cartier divisor on X. Let A be a finite set, and
let {Dx}aen be a family of arithmetic R-Cartier divisors of C*-type with the
following properties:

(i) deg(H" " -Dy)=0 for all A€ A.

(ii) For each A € A, there is an Fuo-invariant locally constant function py
on X(C) such that

Cc1 (E)\) A (F)/\d72 = pArcC1 (F)Adil.
(iii) {Dx}en is linearly independent in Diveee (X)r-
Then the set

{GERA ’EJr Za)\ﬁ)\ ZO}
AEA

is convex and compact for D € 51?/00 (X)r-

As a consequence, we have the following partial answer to the fundamental ques-
tion.

THEOREM 0.9.3

If D is pseudoeffective, D is big on the generic fiber of X — Spec(Z), and D
possesses multiplicative generators of approrimately smallest sections, then there
exists ¢ € Rat(X)y such that D + @R >0.

Here we would like to pose the following question.

QUESTION 0.9.4
If D is big on the generic fiber of X — Spec(Z), then does D have multiplicative
generators of approximately smallest sections?

For example, if d =0, then D has multiplicative generators of approximately
smallest sections (cf. Corollary 3.4.6). Moreover, if

X =P} =Proj(Z|Ty,...,Tn]) (n>1),

D= {To = 0}7

g:=log(ap + a1 |T1/To|* + - + an|Tn/To*) (a0, a1,...,a, € Rsp),
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then D has also multiplicative generators of approximately smallest sections (cf.
Example 3.6.8). More generally, a toric arithmetic R-Cartier divisor on an arith-
metic toric variety has multiplicative generators of approximately smallest sec-
tions (for details, see [3]).

0.10. Conventions and terminology

We use basically the same notation as in [21]. Here we fix several conventions
and the terminology of this paper. Let K be either Q or R. Moreover, in the
following (3) and (4), X is a d-dimensional, generically smooth, normal, and
projective arithmetic variety.

1. Let M be a k-equidimensional complex manifold. The space of real-
valued continuous functions (resp., C*°-functions) on M is denoted by C°(M)
(resp., C°°(M)). Moreover, the space of currents of bidegree (p,q) is denoted by
DP2(M). Let NP2(M) be the space of currents T of bidegree (p,q) such that
T(n) =0 for all d-closed C*° (k — p, k — g)-forms with compact support.

2. Let S be a normal and integral Noetherian scheme. We denote the group
of Cartier divisors (resp., Weil divisors) on S by Div(S) (resp., WDiv(S)). We
set

Div(S)k :=Div(S) ®z K and WDiv(S)k := WDiv(5) @z K.

An element of Div(S)k (resp., WDiv(S)k) is called a K-Cartier divisor (resp.,
K-Weil divisor) on S. We denote the group of principal divisors on S by PDiv(.S).
Let Rat(S)g := Rat(S)* ®z K, that is,

Rat(S)g = {¢7% - 07" | ¢1,...,¢1 € Rat(S)* and ay,...,a; €K}.

The homomorphism Rat(S)* — Div(S) given by ¢ — (¢) naturally extends to a
homomorphism

()x : Rat(S); — Div(S)x,

that is, (¢ -+ @) = a1(¢1) +- - +ai(#;). By abuse of notation, we sometimes
denote ()g by (). We define PDiv(S)k to be

PDiv(S)k == {(¢)x | ¢ € Rat(S) }.
Note that
PDiv(S)k := (PDiv(S))x C Div(9)k.

An element of PDiv(S)k is called a K-principal divisor on S.

3. Let X — Spec(Og) — Spec(Z) be the Stein factorization of X — Spec(Z),
where K is a number field and Og is the ring of integers in K. We denote
by K(C) the set of all embeddings of K into C. For o € K(C), we set X, :=
X Xqpec(ox) Spec(C), where xg o, ) means the fiber product over Spec(Ok)
with respect to o. Then {X,},ex(c) gives rise to the set of all connected com-
ponents of X(C). For a locally constant function A on X(C) and o € K(C),
the value of A on the connected component X, is denoted by A,. Clearly the
set of all locally constant real-valued functions on X (C) can be identified with
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RX(®), The complex conjugation map X (C) — X (C) is denoted by F,.. Note
that Foo (Xs) = X5.

4. An arithmetic K-Weil divisor of C°-type (resp., C>®-type) on X is a pair
D = (D, g) consisting of a K-Weil divisor D on X and an F,.-invariant D-Green
function g of C-type (resp., C>®-type). We denote the group of arithmetic
K-Weil divisors of C%-type (resp., of C*-type) on X by \ﬁD\ivco (X)k (resp.,
WDiv e (X)K). It is easy to see that there is a unique multilinear form

a: (Dives (X)x) ™ x WDiv(X)g — R

such that «(Dy,...,D4_1,T) = d/eTg(blhz . ~Ed,1|f) for Di,...,Dq_1 €
Divee (X) and a prime divisor I" with I'  Supp(D1) U --- U Supp(D4_1), where
[ is the normalization of I'. We denote a(Dy,...,D4_1,D) by (@(ﬁl o Dg_q -
(D,0)). Further, for Dy, ..., D41 € Dives (X )x and D = (D, g) € WDiveo (X,

we define deg(D;---Dg4_1 - D) to be
ae\g(ﬁl . '5d—1 . ﬁ) = d/ég(ﬁl c ~ﬁd_1 . (D,O))
1 — _
+§/ gCI(Dl)/\"'/\Cl(Dd—l)~
X(C)
5. For a set A, let R® be the set of all maps from A to R. The vector space
generated by A over R is denoted by R(A), that is,
R(A)={a€ RA | a(X) =0 except finitely many A € A}.

For a € R and X\ € A, we often denote a()\) by a,.
6. Let V be a vector space over R, and let {, ) be an inner product on V.

For a finite subset {x1,..., 2z} of V, we define vol({z1,...,x,}) to be the square
root of the Gramian of x1,...,z, with respect to (, ), that is,
(r1,21) (T1,22) -+ (T1,74)

vol({z1,...,z,.}) = |det <I2,1'1> (xg,x2) -+ (x2,m,)

<£BT,SU1> <l’7~,$2> <x’r‘;xr>

For convenience, we set vol(f}) = 1. Note that if V =R™ and (, ) is the standard
inner product, then vol({z1,...,2,}) is the volume of the parallelotope given by
{az1 4+ 4 a2, ]0<a; <1,...,0< a, <1}.

1. Preliminaries

In this section, we prepare several materials for later sections. In Section 1.1, we
consider elementary results on linear algebra. In Section 1.2, we introduce the
notion of proper currents and investigate several properties, which will be used to
see that the arithmetic intersection number treated in [21, Section 6.4] coincides
with the classical one due to Zhang and Maillot (cf. [24], [25], [13]). They will
be also used to establish the equality condition of the arithmetic Hodge index
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theorem in a general context. Section 1.3 is devoted to the proof of a variant of
Gromov’s inequality for R-Cartier divisors.

1.1. Lemmas of linear algebra
Here we would like to provide the following four lemmas of linear algebra.

LEMMA 1.1.1
Let M be a Z-module. Then we have the following.

(1) For x € M ®z R, there are x1,...,2; € M and aq,...,a; € R such that
ai,...,a; are linearly independent over Q and x=1x1 Qa; + -+ x; R ay.

(2) Let z1,...,0 € M and ay,...,a; € R such that ay,...,a; are linearly
independent over Q. If vty Qa1+ -+, Ra; =0 in M Rz R, then x1,...,x; are
torsion elements in M.

(3) If N is a submodule of M, then (M ®z Q)N (N ®@zR) =N ®zQ.

Proof

(1) As z € M ®@zR, there are a},...,a, € Rand 2}, ...,z € M such that z = 2| ®
ay+--+2z,®al. Let ay,...,a; be a basis of (a],...,a.)g over Q. Then there are
¢ij € Q such that a} = 22:1 cija;. Replacing a; by a;/n (n € Zs) if necessary,
we may assume that c¢;; € Z. If we set z; =Y .._, ¢;;x}, then xq,...,2, € M,
r=x1®a;+ - -+2x5sRas, and ay,...,as are linearly independent over Q.

(2) We set M’ =Zx1 + --- + Zx;. Then, since R is flat over Z, the natural
homomorphism M’ @R — M ® R is injective, and hence we may assume that M
is finitely generated. Let M, be the set of all torsion elements in M. Considering
M /M;or, we may further assume that M is free. Note that the natural homomor-
phism Za; @ --- ® Za; — R is injective. Thus M ®z (Zay & --- & Zay) > M @z R
is also injective because M is flat over Z. Namely,

(M &z Za1) ® - & (M ®z Za;) - M @z R

is injective. Therefore, 11 ® a1 =---=z;®a; =0. Thus x1 =--- = x; = 0 because
the homomorphism M — M ® R given by = +— = ® a; is also injective for each i.

(3) It actually follows from [19, Lemma 1.1.3]. For the reader’s convenience,
we continue its proof in an elementary way. Let us consider the following com-
mutative diagram:

0 —— N@zQ —— M@zQ —— (M/N)®,Q —— 0
J/TN lTM lTM/N
0 —— NozR —% 5 M@zR —%£— (M/N)®zR — 0

Note that horizontal sequences are exact and vertical homomorphisms are injec-
tive. Therefore, we have

(M ®z Q)N (N ®zR) =Ker(gr o 7ar) = Ker(a/n © 0g) = Ker(gg) = N ®z Q.
U
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LEMMA 1.1.2

Let V be a finite-dimensional vector space over R, and let (, ) be an inner product
onV. Let ¥ be a nonempty finite subset of V', and let x € 3. Let h be the distance
between x and (X\ {x})r (note that (D)g = {0}). Then we have the following (for
the definition of vol(X), see Section 0.10(6)):

(1) vol(X) =vol(X\ {x})h;
(2) vol(X) <vol(X\ {z})\/(z,x); in the case where ¥\ {z} consists of lin-

early independent vectors, the equality holds if and only if x is orthogonal to

(E\{zhrs
(3) we assume that X\ {x} consists of linearly independent vectors and x # 0;
if 0 is the angle between x and (X\ {z})r, then

vol(X)
(x,z) vol(X\ {z})

=sin(0).

Proof
(1) If #(X) = 1, then the assertion is obvious, so that we may set ¥ = {z1,...,2,},
where 1 =z and n = #(X) > 2. If x9,...,2, are linearly dependent, then
vol(¥) = vol(X \ {z1}) = 0. Thus the assertion is also obvious for this case.
Moreover, if z1 € (xa,...,2,)r, then h = vol(X) = 0. Thus we may assume that
x1,Z2,...,2, are linearly independent. Let {ej,es,...,e.} be an orthonormal
basis of (x1,z2,...,2,)r such that {es,...,e.} yields an orthonormal basis of
(x2,...,x)r. We set x; = Z;:1 a;je;. Then h=laq1| and a;y =0 for i=2,... 7.
Further, if we set A = (a;)1<i,j<r and A’ = (a;;)2<i j<r, then vol(X) = |det(A)]
and vol(X\ {z1}) = |det(A’)|. Thus the assertion follows.

Proofs of (2) and (3) follow from (1). O

LEMMA 1.1.3

Let V' be a vector space over R, and let {, ) : V xV — R be a negative semidefinite
symmetric bilinear form, that is, (v,v) <0, for allv € V. For x € V, the following
are equivalent:

(1) (z,z)=0,
(2) (z,y)=0 forallyeV.

Proof
Clearly (2) implies (1). We assume (z,2) =0 and (z,y) # 0 for some y € V. First
of all,

0> (y+to,y +tr) = (y,y) +2t{z,y)

for all t € R. Thus, if we set t = —(y,y)/(z,y), then the above implies (y,y) >0,
and hence (y,y) = 0. Therefore, if we set t = (z,y)/2, then we have (z,y)? <0,
which is a contradiction because (z,y) # 0. O
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LEMMA 1.1.4 (ZARISKI'S LEMMA FOR VECTOR SPACES)

Let K be either Q or R. Let V' be a finite-dimensional vector space over K, and
let Q:V xV =R be a symmetric bilinear form. We assume that there are e € V
and generators ey, ...,e, of V with the following properties:

(i) e=aje; + -+ ane, for some ay,...,a, € Ksg;

(i) Q(e,e;) <0 for all i;

(ili) Q(es,e;) >0 for alli# j;

(iv) if we set S={(i,5) |1 #j and Q(e;,e;) >0}, then, for any i # j, there
is a sequence iy,...,4 such that iy =1, iy =7, and (i¢,i¢41) €S for all 1 <t <.

Then we have the following.
(1) IfQ(e,e;) <0 for some i, then Q is negative definite, that is, Q(xz,z) <0
forallz €V, and Q(x,z) =0 if and only if x =0.

(2) If Q(e,e;) =0 for all i, then Q is negative semidefinite and its kernel is
Ke, that is, Q(z,z) <0 for allx €V, and Q(x,x) =0 if and only if x € Ke.

Proof
Replacing e; by a;e;, we may assume that a; =---=a, =1. If we set t =z1e1 +
-+ xpe, for some x1,...,z, € K, then we can show
Q(SC,(E) = Zx?Q(eu 6) - Z(xl - xj)zQ(eiv ej)'
i i<j
Thus our assertions follow from easy observations. |

1.2. Proper currents and admissible continuous functions

Throughout this subsection, we fix a k-equidimensional complex manifold M.
A current of bidegree (I,1) on M is said to be proper if, for any « € M, there are
an open neighborhood U, of x and d-closed positive currents 77,75 of bidegree
(1,1) on U, such that T' =T —T» over U,. We denote the space of proper currents
of bidegree (I,1) by DLI(M). As a proper current is of order zero, for f € C°(M)
and T € DLI(M), we define the wedge product dd®([f]) AT of dd°([f]) and T to
be

dd°([f) AT :=dd°(fT),
that is, (dd°([f]) AT)(n) =T(fdd"(n)) for a C>°-form 7 of bidegree (k—1—1,k—
I —1). It is easy to see that the map
C°(M) x D5H (M) — DU (M)

given by (f,T) > dd°([f]) AT is multilinear.

A continuous function f: M — R is said to be admissible if, for any point
x € M, there are an open neighborhood U, of  and continuous plurisubharmonic
functions ¢1,¢2 on U, such that f = ¢ — ¢ over U,. Note that dd°([f]) is a
proper current of bidegree (1,1). The space of admissible continuous functions
on M is denoted by C2 (M). It is easy to see that C°°(M) C C% (M) (cf. the
proof of (3) in Lemma 1.2.1). Moreover, let B;&l (M) be the space of currents T
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of bidegree (1,1) such that T'= dd°([¢]) locally for some admissible continuous
function ¢ on each local open neighborhood. As a d-closed positive C*°-form
of bidegree (1,1) can be locally written as dd®(C*°-function) (cf. [7, Chapter 3,
(1.18)]), any d-closed real C*°-form of bidegree (1,1) on M belongs to B;&l(M).

An upper semicontinuous function f: M — R U {—oo} is called a quasi-
plurisubharmonic function on M if f is locally a sum of a plurisubharmonic
function and a C°°-function. We denote the space of all continuous quasi-
plurisubharmonic functions on M by (C° N QPSH)(M). Clearly (C° N
QPSH)(M) C CY% (M). The subspace generated by (C°NQPSH)(M) in C% (M)
is denoted by ((C°NQPSH)(M))g. For a real continuous form « of bidegree (1,1),
we define C%(M;a) to be

Cha(M;a) := {f € Cla(M) | dd*([f]) + > 0}.

Note that C%(M;a) C (C°NQPSH)(M) (cf. the proof of (3) in Lemma 1.2.1).
Let us begin with the following lemma.

LEMMA 1.2.1

1) If Ae B2Y(X) and T € DEY(X), then ANT € DEFLHL(X). Moreover,
ad pr pr
if A and T are positive, then ANT is also positive.
2) For Aq,..., A, € BYY (M) and T € DLLY(M , the wedge product
ad pr

AN ANA AT

of currents A1,..., A, and T is defined inductively as an element of D;;”l”'*‘l(M)
by using (1); that is,

AN NANT=A AN(Ag N NANT).
Then the map By (M)" — DL+ (M) given by
(Al,...,AT)}—)Al/\-“/\AT/\T

is multilinear and symmetric.

(3) Let o be a real continuous form of bidegree (1,1). Let {f1n}o2q,---,
{frn}Sy be sequences in CO(M;a) such that {fin}52, converges locally uni-
formly to f; € CO(M;a) for each i. Then, for T € D5L(M), a sequence

{fndd®([fon]) A Ndd([frn]) AT} |

converges weakly to

Frdd([fo]) A=~ A dd°([f,)) AT

Proof

(1) This is a local question, so that we may assume that there are continuous
plurisubharmonic functions ¢1, ¢2 and d-closed positive currents 77,75 such that
A=dd°([¢1]) — dd°([¢2]) and T =Ty — T5. Therefore,

ANT = (dd*([¢1]) ATy + dd®([¢2)) A Tz) — (dd°([¢1]) ATa + dd([¢2]) ATh),

as required. The second assertion is obvious.
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(2) The multilinearity of B (M)" — DrFEr (M) is obvious. For symmetry,
it is sufficient to see the following claim.

CLAIM 1.2.1.1

Let f and g be continuous plurisubharmonic functions on M, and let T be a
proper current on M. Then dd°([f]) Add°([g]) AT =dd°([g]) Add°([f]) ANT.

Proof
If fis C°, then, for a C*°-form 7,
(dde(f) A dd?([g]) AT) (1) = (dd“(lg )(dd“<f> n)
T(gdd“ (dde(f ))
T(gddc f)ndde( ))
= (dd*(f) AT) (gdd"(n))

- (ddc([g]) Adde(f) AT (n).

Otherwise, as the question is a local problem, we can find a sequence of C*°-
plurisubharmonic functions { f,,} such that {f, } converges locally uniformly to f.
Then {dd(f,) Add°([g]) AT} and {dd°([g]) A dd°(fn) AT} converge weakly to
dde([f]) Adde([g]) AT and dd*([g]) Add®([f]) AT, respectively (cf. [7, Corollary 3.6
in Chapter 3]), and hence the assertion follows. O

(3) This is also a local question. For x € M, let us consider a local coordinate
(21,...,21) over an open neighborhood U, of z. As dd®(log(1+ |z1|*+ -+ +|2x|?))
is a positive form, shrinking U, if necessary, we can find A > 0 such that

Adde (log(1 4 |21)* 4+ + |21]?)) >

over U,. Thus, if we set ¢ = Mog(1 + |21]% + -+ + |2x|?), then fi + 1, g; + 1,
fin+1, and g; , +1 are continuous and plurisubharmonic over U, for all ¢ and n.
Therefore, (3) is a consequence of the convergence theorem for plurisubharmonic
functions (cf. [7, Corollary 3.6 in Chapter 3]). O

Next we consider the following lemma.

LEMMA 1.2.2

We assume that M is compact.

(1) Let a be a positive continuous form of bidegree (1,1). If f € (C°N
QPSH)(M), then there is a positive number to such that f € C2(M;ta) for
all t > to.

(2) For f,g € {(C°NQPSH)(M))r and T € Dllo’rl(M),

fdd®([gh) AT = gdd([f])) NT mod NULFL (AL
(for the definition of N THIHL(M), see Section 0.10(1)).
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(3) Let T be a d-closed positive current of bidegree (k — 1,k —1). Then

/M fdd([f)) AT <0
for f € {(CONQPSH)(M))g.

Proof

(1) For each point € M, there are an open neighborhood U, of z, a plurisub-
harmonic function p, on U,, and a C°°-function ¢, on U, such that f =p, + ¢,
over U,. If we consider a smaller U,, then we can write o and dd®(gq,) as follows:

a:\/—lzaijdzi/\déj and ddc(qx):\/—lzﬂijdzi/\dgj7
%] %]

where (21,...,2) is a local coordinate on U,. As (a;;(z)) is a positive defi-
nite Hermitian matrix, we can find a positive number s, such that s, (5;;(z)) +
(aj(x)) is positive. Note that s,(8;;)+ (c;) is continuous on U,. Thus, shrinking
U, if necessary, s;(8;;) + (auj) is positive on Uy, and hence, for t > t, :=1/s,,

dd®(qe) +tar=(t — to)a+ s (Szddc(qgc) + Oé) >0

on U,. Because of the compactness of X, there are finitely many z1,...,z, € X
with X =Ug, U---UU,,. If we set to =max{ty,,...,Zs, }, then, for t > g,

dd*([f]) + toar= dd*([pz,]) + (dd“(gz,) + ta)

is positive over U,,, as required.

(2) By our assumption, there are fi, fa, 91,92 € (C° N QPSH)(M) such that
f=1fi— fo and g = g1 — g2. Therefore, we may assume that f,g € (C°n
QPSH)(M). If f is C*°, then, for a d-closed C*°-form n of bidegree (k —1 —
1,E—1-1),

(fdd*([g)) AT) () =T (gdd"(fn)) =T (gdd*(f) An) = (9dd*(f) AT (n)-
Otherwise, by (1), we can take a positive C*°-form « of bidegree (1,1) with
f€C%(X;a). Thus, by [1] or [21, Lemma 4.2], we can find a sequence of C>°-

functions {f,} in C%(M;a) such that {f,} converges uniformly to f. Therefore,
by Lemma 1.2.1(3),

fadd“(g) AT and  gdd®(fu) AT

converges weakly to fdd®([g]) AT and gdd®([f]) AT, respectively. Thus (2) follows
from the case where f is C'°.
(3) First we assume f is C*°. Then, as
o(X=Lra(n) = L Lo0) nap) + sdac(p)
and T is O-closed, we have

0= —om) (Y=L ra) = T(a(gfém))

= T(gaq) ANO(S)) +T(fdd*(/)).
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Note that

T(ga(f) O ED
Thus we have the assertion in the case where f is C°°.

In general, by using (1), we can find continuous functions g,h on M and a
positive C*°-form « such that g,h € C%(M;«a) and f =g — h. Thus, by [1] or
[21, Lemma 4.2], there are sequences {g,}22, and {h,}32, of C*°-functions on
M such that g,,, hy, € C2(M; ) for all n>1 and

A llgn = gllswp = Jin_llfn = hllsup =0.

Then, by Lemma 1.2.1(3), a sequence {(g, — hyn)dd®(g, — hn) AT} of currents
converges weakly to (g — h)dd®([g — h]) AT = fdd°([f]) A T. Thus, (3) follows
from the previous case. g

From now on, we assume that M is compact and Kéhler. Let T be a d-closed
positive current of bidegree (k — 1,k —1). For f,g € C°, (M), we define I (f,g)
to be

Ir(f.g) = /M fdd([g)) AT,

which will be used to see the equality condition of the Hodge index theorem (cf.
Theorems 2.2.3, 2.2.5). Then we have the following proposition.

PROPOSITION 1.2.3
It is a symmetric and negative semidefinite bilinear form on

((C°N QPSH)(M))g;
that is, the following properties are satisfied:
(1) Ir(af +bf'.9) =alr(f.g) +blr(f',g) and Ir(f,ag +bg') = alr(f,g) +
bIr(f,g') hold for all f,f',g,9' € CO(M) and a,b € R;
(2) Ir(f,9)=1Ir(g, f) for all f,g€((C°NQPSH)(M))r;
(3) Ir(f,f) <0 for all f € ((C°NQPSH)(M))r.

Moreover, let Aq,...,Ap_1 € B;&l(M), and let w be a Kdhler form of M. We
assume that, for each i =1,....k — 1, there is ¢, € Ryg with A; > e;w. If T =
Ay N NAg_q, then

Ir(f, f) =0<= f is a constant.

Proof

Assertion (1) is obvious. Then (2) follows from Lemma 1.2.2(2). Assertion (3) is
a consequence of Lemma 1.2.2(3). Finally we consider the last assertion. Clearly
if f is a constant, then I7(f, f) =0. We set

T = (eflAl) ARREWA (elz_llAk,l) =(e1--- ek,l)_lT.
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Then, as e;lAi — w is positive, by Lemma 1.2.1(1), there is a d-closed positive
current 7" of bidegree (k — 1,k — 1) such that 7’ = w*~1 +T”. In particular,

by (3),
IT/(faf)SIwk_l(fvf)SO

for f € ((C° N QPSH)(M))r. Note that we can define a Laplacian [, by the
equation

—dd*(f) APt =0, (f)w®  (f € C=(M)).

Let us see that [, is elliptic. This is a local question. Let 61,...,80; be a
local orthonormal frame of the holomorphic cotangent bundle 2}, with respect
to the metric arising from the Kihler form w so that w=+/=1)_,601 A 0. If we

set dd°(f) =+v/—13, ; a;0; A6, then
1
f):_E§ Qg

On the other hand, we set dz, =, csi0; for s=1,...,k, where (21,...,2;) is a
local coordinate. Then

erm V=1 9%(f) _ . 5
()= S et 5 caeot by

so that

D (£) = 2%k Z(Z CSZCtZ) 0z 3zt

Thus it is sufficient to show that a matrix D = (Zl csiéti)KS i<k is positive
definite. This is obvious because D = C - (the transpose of C') and det(C) # 0,
where C' = (¢si)1<s,i<k-

Therefore,
Ir(f,/)=0 = Ir(f,/)=0 = Lx(f,f)=0
= Ik-1(g9,f)=0 forallgeC>®(M) (.- Lemma 1.1.3)
—  dd°([f]) Aw* 1 =0 asa current
= LL(f)=0
= f is harmonic (. the regularity of elliptic operators)
= f is a constant,
as required. O

1.3. Avariant of Gromov's inequality for R-Cartier divisors
In this subsection, we would like to consider a generalization of [17, Lemma 1.1.4]
to R-Cartier divisors.
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LEMMA 1.3.1

Let X be a d-dimensional compact Kdhler manifold, and let w be a Kdhler form on
X. Let Dy,...,D; be R-Cartier divisors on X. For eachi=1,...,1, let g; be a D;-
Green function of C*°-type. Let U be an open set of X such that U is not empty
on each connected component of X. Then there are constants Cq,...,C; > 1 such
that C; depends only on g; and U and that

sup{\s\mlglJr...erLgl (x)} <crt---om sup{|s|mlgl+...+mlgl (:E)}
reX zeU

for all my,...,m; € R>p and all s € H°(X,m1D1 + -+ +myDy). Moreover, if
D; =0 and g; is a constant function, then C; =1.

Proof

Clearly we may assume that X is connected. Shrinking U if necessary, we may
identify U with {z € C¢| |z| < 1}. We set W = {x € C? | |z| < 1/2}. In this proof,
we define a Laplacian [J,, by the formula

—\/2—__185(9) AwMd=D =, (g)w"e.

T
Let w; be a C°°-form of (1,1)-type given by dd°([g;]) + dp, = [wi]. Let a; be a
C°°-function given by w; A w41 = g;w *. We choose a C*°-function ¢; on X

such that
/aiw/\d:/ ¢iw/\d
X X

and that ¢; is identically zero on X \ W. Thus we can find a C*°-function F;
with (1, (F;) = a; — ¢;. Note that [, (F;) =a; on X \ W.
Let s€ HY(X,m1Dy +---+m;D;). We set
f= |3‘$n191+-~+ngz CXP(_(mlFl +t mlFl))'
Note that f is continuous over X and log(f) is C* over X \ Zs, where

Zs= Supp((s) +miDy+ -+ mlDl).

CLAIM 1.3.1.1
We have max,ec x\w1{f(z)} = max,comw){f(z)}.

If f is a constant over X \ W then our assertion is obvious, so that we assume
that f is not a constant over X \ W. In particular, s # 0. Since

N
—2—(98(10g(|s|2 )) =miwy + -+ muw over X \ Zi,

T migi+-+migr

we have [, (log(f)) =0 on X \ (WU Z;). Let us choose zo € X \ W such that
the continuous function f over X \ W takes the maximum value at zo. Note that

2o € X\ (WU Zy).

For, if Z, = (), then our assertion is obvious. Otherwise, f is zero at any point
of Z,. Since log(f) is harmonic over X \ (W U Z;), log(f) takes the maximum
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value at xp, and log(f) is not a constant, we have xg € d(W) by virtue of the
maximum principle of harmonic functions. Thus the claim follows.
We set

bi= mi -F);, B; = —F;);, d C; = B;/b;.
wem);{lw{eXp( )} Ig})%;iv){exp( )}, an /

Then

2
b717L1 e b;nl |S|mlgl+-~+m1gl é f

over X \ W and

2
fSB;nl "'Blml|s|m191+“'+ngz

over (W). Hence

2 2
zgl)(a'\}%/v{|8|m1gl+‘“+mlgl} <ot g zg%é){ls‘mgﬁ“*mlg’}

2
< C{nl Clml géawx{‘s‘mlgl-i-----i-ngl}’
which implies that
2 3 2
gle%}(({|s|m1g1+"'+ngz} < CInl e C’ln” IZIéaWX{|S|m191+"'+mlgl }7

as required. The last assertion is obvious by our construction because F; =0 in
this case. g

2. Hodge index theorem for arithmetic R-Cartier divisors

In this section, we would like to observe the Hodge index theorem for arithmetic
R-Cartier divisors and apply it to the pseudoeffectivity of arithmetic divisors.
A negative definite quadric form over QQ does not necessarily extend to a negative
definite quadric form over R. For example, the quadric form ¢(z,y) = —(z++/2y)?
on Q? is negative definite, but it is not negative definite on R2. In this sense, the
equality condition of the Hodge index theorem for arithmetic R-Cartier divisors
is not an obvious generalization. In addition, the equality condition is crucial to
considering the pseudoeffectivity of R-Cartier divisors.

In Section 2.1, we compare the arithmetic intersection number in [21, Sec-
tion 6.4] with the classical one due to Zhang and Maillot (cf. [24], [25], [13]). Sec-
tion 2.2 is devoted to the Hodge index theorem for arithmetic R-Cartier divisors.
Especially its equality condition is treated carefully. In Section 2.3, we consider a
necessary condition for the pseudoeffectivity of arithmetic R-Cartier divisors as
an application of the equality condition of the arithmetic Hodge index theorem.

Throughout this section, X will be a d-dimensional, generically smooth, nor-
mal projective arithmetic variety. Moreover, let

X - Spec(Ok) — Spec(Z)

be the Stein factorization of X — Spec(Z), where K is a number field and O is
the ring of integers in K.
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2.1. Generalized intersection pairing on arithmetic varieties
—— Nef ——
Let Divci (X)r be the subspace of Divgo (X)r consisting of integrable arithmetic

—— Nef
R-Cartier divisors of C%-type on X; that is, Divci (X)gr is the subspace gener-
— — — —Nef
ated by Nefco(X)g. For Dq,..., D4 € Divci (X)r, we can define the intersection

number deg(D; --- D) as follows: If Dy,...,Dq € Ne\fco (X)r, then it is given by

d/eTg(ﬁl D) = % Z (71)117#(1);51(ZE).

TOAIC{1,...,d} iel

In general, we extend the above by multilinearity (for details, see [21, Sec-
tion 6.4]). Note that if Dy,..., D4 € Diveee (X)r, then d/eTg(El -+-Dy) coincides
with the usual arithmetic intersection number because the self-intersection num-
ber of a nef arithmetic R-Cartier divisor of C'*°-type in the usual sense is equal
to its arithmetic volume (cf. [21, Claim 6.4.2.2]). The following proposition is the
main result of this subsection. Especially, (3) means that the above intersection
number coincides with other definitions (see [24, Lemma 6.5], [25, Section 1], [13,
Section 5]). In this sense, this subsection provides a quick introduction to the
generalized intersection pairing on arithmetic varieties.

Here we need to fix a notation. Let uy,...,u, € ((C°NQPSH)(X(C)))r and
By,...,B, € Bi(’ll(X((C)). Let I be a nonempty subset of {1,...,p} and J =
{1,...,p}\I. f weset [ = {i1,...,ix} and J ={j1,...,71}, then, by Lemma 1.2.1,
the class of

ullddc([ulz]) ARRERA ddc([ulk]) A le ARERNA le
in DP~LP=1(X(C))/NP~1P=1(X(C)) does not depend on the choice of i1,..., i
and j1,...,7;, so that it is denoted by udd®(ur) A Bj.

PROPOSITION 2.1.1
— — [ — ——Nef
(1) If D= D + (0,m) for DD e Diveo (X)r and n € C°(X), then n €
(CONQPSHX ()5
(2) Letﬁh...,ﬁd E]SRIC(C) (X)R, 217...7251615}?7000()()[[{ and uy,...,uq €
CY%(X) such that D; = A; + (0,u;) fori=1,...,d. Then the quantity

— 1 _
deg(Ay---Ag) + = / udd®(ur) Aep(A
1 5 Z © (ur) Nei(Ay)

does not depend on the choice of Ay, ..., Aq and uy,...,uq. If we denote the above
—_— J—
number by deg (D1 ---Dg), then the map

(Diveo, (X)z)* = R

given by (D1,...,Dq) — d/c\g/(ﬁl -+ Dy) is symmetric and multilinear.
—_— — — — — — ——Nef
(3) We have deg(D1---Dg) = deg/(Dl ---Dy) for Dy,...,D4 € Diveo (X)r.
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— — — ——Nef
(4) Let Dy,...,Dy4,Dy,...,Dy € Divpo (X)r, and n1,...,nq € C°(X) be
such that E:ﬁ;+(o,m) fori=1,...,d. Then

— _ — _ 1 _
deg(Dy - Dg)=deg(Dy - D)+ > / ndd®(nr) A ey (D).
0AIC(1,....d} 7 X (©)

Proof

(1) We can find E,F,E,F €Nefco (X)g such that D = E —F and D=FE-TF.
Then,as E+F =E +F + (0,7), the assertion of (1) is obvious if we compare
two local equations of the Green functions in E + F and E + F.

(2) In order to proceed with arguments, we need several notations. Let
ZP(X)g be the set of all pairs (Z,T) such that Z is a codimension p R-cycle on
X (ie., Z=a1Z1+--+a,.Z, for some ay,...,a,. € R and codimension p integral
subschemes Z1,...,Z, of X) and T is a real current of bidegree (p —1,p—1) on
X(C). Let RP(X )r be the vector subspace generated by the following elements:

(a) ((f),—[log|f|?]), where f is a rational function on some integral closed
subscheme Y of codimension p — 1 and [log |f|?] is the current defined by

g 7P(7) = [ (logl s
Y(©)
(b) (0,T), where T is a real current in NP~1P=1(X(C)) (for the definition
of NP~1P=1(X(C)), see Section 0.1(1)).
We set
CH' (X)% := Z°(X )= /R (X k.

Let A be an arithmetic R-Cartier divisor of C*°-type. Then we can define a
homomorphism
— — ——p+1
&(A)-: CH (X)), — CH' " (X)4
given by ¢1(A) - (Z,T) =7¢1(A) - (Z,0) + (0,c1(A) AT). Note that

a(A)-a(B)- =a(B)-a(A):
for arithmetic R-Cartier divisors A and B of C*®-type.

CLAIM 2.1.11

The class of

Z(Zlv"'aZ]%ula"wup) :El(zl)/c\l(zp)+ Z (O’Uddc(ul)/\cl(zzj))
0£IC{1,...p}

n 6ﬁp(X)]'R does mot depend on the choice of Ay,..., A, and us,...,u, for p=
1,...,d.

Proof
Let By, ... ,Fp be arithmetic R-Cartier divisors of C'*°-type, and let vy,...,v, €
C%(X) be such that D; = B; + (0,v;) for i =1,...,p. Then we can find C>-
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function ¢1,...,¢, such that u; =v; + ¢; and B, =4, + (0,¢;) for i =1,...,p.
We need to see that

Z(Zl,...,zp,ul,...,up):Z(El,...,gp,vl,...,vp)

in CH (X)k- We prove it by induction on p. If p =1, then the assertion is obvious,
so that we assume p > 1. By the induction hypothesis, we have

Z(ZQ,...,ZP,UQ,...,UP) :Z(§27...,§p’v2’...,7fp)
——p—1
in CH  (X)l, which implies
6\1(Z1) ' Z(ZQa cee 7Zp7u27" . 7up) = (/C\l(El) 7/6\1(03¢1)) 'Z(E%' e a§p3v23 cee 7Up)

——p—1
in CH' (X)k- The left-hand side is equal to

Z(Ay,.. Apu,up) = Y (0,udd (ur) Acy(Ay))
1eIC{1,...,p}
:Z(Zl,...,zp7u1,...,up)— Z (0,U1dd0<uI/)/\C1(ZJ/)>7
I'c{2,....,p}

where J' ={2,...,p} \ I'. Moreover, the right-hand side is equal to

Z(Bi,....,Bpvor,..vp)— Y (0,0dd"(vp) Aey(Byr))
I'C{2,...,p}

—¢1(Ba) - a1(B,) -¢1(0, 1)
- > @0,61)- (0,vdd(vp) Aer(By))

OAI'C{2,....p}
:Z(§17...7§p71}17...,7]p)— Z (0,7}1ddc(v1/)/\cl(§J,))
I'C{2,...,p}
- Y (0,¢1dd°(vr) Nea(By))
1'C{2,...,p}
=Z(B1,....Bpv1,.vp) — Y (0,uadd(vp) Aey(Byr))
I'C{2,....p}

——p—1
in CH' (X)k- Therefore, we can see that

Z(Zl,...,zp,ul,...,up) —Z(El,...,gp,’l}l,...ﬂ]p)
is equal to

(O,U1 Z (ddC(UI/)/\Cl(ZJ/)—ddc(v[/)/\cl(EJ/))),
rciz,....p}

which is zero by the following Lemma 2.1.2. a

Applying the above claim to the case where p = d, the first assertion follows. The
second assertion can be easily checked by using its definition.
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(3) For this purpose, it is sufficient to show that d/e\g/(ﬁd) = ;(;l(ﬁ) for D =
(D, g) € Nefco(X)g. Let A be an ample arithmetic Cartier divisor of C*-type.
We assume

deg (D + (1/n) A1) =vol(D + (1/n)A)

for all n > 0. Then, using the continuity of vol, we can see d/eTg/(Ed) = \a(ﬁ).
Thus we may assume D is ample, so that there is a D-Green function h such
that « :=c¢1(D,h) is positive. We set D = (D,h) and ¢ =g — h. Then ¢ is
continuous and dd®([¢]) + « > 0. Therefore, by [1] or [21, Lemma 4.2], we can
take a sequence of C*°-functions {¢,} such that lim, o ||¢n — @|lsup =0, and
that ¢ < ¢, and ¢, € C° (X;a) for all n. We set D, =D + +(0,6n). Then D,
is a nef arithmetic R-Cartier divisor of C*°-type, and hence deg (D d) = \a(ﬁn)
for all n by [21, Claim 6.4.2.2]. As lim,,_, Vol(D ) = Vol(D) by the continuity
of \70\1, it is sufficient to see that

— —d

l1mdeg( ) deg (D).

n—oQ

Note that
—t —d —
deg (D}) = deg (D' + (0,¢0))%)

7d/€%/ —d JrZ( >/X(C QSnddC(d)n)iil/\Oédii-

In addition, by Lemma 1.2.1(3), {¢,dd®(¢,)""! A a?} converges weakly to
¢dd®([¢])" " AT

for each i. Thus we have the assertion.
By using the symmetry and multilinearity of deg(Dy --- Dy), it is sufficient
to see that

— — — 1
deg((0,m) Dy Dy) = 3 Z / mdd®(ur) Aei(Dy),

1Cq2,..
which is a straightforward calculation by using the definition in (2). O
LEMMA 2.1.2
Let V. and W be vector spaces over R, and let f:V* — W be a symmetric
multilinear map. Let ap,...,as,b1,...,bs be elements of V. For a subset I of

{1,...,8}, we set I ={i1,...,ix} and J={j1,..., 51}, where J={1,...,s}\ I
and k+1=s. Then

f(ail,...,aik,bjl,...,bjl)

does not depend on the choice of i1,...,i, and ji,...,J;, so that it is denoted
by f(ar,by). Let ay,...,as,b1,...,bs,¢1,...,Cs,d1,...,ds be elements of V. We
assume that there are uy,...,us € V such that a; = ¢; + u; and b; =d; — u; for
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alli=1,...,s. Then

Z (a[,b])z Z (C[,dJ).

IC{1,...,s} IC{1,...,s}

Proof
We prove the lemma by induction on s. If s =1, then

Y. flanby) = fla) + f(b) = fler +ur) + f(di — )

IC{1,....s}
— fle)+ fd) = S Flendy).
IC{1,...,s}
Thus we assume s > 1. By the hypothesis of induction, we have
> flavapbp)= > flar,er,dy)
I'C{2,...,s} I'Cq2,....s}
and
S flbrarby)= > flbreridy),
I'C{2,...,s} I'C{2,...,s}

where J' ={2,...,s}\ I'. The first equation and the second equation imply that

Yoo flanby= > flend)+ Y flur,eridy)

1eIC{1,...,s} 1eIC{1,...,s} 'C{2,...,s}
and
> flanby) = > flend)— Y flurer,dy),
1¢1C{1,...,s} 1¢1C{1,...,s} I'C{2,...,s}
respectively. Thus the lemma follows. O

2.2. Hodge index theorem for arithmetic R-Cartier divisors
First of all, let us fix notation. Let K be either Q or R. Let H be an ample K-
Cartier divisor on X. Let D be a K-Cartier divisor on X, and let E be a vertical
K-WEeil divisor on X. We set E = 22:1 a;l';, where ay1,...,aq; € K and I'y,..., I}
are vertical prime divisors. Then a quantity

l

> a;deg((H|r,)**- (Dlr,))

i=1
is denoted by degy (D - E). Note that if X is regular and D and E are vertical,
then degy (D E) =degy (E- D). We say D is divisorially m-nef with respect to H
if deg; (D -T') > 0 for all vertical prime divisors I' on X . Moreover, D is said to
be divisorially w-numerically trivial with respect to H if D and —D is divisorially
m-nef with respect to H, that is, degy (D -T') =0 for all vertical prime divisors
I'on X.
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LEMMA 2.2.1

We assume that X is reqular. Let P € Spec(Ok), and let 71 (P)=a;I'1 + -+
anl'y, be the irreducible decomposition as a cycle, that is, a1,...,a, € Z~o and
I'y,..., Iy are prime divisors. Let us consider a linear map Tp : K" — K" given

by
Ty degy(I'1-T'1) -+ degy(I'i-Ty)\ [z
- : z z
T degy(Ty-Ty) -+ degy(Ty -Th) T

Then Ker(Tp) = ((a1,...,an))x and Tp(K™) ={(y1,...,yn) EK" | a1y1 + - +
anyn =0}.

Proof
This is a consequence of Zariski’s lemma (cf. Lemma 1.1.4). O

LEMMA 2.2.2

We assume that X is reqular. Let D be a K-Cartier divisor on X with deg(H672 .
Dq) =0. Then there is a vertical effective K-Cartier divisor E such that D + E
1s diwvisorially m-numerically trivial with respect to H.

Proof
We can choose Pi,..., P, € Spec(Ok) such that degy (D -T') =0 for all vertical
prime divisors I' with 7(T') ¢ {P,...,P,}. We set 71 (Py) = Y% aiTx; for
each k=1,...,n, where ay; € Z~o and ['y; is a vertical prime divisor over P.
Since

Nk
Z ap;deg (D -Ty;) =degy (D -7 (Py)) =0,

Jj=1

by virtue of Lemma 2.2.1, we can find zy; € K,

nk
> wpidegy (Thi - Try) = — degyy (D - Ty)
i=1

for all k. Moreover, replacing xy; by xg; + nag; (n > 1), we may assume that
zr; > 0. Here we set

n  ng
E=>.> vl
k=11i=1
Then D + F is divisorially m-numerically trivial. U

First let us consider the Hodge index theorem for R-Cartier divisors on an arith-
metic surface. It was actually treated in [2, Theorem 5.5]. Here we would like to
present a slightly different version.
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THEOREM 2.2.3
We assume d=2. Let Divo(Xq)r be a vector subspace of Div(Xq)r given by

Divo(Xg)r := {¥ € Div(Xg)r | deg(¥) = 0}.

——Nef

Let D = (D,g) be an arithmetic R-Cartier divisor in Diveo (X)r with Do €
DiVO(XQ)]R. Then

deg(D”) < —2[K : Q](Dg, Do),

where (, )nT s the Néron—Tate pairing on Dive(Xq)r (c¢f- Remark 2.2.4). More-
over, the equality holds if and only if the following conditions (a), (b), and (c)
hold:

(a) D is divisorially m-numerically trivial;
(b) g is of C>-type;
(¢) e1(D)=0.

Proof

Let p: X' — X be a resolution of singularities of X (cf. [12]). Then, since the
arithmetic volume function is invariant under birational morphisms (cf. [17, The-
orem 4.3]), we can see deg(D’) = deg(u*(D)?). Thus we may assume that X is
regular.

Let ¢’ be an Fy-invariant D-Green function of C*°-type with ¢; (D, g’) = 0.
Let n be an F-invariant continuous function on X (C) with g = ¢’ + 7. Then,
by (1) in Proposition 2.1.1, n € {((C° N QPSH)(X(C)))g.

By Lemma 2.2.2, we can find an effective and vertical R-Cartier divisor E
such that D + E is divisorially m-numerically trivial. If we set D= (D+E,q),
then D' satisfies the above conditions (a), (b), and (c). Moreover, as D = D -
(E,0) +(0,n),

12

(D) = des(D'") 4 deg((8,0)") 5 [t

Thus, by Proposition 1.2.3 and Zariski’s lemma (cf. Lemma 1.1.4), in order to
prove the assertions of the theorem, it is sufficient to see

deg(D”) = —2[K : Q(Dx, Di)nr

under the assumptions (a), (b), and (c).

By Lemma 1.1.1(1), we can choose Dq,...,D; € Div(X) and ay,...,a; €R
such that D =a1 Dy + --- 4+ a;D; and ag,...,a; are linearly independent over Q.
Let C be a 1-dimensional vertical closed integral subscheme. Since

0=deg(D[c) = a1 deg(Di]c) + -+ + an deg(Dnlc),

we have deg(D;|¢) =0 for all 4, and hence D; is divisorially m-numerically trivial
for every 4, so that we can also choose a D;-Green function h; of C*°-type such
that D =a; Dy + --- +aD; and ¢;(D;) =0 for all i, where D; = (D;,h;) for
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1=1,...,1. We need to show
d/eTg((alﬁl —+ -+ alﬁl)Q) = 72[K : Q} <a1D1 + -4 alDl, arDy+ -+ alDl>NT.
Note that it holds for as,...,a; € Q by Faltings [8] and Hriljac [10]. Moreover,

each side is continuous with respect to ai,...,a;. Thus the equality follows in
general. O
REMARK 2.2.4

(1) Let Divg(Xg) be the group of divisors ¥ on Xg with deg(¥) = 0. By using (1)
in Lemma 1.1.1, we can see Divy(Xg) ®z R = Divo(Xg)r. Let

< s >NT : DiVO(XQ) X DiVo(XQ) —R
be the Néron—Tate height pairing on Div(Xg), which extends to
DiVQ(XQ)]R X DiVO(XQ)R —R

in the natural way. By abuse of notation, the above bilinear map is also denoted
by (, )nT. By virtue of [9, Proposition B.5.3], we can see that

PDiV(XQ)]R = {19 € DiVO(XQ)]R ’ <'l9, '19>NT = 0}

(2) Let D= (D,g) be an integrable arithmetic R-Cartier divisor of C%-type
on X. If Dg € Divy(Xg)r and d/e\g(ﬁz) =0, there are ¢ € Rat(X)y and an Fi-
invariant locally constant function 7 on X (C) such that D = @R +(0,7). Indeed,
by Theorem 2.2.3 and the above (1), D is divisorially m-numerically trivial, g is of
C>-type, c1(D) =0 and Dg € PDiv(Xg)r. Therefore, there exist ¢ € Rat(X)x, a
vertical R-Cartier divisor E, and an F-invariant continuous function 7 on X (C)
such that D = (/a,;)]R +(E,n). As D and (p)g are divisorially m-numerically trivial,
by using Zariski’s lemma, we can find ¢ € ﬁi;(Spec(OK))R such that F = 7*(¢9).
Note that the class group of O is finite, so that ¢ € PDiv(Spec(Ok))r, and

hence E € PDiv(X)g. Therefore, we may assume that E =0. Thus
— -2 1 c
0=deg(D") =5 ndd®(n),
X(0)

which implies that n is locally constant by Proposition 1.2.3.

Finally let us consider the Hodge index theorem on a higher-dimensional arith-
metic variety. The proof is almost the same as that in [16], but we need a careful
treatment at the final step.

THEOREM 2.2.5 Net
Let D = (D, g) be an arithmetic R-Cartier divisor in BI\VC?) (X)r, and let H =
(H,h) be an ample arithmetic Q-Cartier divisor on X. If deg(Dyg - Hé_Q) =0,
then

deg(D”-H %) <0.
Moreover, if the equality holds, then Dg € PDiv(Xg)r.
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Proof
By Lemma 1.1.1(1), we can choose Dy,...,D; € Div(X) and ay,...,a; € R such
that aq,...,a; are linearly independent over Q and D =a; D1+ - -+ a;D;. Since

!
0=deg(Dg-H )= a;deg(Dig- HE )
i=1

and deg(D;g - Hg_2) € Q for all i, we have deg(D;q - Hé_z) =0 for all 4. Let
us also choose an F-invariant D;-Green function g; of C'*°-type such that
c1(Di,gi) A ei(H)¥2 = 0. If we set ¢ = aigy + --- + a;g;, then, by Proposi-
tion 2.1.1(1), there is n € ((C°NQPSH)(X (C)))g such that g = ¢’ +n. By Propo-
sition 2.1.1(4),

1

2 1 °(n)ey (H)?2
)y g, s ()

deg(D” - H' %) = deg((D,g)> - H*~

because ¢ (D, g') Aci(H)? 2 = 0. Therefore, by Proposition 1.2.3,

deg(D” - H"*) < deg((D.¢)> - H' ),
and the equality holds if and only if 1 is a constant. Thus we may assume that
7 is a constant, that is, g = ¢’ by replacing ¢; by g; +n/q;.

By virtue of [16, Theorem 1.1},

—_— —d—
deg((al(Dlagl) +- 4 (D) H

2) <0
for all ay,...,0; € Q, and hence d/e\g(ﬁ2 'Fd_2) <0.

We need to check the equality condition. We prove it by induction on d.
If d =2, then the assertion follows from Theorem 2.2.3 and Remark 2.2.4. We
assume that d > 2 and d/e\g(ﬁ2 ~Hd_2) = 0. By using the arithmetic Bertini’s
theorem (cf. [15]), we can find m € Z~o and f € Rat(X)* with the following
properties.

(i) If we set H = (H',h') = mH + (f), then (H',h') € Divee (X), H' is
effective, h’ > 0, and H' is smooth over Q.

(i) T H =Y'4+c1Fy +---+¢, F, is the irreducible decomposition such that
Y’ is horizontal and F;’s are vertical, then the F;’s are connected components of
smooth fibers over Z.

(iii) D and H' have no common irreducible component.

Let Y be the normalization of Y’. Then

— 9 —d— —_— 92 —d—2
0=mi2deg(D”-H" *)=deg(D> H )
. 1 _ .
—deg(Dy T + Y crdeg(D B 45 [ WeaDPa(@)
X(C)

Therefore, by using [16, Lemma 1.1.2], we can see that d/e\g(ﬁﬁ, ~F/|§,_3) =0 and
¢1(D) =0. In particular, by the induction hypothesis, Dg|y € PDiv(Yg)g. Let C
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be a closed and integral curve of Xg. Then, since
0= / c1(D) =deg(Dg - C) = Z a;deg(Diq - C)
c©

and ay,...,a are linearly independent over Q, we have deg(D;g-C) =0 for
all 4. Therefore, if we set L; = Ox,(D;), then L; is numerically trivial, and
hence (L;)c is also numerically trivial on X (C). This means that (L;)c comes
from a representation p; : m1 (X (C)) — C*. Let ¢ be the natural homomorphism
t:m(Y(C)) = m(X(C)), and let

pi=pior:m (Y(C)) — m (X(C)) Ly e,
Then p; yields (L;)c|y(c)- Let
p:m(X(C)) »C*®zR  and  p :m(Y(C)) - C*@zR

be homomorphisms given by p= pP® .- pP* and p' = p}@* ... pj®*. Since

®a ®a

(L)ely) @@ (Liclye) =1
in Pic(Yp) ® R, we have p’ = 1. Note that ¢ is surjective (cf. [14, Theorem 7.4]
and the homotopy exact sequence). Thus p = 1 because p’ = p o . Therefore,
by Lemma 1.1.1(2), the image of p; is finite for all i. This means that there
is a positive integer n such that (L;)&" ~ Ox(c) for all i. If we fix o € K(C),
then

dimg H°(Xq, L") = dime H° (Xq X () SPec(C), L™ @% C) =1,
and hence L™ ~ O, because deg(L; -H(gﬂ) = 0. Therefore,
Li@al R ® Ll®aL _ (L?n)®a1/n ®R-® (Ll®n)®al/n -1

in Pic(Xg)r. Thus Dg € PDiv(Xg)g. O

REMARK 2.2.6
There is a typo in [16, Lemma 1.1.2]. The form w should be real, that is, © = w.

2.3. Hodge index theorem and pseudoeffectivity

In this subsection, let us observe the pseudoeffectivity of arithmetic R-Cartier
divisors as an application of the Hodge index theorem. Let us begin with the
following lemma.

LEMMA 2.3.1

We assume that X is reqular. Let D = (D,g) be an arithmetic R-Cartier divi-
sor of C-type. If D is semiample on Xq (i.e., there are semiample divisors
A1,..., A on Xg and aq,...,a, € Rsg such that Do =a1 A1 + -+ a, A, ), then
there are ¢1,...,¢; € Rat(X)y and c € R such that D + (/cp;)R +(0,¢) >0 for all
1 and

1
ﬂ SUPP(D + (%‘)R) =0

i=1
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on Xq (for the definition of Rat(X)g and arithmetic R-principal divisors, see
Section 0.2 in the introduction and Section 0.10(2)).

Proof
Let us consider the assertion of the lemma for D = (D, g):

There exist ¢1,...,¢; € Rat(X); and ¢ € R such that

)
D + (¢i)g + (0,¢) >0 for all i and ﬂézl Supp(D + (¢i)r) =0 on Xg.

CLAIM 2.3.1.1

(1) If D is a Q-Cartier divisor and D is semiample on Xq (i.e., nD is
base-point free on X for some n>0), then (x) holds for D.

(2) If D is vertical, then () holds for D.

(3) If a € Rwg and (*) holds for D, then so does for aD.

(4) If (x) holds for D and D', so does for D+ D' .

Proof
(1) Since D is a semiample Q-Cartier divisor on Xgq, there are a positive integer
n and ¢1,...,¢; € H(X,nD)\ {0} such that n§:1 Supp(nD + (¢:)) =0 on Xg.

e

VM 4(0,¢) >0

(2

Since D + (qﬁ;/")R is effective, we can find ¢ € R such that D+ (¢
for all 3.

(2) We choose z € Ok \ {0} such that D + (z) >0, and hence there is ¢ € R
such that D + (/\x) +(0,¢) > 0.

(3) Let ¢1,...,¢; € Rat(X)y, and let ¢ € R be such that D+ @R+(O, c)>0
for all ¢ and ﬂizl Supp(D + (¢i)r) =0 on Xg. Then aD + (:01‘41\)]R +(0,ac) >0 for
all 4 and ﬂlizl Supp(aD + (p#)r) =0 on Xg.

(4) By our assumption, there exist ¢1,...,¢1,¢1,...,¢ € Rat(X)g and
¢,c’ € R such that

—

D+ (¢i)g +(0,¢) >0 for all 4,
Ni_, Supp(D + (¢i)r) =0  on Xg,
D'+ (@) +(0,c) =0 for all 7,

N, Supp(D’ + (¢)r) =0 on Xg.
Then D+ D + @sa\;)R +(0,¢+¢') >0 for all 7, and

ﬂ Supp (D + D' + (ig))r) =0
4.7
on Xqg because

()Supp(D + D' + (0:)r) [\ (Supp(D + (9i)z) USupp(D’ + (¢})r))-
i i.j O
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Let us go back to the proof of the lemma. Since X is regular and D is semiample
on Xg, there are arithmetic Q-Cartier divisors Dy, ..., D, of C°-type, a1, ...,a, €
R, a vertical R-Cartier divisor F, and an F-invariant continuous function n
on X (C) such that D;’s are semiample on X and D=a1Dy+---+a.D,+(E,n).
Thus the assertion follows from the above claim. O

Let us fix an ample arithmetic Q-Cartier divisor H on X. For arithmetic R-
Cartier divisors D and Dy of C™-type on X, we denote d/e\g(FCF2 Dy -D3) by
d/eTgﬁ(El - D3). Let us consider the following lemma, which is a useful criterion
of pseudoeffectivity.

LEMMA 2.3.2
We assume that X is reqular. Let D = (D, g) be an arithmetic R-Cartier divisor
of C*°-type on X with the following properties:

(1) D is nef on Xg and deg(Dg - Hd %) =0;
(2) c1(D) is semipositive;
(3) D is dzmsomally m-nef with respect to H;
(

4) degH( ) <0.

Then D is not pseudoeffective.

Proof
First we claim the following.

CLAIM 2.3.2.1
There is an arithmetic R-Cartier divisor L = (L, h) of C*-type with the following
properties:

(a) L is ample on Xg;

(b) ¢c1(L) is positive;

(¢) L is divisorially w-nef with respect to H;
(d) degH(L D) <0.

Proof
Since degﬁ(32) < 0, we have
dogy (D + ¢H - D) <0
for a sufficiently small positive number €. Thus, if we set L =D + ¢H, then L

satisfies all properties (a)—(d). O

Let us go back to the proof of the lemma. Since L is ample on Xg, by Lemma 2.3.1,
there are ¢1, ..., € Rat(X)y and ¢ € R such that L+ (¢;)g + (0,¢) >0 for all i
and ﬂi:l Supp(L + (¢i)r) =0 on Xg. Let I" be a horizontal prime divisor. Then
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we can find ¢ such that I' Z Supp(L + (¢;)r). Thus
degzr (T +(0,0)) - (T,0)) = degzz (T + (p1)g + (0.0)) - (T',0))
= deg(HE 2 (T + (1)z + (0,¢))|r) > 0.

Furthermore, the above inequality also holds for a vertical prime divisor I" because
L is divisorially m-nef with respect to H. Therefore, if G = (G, k) is an effective
arithmetic R-Cartier divisor of C°-type, then

degzr((T+(0,6))-G) = dogr (T +(0,0))-(G,0) + 5 /m) ker (H)*%e1(T) > 0.

In particular, if D is pseudoeffective, then
degz (L +(0,¢)) - D) > 0.
On the other hand, as deg(Dg - Hé_Q) =0,
— _ _ — . e _
degrr((L +(0,¢)) - D) = deggr(L - D) + 5 deg(Dg - HG™?%)

= degy(L-D) <0.

This is a contradiction. O

As consequence of the Hodge index theorem and the above lemma, we have the
following theorem on pseudoeffectivity.

THEOREM 2.3.3
We assume that X is reqular and d > 2. Let D = (D,g) be an arithmetic R-

Cartier divisor of C°-type. If D is pseudoeffective and D is numerically trivial
on Xq, then Dg € PDiv(Xg)r.-

Proof
We assume that Dg ¢ PDiv(Xg)r. Since D is numerically trivial on Xg, by
Lemma 2.2.2, we can find an effective vertical R-Cartier divisor F such that
D + FE is divisorially m-numerically trivial with respect to H. Moreover, we can
find an F-invariant D-Green function gy of C*°-type with ¢1(D, gg) =0. Then
there is an Fy-invariant continuous function 1 on X (C) such that g + 7 = go.
Replacing go by go + ¢ (¢ € R), we may assume that n > 0. By the Hodge index
theorem,

(Te\gﬁ((D + E,go)Q) < 0.
Thus (D + E, go) is not pseudoeffective by Lemma 2.3.2, and hence

D= (D+E790) - (Evn)

is also not pseudoeffective. This is a contradiction. g

Finally let us consider the following lemmas on pseudoeffectivity.
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LEMMA 2.3.4
For D € Diveo(X)r and z € PDiv(X)g, if D is pseudoeffective, then D + z is
also pseudoeffective.

Proof
Let A be an ample arithmetic R-Cartier divisor on X. Since D is pseudoeffective,
D + (1/2)A is big. Moreover, z + (1/2)A is ample because z is nef. Therefore,

(D+2z)+A=(D+(1/2)A) + (2 + (1/2)A)

is big, as required. O

LEMMA 2.3.5

Let D be a vertical R-Cartier divisor on X, and let 1 be an F-invariant contin-
uous function on X (C). Let A be an element of RE©) given by A\, = inf,cx, n(z)
for all o € K(C). We can view X as a locally constant function on X (C), that is,
Mx, =Ao. If (D,n) is pseudoeffective, then (D, ) is also pseudoeffective.

Proof
Let us begin with the following claim.

CLAIM 2.3.5.1
We may assume that A is a constant function.

Proof

We set N = (1/[K :Q]) X ex(c)Ae and & = A" — A, for each o € K(C). Then
> oer(c) bo =0 and & =& for all o € K(C). Thus, by Dirichlet’s unit theorem
(cf. Corollary 3.4.7), there are ay,...,as € R and uy,...,us € O such that

o = arloglo(ur)| +--- + asloglo(us)|
for all o € K(C). If we set

— —

(D,n) = (Dn) — 7" ((a1/2)(ur) + -+ + (as/2)(us)),

then inf,.ecx, n'(z) =N for all o € K(C). Moreover, by Lemma 2.3.4, (D,7’) is
pseudoeffective. If the lemma holds for 7/, then (D, )\’) is pseudoeffective, and
hence

— e~

(D, A) = (D, X) + 7" ((a1/2) (u1) + - + (as/2) (us))
is also pseudoeffective by Lemma 2.3.4. 0

For a given positive number ¢, we set
Us={z€ X, |n(z) <o+ (e/2)}

and U =[], ¢ g(c) Uo- Let A= (A,h) be an ample arithmetic Cartier divisor on
X. Then, by Lemma 1.3.1, there is a constant C' > 1 depending only on € and h
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such that

(2.3.5.2) sup {|5|§+bh(x)} <c’ Sup{|8|?+bh(x)}
z€X(C) z€U
for all s € H°(X(C),bA), b € R>g, and all constant functions ¢ on X (C). Let n
be an arbitrary positive integer with n > (2log(C))/e. Since (D,n) + (1/n)A is
big, there are a positive integer m and s € H%(X,mD + (m/n)A)\ {0} such that
|8 mn+(m/nyn < 1, which implies that

|S|?m/n)h < eXP(mU)-

Therefore, [s|f,, /.y, < exp(m(X+ (¢/2))) over U; that is,
sup {[5[2, (xt-(c/2)) 4 (m/myn t < 1.
xzelU

Thus, by the estimation (2.3.5.2), we have

c-tm/m IES;I()C){ |5|3n()\+(e/2))+(m/n)h} <L

Since log(C)/n <¢€/2,

sup |s|72” € m/n S sup |S|2m n 3 m € m/n
EGX(C){ Ok m/mn IGX(C){ (/) 108(C) k(e (e/2))+ (m /) Y

=~/ qup 812 e m/mh <1,
xex(c){\ [P (e/2)) 4 (m/m)n }

which yields H°(X,m((1/n)A + (D,\ + ¢))) # {0}. Thus (D, A +¢) + (1/n)4

is big if n>> 1. As a consequence, (D, + €) is pseudoeffective for any positive

number €, and hence (D, \) is also pseudoeffective. a

3. Dirichlet’s unit theorem on arithmetic varieties

In this section, we propose the fundamental question of this paper, which is a
higher-dimensional analogue of Dirichlet’s unit theorem on arithmetic varieties.
In Section 3.4, we give the proof of the fundamental question on arithmetic curves
by using the arithmetic Riemann—Roch theorem and the compactness theorem
in Section 3.3. By the observations in Section 3.3, we can realize why the funda-
mental question is related to the classical Dirichlet’s unit theorem. We can also
recognize that the theory of arithmetic R-divisors is not an artificial material.
In Section 3.5, we consider a partial answer to the fundamental question, that
is, Dirichlet’s unit theorem under the assumption of the numerical triviality of
divisors on the generic fiber. Many results in the previous sections will be used for
the partial answer. Especially the equality condition of the Hodge index theorem
is crucial for our proof. In Section 3.6, we introduce the notion of multiplica-
tive generators of approximately smallest sections for further discussions of the
fundamental question. It gives rise to many examples in which Dirichlet’s unit
theorem holds. Section 3.2 is devoted to the technical results on the continuity
of norms.
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Let us fix notation throughout this section. Let X be a d-dimensional, gener-
ically smooth, normal, and projective arithmetic variety. Let

X - Spec(Ok) — Spec(Z)

be the Stein factorization of X — Spec(Z), where K is a number field and Ok is
the ring of integers in K.

3.1. Fundamental question
Let K be either Q or R. As in Section 0.10(2), we set

Rat(X)y :=Rat(X)* @z K,

whose element is called a K-rational function on X. Note that the zero function
is not a K-rational function. Let

Ox :Rat(X)X - Div(X)x  and )y :Rat(X)} — Divee (X)x
be the natural extensions of the homomorphisms
Rat(X)* - Div(X) and  Rat(X)* — Divge(X)
given by ¢ — (¢) and ¢ — (?5), respectively. Note that
PDiv(X )k = {(¢)x | ¢ € Rat(X)g }
and
ﬁ(X)K ={(¢)x | ¢ € Rat(X) }

(cf. Sections 0.2 and 0.10(2)). Let D = (D, g) be an arithmetic R-Cartier divisor
of CO-type. We define I'* (X, D), I'*(X, D), 'y (X, D), and I'; (X, D) to be

)s
(X, D) :={¢ € Rat(X)* | D+ (¢) > 0} = H(X, D) \ {0},
I'*(X,D):={¢ € Rat(X)* | D+ (¢) >0} = H(X, D)\ {0},
F%(X D) = {(,0 € Rat(X)HE | D+ (/L,O\)K > O},
[%(X,D) = {p € Rat(X)y | D+ (), > 0}.

Let us consider a homomorphism
£ Rat(X)* > Lo (X(©))
given by ¢ — log|¢|. It extends to a linear map
e Rat(X) — Lo (X(C)).

For ¢ € Rat(X)y , we denote exp(¢k (¢)) by |¢|. First let us consider the following
lemma.

LEMMA 3.1.1

(1) If o e T (X, D), then |p|exp(—g/2) is represented by a continuous func-
tion 14,4 on X (C), so that we define ||¢||g sup to be

11l sup = max{ng 4 () | z € X(C)}.
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) TE (X, D) = {p €TE(X, D) | [@llgusup < 1}
(3) We have the following formulae in Rat(X)g or Rat(X)g

I5(X,D)=U,-o DX (X,nD)/",  Ty(X, 5)—Un>0fX(X,n5)1/N,
[y (X,aD) =Ty (X, D)", f@ (X,aD) = F@(X D)*  (a€Qso),
[%(X,aD)=T¥(X,D)*,  TZ(X,aD)=TZ(X,D)* (a€Rsp).

Proof

(1) We set D =a1D1 + -+ a,D, and ¢ = ¢7"---¢]", where Dy,...,D, are
prime divisors, ¢1,...,¢; € Rat(X)*, and a1,...,an,x1,..., 21 E K. Let f1,..., fn
be local equations of Dy,...,D,, around P € X(C). Then there is a local con-
tinuous function h such that g =—3""  a;log|fi|* + h (a.e.) around P. Here
let us see that |@1]™*---|e@]™ | f1]% -+ | fn]® is continuous around P. We set
fi=wit]™ - t& and ¢, = vt ~~t’f”, where a;k, Bk €Z, U1, ..., Un, V1,..., U
are units of Ox(c) p and t1,...,t, are prime elements of &'x(c),p. Then

L e e R VT AR P A
v [P o[ |t1|27¢ aiain+y ;B |tT|Z77 aioir+32; @i Bjr

= |ug |2 - ||

On the other hand, as
+(p)x = (Z a;o1 + Z%ﬂﬂ) (t1) +---+ (Zaiair + ijﬂjr) (t
i j i j
around P, we have

(3.1.1.1) an +Y 2B =0, aii + Y w85 > 0.
7 7 7 J

Thus the assertion follows. Therefore, |1 |™ - -« |@r|"] f1]** - - - | frn|®™ exp(—h/2) is
also continuous around P, and hence we obtain (1) because

lplexp(—g/2) = 1™ -~ lu] ™ | f1]** -+ [ fu] "™ exp(=h/2)  (a.e.).

(2) We use the same notation as in (1). Note that

ﬁ—l—(?p) ( K,g—i—Zm —log|pi]?) )

Moreover,

g+ zi(—logleil?) = —log(le1 >t - P [ fo[* - | fuPm exp(—h))  (ae.)
i=1

locally. Thus [|¢]|gsup <1 if and only if g+ > | x;(—log|i[?) >0 (a.e.), and
hence (2) follows.

(3) For ¢ € Rat(X)y and a € Ruq, D+ (p)r >0 (resp., D+ (:;)]R >0) if and
only if aD + (¢*)r >0 (resp., aD + (a/p;)]R > 0). Thus the assertions in (3) are
obvious. g
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REMARK 3.1.2

We assume d =1, that is, X = Spec(Ok). For P € Spec(Ok)\ {0} and ¢ € K(C),
the homomorphisms ordp : K* —Z and |- |, : K* — R* given by ¢+ ordp(¢)
and ¢ — |o(¢)| naturally extend to homomorphisms K* ®z R — R and K* ®z
R — R, respectively. By abuse of notation, we denote them by ordp and |- |,,
respectively. Clearly, for ¢ € K* ®z R, |¢|, is the value of || at o. Moreover, by
using the product formula on K*, we can see

(3.1.2.1) H lole = H #(OK/P)OrdP(SO)

c€K(C) PeSpec(Ok)\{0}

for p € K* ®zR.

Finally we would like to propose the fundamental question as in Section 0.7 of
the introduction.

FUNDAMENTAL QUESTION
Let D be an arithmetic R-Cartier divisor of C%-type. Are the following equiva-
lent?

(1) D is pseudoeffective.
(2) We have I'; (X, D) # 0.

Clearly (2) implies (1). Indeed, let ¢ be an element of fﬁ (X,D). Let A be an
ample R-Cartier divisor on X. Since —@R is a nef R-Cartier divisor of C°°-
type, A — (/go\)]R is ample, and hence D + A is big because D + A > A — @R. The
observations in Section 3.4 show that the fundamental question is nothing more
than a generalization of Dirichlet’s unit theorem. Moreover, the above question

does not hold in the geometric case as indicated in the following remark.

REMARK 3.1.4
Let C' be a smooth algebraic curve over an algebraically closed field. For ¢ €
Div(C)q with deg() =0, the following are equivalent:

(1) 9 € PDiv(C)g;
(2) there is ¢ € Rat(C)g such that ¥+ (p)r > 0.

Indeed, (1) = (2) is obvious. Conversely we assume (2). If we set 6 =9 + (p)g,
then 0 is effective and deg(f) = 0, and hence § = 0. Thus ¥ = (¢~ !)g. Therefore,
by (3) in Lemma 1.1.1, ¥ € PDiv(C)q.

The above observation shows that if ¥ is a divisor on C such that deg(¥) =0
and 9 is not a torsion element in Pic(C), then there is no ¢ € Rat(C); with
U+ (¢)r = 0.
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3.2. Continuity of norms

Let us fix p € R>; and an F-invariant continuous volume form Q2 on X with
fX(C) Q=1. For p € 5 (X, D), we define the LP-norm of ¢ with respect to g
to be

1/p

lollg,r = (/X(C)(Isoexp(—g/z))m)

In this subsection, we consider the following proposition.

PROPOSITION 3.2.1
Let 1,...,0 € Rat(X)g . If we set

&= {(z1,...,2) ER" | ' -+ o' €I (X, D)},

then the map vy, : ® - R given by (x1,...,z1) = [T ) |lg,Lr is uniformly
continuous on K N ® for any compact set K of R'. Moreover, the map Vsup !
O =R given by (x1,...,21) = 7" @) | g,sup 5 also uniformly continuous on
KN® for any compact set K of RL.

Proof
In order to obtain the first assertion, we may clearly assume that ¢1,...,¢; €
Rat(X)*. Let us begin with the following claim.

CLAIM 3.2.1.1
There is a constant M such that

lpa[* -] exp(=g/2) <M (a.e.)
on X(C) for all (z1,...,2;) e KN®.

Proof

Since X (C) is compact, it is sufficient to see that the above assertion holds locally.
We set D=a1D1+ ---+ a,D,, where a1,...,a, € R and Ds,..., D, are prime
divisors. Let us fix P € X(C), and let fi,..., f, be local equations of Dy,..., D,
around P, respectively. Let g =>_.(—a;)log| f;|*+ h (a.e.) be the local expression

of g with respect to fi,..., f,, where h is a continuous function around P. We set
fi = uitf‘“ s t?" and qu = ’thfjl s tfw, where [e%17) ﬂjk S Z, Uty s Up,V1,y..., ]
are units of Ox ) p and 11,...,t, are prime elements of Ox (c),p- Then

|p1]™ -+ [u|™ exp(—g/2)
= |ug|® - Jup |2 g |7t - - o™ ‘tl‘zi ajoin+3; 2B wzi ajorty; x5 B)r
x exp(—h/2) (a.e.).

Note that >_; a;aix + 2 2;8% (k=1,...,r) are bounded nonnegative numbers
(cf. (3.1.1.1) in the proof of Lemma 3.1.1). Thus the claim follows. O
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By the above claim, we obtain

et -~ Iy o = o - I 1o |

: / © |1 = ln PO oy PO (Jor [ fior | exp(—g/2)) "2
X

</ |1_ |s01|17(y1—z1)...|@Z|P(y1—ﬂcz)|M:DQ
X(C)

for (x1,...,21), (y1,...,y) € ®. Thus the first assertion follows from the following
Lemma 3.2.2.

For the second assertion, note that lim, o [|@7" - @) |g,zr = [l@7" -
0 g,sup for (z1,...,2;) € ® (cf. [11, proof of Corollary 19.9]). Thus it follows
from the first assertion. O
LEMMA 3.2.2

Let M be a d-equidimensional complex manifold, and let w be a continuous (d,d)-
form on M such that w = v, where ) is a volume form on M and v is a non-

negative real-valued continuous function on M. Let ¢1,...,pq be meromorphic
functions such that @;’s are nonzero on each connected component of M. Then
r1 l
1 1
T
Proof

Clearly we may assume that M is connected. Let pu: M’ — M be a proper bimero-
morphic morphism of compact complex manifolds such that the principal divisors
(1*(p1)),-- -, (u*(¢1)) are normal crossing. Note that there are a volume form
on M’ and a nonnegative real-valued continuous function v/ on M’ such that
w*(w) =/, Moreover,

/uwm@wmm<wl /h—mw~wﬂ
M’

Thus we may assume that the principal divisors (¢1),...,(p;) are normal cross-
ing. Here let us consider the following claim.

CLAIM 3.2.21
Let p1,...,p; be meromorphic functions on

Ad:{(zl,...,zd)e(cd‘|z1|<1,...,\zd|<1}

ci |

such that p; = 27
vanishing holomorphic functions on {(z1,...,24) € C4||z1| <1+46,...,]z4| <1+
0} for some 6 € Rsg. Then

czgteuy (1=1,...,1), where cj; € Z and the u;’s are nowhere

—=1\d
iim [ el (Y5) da Ada A Adzandza =0
(11,...,Il)—>(0,..,70) Ad 2
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Proof
If we set y; = Zi:l ¢jiti, then
1™t fepr|[™ =z - [zal ¥ Jua [ - ] ™

Thus, if we put z; = r; exp(v/—16;), then

N
/ |17|901‘ZI"‘|801|I’|(?) dzi NdZi N -+ Ndzg N dzg
Ad

:/ ‘rl .. 'Td
([0,1]x[0,27])<
— riﬂ“ . -1";+y‘l|u1|zl o g | dri NdOy A - Ndrg A dby.

Note that 7™ -l T8 gy [#1 - oy |*t — 7y ---rg uniformly, as (z1,...,7;) —
(0,...,0), on ([0,1] x [0,27])¢. Thus the claim follows. a

Let us choose a covering {U;}7, of M with the following properties.

(a) For each j, there is a local parameter (ws,...,wq) of U; such that U;
can be identified with A? in terms of (w1, ...,wg).
(b) We have Supp((¢;)) NU; C{ws ---wq =0} for all ¢ and j.

Let {p;}’_; be a partition of unity subordinate to the covering {U;}/_,. Then

N
/M\l — |p1]™ --~|<,0l|’“]w=;/M|1 — o1t " pjew.

Note that there is a positive constant C; such that

N
piw<C; (T) dwy Adioy A -+ A dwg A didg.
Thus the lemma follows from the above claim. O
3.3. Compactness theorem

Let H be an ample arithmetic R-Cartier divisor on X. Let I' be a prime divisor
on X, and let gr be an F-invariant I'-Green function of C°-type such that

/ grei(H)h =

o

_2deg(H"-(1,0))
[K:Q
for each o € K(C). We set I = (I', gr). Note that

Te mco (X)]R and d/e\g(ﬁdil . f) =0

(see Section 0.10(4)). Moreover, let C§(X) be the space of Fy-invariant real-
valued continuous functions 7 on X (C) with [y ne1 (H)41=0.

The following theorem will provide a useful tool to find an element of
I'X(X,D).
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THEOREM 3.3.1

Let X be the set of all prime divisors on X. For an arithmetic R-Weil divisor
D of CO-type (cf. Section 0.10(4)), we set

(D) = {(a.m) e RXD) & CY(X) | D+ Y acT + (0,1) = 0},
T
where R(X (M) is the vector space generated by X over R (cf. Section 0.10(5)).
Then Y (D) has the following boundedness.

(1) For each T € X1, {ar}(amerm) is bounded.
(2) For each o € K(C),

[6 Fd_l}
{/x ner( ) o erm)

o

is bounded.

Proof
We set D = (Ydrl',g). Here we claim the following.
CLAIM 3.3.1.1
(1) For all (@,n) € Y(D) and ' € X,
— A — —d—1
% fX(C) gci (H)/\d ! + ZF’GX(l)\{F} dF' deg(H : (F/a O))
deg(H""-(I",0))
(2) For all (@,n) € Y(D) and o € K(C),

D,0)) —/ngcl(ﬁ)d_l S/ ney(H)4 1,

XU‘

—dr <ar <

2deg(H" - (

(K : Q]

Proof
(1) The first inequality is obvious because —dr < ar for (a,n) € Y(D) and T' €
XM Moreover, for I" € X1,

1 =

0=deg(@" ' T
T F 1 T\ Ad—1
= deg(H . (F ,0)) + 5 gp/cl(H) .
X(C)
Thus, as Y v ar-gr +n+ g > 0, we have

Zar‘/ d/.c%(ﬁd_l . (F/, 0))
F/

——d—1 1 T\ Ad—
§;ap/deg(H .(1“’,0))+5/}((@(Zarfgrf+n+g)01(H)Ad !

I

— 1 -
= Zapl (deg(Hd E (I'",0)) + 5/ grfcl(H)Adﬂ)
= X(C)
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1 — 1 ———
+_/ ncl(H)Ad 1+_/ gcl(H)/\d 1
2 /x© 2 Jx©

1 _
= _/ gcl(H)/\d717
2 Jx(©

and hence

ar deg(A"" - (I,0))

1

= 3 apdeg(@(L0)+ Y (—ar)deg(H(1,0))
rex® e X M\{I'}
é %/ gCl(H)/\d_l + Z dF/ g&%(ﬁd_l . (FI,O))
X(C) V2T

for all I'; which shows the second inequality.
(2) Since ) parl’+ D >0, we obtain

0<deg(H"". T+ D,0

f( (Sar ))

=Y ardeg(H"" - (I,0)) + deg(H" " - (D,0)).
r

Therefore, as

gl —2deg(H''(1,0))
/)(achl(H) = [KQ] )

0< /X (XF:GFQF +n +9>61(F)d_1

o

__erard/e\g(ﬁd_l(r,o)) o ()41 o ()1

_ s +/ch1<H) +/ngl<H)
2deg(*" - (D,0)) _— ———

<2 +/XU7761(H) +/ngc1<H> ,

as required. O

By Claim 3.3.1.1(1), {ar} 4 ,)ex(p) is bounded for each I'. Further, by (2), there
is a constant M such that

/ nei(H) 1 > M
Xo
for all (a,n) € Y(D) and ¢ € K(C), and hence

M< / pa(@it= Y - / ney ()1 < (#(K(C)) — 1)(— M),

Xo o' €K(C)\{o}

as desired. O
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COROLLARY 3.3.2
Let A be a finite set, and let {Dx}rea be a family of arithmetic R-Weil divisors
of C*°-type with the following properties:

(a) d/eg(ﬁdil D)) =0 for N\€ A;
(b) for each X\ € A, there is an Fu-invariant locally constant function py
such that

c1(Dx) Aer(H) 72 = prea (H)M7
(c) {Dx}xen is linearly independent in WDivee (X)r.
Then, for D € mco (X)wr, the set

{a € R(A) ’ D+ g\al\ﬁ/\ > O}

is conver and compact.

Proof

The convexity of the above set is obvious, so we need to show compactness. We
pose more conditions on the I'-Green function gr; that is, we further assume that
gr is of C®-type and ¢1(T') A1 (H)N=2 = vpey (H)! for some locally constant
function vr on X (C). Note that this is actually possible. We set

Ex = {f :X(C)—=R ’ ¢ is locally constant, F.-invariant and Z o = 0}.
ceK(C)

Then there are ayr € R and &) € Zx such that

D)= Z axrl + (0,€))
T

for each A. Therefore,
S = (T )+ S
A r A A
Let us consider a linear map
T:R(A) - R(XM) @2y
given by T(a) = (T1(a),Tz(a)), where
Ti(@r=) aar TeXW) and  Tha)=) aré.
A A

Then T is injective. Indeed, if T'(a) =0, then
ZaAa,\p:() (VF) and Za,\f,\zo.
A A

Thus >, a>Dy =0, and hence a = 0. Since A is finite, we can find a finite subset
A’ of XM such that the image of T is contained in R(A’) ® Zx. Moreover, by
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Theorem 3.3.1, Y(D) N (R(A’) @ Zx) is compact. Thus

{aer@) ’ D+ axDy >0} =77 (Y(D) N (R(N) &Ex))
AEA

is also compact. O

COROLLARY 3.3.3

Let ¢1,...,¢; be R-rational functions on X (i.e., ¢1,...,¢ € Rat(X)g ), and let
D = (D, g) be an arithmetic R-Cartier divisor of C°-type on X. If

O ={(ar,...,a)) R |} - € TX(X, D)} #0,
then there exists (by,...,b;) € ® such that

b .
||80111 w0 | g,sup = inf {H‘»O(lll ""P?l”g,sup}-
15000,07) €D

(a
Proof
Clearly we may assume that ¢1,...,¢; are linearly independent in Rat(X)g.
Replacing g by g+ A (A € R) if necessary, we may further assume that

{(ar,...,a) €R |- o € TX (X, D)} #0.
We denote the above set by d. As

~

©={(ar,...,a1) €[]t )" [lgsup < 1},

we have

inf e o g sup b = inf T o g sup +-
N OO L P S T (2t P
On the other hand, d is compact by Corollary 3.3.2. Thus the assertion of the
corollary follows from Proposition 3.2.1. |

3.4. Dirichlet’s unit theorem on arithmetic curves

We assume d = 1, that is, X = Spec(Og). In this subsection, we would like to
give a proof of Dirichlet’s unit theorem in the flavor of Arakelov theory (cf. [23]).
Of course, the contents of this subsection are nothing new, but it provides the
background of this paper and a usage of the compactness theorem (cf. Corol-
lary 3.3.2). The referees point out that Chambert and Loir give a similar proof
based on a certain kind of compactness in [4, Section 1.4, D]. Let us begin with
the following weak version of Dirichlet’s unit theorem, which is much easier than
Dirichlet’s unit theorem.

LEMMA 3.4.1

Oy is a finitely generated abelian group.

Proof
This is a standard fact. Indeed, let us consider a homomorphism L : O — RE(©)
given by L(z), =log|o(x)| for o € K(C). It is easy to see that, for any bounded
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set B in RX(©) the set {x € O} | L(x) € B} is a finite set. Thus the assertion of
the lemma is obvious. O

We denote the set of all maximal ideals of O by M. For an R-Cartier divisor
E =3 pe, epP on X, we define deg(E) and Supp(E) to be

deg(E) = Z eplog(#(Ok/P)) and Supp(E) :={P € Mg | ep #0}.
PeMk

LEMMA 3.4.2
For a constant C, the set {F € Div(X) | E >0 and deg(F) < C} is finite.

Proof
This is obvious. O

LEMMA 3.4.3
If we set K = {x € K* | Supp((x)) C X} for a finite subset & of Mg, then K
s a finitely generated subgroup of K*.

Proof

Let us consider a homomorphism « : Ky — Z* given by a(z)p = ordp(z) for
P e 3. Then Ker(a) = Oj;, and the image of « is a finitely generated. Thus the
lemma follows from the above weak version of Dirichlet’s unit theorem. g

LEMMA 3.4.4

We set Ci =log((2/m)"2\/|dk ql), where ro is the number of complex embed-
dings of K into C and dg g is the discriminant of K over Q. If d/eg(ﬁ) >Ck
for D€ 6;/()(), then there is x € K* such that D + (JJ/\) >0.

Proof
This is a consequence of Minkowski’s theorem and the arithmetic Riemann—Roch
theorem on arithmetic curves. d

The following proposition is a core part of Dirichlet’s unit theorem in terms
of Arakelov theory and can be proved by using the arithmetic Riemann—Roch
theorem and the compactness theorem (cf. Corollaries 3.3.2, 3.3.3). As a corollary,
it actually implies Dirichlet’s unit theorem itself (cf. Corollary 3.4.7).

PROPOSITION 3.4.5
Let D= (D, g) be an arithmetic R-Cartier divisor on X. Then the following are
equivalent:

(i) deg(D)=0,
(ii) 26 PDiv(X)g,
(iii) deg(D)=0 and 'y (X,D)#0.
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Proof

(iii) = (ii). By our assumption, D + z > 0 for some z € @(X)R. If we set
E =D + 2, then E is effective and d/e\g(E) = d/e\g(ﬁ) + d/eg(z) =0. Thus £ =0,
and hence D = —z € P/DF/(X)R.

(ii) = (i). This is obvious.

(i) == (iii). First of all, we can find g, ...,0q0 € Rsgand Dy, ...,D; € 51;(X)
such that D = a1 Dy + -+ + a;D; and deg(D;) =0 for all i. If we can choose
Y; € fﬁ (X, D;) for all i, then ¢ - € fﬁg (X, D). Thus we may assume that
D € Div(X) in order to show (i) = (iii). For a positive integer n, we set

QCK )
n|K:Q]/"
Since gc%(nﬁn) = Ck, by Lemma 3.4.4, there is z,, € K* such that nD,, +
(x/:) > 0. In particular, nD + (z,) >0 and

deg(nD + (z,)) < deg(nDy, + (2n)) = O
Thus, by Lemma 3.4.2, there is a finite subset X’ of My such that
Supp(nD + (z,)) €%’

for all n > 1. Note that Supp((z,)) € Supp((zy)+nD)USupp(D). Therefore, we
can find a finite subset ¥ of My such that z,, € K for all n > 1. By Lemma 3.4.3,
we can take a basis ¢1,...,ps of K¢ ®z R over R. Then, by Corollary 3.3.3, if
we set

En:EJr(O,

®={(a1,...,as) ER® | f* - % €T (X,D)},
there exists (c1,...,cs) € @ such that

5t 0% |l g,sup = (al,..i.r,li)e@{”‘p(lh w02 g sup I

that is, if we set ¢ = 7" -~ ¢g*, then (|| g sup = inf¢er§ (X,D)N (K ®ZR){||¢||g,sup}-

On the other hand, as D,, + (x}/n)R >0, we have 23/ " € TX (X, D) N (KJ @z R)
and HSE}/an,sup < exp(Cx/n[K : QJ), so that [[¢[lgsup < exp(Cr/n[K : Q]) for
all n >0, and hence [[9)|g sup < 1, as required. O

As corollaries, we have the following. The second one is nothing more than a
form of Dirichlet’s unit theorem.

COROLLARY 3.4.6
Let D= (D,g) be an arithmetic R-Cartier divisor on X. Then there exists 1) €
'z (X,D) such that

[9llg,sup = inf{| ¢l gsup | ¢ € T (X, D)}
Proof

Clearly if the assertion holds for D, then it does also for D + (0,¢) for all ¢ € R.
Thus we may assume that deg(D)=0. We set D=3 pc,, dpP. Then, for
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¢ € T; (X, D), by using the product formula (3.1.2.1) in Remark 3.1.2,
I 16loexp(-g,/2)= ] #(Ox/P)rdr@Fdr 1,

ceK(C) pPex®
and hence ||¢||g,sup > 1. On the other hand, by Proposition 3.4.5, there is ¢ €
I'z (X, D) with [[¢]|g,sup < 1, as required. O

COROLLARY 3.4.7 (DIRICHLET’'S UNIT THEOREM)
Let € be an element of RE(©) such that

Y &=0  and & =& (VoeK(C)).

Then there are uy,...,us € OIX( and ay,...,as € R such that
50:a110g|u1|0+"'+aslog|us|0
for all 0 € K(C), that is, (0,£) + (a,1/2)(u/1\)—|—--~+ (as/2)(u/s\) =

Proof
Since deg((O €)) =0, by virtue of Proposition 3.4.5 and Lemma 1.1.1(1), there are
ay,...,a, e R and uy,. o Us € K> such that af,...,al are linearly independent

over Q and (0,6) = al(ul) +--+4a (us) We set ( i) = 22:1 o Py, for each j,
where o, € Z and Py,... ,Pl are distinct maximal ideals of Og. Then

O:a/l(ul) ++a;(us) = (Za;ajl)Pl + -+ (Za}aﬂ)PZ.
=1 =1

j= j=
Thus Z] 1 ]a]k =0 for all k£, and hence a]k =0 for all j,k, which means that
U1, ..., us € Of. Therefore, if we set a; = j, then the corollary follows. 0

REMARK 3.4.8

Similarly, the finiteness of Div(X)/PDiv(X) is also a consequence of Lem-
mas 3.4.2 and 3.4.4 (cf. [23]). Indeed, if we set

©={EecDiv(X)| E>0and deg(E) < Ck},

then O is a finite set by Lemma 3.4.2. Thus it is sufficient to show that, for
D € Div(X), there is € K* such that D + (z) € ©. Since

— 2(Ck — deg(D))
deg(D, ————> ) =C
eg( ) [K . Q} ) K>
by Lemma 3.4.4, there is € K* such that (D, %) + (x/\) >0, that

is, D+ (x) >0 and log|z|, < Q‘[_Kding](D) for all 0 € K(C). By using the product
formula,

deg(D
deg(D + (z)) = deg(D +Zlog|x\o<deg JFZCKieg()i

K:Q] O

Therefore, D + (x) € ©, as required.
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3.5. Dirichlet’s unit theorem on higher-dimensional arithmetic varieties
In this subsection, we will give a partial answer to the fundamental question as an
application of the Hodge index theorem. First we consider the case where d = 1.

PROPOSITION 3.5.1
We assume d =1, that is, X = Spec(Ok). For an arithmetic R-Cartier divisor
D on X, the following are equivalent:

(i) D is pseudoeffective;
(i) deg(D) > 0;
(iii) Ty (X,D)#0.

Proof
(i) = (ii). Let A be an ample arithmetic Cartier divisor on X. Then D + €A is
big for any e > 0; that is, d/e\g(ﬁ—i— €A) > 0. Therefore, d/e%(ﬁ) >0.

(il) = (iii). If d/e\g(ﬁ) > 0, then the assertion is obvious because H°(X,
nD) # {0} for n>> 1, so that we assume d/%(ﬁ) =0. Then D € P/])TV(X)]R by
Proposition 3.4.5.

(iii) = (i). This is obvious. O

To proceed with further arguments, we need the following lemma.

LEMMA 3.5.2

We assume that X is regular. Let us firx an ample Q-Cartier divisor H on X.
Let P1,...,P, €Spec(Ok), and let Fp,,...,Fp, be prime divisors on X such that
Fp, Cn=Y(P) for alli. If A is an ample Q-Cartier divisor on X, then there is
an effective Q-Cartier divisor M on X with the following properties:

(a) Supp(M) Cr~H(P)U---Un'(P);

(b) A—M is divisorially m-nef with respect to H, that is, deg (A—M-T) >0
for all vertical prime divisors T' on X (cf. Section 2.2);

(¢) degy(A— M- F)=0 for all closed integral integral curve F on X with
FCr Y P)U---Un~Y(P) and F # Fp, (Vi).

Proof
Let us begin with the following claim.

CLAIM 3.5.2.1
Let W’l(Pk) =a1F1 + - + a, F, be the irreducible decomposition as a cycle,
where a; € Zso. Renumbering Fi, ..., F,, we may assume Fp, = Fy. Then there

are x1,...,T, € Qso such that if we set My =x1Fy + -+ +x, F,, then degy (A —
My - F1) >0 and degp(A— My, - F;) =0 fori=2,...,n.

Proof
By Lemma 2.2.1, there are z1,...,x, € Q such that
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degy (Fy - Fy) degy(Fo-Fy) -+ degy(Fy-F,) 1
degy (Fp-F1) degy(Fyn-Fy) -+ degy(Fy-Fy) Tn
degH(A-FQ)
degH(A'Fn)

Replacing x; by z; + ta;, we may assume that x; > 0 for all i. We set M} =
x1Fy 4+ -+ x,F,. Then degy (A — My - F;) =0 for all i =2,...,n. Here we
assume that degy (A — My, - F1) <0. Then

0<degy(A-F)<degy (M- F1),

and hence

degpy (Mg - My) = x;degy (M, - Fy)

i=1

= zydegy (M - F1) + Zl‘i degy (A - F;) > 0.

i=2
This contradicts Zariski’s lemma (cf. Lemma 1.1.4). O
Let My,..., M, be effective Q-Cartier divisors as in the above claim. If we set

M =M+ + M,
then M is our desired QQ-Cartier divisor. O

The following theorem is a partial answer to the fundamental question.

THEOREM 3.5.3
Let D be a pseudoeffective arithmetic R-Cartier divisor of C°-type. If d >2 and
D is numerically trivial on Xq, then Iy (X, D) # 0.

Proof
Let us begin with the following claim.

CLAIM 3.5.3.1

We may assume that X is regular.

Proof
By [6, Theorem 8.2], there is a generically finite morphism p : Y — X of projective
arithmetic varieties such that Y is regular. Clearly we have the following:

D is pseudoeffective = * (D) is pseudoeffective,

D is numerically trivial on X¢ => p*(D) is numerically trivial on Yg
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because \781(;[" (L)) > ;(;l(f) for any arithmetic R-Cartier divisor L of C%-type on
X. Let ﬁincur(X )r be the vector space over R consisting of pairs (D,T'), where
D is an R-Cartier divisor D and T is an Fi.-invariant (0,0)-current of real type.
We can assign an ordering > to ﬁ/cur(X)R in the following way:

(D1,T1) > (D3, Ty) <= Dy > Dy and T} > T.
In the same way, we can define DivCur(Y)R and the ordering on Dich(Y)R. Let
s Diveur (Y)r = Divew (X)r
be a homomorphism given by (D, T) = (1+(D), 1+ (T)). Let
N :Rat(Y)* — Rat(X)™
be the norm map. Then it is easy to see the following:

e (¢ )=_( N () )) for ¢ € Rat(Y)*,

s (¥ (D)) = deg(Y — X)D forDeDlvco(X)
(D1,Ty) > (Dz,Tz) = 114 (D1,T1) > ps (D2, T5).

The first equation yields a homomorphism
11 : PDiv(Y)g — PDiv(X)z.

Thus the claim follows from the above formulae. O

First of all, by Theorem 2.3.3, Dg € PDiv(Xg)r. Thus there are z € P/DF/(X)R7
a vertical R-Cartier divisor F, and an F-invariant continuous function 7 on
X (C) such that D =z + (E,n).

CLAIM 3.5.3.2
We may assume the following.

(a) E is effective.

(b) There are Pi,...,P, € Spec(Ok) such that Supp(E) C 7= 1(P)U---U
(R,

(c) For eachi=1,...,1, there is a closed integral curve Fp, on X such that
Fp, Cn Y(P,) and Fp, Z Supp(E).
Proof
Clearly we can choose Pi,..., P, € Spec(Ok) and fi,...,[5 € R such that if we
set B' = E+ Bin Y(P)+ -+ Bim~1(P,), then E’ satisfy the above (a), (b), and
(¢c). Moreover, since the class group of O is finite (cf. Remark 3.4.8), there are
n; € Zwo and f; € O such that n; P, = f;Ox. Thus Bin =Y (Py)+---+ B Y (P) €
PDiv(X)g, and hence the claim follows. |

Note that (E,n) is pseudoeffective by Lemma 2.3.4. By Lemma 2.3.5, there is
a locally constant function A on X(C) such that (E,n) > (E,\) and (E,\) is
pseudoeffective. Let us fix an ample arithmetic Cartier divisor H = (H,h) on X.
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Then, by Lemma 3.5.2, there is an effective vertical Q-Cartier divisor M such
that

degy(H—M-E)=0 and degy(H—M-T)>0

for all vertical prime divisors I'.

CLAIM 3533
There is a constant ¢ such that if we set h' = h+c, then

d/e\g((H - M, h/) 'ﬁd72 : (F,O)) 20

for all horizontal prime divisors I' on X.

Proof
Note that geTg((H, h) 7 (T',0)) > 0. Thus it is sufficient to find a constant c

such that
deg((M,—c) - H'™*-(1,0)) <0

for all horizontal prime divisors I" on X. We choose Q1,...,Qm € Spec(Ok) and
Qt,...,am € Ryg such that M <> a;771(Q;). We also choose a constant ¢
such that

c[K:Q] > Zai log #(Ok /Q:).

i=1

Then
deg((M,—c) - H'*(T,0))
<C/1(%(<§:ai771(621)7_c> Hdiz (F70)>
=1
m d Hd—2 .T
<30 e T tog O Q) —caes(H P TQ) <0,

Let L = (L,k) be an effective R-Cartier divisor of C°-type. Then, since
deg((H — M) - H" - (L,0) >0
by the above claim, we have

deg((H — M,1) - H ™% (L, k))

: (ka))

> deg((H — M, 1) -H"*

In particular,
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because (E,\) is pseudoeffective. Note that

deB (I — M) - T (B ) = §<U§<@ ) J

Therefore, ZaeK(C) As > 0, and hence, by Proposition 3.5.1, there are uq,...,

— —

us € K* and 71,...,7s € R such that 1 (u1) + - + vs(us) < (0,A). Thus

— —

D=2+ (E,n)>2+(0,\)>z+v1(ur) + - +vs(us). O

COROLLARY 3.54
If d=2, D is pseudoeffective and deg(Dg) =0, then the Zariski decomposition
of D exists.

3.6. Multiplicative generators of approximately smallest sections

In this subsection, we define a notion of multiplicative generators of approxi-
mately smallest sections and observe its properties. It is a sufficient condition to
guarantee the fundamental question (cf. Corollary 3.6.4). Let D be an arithmetic
R-Cartier divisor of CO-type on X. Let us begin with its definition.

DEFINITION 3.6.1

We assume that 1"6 (X,D) #0. Let ¢1,...,¢; be R-rational functions on X (i.e.,
©1,...,¢01 € Rat(X)g ). We say ¢1,..., ¢ are multiplicative generators of approx-
imately smallest sections for D if, for a given € > 0, there is ng € Zs such that,
for any integer n with n > ng and I'*(X,nD) # (), we can find ay,...,a; ER
satisfying ¢{*--- ¢ € I'y (X,nD) and

o5t - of lng,sup < € min{||¢||ng,sup ‘ eI (X, nD)}
First let us see the following proposition.

PROPOSITION 3.6.2
We assume that 1‘6 (X,D)#0. Let 1, ..., be R-rational functions on X. Then
the following are equivalent:

(1) ¢1,...,¢1 are multiplicative generators of approximately smallest sec-
tions for D;
(2) there are xq,...,x; € R such that ¢i*--- o' € '3 (X,D) and

let o lg.sup < E{[[fllgsup | F €T (X, D)}

Note that if we set ¢ = 7" --- )" in (2& then ¢ forms a multiplicative generator
of approzimately smallest sections for D.

Proof
It is obvious that (2) implies (1), so we assume (1). Let m be a positive integer
with T'*(X,mD) # (. Here, let us check the following claim.
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CLAIM 3.6.2.1
We have that limy,—s oo (min{ || Al nmg sup | B € T (X,nmD)})/"™ ezists and

Jim(min{ A llnmg.sup | B €TX(X, nmD) )" = inf {| fllgup | F €TZ(X,D)}.

Proof
If we set

an =min{||h|lnmg.sup | B € T*(X,nmD)},
then a, n < apay for all n,n’ > 0. Thus it is easy to see that lim, o at/™ =
. 1/n .
inf,~o{an""}, which means

1/nm

. . x
nh_}n;@(mln{”hﬂnmg’sup | heT*(X,nmD)})
: : 1/nm
= %I;%{mln{”h /mm g sup | B € DX (X, nmD)}}.
On the other hand, by Lemma 3.1.1(3),

I3 (X, D) =T5(X,mD)"/™ = J I(X,nmD)"/"™,
n>0

and hence the claim follows. O

By Corollary 3.3.3, there exist z1,...,2; € R such that if we set
®={(ar,....,a) ER | p{* -+ o €TF (X, D)},
then (z1,...,2;) € ® and

lgsup = nf_ {leT - 0 g up }-

e s
||§01 #1 (a1,...,a;)EP

On the other hand, by definition, for a given € > 0, there is ng € Z~¢ such that, for
any integer n > ng, we can find ¢1,..., ¢ € R satisfying 7" -+ 7' € Iy (X, nmD)
and

||</7§1 ’ "‘plCl Hnmg,sup <en min{Hh”nmg,Sllp | hel™ (X, an)}'
Thus, as (¢1/nm,...,c;/nm) € D,

c1/nm ci/nm

||§0T1 "'@fl ”g,sup < ”‘Pl ”g,sup

< e (min{ {2l nmg.sup | 2 € T (X, nmD)}) /™"
for n > ng. Therefore, by Claim 3.6.2.1,
lod @ llgusup < € lim (min{||Allnmg.sup | h € DX (X, nmD)})/"™
= e“inf{||fllgsup | f €T (X, D)}

Thus (2) follows because € is arbitrary. O

By Corollary 3.4.6, if d =1, then we can find ¢ € 'y (X, D) such that
%1l g,5up = inf{ ¢l g,5up | ¢ el (X, D)}
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Note that the above v yields a multiplicative generator of approximately smallest
sections. The same assertion holds if we assume the existence of multiplicative
generators of approximately smallest sections.

THEOREM 3.6.3
We assume that I‘@ (X,D)# 0. If D has multiplicative generators of approxi-
mately smallest sections, then there exists 1 € I'y (X, D) such that

19l g,sup = inf{H(ng,SHp | ¢ ey (X, D)}

Proof
By Proposition 3.6.2, it is sufficient to see the following inequality:
(3.6.3.1) nf{[|fllg.sup | £ €TH(X, D)} <inf{[|¢llgsup | ¢ € Tx (X, D)}
Let ne Fé (X,D), D' =D + (n), and let ¢’ = g — log|n|?>. Then
Iy(X, D) ={f/n| feTy(X, D)},

Iz (X, D) ={¢/n| ¢ €T (X, D)},
1¢/mllg" sup = 6llg.sup  for ¢ € Ig (X, D),

and hence

{inf{llf’llgzsup | f" € Tg(X, D)} = inf{|| fllg,sup | f € Tg(X, D)},
inf{]|¢llg sup | ¢ € T (X, D)} = inf{[|llg,sup | ¢ € T (X, D)}.
Therefore, in order to see (3.6.3.1), we may assume that D is effective; that is, if
we set D => drT, then dr >0 for all T.

Let ¢ be an arbitrary element of I'y(X,D). Then we can find fi,...,
fr ERat(X)(S and ai,...,a, € R such that ¢ = f*--- f% and ay,...,a, are
linearly independent over Q. Let S be the set of codimension one points of

Ui=: Supp((fi))-

CLAIM 3.6.3.2
If € is a positive number, then ordp(qzﬁl/(l“'e)) +dr >0 forallT €5.

Proof

It is sufficient to show that ordr(¢) + (1 + €)dr > 0 for all T" € S. First of all,
note that ordr(¢) + dr > 0. If either ordr(¢) > 0 or dr > 0, then the assertion is
obvious, so that we assume ordr(¢) <0 and dr = 0. Then

ordr(¢) =ayordr(f1)+---+a,ordr(f,) =0,
which yields ordr(f;) =--- =ordr(f,) =0. This is a contradiction because I" € S.
O
As ¢t/(+e) = f{“/(HE) e ffr/(lﬂ), by Claim 3.6.3.2, we can find § > 0 such that
T fE e TR (X, D) for all (21,...,2,) € R” with
lz1 —a1/(14+€)|+ -+ |z, —a. /(14 €)] <9
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We choose a sequence {t, = (tn1,---,tnr) 102, of Q" such that
tn1 — a1 /(A4 €)| 4 + [tnr —ar/(1+€)[ <0
and lim, oo t, = (a1/(1+€),...,a,/(1 +¢€)). Then
mf{ || fllgsup | FE€THD)} <A™ i lgsup
because f{"' .- finr € 1“6 (X, D). Thus, by using Proposition 3.2.1, we obtain
it {[|fllg.sup | £ €T (X, D)} < 16| g sup,

which implies inf{|| f[|g sup | f € Ty (X, D)} < |9llg,sup by Proposition 3.2.1 again.
Therefore, we have (3.6.3.1). O

As a corollary, we have the following.

COROLLARY 3.6.4
We assume the following:

(1) fé(X,E—l— (0,€)) # 0D for any € > 0;

(2) D has multiplicative generators of approvimately smallest sections.
Then T} (X, D) #0.
Proof
By the above theorem, there exists ¢ € I'; (X, D) such that
19l g,sup = inf{ 9l g.sup | ORS Fﬁ (X, D)}

Since fa) (X, D+ (0,€)) # 0, we can find ¢ € T (X, D) with [|¢]|g.sup < e/?, and
hence [|9]|g.sup < €/2. Therefore, [|1]|g.sup < 1, as required. O

REMARK 3.6.5
(1) We assume that D € Div(X)g. Then I'j(X, D) is dense in I'g (X, D); that
is, for fi'*--- fir € Tg (X, D) with ay,...,a, €R and fi,..., f, € Rat(X)g, there
is a sequence {(ain,...,am)}o2; in Q" such that fi*» ... fim € Ty (X, D) and
limy, o0 (@1p,---,arn) = (a1,...,a,). In particular, I’@ (X,D) # 0 if and only if
I'z(X,D) # 0. This fact can be checked as follows. Clearly we may assume
that ay,...,a, are linearly independent over Q. Let S be the set of codimension
one points of |J, Supp((f;)) and D =" drI' (dr € Q). If (Qa; + --- + Qa,) N
Q = {0}, then it is easy to see that ordp(fi*---f%)+dr >0 for all T € S.
Thus the assertion follows. If (Qa; + -+ 4+ Qa,) NQ = Q, then we may assume
that a1 € Q and (Qaz + -+ + Qa,) N Q = {0}. Thus, as before, we can find a
sequence {(agn,- -, arn) 2y in Q" such that fo>" - firn e Tg (X, (fi*) + D)
and lim, o0 (a2, - . -, arn) = (a2, ..., a,), as required.

(2) The assertion of (1) does not hold in general. For example, let
PL = Proj(Z[Ty, T]) and a € Rog \ Q. Then IZ(X,a(T}/Ty)) # 0 and T(X,
a(Ty/Tp)) = 0. Indeed, 2* € I'y (X, a(T1/Tp)), where z = Ty/T;. Moreover, if
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[ (X,a(T1/Ty)) # 0, then there are n € Zxg and f € Q(z) such that (f) > na(z).
In particular, f € Qz], so that we can set f(z) = ZE:S c;2', where 0 < s <t,

¢s # 0 and ¢; # 0. Note that ordg(f) = s and ordeo (f) = —¢. Thus na < s <t < na,
and hence na = s =t. This is a contraction because a € R+¢ \ Q.

Finally let us consider a sufficient condition for multiplicative generators of
approximately smallest sections. Let us fix an F-invariant continuous volume
form 2 on X with fX((C) Q= 1. We assume that I'7) (X, D) # 0. The natural inner
product (, ), 5 on H°(X,nD)®R is given by

{(0,0) g = /X(C) pvexp(—ng)Q (¢, € H(X,nD)).

For ¢1,...,¢1 € HY(X,D) and A = (ay,...,a;) EZZZO, o)t is denoted by
@ for simplicity. Note that ¢ € H°(X,|A|D), where |A| =a; +---+a.

DEFINITION 3.6.6

We say ¢1,...,¢1 € H'(X, D)\ {0} is a well-posed generator for D if, for n >
1, there is a subset X, of {A= (a1,...,a;) €ZLy| a1 + -+ a, =n} with the
following properties: -

(1) {4 ]| A€ x,} forms a basis of H*(X,nD)® Q over Q.
(2) Let (94| A€ %,)z be the Z-submodule generated by {¢?|Ac,} in
H°(X,nD), that is, (p® | A€ Xp)z = 4c5, Ze™. Then

limsup(#(H(X,nD)/(p* | A€ 5,)2)) /"

n— o0
(3) For a finite subset {t1,...,1,} of H*(X,nD)g, the square root of the

Gramian of 1, ...,%, with respect to (, ), 15 is denoted by vol({#1,...,¢.}) (for
details, see Section 0.10(6)). Then

lim inf min{ ( vol({¢” | B€ X,}) )1/n
S (o), pvol({9? | BE .\ {A}})

=1

Aes, )=t

PROPOSITION 3.6.7

We assume that D is of C™-type. If ¢1,...,1 € H*(X, D)\ {0} are well-posed
generators for D, then o1,...,¢; are multiplicative generators of approzimately
smallest sections for D.

Proof
For a given € > 0, we set € = ¢/6. First of all, there is a positive integer ng such
that

rp =#(H(X,nD)/(p* | A€ 2,)z) < e
and
vol({pB | B€ £,}) o
(pt et)vol({? | Be X, \{A}}) —
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for all n >ng and A € X,,. Let W4 be the subspace generated by {th}Begn\{A}
over R. If A4 is the angle between ¢ and Wy, then, by Lemma 1.1.2,

vol({¢” | B € 5,})
(A, o) vol({p? | Be T, \ {A}})

sin(f4) =

and hence

cos(04) = /1 —sin?(04)

<V1—e 2 <1 (1/2)e 2

for all A €3, because /1 —x<1—(1/2)z for z €[0,1]. Let y € Wy, and let 0
be the angle between ¢4 and y. Then, as 64 < min{f,7 — 6},

(™, y)| < cos(B4)4/ (@2 @)/ (1, y)
< (1= (1/2)e72) {2, 04/ (v, ).

Let ¢ € I*(X,nD). Then we can find as € Q (A € %,) such that ¢ =
ZAEZ" asp?. Note that rpas € Z for all A€ X,,. Let us choose Ay € ,, such
that as, # 0. We set y =3y \(a0) 0a@” Then ¢ = aa,¢™ +y. Since
e ‘aA0| > |T7LaAo| > 1’

(0,0) = a4, (90, 9) + 204, (0", ) + (y,9)

Ao

> ad, (@, ™) + (y,y) — 2|as,| - [, y)]

> CL,240 <‘PA0’(,DA0> + <y, y) — 2|CLA0| <¢Ao’¢Ao>\/@(l _ (1/2)672716')
= (1 - (1/2)6_2n€/)(|a,40| SDAO (pAO
+(1/2)e72 (%, (™. 0" + (y,1))
> (1/2)e7>" a%, (@™, ™) = (1/2)e" (" an,)* (9™, ™)
> (1/2)e74 (p*, o).

On the other hand, by Gromov’s inequality (cf. [21, Proposition 3.1.1]), choosing
a larger ng if necessarily, [|1]|2,, < €™ (¢,1) for all n > ng and ¢ € H*(X,nD).

sup —

Moreover, we may also assume that 2 < e for all n > ng. Thus, as H¢||§up >

(¢, 0),
e[| BlI2p = € (|62, > 267 (|92, > 267" (0, 0)
> 2™ ((1/2)e™4 (90, 0%0)) = " (9™, 0™) > o™ |2,
as required. O
EXAMPLE 3.6.8

Let P4 = Proj(Z[Tv, Tt, - - ., Ta)), H; = {T; =0}, and z; =T;/T, for i =0,1,...,d.
Let D = (Hp, g) be an arithmetic Cartier divisor of C*-type on P%. Moreover, let
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Q) be an F,.-invariant continuous volume form on P¢(C). We assume that there
are continuous functions a and b on R%O such that g(z1,...,24) =a(z1],---, |24l
and

/1N d
0= (?) b(|z1,. ., |za]) dzs AdZL A - Adzg A dZa.

Arithmetic Cartier divisors considered in [20] satisfy the above condition.
Here let us see that 1,21, ..., 24 are well-posed generators for D. We set
En:{(al,...,ad)ezcéo | a,1—|—--~—|—ad§n}.
Then {24} scx, forms a free basis of HO(P4, nHy). Moreover, if we set
zi =riexp(2nvV/—160;) (i=1,...,d),
then

d
(szzA/>ng = /Rd o (H 2r;4i+Ai+1 exp(2mv—1(A; — A;)))
>0 10T Ni=1

X exp(fna(rl, .. .,rd))b(rl, coyrq)dry - -drgdfy - dbg,
which implies (zA,zAl>ng =0 for A,A’ € ¥,, with A# A’, and hence

vol({z” | Be £, }) =/ (24, 24) vol ({2” | B€ £, \ {4}})

forall Ae X,.

Acknowledgments. 1 express my thanks to the referees for giving me several com-
ments and remarks.
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