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Abstract In this paper we continue our study of the moduli space of stable bundles

of rank two and degree 1 on a very general quintic surface. The goal in this paper is to

understand the irreducible components of themoduli space in the first case in the “good”

range, which is c2 = 10. We show that there is a single irreducible component of bundles

which have seminatural cohomology, and we conjecture that this is the only component

for all stable bundles.

0. Introduction

This paper is the next in a series, starting with [13], in which we study the moduli

spaces of rank two bundles of odd degree on a very general quintic hypersurface

X ⊂ P
3. This series is dedicated to Professor Maruyama, who brought us together

in the study of moduli spaces, a subject in which he was one of the first pioneers.

In the first paper, we showed that the moduli space MX(2,1, c2), of stable

bundles of rank 2, degree 1, and given c2, is empty for c2 ≤ 3, irreducible for

4≤ c2 ≤ 9, and good (i.e., generically smooth of the expected dimension 4c2−20)

for c2 ≥ 10. On the other hand, Nijsse [15] has shown that the moduli space is

irreducible for c2 ≥ 16 using the techniques of O’Grady [16] and [17]. This leaves

open the question of irreducibility for 10≤ c2 ≤ 15.

CONJECTURE 0.1

The moduli space MX(2,1,10) is irreducible.

We have not yet formulated an opinion about the cases 11≤ c2 ≤ 15.

In the present paper, due to lack of time and for length reasons, we treat a

special case of the conjecture: the case of bundles with seminatural cohomology,

meaning that only at most one of h0(E(n)), h1(E(n)), or h2(E(n)) can be nonzero

for each n. Let Msn
X (2,1,10) denote the open subvariety of the moduli space

consisting of bundles with seminatural cohomology. In Section 3 we show that

Kyoto Journal of Mathematics, Vol. 53, No. 1 (2013), 155–195

DOI 10.1215/21562261-1966107, © 2013 by Kyoto University

Received February 13, 2012. Revised July 23, 2012. Accepted August 8, 2012.

2010 Mathematics Subject Classification: Primary 14D20; Secondary 14J29, 14H50.
This research project was initiated on our visit to Japan supported by Japan Society for the Promo-

tion of Science Grant-in-Aid for Scientific Research (S-19104002).

http://dx.doi.org/10.1215/21562261-1966107
http://www.ams.org/msc/


156 N. Mestrano and C. Simpson

the seminatural condition is a consequence of assuming just h0(E(1)) = 5. The

main result of this paper is as follows.

THEOREM 0.2

The moduli space Msn
X (2,1,10) is irreducible of dimension 20.

Recall from [13] that our inspiration to look at this question came from the

recent results of Yoshioka, for the case of Calabi–Yau surfaces originating in [14].

Yoshioka [20] and [21] shows that the moduli spaces are irreducible for all positive

values of c2, when X is an abelian or K3 surface. His results apply, for example,

when X is a general quartic hypersurface. We thought it was a natural question

to look at the case of a quintic hypersurface, which is one of the first cases where

X has general type, with KX =OX(1) being as small as possible.

Remark on the difficulty of this project. We were somewhat surprised by the

diversity of techniques needed to treat this question. Much of the difficulty stems

from the possibilities of overdetermined intersections which need to be ruled

out at various places in the argument. This question is inherently very delicate,

because there is not, to our knowledge, any general principle which would say

whether the moduli space is supposed to be irreducible or not. On the one hand,

the present case is close to the abelian or K3 case, so it is not too surprising if

the moduli space remains irreducible; however, on the other hand, at some point

new irreducible components will be appearing, as has been shown by the first

author in [12]. So, we are led to analyze a number of cases for various aspects of

the argument. If any case is mistakenly ignored, it might hide a new irreducible

component which would then be missed.

A natural question to wonder about is whether “derived algebraic geometry”

could help here, but it would seem that those techniques need to be further

developed in order to apply to some basic geometric situations such as we see

here. Furthermore, each place in the argument where some case is ruled out

constitutes a possible reason for there to be additional irreducible components in

more complicated situations (such as on a sextic hypersurface). So, in addition

to the theorem itself, which only goes a little way into the range that remains

to be treated, much of the interest lies in the geometric situations which are

encountered along the way.

1. Notation and outline

Throughout the paper, X ⊂ P
3 denotes a very general quintic hypersurface, and

E is a stable rank two vector bundle of degree one∗ with determinant
∧2

E ∼=

∗This represents a change in notation from [13], where we considered bundles of degree

−1. For the present considerations, bundles of degree 1 are more practical in terms of Hilbert
polynomials. We apologize for this inconvenience, but luckily the indexation by second Chern

class stays the same. Indeed, if E has degree 1, then c2(E) = c2(E(−1)) as can be seen, for
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OX(1) such that c2(E) = 10. The moduli space of stable bundles in general has

been the subject of much work (see [3]–[6], [9]–[11], [14], [16], [17], [20], [21]),

but the special case MX(2,1,10) considered here goes into somewhat new and

uncharted territory.

Note that Pic(X) = Z is generated by OX(1). The canonical bundle is

KX = OX(1). For any n we have H1(OX(n)) = 0. For n ≤ 4 the map

H0(OP3(n))→H0(OX(n)) is an isomorphism.

The Hilbert polynomial of E is χ(E(n)) = 5n2. In particular, χ(E) = 0.

We will be assuming that E is general in some irreducible component of the

moduli space. From the previous paper [13] using some techniques for bound-

ing the singular locus which had also been introduced in [8] and [22], it follows

that E is unobstructed, so if End0(E) denotes the trace-free part of End(E),

then H2(End0(E)) = 0. Note however that H2(OX) = C4; indeed, it is dual to

H0(OX(1)) =H0(OP3(1)). Thus

H2(E ⊗E∗)∼=C
4.

The dual bundle is given by E∗ = E(−1), so duality says that Hi(E(n)) ∼=
H2−i(E(−n)).

The dimension of any irreducible component of the moduli space is the

expected one, 20. The subspace of bundles E with H0(E) �= 0 has dimension < 20

(see our previous paper [13]), so a general E has H0(E) = 0. It follows from dual-

ity that H2(E) = 0, and by χ(E) = 0 we get H1(E) = 0. Throughout the paper

(except at one place in Section 10), we consider only bundles with H0(E) = 0.

Duality says that H2(E(1)) is dual to H0(E(−1)) = 0. Since χ(E(1)) = 5, if

we set f := h1(E(1)), then h0(E(1)) = 5 + f . In particular there are at least 5

linearly independent sections of E(1) which may be viewed as maps s :OX(−1)→
E or, equivalently, s : OX → E(1). Note that the zero set of s has to be of

codimension 2, as any codimension-one component would be a divisor integer

multiple of the hyperplane class, but h0(E) = 0, so this cannot happen. If we

choose one such map s, then we get the standard exact sequence

(1.1) 0→OX(−1)→E → JP/X(2)→ 0

and its twisted versions such as

(1.2) 0→OX →E(1)→ JP/X(3)→ 0.

Here JP/X denotes the ideal of P ⊂X .

One of our main tools is to consider the subscheme of zeros P ⊂ X as a

subscheme P ⊂ P
3 with ideal sheaf JP/P3 . These two ideal sheaves are related by

the exact sequence

0→OP3(n− 5)→ JP/P3(n)→ JP/X(n)→ 0.

example, on the bundle E =OX ⊕OX(1) with c2(E) = c2(E(−1)) = 0. Thus, the moduli space
of stable bundles MX(2,1, c2) we look at here is isomorphic to MX(2,−1, c2) considered in

[13].
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It follows that for any n < 5, h0(JP/X(n)) = h0(JP/P3(n)), so these are inter-

changeable in this case. Similarly, for any n we have h1(JP/X(n)) = h1(JP/P3(n)).

Calculation of the Chern class c2(E) = 10 shows that P ⊂X is a subscheme of

length 20. It is a union of possibly nonreduced points, which are locally complete

intersections, that is, defined by two equations. Furthermore, as is classically well

known (see [2], [7]), P satisfies the Cayley–Bacharach condition for OX(4) which

we denote by CB(4), saying that any subscheme P ′ ⊂ P of colength 1 imposes

the same number of conditions as P on sections of OX(4). The extension class is

governed by an element of H1(JP/X(4))∗, and we have the exact sequence

0→H0
(
JP/X(4)

)
→H0

(
OX(4)

)
→OP (4)→H1

(
JP/X(4)

)
→ 0.

To get a locally free E, the extension class should be nonzero on each vector

coming from a point in P , the existence of such a class being exactly the condition

CB(4). Note that h0(OX(4)) = 35, and define e := h1(JP/X(4))− 1. Then e≥ 0

(the extension cannot be split; indeed this is part of the CB(4)-condition), and

h0(JP/X(4)) = 16+ e.

The “well-determined” case is when e= 0. Then the extension class is well

defined up to a scalar multiple which does not affect the isomorphism class of

E, and the existence of the nonzero class in H1(JP/X(4)) is expected to impose

16 conditions on the 20 points, giving 24 the expected dimension of the Hilbert

scheme of such subschemes P ⊂X . When these are viewed as subschemes P ⊂ P3

with h1(JP/P3(4)) = 1, the expected dimension is 44. In Section 3, we will show

f = 0⇒ e= 0, and in that case the bundle E has seminatural cohomology.

Outline of the proof
Here now is the overall structure of the proof of Theorem 0.2. The next section

discusses some preliminary techniques and results. In Section 3, we consider the

condition of seminaturality for E. This means that for any n, at most one coho-

mology group of E(n) is nonzero. For our case, it means more precisely that

h0(E(n)) = h1(E(n)) = 0 for n ≤ 0; and h1(E(n)) = h2(E(n)) = 0 for n ≥ 0. In

particular, hi(E) = 0 for i= 0,1,2. The cohomology dimensions are obtained from

the Euler characteristic, for example, h0(E(1)) = 5. Our main object of study will

be a nonzero section s ∈H0(E(1)), with zero scheme denoted P ⊂X ⊂ P
3. As

we have said above, the bundle is then expressed (see (1.1)) as an extension

of JP/X(2) by OX(−1), and the subscheme P ⊂ X , which has length 20, is a

local complete intersection (lci), and has to satisfy CB(4). The seminaturality

condition implies e= 0, so the extension class governing this extension is unique

up to a scalar. Furthermore, seminaturality of E is equivalent to the conditions

h0(JP/X(3)) = 4 and h0(JP/X(2)) = 0.

We will be looking at several moduli schemes, Hilbert schemes, and incidence

schemes. The moduli space of interest is, for fixed general X , the moduli space

of seminatural bundles E (which are, as always, semistable of degree 1 with

c2 = 10). Over this moduli space, the H0(E(1)) form a bundle of rank 5, so we

may look at the associated P
4-bundle which is the moduli of pairs (E,s) where
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s ∈H0(E(1)) is a nonzero section. Since it is a projective space bundle over the

moduli space, it suffices to prove that it is irreducible. In view of the unicity

of the extension class, this is isomorphic to the Hilbert scheme of finite local

complete intersection subschemes P ⊂X of length 20 which satisfy CB(4) and

the seminaturality conditions h0(JP/X(3)) = 4 and h0(JP/X(2)) = 0, denoted by

Hsn
X in Section 4.3. We would like to show that Hsn

X is irreducible.

In the middle parts of the proof, we will disregard X and consider the Hilbert

scheme Hsn
P3 of subschemes P ⊂ P

3 which are contained in at least one smooth

quintic hypersurface X , which are lci, satisfy CB(4), and satisfy the seminatu-

rality conditions which may be written as h0(JP/P3(3)) = 4 and h0(JP/P3(2)) = 0

so they do not depend on X . We will prove that Hsn
P3 is irreducible. An argument

is needed to go from this statement to irreducibility of Hsn
X . This will be done in

Section 10, and we refer the reader there for an explanation of how this is done

using the very nice idea given to us by Hirschowitz for the previous paper.

Before getting to the middle of the proof, we first look more closely at our

seminatural bundle E over X in Section 4. The goal is to get as much information

as possible on the structure of the zero scheme P of a general section s. Ideally,

we would like to show that P is a set of 20 distinct points. However, it turns

out that we could only show that P is a union of the form P ′ ∪ P ′′ where P ′,

located at a point independent of s, is either empty, a single point, or a point

of multiplicity 2; and P ′′ consists of 20, 19, or 18 distinct points which move

around in X and are permuted doubly transitively by the Galois action as the

section s varies. The basic idea for showing this property is to look at lines in

P
3 which cut the surface in 5 points and to analyze the conditions which these

points might impose on s.

In Section 4.3 we discuss the Hilbert schemes of P ⊂ X and P ⊂ P
3 and

give their dimensions. We prove an important technical result, Proposition 4.5,

saying that the locus of points where E(1) is not generated by global sections has

dimension zero. This allows us to continue in Section 5 with the analysis of the

structure of the zero scheme P = P ′ ∪ P ′′, completing the proof of the property

described in the previous paragraph.

Section 6 begins what might be called the middle phase of the proof, inves-

tigating the Hilbert scheme Hsn
P3 of subschemes P ⊂ P

3 which can occur as zero

schemes of sections s. From the first part of the proof, we know that a general

element P will decompose as P = P ′ ∪ P ′′ with the properties described before.

We introduce something new: choose a general subspace U ⊂ H0(JP/P3(3)) of

dimension 2, which defines a subscheme Z ⊂ P3. In view of what was said before,

we can show that Z has dimension 1, that is, that it is a complete intersection

of two cubics. In particular, it is a curve of degree 9. The next technical dif-

ficulty that needs to be discussed is the fact that the general Z could well be

reducible, breaking up into a union of curves with total degree 9. Using the struc-

ture results on P = P ′ ∪ P ′′, we are able to analyze how P ′ and P ′′ might meet

the different components of Z. The main techniques here are various kinds of
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dimension counts, aiming to show that different special cases have to correspond

to subvarieties of smaller dimension in the total space of (P,U).

The first step, in Section 6, is to understand what the possible decomposi-

tions of Z can look like, and what are the dimensions of the strata. This seems

to be an interesting and difficult question in general, because there might be

strata parameterizing curves Z which are complete intersections of two cubics,

containing nonreduced components. We do not discuss the most complicated of

these strata, hence the subscript ( )rci on our parameter spaces indicating reduced

complete intersections. The structure results for P = P ′ ∪ P ′′ allow us to argue

in most cases that (P,U) leads to a reduced Z, with a dimension estimate for

the possibly nonreduced case covered by Lemma 6.5.

In Section 7 we consider the “common curve case,” where for a fixed

subscheme P , the family of complete intersection curves Z defined by U ⊂
H0(JP/P3(3)) contains a component Q1 which is fixed, in the sense that it does

not depend on U , and the big collection of “almost all” points P ′′ ⊂ P is con-

tained in Q1. Of course, the potential extra point P ′ could be contained in the

variable part. By a dimension count, we show that this case corresponds to a

strict subvariety of the Hilbert scheme.

We therefore conclude in Theorem 7.4 that the general point must correspond

to the “variable curve case,” meaning that the component of Z which contains

the big moving collection of at least 18 points P ′′ has to be movable as a function

of the choice of U ⊂H0(JP/P3(3)). In Section 8, we consider this case, with the

further hypothesis that the general Z has two or more irreducible components.

The points of P ′′ have to lie in the same component Z ′′ of Z by double transitivity

of the Galois action, and it turns out that Z ′′ has degree ≥ 6. A dimension count

then allows us to conclude that the space of possibilities here has too small a

dimension, so again this cannot contribute a general point.

These reductions show that a general P in any irreducible component must

be contained in a complete intersection Z of two cubics, such that Z is reduced

and irreducible of degree 9. This then is the general case, treated in Section 9. The

reader might wish to start by consulting the beginning of that section, since it

contains a description of the nonempty irreducible open set of the Hilbert scheme

consisting of P ⊂ Z where Z is a smooth complete intersection of two cubic

hypersurfaces. The proof of Theorem 9.1, saying that this is the only irreducible

component of Hsn
P3 , consists of an analysis of what happens when Z acquires

singularities: more dimension counting shows that the singular case contributes

a subvariety of strictly smaller dimension.

As was said before, Section 10 is devoted to a monodromy argument for

going from irreducibility of Hsn
P3 to irreducibility of Hsn

X and hence of the moduli

space of seminatural bundles on a fixed general quintic X , to complete the proof

of Theorem 0.2. The basic idea is to isolate one preferred irreducible component

of Hsn
X which will be preserved by the Galois action as X moves around in

its parameter space. Irreducibility of the total space Hsn
P3 then implies that the

preferred component must be the only one.
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In Section 11, we give a heuristic discussion of some ideas for treating the

moduli space of bundles which are no longer necessarily seminatural, to show

that no new irreducible components appear (see Conjecture 0.1). We hope to

treat this case in detail in a future paper.

2. Preliminaries

2.1. Cayley–Bacharach
A subscheme P ⊂X satisfies the Cayley–Bacharach condition CB(n) if, for any

subscheme P ′ ⊂ P of colength 1 (i.e., the kernel of OP →OP ′ has length 1), the

map

H0
(
JP/X(n)

)
→H0

(
JP ′/X(n)

)

is an isomorphism. In other words, P imposes the same conditions on degree n

forms as any colength 1 subscheme. We have the same terminology for P ⊂ P
3,

and if P ⊂X ⊂ P
3, then CB(n) for P ⊂X is equivalent to CB(n) for P ⊂ P

3, so

we do not distinguish the notations.

LEMMA 2.1

If a zero-dimensional subscheme P ⊂X satisfies CB(n), then it satisfies CB(m)

for any m≤ n.

Proof

Suppose P ′ ⊂ P has colength 1. Choose a section g ∈H0(OX(n−m)) nonvan-

ishing at all points of P ; then if f ∈H0(JP ′/X(m)), we have fg ∈H0(JP ′/X(n)).

By CB(n), fg vanishes on P , but g is a unit near any point of P so f vanishes

on P , proving CB(m). �

As was noted previously, the Cayley–Bacharach condition corresponds exactly to

existence of a locally free extension of the ideal sheaf of P ; refer to the previous

section for the notation.

2.2. Subschemes of locally planar curves
The results of [1] allow us to estimate the dimension of the Hilbert scheme of zero-

dimensional subschemes of a curve, as was used in some detail in [13]. Mainly,

as soon as the curve is locally planar or even locally embeddable in a smooth

surface, the space of subschemes of length � has dimension ≤ �.

2.3. Residual subschemes
If W ⊂X is a divisor and P is a zero-dimensional subscheme, we obtain the resid-

ual subscheme P⊥ of P with respect to W , such that �(P⊥) + �(P ∩W ) = �(P ).

It is characterized by the property that sections of OX(n)(−W ) which vanish

on P⊥, map to sections of OX(n) vanishing on P . If P is reduced, then P⊥

is just the union of those points of P which are not in W ; if P contains some

nonreduced schematic points, then the structure of P⊥ may be more complicated.
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LEMMA 2.2

If P satisfies CB(3) and P ′′ ⊂ P is a subscheme of colength 2, suppose P ′′ is

contained in a quadric. Then P is contained in the same quadric.

Proof

The residual subscheme P⊥ for the quadric has length ≤ 2. If it is nonempty, we

can choose a linear form containing a subscheme of colength 1 of P⊥, correspond-

ing to a subscheme P 1 ⊂ P of colength 1. Applying CB(3) to the product of the

quadric and the linear form is a contradiction, so P⊥ = ∅ and we are done. �

2.4. Restriction to a plane section
Suppose H ⊂ P

3 is a hyperplane, and let Y :=H ∩X . By the genericity assump-

tion on X , in particular Pic(X) generated by OX(1), we get that Y has to be

reduced and irreducible. Its canonical sheaf is OY (2). When Y is smooth, then,

it is a plane curve of degree 5 and genus 6. We have an exact sequence

0→E →E(1)→EY (1)→ 0.

From the vanishing of Hi(E) it follows that H2(E(1)) = 0 (but this is also clear

from duality), and

H0
(
E(1)

) ∼=−→H0
(
EY (1)

)
,

H1
(
E(1)

) ∼=−→H1
(
EY (1)

)
.

Suppose L⊂ P
3 is a line. A generic X does not contain any lines, so L ∩X

is a finite subscheme of length �(L ∩X) = 5. We claim that for a general plane

H containing L, the intersection Y =H ∩X is smooth. This holds by Bertini’s

theorem away from the base locus of the linear system of planes passing through

L, so we just have to see that it also holds at a point x ∈ L∩X . Note that TxL⊂
TxX is a one-dimensional subspace. A general H will have tangent space which

is a general plane in TxP
3 containing TxL. Thus, a general plane H containing L

has tangent space TxH which does not contain TxX ; in particular the intersection

TxH ∩ TxX = TxL is transverse. This implies that H ∩X is smooth at x. This

works for all the finitely many points x ∈ L∩X , so the general section Y =H ∩X

is smooth. It is therefore a smooth plane curve of degree 5 and genus 6. Notice

that L⊂H , so L∩X ⊂ Y .

Pick Y as in the previous paragraph, suppose that Q ⊂ L ∩ X is a finite

subscheme of length 4, and suppose that x ∈ H0(E(1)) is a section vanishing

on Q. Then s|Y is a section of H0(E(1)) vanishing on Q⊂ Y . As Y is smooth,

the finite subscheme Q is a Cartier divisor. The section s|Y corresponds to a map

OY →E(1) which, since it vanishes on Q, gives a map

OY (Q)→E(1).

Let Q′ ⊂ Y be the divisor of zeros of s, in particular Q⊂Q′, and s extends to a

strict map, that is, an inclusion of a subvector bundle

OY (Q
′) ↪→E(1).
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The quotient line bundle is OY (3−Q′) where the notation here combines OY (3),

which is three times the hyperplane divisor (which has degree 5 on Y ), with the

divisor Q′. In particular, OY (3−Q′) is a line bundle of degree 15− �(Q′). We

obtain an exact sequence

0→OY (Q
′)→EY (1)→OY (3−Q′)→ 0

leading to the long exact sequence of cohomology. This construction will be used

many times in Section 4.

Another useful construction is the following. Write L∩Y = x+y+u+v+w,

possibly with some of the points being the same. Take a linear form containing

w as an isolated zero, and divide by the equation of L. This gives a meromorphic

function whose polar divisor is x+ y+u+ v. Equivalently, OY (x+ y+u+ v) has

a section nonvanishing at the points x, y,u, v. This will be used often without

too much further notice below.

3. The seminatural condition

HYPOTHESIS 3.1

Assume that h0(E(1)) = 5, and assume that Hi(E) = 0 for i= 0,1,2.

Recall that the second part is true for any E general in its irreducible component

as discussed above.

The goal of this section is to show that Hypothesis 3.1 implies that f = 0

and E has seminatural cohomology, which in this case means H0(E(n)) = 0 for

n≤ 0, H2(E(n)) = 0 for n≥ 0, and H1(E(n)) = 0 for all n. Our main theorem

(Theorem 0.2) is the statement that there is only a single irreducible component

corresponding to such bundles, so Hypothesis 3.1 will be in effect throughout the

rest of the paper.

LEMMA 3.2

If h0(E(1)) = 5, then f = 0; in other words, H1(E(1)) = 0. If s :O(−1)→E has

a scheme of zeros P , then saying h0(E(1)) = 5 is equivalent to requiring that

h0(JP/X(3)) = 4, and saying that all hi(E) = 0 is equivalent to requiring that

h0(JP/X(2)) = 0. These conditions are also the same as saying h0(JP/P3(3)) = 4

and h0(JP/P3(2)) = 0.

Proof

As discussed above, h2(E(1)) = 0, so the fact that χ(E(1)) = 5 gives the first

statement. For the second statement, use the fact that H1(OX(n)) = 0 for all n,

and use the long exact sequences of cohomology for the extension E(1) of JP/X(3)

by OX and similarly E of JP/X(2) by OX(−1). For the last phrase recall that

h0(JP/X(n)) = h0(JP/P3(n)) for n < 5 because h0(OX(n)) = h0(OP3(n)). �

The first part of the seminatural condition is easy to see.
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LEMMA 3.3

Under our Hypothesis 3.1, H0(E(n)) = 0 for n≤ 0, and H2(E(n)) = 0 for n≥ 0.

Proof

Since H0(E) = 0, it follows that H0(E(n)) = 0 for all n ≤ 0, and for n ≥ 0,

H2(E(n)) is dual to H0(E(−n)) = 0. �

The main step towards the seminatural condition is the next twist.

PROPOSITION 3.4

We also have H1(E(2)) = 0.

Proof

If Y =H ∩X is a smooth plane section, we claim H0(EY (−1)) = 0. If not, then

we would get an inclusion OY (1) ↪→ EY , hence OY (2) ↪→ EY (1). However, Y is

a curve of genus 6 and KY =OY (2), so H0(OY (2)) has dimension 6. This gives

h0(EY (1))≥ 6. Consider the exact sequence

0→E →E(1)→EY (1)→ 0.

The fact that H1(E) = 0 implies that H0(E(1)) surjects onto H0(EY (1)),

so h0(E(1)) ≥ 6. This is a contradiction to h0(E(1)) = 5, showing that

H0(EY (−1)) = 0.

To show that H1(E(2)) = 0, it suffices by duality to show that

H1(E(−2)) = 0. Consider the exact sequence

0→E(−2)→E(−1)→EY (−1)→ 0.

Again by duality from Lemma 3.2, H1(E(−1)) = 0, so the long exact sequence

gives an isomorphism between H0(EY (−1)) and H1(E(−2)). From the previous

paragraph we obtain H1(E(−2)) = 0. This proves the proposition. �

COROLLARY 3.5

Under Hypothesis 3.1, E has seminatural cohomology: H1(E(n)) = 0 for all n.

Proof

By duality it suffices to consider n ≥ 0, and we have already done n = 0,1,2.

Consider the case n= 3. This could be done by continuing as in Proposition 3.4,

but here is another argument. Choose an inclusion s :O(−1)→E, and let P be

the subscheme of zeros of s. Choose a general plane section Y = H ∩X such

that H passes through one point z ∈ P in a general direction. Then s|Y has a

zero at z, of multiplicity m with 1 ≤m ≤ 5. Indeed, P cannot contain a 6-fold

fat point whose length is 21, because P has length 20. Thus the multiplicity of

a general plane section of P at any point z is ≤5. The section s restricted to

Y therefore induces a strict inclusion of vector bundles from OY (m · z) to E(1),

hence an exact sequence, of the form

0→OY (2 +m · z)→E(3)→OY (5−m · z)→ 0.
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Note that the subline bundle has degree 10+m and the quotient line bundle has

degree 25 −m, so both of these have vanishing H1 by duality. It follows that

H1(E(3)) = 0. For any n≥ 4 a similar argument (but Y does not even need to

pass through a point of P ) shows that H1(E(n)) = 0. �

COROLLARY 3.6

It follows that e= 0, which is to say that for any inclusion s :O(−1)→E, if P

is the subscheme of zeros of s, then h0(JP/X(4)) = 16.

Proof

Choose an inclusion s, and consider the exact sequence

0→OX(1)→E(2)→ JP/X(4)→ 0.

Notice that H2(O(1)) =H2(KX) = C. The long exact sequence of cohomology

then reads

0→H1
(
E(2)

)
→H1

(
JP/X(4)

)
→C→ 0,

since H2(E(2)) = 0 and H1(OX(n)) = 0 for all n. The previous conclusion says

the term on the left H1(E(2)) vanishes, so H1(JP/X(4)) =C. It is generated by

the nonzero extension class governing the exact sequence corresponding to s. On

the other hand we have

0→ JP/X(4)→OX(4)→OP (4)→ 0,

so the map H0(OX(4)) = C
35 → OP (4) = C

20 has cokernel H1(JP/X(4)) of

dimension 1. It follows that the kernel H0(JP/X(4)) has dimension 16. �

COROLLARY 3.7

Pick a section s ∈H0(E(1)), and let P be its subscheme of zeros. The extension

class defining E as an extension of JP/X(2) by OX(−1) is unique up to a scalar.

Proof

Recall from where e was defined that the space of extensions, H1(JP/X(4))∗, has

dimension e+1. Thus, the condition e= 0 means that this is a line: the extension

is unique up to scalars, and for a given subscheme P there is a unique bundle

extension E up to isomorphism. �

COROLLARY 3.8

If Y =H∩X is a plane section, then H0(EY ) = 0. Also, H0(E(1))
∼=→H0(EY (1))

and H1(EY (1)) = 0.

Proof

Consider the exact sequence

0→E(−1)→E →EY → 0.
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From H0(E) = 0 and H1(E(−1)) = 0 we get H0(EY ) = 0. Similarly, the exact

sequence

0→E →E(1)→EY (1)→ 0

together with Hi(E) = 0 gives Hi(E(1))
∼=→Hi(EY (1)). �

4. The structure of the base loci

Let B2 ⊂X be the subset of points where all sections of H0(E(1)) vanish. Let

B1 ⊂ X be the subset of points x such that the image of H0(E(1)) → E(1)x
has dimension ≤ 1 (in particular, B2 ⊂ B1). These are the base loci of sections

of E(1). In this section, we obtain some information about these base loci, which

will allow us to to deduce, in Section 5, that the zero scheme of a general section

s has some fairly strong general position properties.

4.1. There is at most one point in B2

PROPOSITION 4.1

The subset B2 has at most one point, and if it exists, then the sections of

H0(E(1)) define this reduced point as a subscheme.

Proof

Suppose p �= q are two points of B2. Then all sections of E(1) vanish at p and q.

Consider a plane section Y =H ∩X such that p, q ∈ Y but Y is general for this

property; in particular Y is smooth (see Section 2.4). The map

E(1)p ⊕E(1)q →H1
(
EY (1)(−p− q)

)

is injective. Furthermore, it is surjective since H1(EY (1)) = 0.

Let L denote the line through p and q. It intersects Y in a divisor denoted

p+ q+ u+ v+w. Some of the points u, v,w may be equal or equal to p or q.

We have an exact sequence

0→EY →EY (1)→EL∩Y (1)→ 0,

and on the other hand, the exact sequence

0→E(−1)→E →EY → 0

gives H1(EY )
∼=→ H2(E(−1)) ∼= H0(E(1))∗ ∼= C

5. Hence the image of

H0(EY (1))→EL∩Y (1) has codimension 5, and since L∩Y is a finite subscheme

of length 5, EL∩Y (1)∼=C
10, so the image has dimension 5 too.

We may impose the condition of vanishing at two points u, v and obtain a

nonzero section s ∈H0(EY (1)(−p− q − u− v)). This has the required meaning

when some of the points coincide, using the previous paragraph. However, the

section s then does not vanish at the third point w; otherwise we would get a

section in H0(EY (1)(−L∩ Y )) =H0(EY ), contradicting Corollary 3.8.

This section generates a subline bundle M ⊂ EY (1), with M =OY (p+ q +

u+v+D) for an effective divisor D not passing through w. Note that OY (p+q+
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u+ v) has a nonzero section, corresponding to the quotient of a linear form (on

the plane H) vanishing at w but not along L, divided by a linear form vanishing

along L. If D does not contain both p and q, then we would get a section of

E(1) nonvanishing at one of those points, contradicting our assumption p, q ∈B2.

Therefore D ≥ p+ q. It follows that w �= p, q. The same reasoning works for u

and v too, so u, v,w are three points distinct from p or q.

Our section s comes from a section in H0(E(1)) corresponding to O(−1)→
E, and the subscheme of zeros P contains p, q, u, v. These are four points on the

line L, so any cubic form vanishing at P has to vanish along L. In particular,

elements of H0(JP/X(3)) vanish at w. This implies that elements of H0(E(1))

evaluate at w to elements in the line Mw ⊂E(1)w. Thus w ∈B1.

This reasoning holds even if w coincides, say, with v; it means that all ele-

ments of J0(JP/X(3)) have to vanish in the tangent direction corresponding to

the additional point w glued onto v, which still gives a rank one condition on the

values of sections of E(1) at the point w.

The same reasoning holds for u and v. If at least two of the points u, v,w

are distinct, then we obtain this way at least two points of B1 along the line L.

Then, vanishing at these two points consists of two conditions, so we can impose

further vanishing at the third point (even if it is a tangential point at one of

the other two) and obtain a nonzero section which vanishes at all five points. As

before this yields a nonzero section of H0(EY ) contradicting Corollary 3.8.

It remains to consider the case when all three points are the same, that is to

say, L∩Y = p+ q+3u with u �= p, q, and choosing a section vanishing at p, q and

two times at u generates a subbundle M =OY (ap+ bq+2u+D) ↪→E(1) with D

an effective divisor distinct from p, q, u, and a, b≥ 2. Recall that if either a= 1 or

b= 1, then this would give a section of E(1) nonvanishing at p or q contradicting

our assumption p, q ∈B2.

As above, we have u ∈B1. Therefore, choosing a section in H0(EY (1)(−2u))

represents only 3 conditions rather than 4; hence there are two linearly inde-

pendent such sections s1, s2. We claim that the values of these two sections, in

EY (1)(−2u)u, are linearly independent. Indeed, otherwise a combination of the

two would vanish again at u, and this would give a section of EY (1)(−3u) which

also vanishes at p, q ∈B2. This would give a nonzero element of H0(EY ), which

can’t happen.

Let a and b be the smallest possible orders of vanishing of si at p and q,

respectively, and by linear combinations we can assume that both of them vanish

to those orders. They give maps

M1 = OY (ap+ bq+ 2u+D1)
s1→EY (1),

M2 = OY (ap+ bq+ 2u+D2)
s2→EY (1),

and the resulting map

M1 ⊕M2 →EY (1)
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has image of rank 2 at the point u by the previous paragraph. Therefore it is

injective. It follows that deg(M1 ⊕M2)≤ deg(EY (1)) = 15. Suppose deg(D1) is

the smaller of the two; then we get a+ b+2+deg(D1)≤ 7. We may also by sym-

metry assume a≥ b. Write M =M1 and D =D1. There are three possibilities:

M =OY (2p+ 2q+ 2u+ d), D = (d), deg(M) = 7,

M =OY (2p+ 2q+ 2u), D = 0, deg(M) = 6,

or

M =OY (3p+ 2q+ 2u), D = 0, deg(M) = 7.

In each case, let N := EY (1)/M = OY (3) ⊗ M−1 be the quotient bundle.

Recall that OY (3) =OY (3p+3q+9u) and KY =OY (2) =OY (2p+2u+6v). We

have an exact sequence

H0(N)→Np ⊕Nq →H1
(
N(−p− q)

)
→H1(N).

The rightmost map is dual to

H0(KY ⊗N−1)→H0
(
KY ⊗N−1(p+ q)

)
.

Notice however that N−1 = OY (−3) ⊗M , so KY ⊗ N−1 = M(−1) = M(−p −
q− 3u). Hence our rightmost map is dual to

H0
(
M(−p− q− 3u)

)
→H0

(
M(−3u)

)
.

This map is surjective; indeed, the condition p, q ∈ B2 means that all sections

of M must vanish at p and q, and sections of M(−3u) are in particular sec-

tions of M , so every element of H0(M(−3u)) must come from an element of

H0(M(−p− q− 3u)). This surjectivity translates by duality to the statement

that the rightmost map in the above exact sequence is injective. It follows that

H0(N)→Np ⊕Nq is surjective.

In other words, the values of global sections of N at p and q span a two-

dimensional space. Since on the other hand the values of sections of EY (1) must

vanish at p and q, this implies from the exact sequence

H0
(
EY (1)

)
→H0(N)→H1(M)

that we have h1(M)≥ 2.

Consider now the three cases, the first case being M =OY (2p+2q+2u+d),

with χ(M) = 2, so h1(M)≥ 2 implies that h0(M)≥ 4. Vanishing at 2u imposes

two conditions, which leaves h0(M(−2u)) = h0(OY (2p+2q+ d))≥ 2. These sec-

tions must vanish at p and q, so we get h0(OY (p + q + d)) ≥ 2. Now, our two

independent sections of OY (p+ q+ d) cannot vanish at both p and q because Y

is not P
1, so there are no functions with a single nontrivial pole at d. We get a

section of OY (p+ q+d) whose value at one of p or q is nonzero. Multiplying this

by the section of OY (p+ q + 2u) nonvanishing at p and q gives a section of M

nonvanishing at p or q, a contradiction which treats the first case.
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In the next case, M =OY (2p+2q+2u) with χ(M) = 1, so h1(M)≥ 2 gives

h0(M)≥ 3. As usual, sections ofM have to vanish at p and q, so h0(M(−p−q)) =

h0(OY (p+ q+2u))≥ 3. But notice that OY (p+ q+2u) =OY (1)(−u). The map

C
3 =H0(OH(1))→H0(OY (1)) is an isomorphism; and OY (1) is generated by its

global sections. Hence vanishing of a section at u imposes a nontrivial condition,

giving h0(OY (1)(−u)) = 2. This contradicts the previous estimation of ≥ 3. This

contradiction completes this case.

In the last case, M =OY (3p+ 2q + 2u) with χ(M) = 2, so h1(M)≥ 2 gives

h0(M) ≥ 4. This is similar to the first case. Vanishing at 2u imposes two con-

ditions, and then the sections must further vanish at p and q, which leaves

h0(M(−2u)) = h0(M(−p− q − 2u)) = h0(OY (2p+ q + d))≥ 2. If we have a sec-

tion here which is nonzero at either p or q, then multiplying it by the section of

OY (p+ q + 2u) nonvanishing at p gives a section of M nonvanishing at p or q,

a contradiction. Therefore, both sections in H0(OY (2p+ q + d)) have to vanish

further at p and q. This would give h0(OY (p+ d))≥ 2. That can happen only if

Y is a hyperelliptic curve.

But a smooth plane curve of degree 5, having a very ample canonical linear

system cut out by conics, is never hyperelliptic.

We have now finished showing that it is impossible to have two distinct points

p, q ∈ B2. The same proof works equally well if q is infinitesimally near p; this

double point defines a tangent direction, and L should be chosen as the tangent

line in this direction. The main case as before is when L ∩ Y = 2p + 3u, and

as before we get three cases: either M =OY (4p+ 2u+ d), M =OY (4p+ 2u), or

M =OY (5p+2u). The main principle here is that sections ofM have to vanish on

both p and the nearby point q, that is to say, they have to vanish to order 2 at p.

With this, the same proofs as above hold, so this shows that if B2 is nonempty,

then it is a single reduced point. This completes the proof of the proposition.

�

4.2. Local structure of B1 at a point of B2

For the next discussion, we assume that there is a point p′ ∈B2, unique by the

above. Consider the schematic structure of B1 around this point p′. An argument

similar to the one above, allows us to show that B1 cannot contain the third

infinitesimal neighborhood of p′; however, we have not been able to rule out the

possibility that it might contain the second neighborhood. We will formulate this

statement precisely in the form of the following lemma, even though we have not

really defined the schematic structure of B1. Recall that H
0(E(1))

∼=→H0(EY (1)).

LEMMA 4.2

Suppose Y ⊂ X is a general plane section passing through p′. Choose s ∈
H0(EY (1)), vanishing to order 1 at p′. Let M ⊂ EY (1)) be the subline bundle

generated by s. Then there exists a section t ∈H0(EY (1)) such that the projec-

tion of t as a section of N :=EY (1)/M vanishes to order at most 2 at p′.
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Proof

Suppose on the contrary that all sections vanish to order ≥ 3 in N . As this is true

on a general Y , we may also specialize Y and it remains true. In particular, choose

a tangent line L to X at p′ such that the second fundamental form vanishes.

Choose a smooth plane section Y corresponding to a plane containing L. Then

Y ∩L is a divisor of class OY (1), and we can write

Y ∩L= 3p′ + u+ v,

where, as far as we know for now, u and v might be the same, and one or both

might be equal to p′.

Choose a nonzero section s ∈H0(EY (1)) which has only a simple zero at p′.

Recall that this is possible by the result that B2 is reduced in Proposition 4.1.

Let M ⊂EY (1) be the subline bundle generated by s, and let N :=EY (1)/M be

the quotient. The contrary hypothesis says that all sections of EY (1) vanish to

order 3 at p′, when projected into N . This means that the condition of a section

vanishing to order 3 at p′ imposes only two additional conditions. Indeed, étale-

locally we can choose a basis for EY (1) compatible with the subbundle M and

impose two conditions stating that the first coordinate (corresponding to M )

vanishes to order 3. (It automatically vanishes to order 1 already.) This implies

that the section vanishes, since the second coordinate vanishes to order 3 by

hypothesis.

Now since h0(EY (1)) = 5, we can impose two further conditions and obtain

a section t vanishing at u. The divisor of vanishing of t is therefore ap′ + u+D

where a≥ 3. If a= 3, then we would get a morphism

OY (3p
′ + u)→EY (1)

nonzero at p′, but the line bundle OY (3p
′ + u) has a section nonvanishing at p′,

and this would contradict p′ ∈B2. Therefore we can conclude that a≥ 4.

We now note that u and v must be distinct from p′. For example, if Y ∩L=

4p′+u, choose a section s vanishing at u, and as described above, we can assume

vanishing to order 3 at p′, which imposes two additional conditions. If s vanishes

to order ≥ 4 at p′ this would give a section in H0(EY ), which cannot happen, so

we can assume that M =OY (3p
′ +u), and again this has a section nonvanishing

at p′, contradicting p′ ∈B2. So, this case cannot happen.

Similarly if Y ∩ L = 5p′, vanishing to order 3 imposes two conditions, and

vanishing to order 4 imposes two more conditions. So again there is a section s

which generates M =OY (4p
′)⊂ EY (1), but this M has a section nonvanishing

at p′, contradicting p′ ∈ B2. From these arguments we conclude that u, v are

different from p′.

Next, use the fact that a cubic polynomial on L vanishing at 4 points in

L∩X must also vanish on the fifth point. Suppose first that u �= v. Our section

t viewed as a section of E(1) defines a zero scheme P , which contains its zeros

on Y . In particular, P contains the scheme 3p′ on L as well as the scheme u.

Note on the other hand that v /∈ P ; otherwise we would get a section in H0(EY ).

We conclude that any element of H0(JP/X(3)) has to vanish at v. It follows
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that v ∈ B1. By symmetry, we get also u ∈ B1. Now, vanishing of sections at u

and v imposes 2 conditions, and vanishing at 3p′ ⊂ Y imposes 2 conditions as

discussed above. This gives a section in H0(EY (1)) vanishing at all of Y ∩ L,

hence a nonzero section of H0(EY ). We get a contradiction in this case.

To finish the proof of the lemma, we have to treat the case where u = v,

that is, Y ∩ L = 3p′ + 2u. As described previously, u �= p′. Basically the same

argument as before gives u ∈ B1. Indeed, we can consider a section t which

vanishes at 3p′+u. It cannot have a zero of order 2 at u; otherwise we would get

H0(EY ) �= 0. Let M ⊂EY (1) be the subline bundle generated by t, and let N be

the quotient. Write M =OY (ap
′ + u+D) with a≥ 4 and D disjoint from p′, u.

We may also consider t as a section defined over X , inducing a quotient morphism

E(1)→OX(3). When restricted to Y this provides a morphism EY (1)→OY (3)

which is the same as the map to N generically. Hence it must factor through

EY (1)→N →OY (3). This is more precisely given by N =OY (3)(−ap′−u−D).

Sections of E(1) map to sections of OX(3) vanishing on the zero locus P of t,

which contains 3p′+u⊂ L (a subscheme of length 4). These sections must vanish

on all of L; hence they vanish on 2u. Thus the image of any section in N has to

be a section of OY (3)(−ap′ − 2u−D) =N(−u). This means that the sections of

E(1), evaluated at u, must lie in Mu. In other words, u ∈B1 as claimed.

Vanishing of a section at u therefore imposes a single condition. So there

are two linearly independent sections t1, t2 which vanish at 3p′ + u. No nonzero

linear combination of these can have a zero of order 2 at u. It follows that the

derivatives of t1 and t2 at u are linearly independent. Let M1 and M2 denote the

subline bundles of EY (1) generated by the ti. We have

Mi =OY (aip
′ + u+Di)

with ai ≥ 4 and Di ∩ u= ∅. But the line bundle OY (3p
′ + u) has a section non-

vanishing at u, so Mi has a section nonvanishing at u. But the Mi(u)⊂ E(1)u
are generated by the derivatives of ti, which are linearly independent. Thus the

Mi(u) generate E(1)u. But as there are sections of Mi nonvanishing at u, this

contradicts u ∈B1. This completes the proof of the lemma. �

COROLLARY 4.3

Suppose p′ ∈B2. Then for a general section s ∈H0(E(1)), the scheme of zeros of

s locally at p′ is either the reduced point p′, or a length 2 subscheme (infinitesimal

tangent vector) at p′.

Proof

From the proposition before, the sections of E(1) define p′ as a reduced sub-

scheme. This means that for any tangent direction, there is at least one section

whose derivative in that direction does not vanish. So, if Y ⊂X is a generic curve

through p′, then the zero scheme P of a general section s has P ∩Y = {p′} being

a reduced subscheme locally at p′. It follows that P is curvilinear at p′.
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Assume that the general P has length ≥ 3 locally at p′. Consider the two

sections s, t given by Lemma 4.2. Their zero sets are therefore curvilinear sub-

schemes of length ≥ 3 at p′. Given s, we may choose t general; then the zero set of

t is transverse to that of s at p′. For otherwise this would mean that the tangent

directions of the zero sets are always the same, but that would give an infini-

tesimal tangent vector in B2 contradicting Proposition 4.1. So these curvilinear

subschemes are transversal. We may choose local coordinates at p′ so that they

go along the coordinate axes, up to order 3 at least. If x, y are these coordinates

with p′ = (0,0), we may write

s= xa, t= yb modulo terms of order 3

where a and b are sections of E(1) nonvanishing at p′. Furthermore, Y is trans-

verse to (x= 0). We may assume that the subline bundle of EY (1) generated by

s is generated by a|Y .
Notice that if b(0,0) is linearly independent from a(0,0), then s+ t= xa+yb

would be a section whose zero scheme is the reduced point p′, so we would be

done. Therefore we may assume, after possibly multiplying by a scalar, that

b(0,0) = a(0,0).

The conclusion of the lemma says that t is not a section of this subline bundle

to order 3, which means that b|Y is not a multiple of a to order 2, that is, modulo

quadratic terms. We may therefore write

b= a+ xbx + yby + · · ·
with one of bx, by nonzero modulo a(0,0). Look at the section s+ λt for variable

λ ∈C; its leading term is (x+λy)a(0,0). By our contrary hypothesis, we suppose

that the zero set of this section is curvilinear to order 3 for all λ, which means

that there is a factorization of s+λt as a multiple of a single section of E(1), up

to terms of order 3. The first term has to be (x+ λy)a(0,0), so we can write

s+ λt=
(
x+ λy+ q(x, y)

)
(a+ xfx + yfy).

This expands to

xa+ λy(a+ xbx + yby) =
(
x+ λy+ q(x, y)

)
(a+ xfx + yfy)

or, simplifying (always modulo terms of order 3),

λy(xbx + yby) = q(x, y)a+ (x+ λy)(xfx + yfy).

Now compare terms modulo the section generated by a; we get

fx = 0, fy = by modulo a(0,0),

and from the xy term we get λbx = fy , again modulo a(0,0). Putting these

together gives λbx = by modulo a(0,0), for all λ. This is possible only if bx and

by are multiples of a(0,0); but the conclusion of Lemma 4.2 said that this was

not the case. This contradiction completes the proof of the corollary. �

The above discussion may seem somewhat complicated: let us explain the geo-

metric picture, in terms of a schematic notion of the base locus B1. The problem
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is that B1 could have some “layers” surrounding the point p′ ∈B2. Locally, this

would mean that the subsheaf of E(1) generated by global sections looks like a

rank 1 subsheaf over B1, the layers of which would give a certain infinitesimal

neighborhood of p′. In the lemma, we say that if we cut by a general plane sec-

tion Y going through p′, then the intersection with B1 has length at most 2.

Intuitively this means that while B1 might have a single layer around p′, it can-

not have two layers. Notice that in some directions B1 might be bigger, but in a

general direction it has length 2. Then, in the corollary, we say that if the general

section has a curvilinear zero set of length ≥ 3, that would mean that B1 had to

have at least two layers around p′.

4.3. Dimension of the CB-Hilbert scheme
LetHX denote the Hilbert scheme of subschemes P ⊂X which satisfy CB(4). Let

HP3 denote the Hilbert scheme of subschemes P ⊂ P
3 which satisfy CB(4) and

which are contained in at least one smooth quintic. We call these the CB-Hilbert

schemes.

Let Hsn
X and Hsn

P3 denote the subschemes parameterizing P such that

h0(JP (3)) = 4 and h0(JP (2)) = 0, and (in the second case) such that P is con-

tained in at least one smooth quintic surface. In that case, as we have seen in

Lemma 3.2, any bundle E extending JP/X(2) by OX(−1) has seminatural coho-

mology, so we call them the seminatural CB-Hilbert schemes. Furthermore, as in

Corollary 3.7, the isomorphism class of E is uniquely determined by P . Since E

is stable, it does not have any nontrivial automorphisms.

PROPOSITION 4.4

The seminatural CB-Hilbert scheme Hsn
X has pure dimension 24; the seminatural

CB-Hilbert scheme Hsn
P3 has pure dimension 44. Denote by Hsn

X [2] and Hsn
P3 [2]

the fiber bundles over these, parametrizing pairs (P,U) where P is a seminatural

CB-Hilbert point and U ⊂H0(JP/P3(3)) is a 2-dimensional subspace. These have

pure dimensions 28 and 48, respectively.

Proof

A point in Hsn
X corresponds to a choice of bundle E in Msn

X (2,1,10) plus a

section s ∈H0(E(1)) up to scalar. As the moduli space has dimension 20 and,

for the seminatural case, PH0(E(1)) has dimension 4, the total dimension of

Hsn
X is 24. The Hilbert scheme of pairs (P,X) with P ∈Hsn

X fibers over the 55-

dimensional space of quintics X (note that h0(OP3(5)) = 56) with 24-dimensional

fibers, so it has dimension 79. On the other hand, for a fixed P ∈Hsn
P3 , the space

of quintics X containing P is PH0(JP/P3(5)). Notice that if P is contained in

at least one X , then the discussion of Section 3 implies that h1(JP/P3(5)) = 0,

so h0(JP/P3(5)) = 36 and the space of quintics containing P is an open subset

of P35. So, the dimension of the Hilbert scheme Hsn
P3 is 79− 35 = 44. The fiber

bundles parameterizing choices of U ⊂H0(JP/P3(3)) are bundles of Grassmanians

of dimension 4, so they have dimensions 28 and 48, respectively. All irreducible
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components have the same dimension because the same discussion works for all

of them. �

4.4. The base locus B1 has dimension zero
PROPOSITION 4.5

Suppose that E is a general point of its irreducible component. The subset B1

of points at which E(1) is not generated by global sections has dimension zero.

Equivalently, if s is a general section of E(1) and P its subscheme of zeros, then

the base locus in X of the linear system of cubics H0(JP/X(3)) has dimension

zero. (It remains possible that the base locus in P
3 could have dimension 1; indeed,

that will be a major case treated in Section 7 below.)

Proof

The proof takes up the rest of this section, using three further lemmas. Note

first the equivalence of the two formulations. The section s generates a rank one

subsheaf of E(1) at all points outside P . Thus, if B1 had positive dimension,

this would mean that all sections restrict to multiples of s on B1, so all sections

of H0(JP/X(3)) would factor as a function vanishing on B1 times some other

function. So the second statement implies the first. In the other direction, suppose

all elements of the linear system factored as fg where g is a fixed form, either

linear or quadratic. Then the zero set of g would provide a positive-dimensional

component of B1.

To be proven is that the elements of the linear system H0(JP/X(3)) cannot

all share a common factor g. Suppose to the contrary that they did (a hypothesis

which will be in effect until the end of the proof of the proposition), and let

W ⊂X be the zero set of g. It is a divisor in either the linear system OX(1) or

OX(2), which is to say that it is either a plane section or a quadric section of X .

Let P⊥ ⊂X be the residual subscheme of P along W (i.e., roughly speak-

ing, P − P ∩ W ). Recall that we are assuming that P is not contained in a

quadric section, so P �⊂W and P⊥ is nonempty. The statement that elements of

H0(JP/X(3)) vanish along W means that the map

H0
(
JP⊥/X(3)(−W )

)
→H0

(
JP/X(3)

)

is an isomorphism. Recall also that the right-hand side has dimension 4 in our

situation, so we get h0(JP⊥/X(3)(−W )) = 4 too.

It is now easy to rule out the case where W is a quadric section. Indeed, in

that case we would have h0(JP⊥/X(1)) = 4, but h0(OX(1)) = 4 and the space of

sections generates OX(1) everywhere, so there are at most 3 sections vanishing

on a nonempty subscheme P⊥, giving a contradiction.

Therefore, we may now say that W is a plane section of X . From above,

h0(JP⊥/X(2)) = 4.

Next, we claim that P⊥ satisfies CB(3), that is, the Cayley–Bacharach prop-

erty for OX(3), which is the same as OX(4)(−W ). Indeed, if f is a section of

OX(3) and g is the equation of W , then fg is a section of OX(4). Suppose
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P 3 ⊂ P⊥ is a colength 1 subscheme (defined by an ideal of length 1). Then it

induces a colength 1 subscheme P ′ ⊂ P such that P 3 is the residual of P ′: notice

that as a module OP⊥ may be viewed as isomorphic to the ideal (g) inside OP ,

so an ideal of length 1 in OP⊥ gives an ideal of length 1 in OP . Now if f vanishes

on P 3, then fg vanishes on P ′, so by CB(4) for P we get that fg vanishes on P ,

which in turn says that f vanishes on P⊥. This proves that P⊥ satisfies CB(3)

as claimed. It follows that P⊥ also satisfies CB(2).

The next remark is that P⊥ is not contained in a plane, for if it were, then

the union of this plane with the one defining W would be a quadric containing

P , contrary to our situation.

We have the following lemma, which is a preliminary version of the structural

result of Proposition 5.1 below. Notice that here we have not yet shown that B1

has dimension zero, so we use the specific current situation in the proof instead.

LEMMA 4.6

In the situation of the proof of Proposition 4.5, consider a general section t ∈
H0(E(1)), and let P ⊂ X be its subscheme of zeros. Then P decomposes as a

disjoint union P = P ′ � P ′′ such that P ′′ is reduced, and P ′ is either empty or

consists of a point p′, or an infinitesimal tangent vector at p′; in the latter two

cases p′ is the unique point of B2.

Proof

Choose first any section s ∈H0(E(1)) with zero scheme P , corresponding to a

subsheafOX ⊂E(1). Let r be another section linearly independent from s, and let

F ⊂E(1) be the subsheaf generated by r and s. LetK :=E(1)/F be the quotient.

Let r̃ be the image of r considered as a section of JP/X(3). Within the situation

of the proof of the proposition, the elements of the linear system H0(JP/X(3)) are

supposed to have a common factor defining the divisor W , which we have seen is

a plane section. Thus, the zero scheme Z(r̃) decomposes as W ∪D where D is a

quadric section. For r sufficiently general, D does not contain W . (Otherwise the

quadric section 2W would be a common zero of the linear system, and we have

ruled that out.) Thus, Z(r̃) is smooth on the complement of a finite set. Now,

we can choose t ∈H0(E(1)) so that it is nonvanishing at all isolated points of

B1 (except maybe p′ ∈B2) and at the finite set of singularities. Thus, if the zero

scheme P (t) of t meets W , it meets it at a point where Z(r̃) is reduced (which

we think of heuristically as points where B1 is reduced even though we have

not given a scheme structure to B1). Furthermore, since P (t) moves (except

maybe at p′ ∈ B2), its intersection with W is reduced. On the other hand, at

points located on W , P (t) has to be locally contained in W ; otherwise we could

add a small multiple of r to split off the part of the subscheme sticking out of

W . These together imply that the points of P (t) contained in W are reduced

(except possibly at B2). The points outside of W are reduced because they are

located at places where E(1) is generated by global sections, again with the

possible exception of p′ ∈ B2. From Corollary 4.3, the local structure of P (t)
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near the possible single point p′ ∈B2 is at most an infinitesimal tangent vector

of length 2. This gives the claim of the lemma. �

LEMMA 4.7

The length of P⊥ is ≤10.

Proof

Consider first the case where B2 is empty, or P is reduced at p′ ∈B2, or else p
′ /∈

W . In this case, P = PW ∪P⊥ with PW = P ∩W a reduced subscheme. For fixed

W , the dimension of the space of choices of PW is ≤�(PW ). On the other hand,

P⊥ is located at the intersection C1∩C2∩X where C1 and C2 are quadrics whose

intersection has dimension 1. Furthermore, no component of C1∩C2 is contained

in X ; indeed, the former has degree 4 while curves in X have degree ≥ 5 because

of the condition Pic(X) = 〈OX(1)〉. Therefore, C1 ∩C2 ∩X is a finite set. Since

P⊥ is reduced except for a possible tangent vector at the unique point p′ ∈B2,

we get that the dimension of the set of choices of P⊥ for a given C1,C2 is ≤1.

On the other hand, suppose C1,C2,C3 are three general quadrics through P⊥. If

their intersection is finite, it contains at most 8 points, but with �(P⊥)≥ 11 this

cannot happen and we must have a nontrivial curve in the intersection; this means

that a double intersection C1 ∩C2 has to split into two pieces. The dimension of

the space of such double intersections is the dimension of the Grassmannian of

2-planes in H0(O(2)) =C
10. This Grassmannian has dimension 16. However, as

may be seen by a calculation of the possible cases of splitting, the subvariety of

the Grassmannian corresponding to double intersections which split into at least

two components, is ≤14. Together with the possible one-dimensional choice of

tangent vector at p′, we get altogether that the space of choices for P⊥, together

with the two-dimensional subspace spanned by C1,C2, is ≤15. Putting in PW , we

get that the dimension of the space of choices of P plus a 2-dimensional subspace

of H0(JP/X(3)) is less than 15 + 3+ �(PW ). The 3 is for the space of choices of

plane section W . Now if �(P⊥)≥ 11, then �(PW )≤ 9 and this dimension is ≤27.

The dimension of the corresponding bundle over the seminatural CB-Hilbert

scheme Hsn
X [2] is 28 (see Proposition 4.4) so such a bundle E cannot be general

in its irreducible component.

We are left to treat the case where the unique point p′ ∈B2 lies on W , and

P includes a tangent vector here. Let P 1 denote the subscheme of P located

set-theoretically along W , and let P 2 be the complement. Then the dimension

of the space of choices of P 1 is still �(P 1), and the same argument as above gives

that the dimension of the space of choices of P 2 plus a two-dimensional subspace

of quadrics is ≤15. We get as before �(P 2)≤ 10. On the other hand, the tangent

vector at p′ might go outside of W and contribute to P⊥. If the tangent vector

stays inside W , then P⊥ = P 2 and we are done. If the tangent vector goes outside

ofW , then the estimate from above says only that �(P⊥)≤ 11; however, we get an

additional condition saying that the quadrics have to vanish at this point p′ ∈W ,
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and this condition (which may be seen, e.g., as a condition on the choice of P 1

once P 2 and the quadrics are fixed) gets us back to the estimate �(P⊥)≤ 10. �

LEMMA 4.8

There is a plane section V ⊂X such that V ∩ P⊥ has length ≥ 5.

Proof

Suppose not; that is to say, suppose that any plane section meets P⊥ in a sub-

scheme of length ≤ 4. In order to obtain a contradiction, we show that under this

hypothesis, �(P⊥)≥ 11.

Choose a plane section meeting P⊥ in a subscheme of length ≥ 3, call this

intersection P⊥
+ , and let P⊥

− denote the residual subscheme. Then the condi-

tion CB(3) for P⊥ implies CB(2) for P⊥
− . The results of our previous paper [13]

therefore apply:

(a) �(P⊥
− )≥ 4;

(b) if �(P⊥
− ) = 4 or 5, then P⊥

− is contained in a line;

(c) if �(P⊥
− ) = 6 or 7, then P⊥

− is contained in a plane.

However, our hypothesis for the proof of the lemma says that no plane con-

tains a subscheme of P⊥ of length ≥ 5, so the cases �(P⊥
− ) = 5, 6, 7 cannot

happen. If �(P⊥
− ) = 4, then P⊥

− is contained in a line, and we can choose a plane

which meets, furthermore, a point of P⊥
+ , again giving a plane with more than

5 points. This shows that we must have �(P⊥
− )≥ 8, and since �(P⊥

+ )≥ 3 we get

�(P⊥)≥ 11 as claimed (under the hypothesis contrary to the lemma). This con-

tradicts the estimate of Lemma 4.7, which completes the proof of the present

lemma. �

Now choose a plane section V such that V ∩ P⊥ has maximal length. Write

P⊥
+ = P⊥ ∩ V , and let P⊥

− be the residual subscheme with respect to V . Then

P⊥
− satisfies CB(2). If �(P⊥

+ ) = 5, then �(P⊥
− )≤ 5 and by [13], P⊥

− must consist

of 4 or 5 points on a line. Choose a new plane section passing through this line

but not meeting P⊥
+ ; we conclude that P⊥

+ must also consist of 5 points on a

line, but then in fact we could choose a plane section meeting P⊥ in 6 points.

Thus the case �(P⊥
+ ) = 5 does not happen. If �(P⊥

+ )≥ 7, then P⊥
− would consist

of ≤3 points, but there are no such subschemes satisfying CB(2), so this cannot

happen either. We conclude that �(P⊥
+ ) = 6; hence P⊥

− must be 4 points on a

line. If y is any point of P⊥
+ , then there is a plane containing P⊥

− and y, so the

remaining points of P⊥
+ are either on this same plane or else contained in a line.

If the two lines meet at a point, this would give a plane section containing too

many points. Hence, we conclude that there are 2 skew lines containing at least 8

of the 10 points in P⊥. Because of CB(3) for P⊥, in fact all of the points must

be on the two skew lines.

Count now the dimension of the space of such configurations: there are 8

parameters for the two skew lines. Once this configuration is fixed, the subscheme
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P⊥ is specified up to a finite set of choices. The choice of W counts for 3, and the

choice of 10 points in W counts for 10. The full dimension of this space of choices

is therefore ≤21. As in the proof of Lemma 4.7, the case where our double point

at p′ ∈ B2 lies on W but the tangent direction extends out of W does not add

an extra dimension because we get a point participating in P⊥ which constrains

the choice of points on W . In view of the fact that dim(Hns
X ) = 24, this situation

cannot happen for a general E.

This contradiction completes the proof of the proposition, for a general E in

its irreducible component; the base locus B1 has dimension zero. �

5. The structure of a general zero scheme P

The previous results were as close as we could get to saying that E(1) is generated

by global sections, with the techniques we could find. Choose a general section

s ∈H0(E(1)), and let P denote its scheme of zeros. If y ∈ B1 (but not in B2),

then a general section will not vanish at y. Furthermore, if there is a point p′ in

B2, then the structure of P near p′ is at most an infinitesimal tangent vector.

PROPOSITION 5.1

Suppose s ∈H0(E(1)) is a general element, and let P be the subscheme of zeros.

We can write P = P ′ ∪ P ′′ where P ′ consists of the possible point of P located

at B2, and P ′′ is all the rest. With this notation, P ′′ consists of 18, 19, or 20

isolated points, and P ′ is, respectively, an infinitesimal tangent vector at p′ ∈B2;

or the isolated point p′; or empty. At any point y ∈ P ′′, the map

H0
(
JP/X(3)

)
→ Jy/J

2
y (3)

is surjective, meaning that y is locally the complete intersection of two general

sections of H0(JP/X(3)).

Proof

By Proposition 4.5, the base locus B1 has dimension zero. For any point z ∈B1

with z /∈B2, a sufficiently general section s ∈H0(E(1)) is nonzero at z. Therefore,

for s general the scheme of zeros P does not meet B1 except possibly at B2. Divide

P into two pieces, P ′ at B2 and P ′′ which does not meet either B1 or B2. By

Proposition 4.1, the base locus B2 consists of at most one point which we shall

denote by p′ if it exists. Therefore, P ′ is either empty or has a single point. By

Corollary 4.3, the zero scheme of a general s at p′ has length at most two. So,

if P ′ has a point, then it is scheme-theoretically either this reduced point, or an

infinitesimal tangent vector there.

At a point y ∈ P ′′, since y is not in the base locus B1, it means that E(1)

is generated by global sections at y. From the standard exact sequence (1.2) for

s we see that E(1)y = Jy/J
2
y (3), so the generation of E(1)y by global sections is

exactly the surjectivity of the last claim in the proposition. �
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The points of P ′′ are “interchangeable.” This can be phrased using Galois theory.

Write H0(E(1)) = A
5
C
= SpecC[t1, . . . , t5]. Put K = C(t1, . . . , t5), and let s ∈ A

5
K

be the tautological point. Think of s ∈H0(XK ,E(1)). Let P ⊂XK be the sub-

scheme of zeros. The decomposition P = P ′ ∪ P ′′ is canonical, hence defined

over K. On the other hand, P ′′ consists of 18 to 20 points, but the points are

only, distinguishable over K , which is to say, P ′′
K
⊂X(K) is a set with 18, 19, or

20 points. The Galois group Gal(K/K) acts.

PROPOSITION 5.2

The action of Gal(K/K) on the set P ′′
K

is doubly transitive: it means that any

pair of points can be mapped to any other pair.

Proof

For general s, the part P ′′ is contained in the open subset Xg where E(1) is

generated by global sections. Suppose x0, y0 and x1, y1 are two pairs of points

in P ′′. Consider a continuous path of pairs (x(t), y(t)) contained in Xg × Xg

defined for t ∈ [0,1] ⊂ R, with (x(0), y(0)) = (x0, y0) and (x(t), y(t)) = (x0, y0).

Vanishing of a section at x(t) and y(t) imposes 4 conditions on elements of the

5-dimensional space H0(E(1)), so we get a family of sections s(t) leading to a

family of subschemes P ′′(t). For a general choice of path, the P ′′(t) will all be

reduced with 18, 19, or 20 points. At t= 0 and t= 1, the section is the same as

s up to a scalar since it is uniquely determined by the vanishing conditions. We

obtain an element of the fundamental group of an open subset of the parameter

space of sections s, whose action on the covering determined by the points in P ′′,

sends (x0, y0) to (x1, y1). This shows that the action is doubly transitive, and it

is the same as the Galois action after applying the Grothendieck correspondence

between Galois theory and covering spaces. �

COROLLARY 5.3

Suppose P is the scheme of zeros of a general section s ∈ H0(E(1)), written

P = P ′ ∪ P ′′ as above. Let Z ⊂ P
3 be the intersection of two cubic hypersurfaces

corresponding to general elements of H0(JP/P3(3)). This Z is a complete inter-

section: dim(Z) = 1. There is a single irreducible component Z ′′ of Z such that

P ′′ is contained in the smooth locus of Z ′′. At points of P ′′, Z ′′ is transverse

to X. The only irreducible components of Z which can be nonreduced are those,

other than Z ′′, which are fixed as the cubic hypersurfaces vary.

Proof

The points of P ′′ lie in the subset Xg where sections generate E(1). In the

standard exact sequence (1.2), sections of E(1) map to sections of JP/X(3), and

the fiber E(1)x maps to Jx/J
2
x(3) for x ∈ P ′′. As sections generate the fiber, it

implies that sections of JP/X(3) generate the ideal Jx (which is the maximal

ideal at x). Under the isomorphism H0(JP/P3(3)) ∼= H0(JP/X(3)), two general

sections of JP/P3(3) therefore have linearly independent derivatives at x ∈ P ′′
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when restricted to X , so the same is true of the cubics in P3, which means that Z

is a transverse complete intersection at any x ∈ P ′′. The doubly transitive action

from Proposition 5.2 implies that for general sections and general choice of Z,

the points of P ′′ must all lie in the same irreducible component Z ′′ of Z. Note,

on the other hand, that any other component of Z must also have dimension 1;

otherwise we would get a 1-dimensional base locus B1 of sections of E(1) on X ,

and this possibility has been ruled out in Proposition 4.5.

Note that Z ′′ is reduced since its smooth locus is nonempty. If Zi is a nonre-

duced component, then by Sard’s theorem it has to be a fixed part of the family

of complete intersections of the form Z. �

6. Complete intersections of two cubics

We need to know something about what curves Z can arise as the complete

intersection of two cubics in P3. The degree of Z is 9. If Z is smooth, then

KZ =OZ(2) is a line bundle of degree 18, so the genus of Z is 10.

The choice of Z corresponds to a choice of two-dimensional subspace U ⊂
H0(OP3(3)) = C

20; furthermore U =H0(JZ(3)) and h0(OZ(3)) = 18 (as may be

seen from the exact sequences of restriction to one of the cubics C and then from

C to Z). The dimension of the Grassmannian of 2-dimensional subspaces of C20

is 2 · (20− 2) = 36. Denote this Grassmannian by G; we have a universal family

Z⊂G× P
3.

Let Grci denote the subset of U defining a reduced complete intersection, that

is, such that the fiber ZU of Z over U has dimension 1 and is reduced.

Suppose Z = Z ′ ∪ Z ′′ is a decomposition with d′ := deg(Z ′), d′′ := deg(Z ′′);

so d′ + d′′ = 9 and we may assume d′ ≤ d′′. We are not saying necessarily that

the pieces Z ′ and Z ′′ are irreducible, though. This gives d′ ≤ 4.

LEMMA 6.1

Suppose Z is a complete intersection of two cubic hypersurfaces in P
3. If Zi is a

reduced irreducible component of Z of degree ≤ 5, then either Zi is contained in

a quadric, or the normalization of Zi has genus g = 0 or 1 and the space of such

curves has dimension ≤ 20.

Proof

If deg(Zi)≤ 4, then it is contained in a quadric, so we may assume the degree is 5.

Let Y → Zi be the normalization, and let g denote the genus of Y . Projecting

from a point on Zi gives a presentation of Y as the normalization of a plane

curve of degree 4, so it has genus g ≤ 3. The line bundle OY (2) has degree 10,

which is therefore in the range ≥ 2g−1, so h0(OY (2)) = 11−g. If g ≥ 2, then this

is ≤9 and the map H0(OP3(2))→H0(OY (2)) is not injective, giving a quadric

containing Zi.
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If g = 0, Y ∼= P1, and the embedding to P3 corresponds to a map C4 →
H0(OY (1)) ∼= C

6. This yields 24 parameters, minus 1 for scalars, minus 3 for

Aut(P1), so there are 20 parameters.

If g = 1, the moduli space of elliptic curves provided with a line bundle

OY (1) of degree 5 has dimension 1. (The line bundles are all equivalent via

translations.) Here h0(OY (1)) =C
5, so the space of parameters for the embedding

has dimension 19. This gives a 20-dimensional space altogether. �

LEMMA 6.2

Let Grci(6,3) denote the locally closed subset of Grci parameterizing reduced com-

plete intersections ZU such that ZU = Z ′ ∪ Z ′′ with Z ′′ irreducible of degree 6.

The degree 3 piece Z ′ is allowed to have other irreducible components. Then

Grci(6,3) is the union of four irreducible components parameterizing

(a) the case where Z ′ is a rational normal space cubic;

(b) the case where Z ′ is a plane cubic;

(c) the case where Z ′ is a disjoint union of a plane conic and a line; and

(d) the case where Z ′ is a disjoint union of three lines.

These have dimensions 28, 30, 26, and 24, respectively. For (a) there is

an open set on which ZU = Z ′ ∪ Z ′′ with Z ′ and Z ′′ being smooth and meeting

transversally in 8 points.

Proof

We divide into cases corresponding to the piece Z ′ obtained by removing the

degree 6 irreducible component Z ′′. In the first case (a), we include all degree 3

curves Z ′ which are connected chains of rational curves with no loops or self-

intersections, which then have to span P
3. In these cases, H0(OZ′(1)) is always 4-

dimensional, and Z ′ deforms to a smooth rational normal space cubic. For a given

Z ′, the space of choices of U is the Grassmannian of 2-planes in H0(JZ′/P3(3))

and H0(OZ′(3)) has dimension 10; one can check (case by case) that the restric-

tion map from H0(OP3(3)) is surjective, so h0(JZ′/P3(3)) = 10 and the Grass-

mannian has dimension 16. The space of choices of rational normal space cubic

is irreducible, equal to the space of choices of basis for the 4-dimensional space

H0(OZ′(1)) (16d), modulo scalars (1d), and the automorphisms of the rational

curve Z ′ (3d). In the case of a chain the dimension of the automorphism group

goes up, so those pieces are of smaller dimension in the closure of the open set

where Z ′ is smooth. The dimension of this component is therefore

dimGrci(6,3)
(a) = 16+ 16− 1− 3 = 28.

A general point corresponds to a smooth Z ′ with general choice of U yielding a

smooth curve Z ′′ of degree 6 meeting Z ′ at 8 points.

The remaining possibilities are (b), (c), and (d), which are irreducible, and

one counts the dimensions as
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(b) a plane 3d plus a cubic 9d plus a subspace of H0(JZ′/P3(3)) =C11, 18d

for a total of 30;

(c) a plane 3d plus a conic 5d plus a disjoint line 4d plus a subspace of

H0(JZ′/P3(3)) =C
9, 14d for a total of 26;

(d) three lines 12d plus a subspace of H0(JZ′/P3(3)) = C
8, 12d for a total

of 24. �

LEMMA 6.3

Let Grci(7,2) denote the locally closed subset of Grci parameterizing reduced com-

plete intersections ZU such that ZU = Z ′ ∪ Z ′′ with Z ′′ irreducible of degree 7.

The degree 2 piece Z ′ is allowed to have other irreducible components. Then

Grci(7,2) is the union of two irreducible components parameterizing

(a) the case where Z ′ is a plane conic; and

(b) the case where Z ′ is a disjoint union of two lines.

These have dimensions 30 and 28, respectively. For (a) there is an open set

on which ZU = Z ′ ∪Z ′′ with Z ′ and Z ′′ being smooth and meeting transversally

in 6 points.

Proof

The complementary curve Z ′ has degree 2. If irreducible, it has to be a plane

conic. If reducible, it is the union of two lines. If the lines meet, this still cor-

responds to (a); if they are disjoint, it is case (b). Both cases have irreducible

spaces of parameters.

To count the dimensions, in case (a) the choice of plane H ∼= P
2 ⊂ P

3 is 3d,

the choice of conic in the plane is 5d, and h0(OZ′(3)) = 7. One can check that

the restriction map is surjective (since Z ′ is reduced there are only two cases,

an irreducible conic or two crossing lines), so h0(JZ′/P3(3)) = 13 and the Grass-

mannian of 2-planes in here has dimension 22. The total dimension is therefore

3 + 5+ 22 = 30.

In case (b) the choice of two disjoint lines is 8-dimensional, and

h0(JZ′/P3(3)) = 12; the Grassmannian of 2-planes has dimension 20, so the total

dimension here is 28. �

LEMMA 6.4

The subvariety Grci(8,1) parameterizing ZU = Z ′ ∪ Z ′′ with Z ′′ irreducible of

degree 8, is irreducible of dimension 32. It has an open set on which Z ′′ is smooth

and meets the line Z ′ transversally in 4 points.

Proof

Note that Z ′ has to be a line. The space of lines has dimension 4 and

h0(JZ′/P3(3)) = 16. The Grassmannian of 2-planes U inH0(JZ′/P3(3)) has dimen-

sion 28, so the total dimension is 32. The general element is contained in a smooth

cubic surface, on which the relevant linear system defining Z ′′ has no base points
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so a general Z ′′ is smooth; the intersection Z ′∩Z ′′ has 4 points by the adjunction

formula. �

In the nonreduced case, we can give a bound for the dimension. It would be

interesting to have a better understanding of the strata.

LEMMA 6.5

The variety parameterizing ZU = Z ′ ∪Z ′′ such that Z ′′ is reduced and irreducible

of degree 6 or 7 has dimension ≤ 30.

Proof

From Lemmas 6.2 and 6.3, the dimension is ≤30 for the case when all of Z is

reduced. If Z is nonreduced, then noting that it has no embedded points since it

is a complete intersection, and that the nonreduced part has degree ≤ 3, it must

contain a uniquely determined line with multiplicity ≥ 2. The dimension count

is similar to the case of Lemma 6.4, but we choose two extra points to measure

the nonreduced structure.

Consider the space of choices (Z,a, b) where a and b are distinct points on

the double (or triple) line of Z, provided with normal directions to the line that

are contained in Z. Because Z has at least a double structure along the line,

the space of choices of (Z,a, b) has dimension at least two more than that of

the space of choices of Z. Thus, we need to show that the space of (Z,a, b) has

dimension ≤ 32.

For a given line L with two distinct points a, b together with normal directions

to L at a and b, the space of cubics vanishing along L and vanishing in the given

normal directions has dimension 14. Therefore, the Grassmannian of 2-planes

in here, parameterizing complete intersections Z containing L plus the normal

directions at a and b, has dimension 24. Adding to this the 4-dimensional space

of choices of L, plus 2 for the choices of points, plus 2 for the choices of normal

directions gives 32. This proves the lemma. �

7. The common curve case

Consider a general bundle E in its irreducible component, a general section s ∈
H0(E(1)), and a general two-dimensional subspace U ⊂ W := H0(JP/P3(3)) ∼=
H0(JP/X(3)). Let Z ⊂ P

3 be the intersection defined by U , which is a complete

intersection by Corollary 5.3. Write P = P ′ ∪P ′′ as usual, and let Z ′′ ⊂ Z be the

irreducible component containing P ′′.

Let Q⊂ P
3 be the intersection of the four independent cubics spanning W =

H0(JP/P3(3)). It is contained in Z; indeed, it is the intersection of Z with the

other two cubics spanning the complement of U ⊂W . Hence dim(Q) ≤ 1, and

also of course P ⊂Q. Write Q=Q0 ∪Q1 where Q1 is the union of 1-dimensional

pieces of Q and Q0 is the remaining zero-dimensional part. Notice that Q1 ∩ P

and Q0 ∩ P correspond to Galois invariant pieces in the situation where s is
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a generic geometric point, so by Proposition 5.2 it follows that if P ′′ ∩ Q1 is

nonempty, then P ′′ ⊂Q1 and similarly for Q0.

Our situation therefore breaks down into two distinct cases:

– the common curve case when the 1-dimensional part Q1 contains the big

variable part P ′′; or

– the variable curve case when P ′′ ⊂Q0.

In this section, we would like to rule out the first possibility; reasoning by

contradiction, suppose on the contrary that we are in the common curve case.

Since Q1 ⊂ Z, and by Corollary 5.3 there is a single irreducible component Z ′′ of

Z containing P ′′, it follows that Z ′′ ⊂Q1. The common curve case is therefore

equivalent to the following hypothesis, which will be in effect throughout the

section until it is ruled out.

HYPOTHESIS 7.1

All of the sections in W =H0(JP/P3(3)) vanish along Z ′′.

LEMMA 7.2

Suppose that deg(Z ′′) �= 6. Then Z ′′ is contained in a quadric, from which it

follows that P is contained in a quadric.

Proof

If we can show that Z ′′ is contained in a quadric, then it follows that P is

contained in the same quadric by Lemma 2.2. Suppose deg(Z ′′) ≤ 5. Then by

Lemma 6.1, either Z ′′ is contained in a quadric or it runs in a space of dimen-

sion ≤ 20. In the latter case, for each choice of Z ′′ we have a space of possible

choices of P of dimension 20, 19 + 3 = 22, or 18 + 5 = 23 depending on whether

P ′ is empty, a single point, or an infinitesimal tangent vector. In all cases, this

results in a space of possible subschemes P of dimension ≤ 43< 44, so by Propo-

sition 4.4 it cannot contribute to a general point in the irreducible component.

Suppose deg(Z ′′) = d≥ 7 (and of course Z ′′ ⊂ Z, so d≤ 9). Choose a hyper-

plane H ∼= P
2 ⊂ P

3 not passing through a point of P ′′, and let A :=H ∩Z ′′ ⊂ P
2

be the intersection. It is finite of length d. Using Hypothesis 7.1, we get a 4-

dimensional space W of sections of H0(JZ′′/P3(3)). (One can note that, by the

same argument as in Lemma 2.2, sections of O(3) vanishing on Z ′′ vanish also

on P so H0(JZ′′/P3(3)) =H0(JP/P3(3)).) Consider the restriction map

r :W →H0(JA/P2(3)).

If w lies in the kernel, it means that w factors as the linear form defining H times

a quadric. Then this quadric contains Z ′′, so it contains P by Lemma 2.2.

We now show that r is not injective.

LEMMA 7.3

Suppose A ⊂ P
2 is a subscheme of length 7. If A does not contain 5 points on
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a line (i.e., the intersection with any line has length ≤ 4), then A imposes 7

independent conditions on H0(OP2(3)).

Proof

Choose a line L with maximal value of the length � of L ∩ A. Then 2 ≤ � ≤ 4.

On the 10-dimensional space of cubics we can try to impose 3 further conditions

and should prove that this makes sections vanish. Imposing 0, 1, or 2 additional

conditions on cubics restricted to L makes them vanish. The residual subscheme

A′ of A with respect to L has length 7− �, and we have to show that it imposes

this number of conditions on conics. Again choosing a line L′ with maximal

contact (of order 2≤ �′ ≤ 3) with A′, imposing 0 or 1 additional conditions we

get vanishing of the conics on L′; we are left with a further residual subscheme

A′′ of length 7− �− �′, which is between 0 and 3; however if A′′ consisted of 3

colinear points, that would imply � ≥ 3, so A′′ would have length ≤ 2 and this

is ruled out. Hence A′′ imposes independent conditions on linear sections. We

conclude that A imposed 7 independent conditions on cubics. �

To finish the proof of Lemma 7.2, consider the subscheme A from that proof. It

has length 7, 8, or 9. Since H was general, no 5 points of A lie on a line. Applying

Lemma 7.3 to a subscheme of length 7, we see that A has to impose at least 7

conditions on cubics. But r(W ) is a subspace of the 10-dimensional H0(OP2(3)),

vanishing on A. Thus dim(r(W )) ≤ 3 showing that r cannot be injective. This

completes the proof. �

To finish this section, we just have to consider the case when deg(Z ′′) = 6. Con-

sider first the case where a general Z is reduced, and apply Lemma 6.2. Notice

that for each choice of Z a reduced complete intersection Z = ZU , U ∈Grci(6,3),

the space of possible choices of P has dimension ≤ 20. From P ⊂ Z this is clear

when P is reduced. The other possibility is that P ′ is an infinitesimal tangent

vector. In that case, P ′′ is to be chosen in the smooth subset of Z ′′, giving an

18-dimensional space of choices. When P ′ is in the smooth part of Z ′ it really

only corresponds to a 1-dimensional space of choices, giving 19 in all; when P ′

is in the singular set of Z, the choice of p′ is zero-dimensional and the choice of

tangent vector ≤ 2-dimensional, so we get a space of choices of dimension ≤ 20

in all.

From Lemma 6.2, the space of choices of pairs (P,Z) in case (a) has dimen-

sion ≤ 28 + 20 = 48. This is the same as the dimension of the component of the

Hilbert scheme we are looking at. However, a general pair (Z,P ) with Z = ZU in

the 28-dimensional piece Grci(6,3)
(a) and P ⊂ Z general does not occur. Indeed,

the degree 6 piece Z ′′ is a smooth curve of genus 3, so there are 22 sections of

O(4) on Z ′′, and imposing up to 20 conditions cannot make the sections van-

ish there; on the other hand, we could start by imposing up to 2 independent

conditions from P ′ on the degree 3 piece Z ′. Thus, a general choice of P ⊂ Z

imposes 20 conditions on the 27-dimensional space H0(OZ(4)), leaving only 7
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sections to add to h0(JZ(4)) = 8 giving 15. So, for a general choice of P ⊂ Z we

have h0(JP/P3(4)) = 15 and P cannot satisfy CB(4). Hence the space of (P,Z)

such that Z decomposes with a degree 6 piece Z ′′ is a proper subspace of our

irreducible component, so for general bundles E this case does not occur.

In case (b) of Lemma 6.2, consider the plane H containing Z ′. The subspace

U of cubics vanishing on Z has dimension 2, whereas H0(JZ′/H(3)) has dimen-

sion 1. (The plane cubic Z ′ determines its equation uniquely up to a scalar.)

Therefore the restriction map from U to H0(OH(3)) is not injective, but an ele-

ment u ∈ U mapping to zero on H must be a product of a quadric and the linear

equation of H . This gives a quadric containing Z ′′ and hence P . So, for bundles

with h0(E) = 0, this case does not occur.

In cases (c) and (d) of Lemma 6.2, the total dimension is ≤26+ 20 which is

too small, so these do not contribute for general bundles E.

This completes the analysis of the case where a general Z is reduced. If a

general Z is nonreduced, the nonreduced components Zi must be fixed, but dif-

ferent from Z ′′. As Z ′′ is also fixed (when we vary the two-dimensional subspace

U of cubics), there must be at least one variable component Zj . The degree of

the complementary piece to Z ′′ is 3, so the only possibility is a fixed line of multi-

plicity two and a variable line of multiplicity 1. But then we have a 4-dimensional

space of cubics passing through the degree 8 curve Z ′′ ∪Zi, so as in the proof of

Lemma 7.2, this would give a quartic containing Z ′′ ∪Zi.

We have finished the proof of the following theorem ruling out the common

curve case.

THEOREM 7.4

Hypothesis 7.1 leads to a contradiction. Therefore, for a general seminatural bun-

dle E in its irreducible component and a general section s ∈H0(E(1)) defining a

scheme of zeros P , if the intersection of the four cubics passing through P has a

1-dimensional piece Q1, then the big interchangeable collection of points P ′′ ⊂ P

does not meet Q1. In other words, we are in the variable curve case.

8. The reducible variable curve case

The common curve case is ruled out by the previous section. Hence we are in the

variable curve case, when P ′′ ⊂Q0. It means that the choice of W , which deter-

mines Q, then determines P ′′ and hence almost P ′. (Note however that P ′ could

still be in a 1-dimensional piece of Q1.) Let U ⊂W be a general 2-dimensional

subspace determining a complete intersection Z = ZU . In this section, we con-

sider the case when Z is not irreducible, a possibility which we would like to rule

out.

As was argued before, the points of P ′′ are indistinguishable under the Galois

group; the subspace U may be chosen over the same field as P , so P ′′ must be

contained in the smooth points of a single irreducible component Z ′′ of Z. Write

Z = Z ′ ∪Z ′′ where the remaining piece Z ′ is allowed to be reducible.
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Applying Lemmas 6.1 (as in the first paragraph of the proof of Lemma 7.2)

and 2.2 as well as the hypothesis h0(E) = 0 so P is not contained in a quadric

gives deg(Z ′′)≥ 6.

The idea is to use a dimension count. The dimensions of the cases go all the

way up to dimGrci(8,1) = 32. However, the subspace W determines P ′′, and in

turn W is determined by a smaller subset of points than P , so the dimension

count can still work.

Choose a subscheme P16 ⊂ P of length 16 as follows. Start with P2 of length

2 containing P ′. Note that P2 imposes 2 independent conditions on H0(OP3(3)).

Then for 3≤ i≤ 16 let Pi := Pi−1∪{pi} with pi chosen in P ′′ such that it imposes

a nontrivial condition on H0(JPi−1/P3(3)). This exists because

h0
(
JP/P3(3)

)
= 4< 20− (i− 1) = h0

(
JPi−1/P3(3)

)
.

For i = 16 we get P16 imposing 16 independent conditions, and P ′ ⊂ P16. It

follows that

W =H0
(
JP/P3(3)

)
=H0

(
JP16/P3(3)

)
.

In particular, W is determined by P16. However, the remaining four points of

P − P16 are all in P ′′; in particular they are reduced points. Because of the

“variable curve case” Theorem 7.4, the intersection Q of the cubics in W has

dimension zero at the points of P ′′; therefore, the locations of the remaining four

points are determined (up to a finite choice) by W . We get that P is determined

by P16.

We may now count the dimension of the space of choices of pair (P,Z) where

Z = ZU for a general subspace U ⊂W . The space of choices of Z containing a

degree 6 or degree 7 piece is ≤30 by Lemma 6.5. The dimension of the space of

choices of P16 inside Z is ≤16 if we assume Z reduced, or ≤17 in any case, so the

total dimension there is ≤47, which is too small. For the case of Z containing a

piece Z ′′ of degree 8, we get a dimension of 32 + 16 = 48, so this looks possible.

However, the general element Z of the parameter space corresponds to the union

of a smooth degree 8 curve Z ′′ meeting a line Z ′ in 4 points. In order to get to

dimension 48, we must have P general; in particular P ′′ is a general collection of

18 points in Z ′′. Now Z ′′ has genus 7. The line bundle OZ′(3)(−P ′′) is a general

one of degree 6, which on a curve of genus 7 will not have any sections. Hence,

all cubics containing P must vanish on Z ′′, which would put us back into the

“constant curve case.” So, this case does not occur.

We have finished ruling out the possibility that Z would be reducible, result-

ing in the following theorem.

THEOREM 8.1

For a general seminatural bundle E in its irreducible component and a gen-

eral section s ∈ H0(E(1)) defining a scheme of zeros P , choose a general 2-

dimensional subspace U ⊂ W = H0(JP/P3(3)) defining a complete intersec-

tion ZU . Then ZU is irreducible.
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9. Subschemes of an irreducible degree 9 curve

In this section we complete the proof that the Hilbert scheme Hsn
P3 is irreducible,

by treating the case P ⊂ ZU where ZU is an irreducible complete intersection of

degree 9.

We first indicate how to construct an open set of the Hilbert scheme. Consider

a smooth complete intersection curve ZU for a general 2-dimensional subspace

U ⊂H0(OP3(3)). The Grassmannian of choices of U has dimension 36, and there

is a dense open set where Z = ZU is smooth of genus 10.

Now P ⊂ Z will be a subscheme of length 20, which is a Cartier divisor since

Z is smooth. By varying any collection of 10 points, we obtain a family which

surjects to the Jacobian Jac20(Z). The line bundle L =OZ(4)(−P ) has degree

36− 20 = 16. Note that the map

H0
(
OP3(4)

)
→H0

(
OZ(4)

)

is surjective, with kernel of dimension 8. Hence, in order to obtain h0(JP/P3(4)) =

16 one should ask for h0(OZ(4)(−P )) = 8, that is, h0(L) = 8. As g = 10 we

get χ(L) = 16 + 1 − 10 = 7. The condition h0(L) = 8 is therefore equivalent to

h1(L) = 1 or by duality, h0(KZ ⊗L−1) = 1. Now, KZ =OZ(2) has degree 18, so

M :=KZ ⊗ L−1 is a line bundle of degree 2. Asking for it to have a section is

equivalent to asking thatM ∼=OZ(x+y) for a degree 2 effective divisor (x)+(y) ∈
Z(2) ⊂ Jac2(X). The dimension of choices of M is 2, and the space of choices is

nonempty and irreducible. For each choice of M , we have L :=KZ ⊗M−1, and

the space of choices of divisor P such that OZ(4)(−P ) = L is a projective space

of dimension

#(P )− dim
(
Jac(Z)

)
= 10.

Putting these together, we get a nonempty irreducible 12-dimensional space of

choices of P ⊂ Z such that h0(JP/P3(4)) = 16. Including the variation of Z in

a 36-dimensional space, these fit together to form a nonempty irreducible 48-

dimensional variety.

If we replace P by a subscheme P1 ⊂ P of colength 1 in the above argument,

then M changes to M1 = M(z) = OZ(x + y + z) where (z) = P − P1. As this

is a general point of Z, we still have h0(M1) = 1 giving the Cayley–Bacharach

condition CB(4) for P . Hence, there is a dense open subset of the 48-dimensional

variety parameterizing pairs (Z,P ) where P satisfies CB(4). This is our irre-

ducible component of Hsn
P3 [2]. Abstracting out the choice of Z gives an irreducible

44-dimensional component of the Hilbert scheme Hsn
P3 .

THEOREM 9.1

The irreducible component constructed above is the only one in Hsn
P3 .

Proof

The argument above shows the basic idea. However, we need to do some more

work to treat the case when Z is singular and especially the possibility of a
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point or infinitesimal tangent vector in P ′. The first step is to rule out this last

possibility.

LEMMA 9.2

A general P in its irreducible component is reduced.

Proof

Given P we can choose a quintic surface X containing it and write P = P ′ ∪P ′′.

We have P ′′ reduced, and if P ′ is nonreduced, it consists of a single infinitesimal

tangent vector. Furthermore we may assume that P is at a smooth point of its

Hilbert scheme. Choose a local smoothing infinitesimal deformation of P ′; we

would like to extend that to a deformation of P preserving the CB(4) condition.

As the Cayley–Bacharach property is open, it is equivalent to preserving the

property h0(JP/P3(4)) = 16. One can check that the obstruction to finding a

deformation of P ′′ which, when added to the given deformation of P ′, preserves

h0(JP/P3(4)), would be the existence of a section t ∈H0(JP/P3(4)) such that t

vanishes to order 2 at all the points of P ′′ in P
3.

Consider a complete intersection of cubics Z containing P , and we may

assume that P ′′ lies on the smooth locus of Z. From the results of the previous

sections, we may assume that Z is an irreducible curve of degree 9. Hence OZ(4)

is a line bundle of degree 36. Our section t vanishes at 2P ′′ ⊂ Z but also at the

points of P ′. Together these are at least 38 points, so it follows that t vanishes

on Z. Let C ⊂ P
3 be one of the cubics defining Z. The residual of the scheme

2P ′′ of multiplicity 2 at P ′′, intersected with C, consists of all the points of P ′′.

The restriction t|C , divided by the other equation of Z, corresponds to a linear

section vanishing at these points; but the points of P ′′ are not all contained in

a plane (indeed they are not even contained in a quadric), so t|C = 0. Then t

divided by the equation of C is a linear form again vanishing on P ′′, so it is zero.

Thus, t= 0.

This proves that the obstruction to lifting our smoothing deformation of P ′

to a deformation of P vanishes. Therefore, for a general point P the piece P ′ has

to consist of at most a single reduced point. This proves the lemma. �

Suppose next that P is a Cartier divisor on Z. This will always be the case at

points of P ′′ which are smooth points of Z, but it remains a possibility that

P ′ is a nonmovable point at a singularity of Z. We will deal with this problem

below, but for now in the interest of better explaining the argument, assume that

L := OZ(4)(−P ) is a line bundle which we may think of as being a restriction

from a small analytic neighborhood of Z.

Now Z is a complete intersection, so duality still applies. This can be seen,

for example, by using Serre duality on P
3 and the equations for Z which provide

resolutions for OZ ; the local Ext sheaves may be tensored with L, which exists

on a neighborhood of Z. We get

Hi(Z,L|Z)∼=H1−i
(
Z,L−1 ⊗OZ(2)

)∗
.
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Applying this to L=OZ(4)(−P ), we get

h1(L|Z) = h0
(
OZ(−2)(P )

)
.

On the other hand, χ(L) = 7 and, as before, h0(JP/P3(4)) = h0(L|Z) + 8, so the

condition h0(JP/P3(4)) = 16 is equivalent to h1(L|Z) = 1, which in turn is equiv-

alent to asking that the degree 2 line bundle OZ(−2)(P ) be effective.

The Picard scheme Pic0(Z) is still a group scheme, hence smooth; and its

tangent space at the origin is H1(OZ). The exact sequences for Z ⊂ C ⊂ P3

(where C is one of the cubics cutting out Z) give H1(OZ) ∼= H3(OP3(−6)) =

H0(OP3(2))∗ which is 10-dimensional. So the group scheme as well as its torsors

Picd(Z) are 10-dimensional. An infinitesimal argument with exact sequences also

shows that for 10 general points in Z, the map from the product of their tangent

spaces to the Picard scheme is surjective. As P consists of 20 points, and the

Picard scheme has dimension 10, at least 10 points can move generally, keeping

the same divisor P up to linear equivalence.

The effective divisors form a two-dimensional subscheme of Pic2(Z). Thus, at

a general P ⊂ Z satisfying h0(JP/P3(4)) = 16, the Hilbert scheme of such P has

dimension 12. The locus of singular Z has dimension ≤ 35, so the pairs (Z,P )

with Z singular lie on a subscheme of dimension ≤ 47 and cannot therefore

correspond to a general bundle E in its irreducible component. This finishes the

proof of Theorem 9.1 in the case where P corresponds to a Cartier divisor.

Some further argument is needed for the general case. The reader may cal-

culate directly that the dimension of the space of (Z,P ), such that Z is a nodal

curve and P contains a point p′ located at the node, is <48 and does not con-

tribute. This indicates that we do not get a new irreducible component in this

way.

To give a more complete argument, consider (Z,P ) with Z singular (but still

reduced and irreducible) and P including a point p′ ∈ P ′ located at a singular

point of Z. Consider general hyperplanes H ⊂ P3 passing through p′, let K :=

(H ∩Z)p′ (meaning the local piece of H ∩ Z at p′), and let P+ = P ′′ ∪K. This

is now a Cartier divisor on Z, so the previous considerations apply. Let � denote

the length of K. The condition that Z is not contained in a plane means that

the general intersection H ∩ Z cannot be concentrated at a single point; on the

other hand p′ is singular in Z, so 2 ≤ � ≤ 8. The exact sequences for complete

intersections imply that K imposes � independent conditions on cubics.

Our point p′ is in the base locus B2 for the bundle E, meaning that sections

in H0(JP/X(3)) vanish to order ≥ 2 at p′ in X . This is true for any general

quintic X passing through P , so sections of H0(JP/P3(3)) vanish to order ≥ 2 at

p′ in P
3. In particular, Z contains the multiplicity two fat point at p′. In turn,

this implies that K contains the multiplicity two fat point at p′ in H .

We have h0(JP+/P3(3)) ≥ 17 − �, which translates, using duality and cal-

culating the Euler characteristic, into h0(OZ(−2)(P+)) ≥ 1. That is to say,

OX(−2)(P+) is an effective line bundle of degree �+ 1. (The case � = 1 would

correspond to the case treated previously.) The dimension of the space of choices
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of P+ satisfying this effectivity condition, at general P ′′ in its linear system,

is ≤ 11 + �. Note that since P is reduced, P+ determines P .

For a given K ⊂ H , the space of choices of Z passing through K is the

Grassmannian of 2-planes in C
20−�, so it has dimension 2(18− �) = 36− 2�. We

consider the space of choices of (p′,H,Z,P ). The choices of p′ ∈ H form a 5-

dimensional space. Let k denote the dimension of the space of choices of K ⊂H

located at a given point p′. Then altogether, the space of choices of (p′,H,Z,P )

has dimension

≤ 5 + (11 + �) + (36− 2�) + k = 52+ k− �.

This should be compared with the dimension of the Hilbert scheme, plus the

number of choices of H (2-dimensional) for each P , which is to say 50.

The dimension count is now taken care of by noting that K ⊂H contains the

fat point of multiplicity 2 at p′ and this part is fixed without parameters. The

remaining parameters for the choice of K therefore correspond to the length of

the remaining subscheme, which is to say, k ≤ �−3. This gives a count of ≤49 for

the space of (p′,H,Z,P ) corresponding to the singular situation, which is <50

so it does not contribute to the general points of the Hilbert scheme of (Z,P ).

This completes the proof of Theorem 9.1. �

10. Bundles on the quintic

To complete the proof of Theorem 0.2, we should go back from the Hilbert scheme

of CB(4)-subschemes in P
3, to the Hilbert scheme of CB(4)-subschemes of a gen-

eral quintic X . Note first of all that we have looked above at the Hilbert scheme

{(Z,P )} :=Hsn
P3 [2] of pairs (Z,P ). However, for a given P the space of choices of

Z is just a Grassmannian of 2-planes U ⊂W ∼= C4. So, irreducibility of the 48-

dimensional Hilbert scheme {(Z,P )} implies irreducibility of the 44-dimensional

Hilbert scheme {P} :=Hsn
P3 . The incidence variety of pairs (P,X) such that X

is a smooth quintic hypersurface containing P will be denoted by {(P,X)}. The
map {(P,X)}→ {P} is a fibration in projective spaces of dimension 35; indeed

by the seminatural condition P imposes 20 conditions on the 56-dimensional

space H0(OP3(5)), and we should also divide out by scalars. Thus, the incidence

variety {(P,X)} is irreducible of dimension 79. The space of quintics denoted

{X} is an open subset of P55, and the Hilbert scheme of choices of P for a given

general X is the 24-dimensional fiber of the map
{
(P,X)

}
→{X}.

Up to now, we have shown that the source of this map is irreducible. An additional

argument is needed to show that the fibers are irreducible. We will use the same

argument as was used in [13], which was pointed out to us by A. Hirschowitz.

The idea is to say that there is a specially determined irreducible component

of each fiber; then this component is invariant under the Galois action of the

Galois group of the function field of the base, on the collection of irreducible

components of the fiber. On the other hand, irreducibility of the total space means
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that the Galois group acts transitively on the set of irreducible components of

the fiber, and together these imply that the fiber is irreducible.

In order to isolate a special irreducible component, notice that the singular

locus of the moduli space of bundles was identified in [13]. It has some explicit irre-

ducible components corresponding to the choice of CB(2)-subschemes of length

10 in X , yielding the case of bundles with H0(E) �= 0. (This is the case we have

been explicitly avoiding throughout the bulk of the argument above.) We con-

sider the 19-dimensional component of the singular locus whose general point is

a bundle E fitting into an exact sequence

0→OX →E → JR(1)→ 0

where R⊂ Y is a general collection of 10 points on Y =X ∩C for a quadric C.

For a general such bundle E, there is a unique co-obstruction, which is to

say a unique exact sequence as above, and the Zariski normal space to the sin-

gular locus may naturally be identified with H1(E), which has dimension 2. The

second-order obstruction map is the same as the quadratic form associated to the

symmetric bilinear form obtained from duality H1(E)∼=H1(E∗(1))∗ =H1(E∗).

This quadratic form defines a pair of lines inside H1(E). These are the two actual

normal directions of the moduli space of bundles along the singular locus at E.

In order to show that this component of the singular locus meets a canonically

defined irreducible component of the moduli space, it suffices to show that these

two lines are interchanged as R moves about in the Hilbert scheme of 10-tuples

of points in Y .

The 2-dimensional space H1(E), together with its quadratic form, depends

only on the arrangement R ⊂ P
3 of 10 points on a quadric C ∼= P

1 × P
1, in a

way we now explain. The homogeneous coordinates of the 10 points give a map

C
4 →C

10. We get a map Sym2(C4)→C
10, and the equation of the quadric C is

an element of the kernel; as Sym2(C4) has dimension 10 itself, there is an element

ξ = (ξ1, . . . , ξ10) in the cokernel, unique up to scalars. The CB(2)-condition, which

holds for general R, corresponds to asking that ξi �= 0 for all 1≤ i≤ 10. Therefore

ξ defines a nondegenerate symmetric bilinear form on C
10 denoted

〈X,Y 〉 :=XΔ(ξ)Y t =

10∑

i=1

ξixiyi.

The condition that ξ vanish on the image of Sym2(C4) says that C
4 ⊂ C

10 is

an isotropic subspace. In other words, it is contained in its orthogonal subspace

C
4 ⊂ (C4)⊥ ∼=C

6. The quotient C6/C4 is our two-dimensional space H1(E), and

Δ(ξ) induces a quadratic form here. We are interested in the two isotropic lines.

Fix 9 of the points in a general way; then our two-dimensional subspace with

quadratic form depends on a single choice of r10 ∈ C. A calculation shows that

the discriminant divisor of the quadratic form contains reduced components in C.

So if one has a curve of points r10 ∈ Y which intersect this divisor transversally,

the two lines are interchanged when we go around the intersection point on the

curve. Now, one can choose X to pass through the given r1, . . . , r9 as well as
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transversally through a general reduced point on the discriminant divisor. For

such X , the tangent directions are interchanged as R moves around in Y =X∩C,

so the same is also true for any general X .

This completes the construction of a specified irreducible component of the

moduli space of bundles. Notice that for the singular points E constructed above,

we still have H1(E(1)) = 0, so as soon as we move off the singular locus to get

H1(E) = 0, this gives a bundle with seminatural cohomology. Thus, our speci-

fied irreducible component corresponds to bundles with seminatural cohomology.

Now, Hirschowitz’s argument plus Theorem 9.1 saying that the Hilbert scheme

of choices {P} is irreducible combine to show that there is only one irreducible

component in the moduli space of stable bundles on X of degree 1 and c2 = 10

having seminatural cohomology. This completes the proof of Theorem 0.2.

11. Some ideas for the nonseminatural case

We indicate here how one should be able to treat Conjecture 0.1. Notice that we

made the hypothesis that H1(E(1)) = 0, and this implied seminatural cohomol-

ogy. So, in the nonseminatural case we have h1(E(1))≥ 1 and h0(E(1)) ≥ 6. If

s :O→E(1) with subscheme of zeros P , then h0(JP/X(3))≥ 5.

The first step will be to show that sections of E(1) have a base locus con-

sisting of at most one point p′ and that a general P has to be reduced at P ′,

with 19 points making up P ′′ with doubly transitive Galois action. This should

be similar to our arguments of Sections 4 and 5.

One can also point out, right away, that this allows us to rule out the “com-

mon curve case” as in Section 7; indeed even in the case when Q1 has degree 6,

the same argument as we used for degrees 7 and 8 works to show that Q1 would

have to be contained in a quadric.

So, we are in the variable curve case. If Z is a complete intersection of two

cubics passing through P , then Z = Z ′ ∪Z ′′ with Z ′′ irreducible, containing P ′′

in its smooth locus. Part of the argument consisted of ruling out deg(Z ′′) < 9

by a dimension count. Here we cannot just transpose the arguments; indeed the

dimension of the Hilbert scheme of possible collections P might be strictly smaller

than 44, because each P can contribute a positive-dimensional space of extension

classes.

So we should divide the argument into two cases. If h1(JP/X(4)) = 1, that is,

e= 0 in the notation of Section 1, then the dimension of Ext1(JP/X(2),OX(−1))

is 1 and the extension class is unique up to scalars. In this case, the dimension

of the Hilbert scheme {P} remains 44 (and including the complete intersection

curve Z gives {(Z,P )} of dimension 48). The dimension count may then proceed

as we have done, and this should allow us to treat this case.

In the case when h1(JP/X(4))≥ 2, each choice of P corresponds to a positive-

dimensional space of choices of extension class up to scalars. However, in this

case we can degenerate the extension class to one which no longer satisfies the

Cayley–Bachrach condition—meaning that, viewed as a dual element to OP (4),

it vanishes on one or more points.
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The doubly transitive Galois action on P implies that the images of the

points P in the projective space of extension classes cannot generically bunch up

in groups of more than one. Therefore, it is possible to degenerate the extension

class towards one which vanishes at exactly one point of P . This means an

extension which corresponds to a torsion-free sheaf E with a singularity at a single

point. It therefore corresponds to a point in the boundary of the moduli space,

at the boundary component coming from MX(2,1,9). This boundary piece has

codimension 1, and we should be able to analyze the nearby bundles and conclude

that we remain in the principal irreducible component. (Indeed it suffices to say

that nearby bundles have seminatural cohomology.)

The technique of localizing our picture on the boundary of the moduli space

is obviously a necessary and important one which needs to be further developed

in order to treat this type of question. This will be left for a future work.

Another interesting direction will be to look at Reider’s theory of nonabelian

Jacobians [18] and [19] for bundles on a general quintic surface. The structures

we have encountered in an ad hoc way in the course of our proof are actually

pieces of Reider’s theory.
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